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On modules with self Tor vanishing

Olgur Celikbasa and Henrik Holmb

aDepartment of Mathematics, West Virginia University, Morgantown, WV, USA; bDepartment of Mathematical
Sciences, University of Copenhagen, Copenhagen, Denmark

ABSTRACT
The long-standing Auslander and Reiten Conjecture states that a finitely
generated module over a finite-dimensional algebra is projective if certain
Ext-groups vanish. Several authors, including Avramov, Buchweitz, Iyengar,
Jorgensen, Nasseh, Sather-Wagstaff, and Şega, have studied a possible
counterpart of the conjecture, or question, for commutative rings in terms
of the vanishing of Tor. This has led to the notion of Tor-persistent rings.
Our main result shows that the class of Tor-persistent local rings is closed
under a number of standard procedures in ring theory.
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1. Introduction

Inspired by the work of Şega [20, para. preceding Theorem 2.6], Avramov, Iyengar, Nasseh, and
Sather-Wagstaff raise in [5],1 the question of whether every commutative noetherian ring is Tor-
persistent. A commutative ring A is said to be Tor-persistent if every finitely generated A-module M
with TorAi ðM,MÞ ¼ 0 for all i � 0, that is, TorAðM,MÞ is bounded, has finite projective dimension.
We refer to [5] and the precursor [6] (by the same authors) for a history/background of this question.
The mentioned works also contain information about several interesting classes of rings which are
known to be Tor-persistent. This includes Gorenstein rings with an exact zero-divisor whose radical
to the fourth power is zero [20, Theorem 2], complete intersection rings [13, Corollary 1.2] (see also
[3, Theorem IV] and [12, Theorem 1.9]) and Golod rings [14, Theorem 3.1].

In [5, Proposition 1.6] it is shown that a commutative noetherian ring A is Tor-persistent if
and only if the localization Am is so for every maximal ideal m � A; hence it suffices to study the
question mentioned above for commutative noetherian local rings. Throughout this article,
ðR,m, kÞ denotes such a ring. Our main result is the following:

Theorem 1.1. The following conditions are equivalent.

(i) R is Tor-persistent.
(ii) bR is Tor-persistent.
(iii) R vX1, :::,Xnb is Tor-persistent.
(iv) R½X1, :::,Xn�ðm,X1, :::,XnÞ is Tor-persistent.

� 2020 Taylor & Francis Group, LLC

CONTACT Henrik Holm holm@math.ku.dk Department of Mathematical Sciences, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
1Note that this work is announced under the different title Vanishing of endohomology over local rings in [6].
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While some articles in the literature approach the question raised in [5] by finding specific
conditions that imply Tor-persistence, we show that Tor-persistence is a property preserved by
standard procedures in local algebra. Our work is motivated by [22] where a result similar to
Theorem 1.1 is proved for the so-called Auslander’s condition. However, our arguments are
somewhat different since the techniques used in loc. cit. do not work in our setting; see Remark
2.3 and [22, Corollary 2.2].

It should be noticed that there is some overlap between this article and [5]. For example, the
equivalence (i) () (ii) in Theorem 1.1 is contained in [5, Proposition 1.5], and our Proposition
2.2 is akin to [5, Proposition 3.8]. However, the two articles have been written completely inde-
pendently, indeed, [5] were only made available to us after we completed this work.
Subsequently, we rewrote our introduction and adopted the terminology “Tor-persistent” coined
in [5].

This short article is organized as follows. In Section 2, we prove Theorem 1.1 and show how
to construct new examples of Tor-persistent rings (Example 2.7). We also give a way to obtain
certain kinds of regular sequences in power series rings (Lemma 2.6), which might be of inde-
pendent interest. In Section 3, we consider another property for rings, called (TG); it is a slightly
weaker property than Tor-persistence and it is related to the Gorenstein dimension. For this
property, we prove a result similar to Theorem 1.1 (see Theorem 3.2), and show that some results
from Section 2 can be strengthened in this new setting.

2. Main results

Lemma 2.1. Let ðR,m, kÞ ! ðS, n, ‘Þ be a local homomorphism of commutative noetherian local
rings. If S is Tor-persistent and has finite flat dimension over R, then R is Tor-persistent.

Proof. Assume S is Tor-persistent and let M be a finitely generated R-module such that
TorRi ðM,MÞ ¼ 0 for all i � 0: We have TorRi ðM, SÞ ¼ 0 for each i> d, where d is the flat dimen-
sion of S over R. Replacing M by a sufficiently high syzygy we can (by dimension shifting)
assume that TorRi ðM,MÞ ¼ 0 and TorRi ðM, SÞ ¼ 0 for every i> 0. In this case, there is an iso-
morphism M �L

R S ffi M�RS in the derived category over S. This yields:

M �L
R M

� ��L
R S ffi M �L

R S
� ��L

S M �L
R S

� � ffi M �R Sð Þ �L
S M�R Sð Þ:

As the complex M �L
R M is homologically bounded (its homology is even concentrated in degree

zero) and since S has finite flat dimension over R, the left-hand side is homologically bounded,
and hence so is the right-hand side. That is, TorSi ðM�R S,M�R SÞ ¼ 0 for all i � 0: As S is Tor-
persistent, it follows that M�R S ffi M �L

R S has finite projective dimension over S. It follows from
[4, 1.5.3] that pdRðMÞ is finite. w

Proposition 2.2. Let ðR,m, kÞ be a commutative noetherian local ring and let x ¼ x1, :::, xn be an
R-regular sequence. If R=ðxÞ is Tor-persistent, then R is Tor-persistent. The converse is true if xi 62
m2 þ ðx1, :::, xi�1Þ holds for every i ¼ 1, :::, n:

Proof. The first statement is a special case of Lemma 2.1. We now prove the (partial) converse.
By assumption, �xi is a non-zero-divisor on R=ðx1, :::, xi�1Þ, which has the maximal ideal �m ¼
m=ðx1, :::, xi�1Þ: Since xi 62 m2 þ ðx1, :::, xi�1Þ we have �xi 62 �m2, so by induction it suffices to con-
sider the case where n¼ 1.

Let R be Tor-persistent and let x 2 m nm2 be a non-zero-divisor on R. To see that R=ðxÞ is

Tor-persistent, let N be a finitely generated R=ðxÞ-module with TorR=ðxÞi ðN,NÞ ¼ 0 for all i � 0:
By [19, 11.65] (see also [11, Lemma 2.1]) there is a long exact sequence,
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� � � ! TorR=ðxÞi�1 ðN,NÞ ! TorRi ðN,NÞ ! TorR=ðxÞi ðN,NÞ ! � � � :
Therefore TorRi ðN,NÞ ¼ 0 for all i � 0: Since R is Tor-persistent, we get that pdRðNÞ is finite. As
x 62 m2, it follows that pdR=ðxÞðNÞ is finite; see e.g., [2, Proposition 3.3.5(1)]. w

Remark 2.3. It would be interesting to know if the last assertion in Proposition 2.2 holds without
the assumption xi 62 m2 þ ðx1, :::, xi�1Þ, i.e. if Tor-persistence is preserved when passing to the
quotient by an ideal generated by any regular sequence; cf. Proposition 3.1.

Remark 2.4. The sequence X1, :::,Xn is regular on R vX1, :::,Xnb and Xi does not belong to
ðm,X1, :::,XnÞ2 þ ðX1, :::,Xi�1Þ: It follows from Proposition 2.2 that R is Tor-persistent if and only
if R vX1, :::,Xnb is Tor-persistent.

Proposition 2.2 can be used to construct new examples of Tor-persistent rings from known
examples; see Example 2.7. However, to do so it is useful to have a concrete way of constructing
regular sequences with the property mentioned in 2.2. In Lemma 2.6 below, we give one such
construction.

If A is a commutative ring and a is an element in A, then it can happen, perhaps surprisingly,
that X – a is a zero-divisor on A vXb; see [22, p. 146] for an example. However, as is well-known,
if A is noetherian, then the situation is much nicer.

Remark 2.5. Let A be a commutative noetherian ring and consider an element f ¼ f ðX1, :::,XnÞ
in A vX1, :::,Xnb: It follows from [9, Theorem 5] that if f has some coefficient which is a unit in A,
then f is a non-zero-divisor on A vX1, :::,Xnb:

Lemma 2.6. Let ðR,m, kÞ be a commutative noetherian local ring. Consider the power series ring
S ¼ R vX1, :::,Xnb and write n ¼ ðm,X1, :::,XnÞ for its unique maximal ideal. Let 0 ¼ m0 < m1 <
� � � < mt�1 < mt ¼ n be integers and let f1, :::, ft 2 n be elements such that, for every i ¼ 1, :::, t, the
following conditions hold.

(a) fi 2 R vX1, :::,Xmib 	 S:

(b) The element @fi
@Xj

ð0, :::, 0Þ 2 R is a unit for some mi�1 < j:

Then f1, :::, ft is a regular sequence on R vX1, :::,Xnb with fi 62 n2 þ ðf1, :::, fi�1Þ for all i.

Proof. First note that condition (b) implies:

The power series fið0, :::, 0,Xmi�1þ1, :::,XnÞ has a coefficient which is a unit in R: (2.1)

Indeed, if mi�1 < j, then @fi
@Xj

ð0, :::, 0Þ is a coefficient in fið0, :::, 0,Xmi�1þ1, :::,XnÞ:
Next, we show that f1, :::, ft is a regular sequence. With i¼ 1 condition Eq. (2.1) says that

f1ðX1, :::,XnÞ has a coefficient which is a unit in R, and so f1 is a non-zero-divisor on S by Eq.
(2.5). Next, we show that fiþ1 is a non-zero-divisor on S=ðf1, :::, fiÞ where iP1: Write

fiþ1 ¼
X

vmiþ1, :::, vn
hvmiþ1, :::, vn X

vmiþ1

miþ1 � � �Xvn
n 2 S ffi R vX1, :::,Xmi b vXmiþ1, :::,Xnb (2.2)

with h
 2 R vX1, :::,Xmi b: As f1, :::, fi 2 R vX1, :::,Xmib by (a) there is an isomorphism:

S=ðf1, :::, fiÞ ffi ðR vX1, :::,Xmi b=ðf1, :::, fiÞÞ vXmiþ1, :::,Xnb: (2.3)
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In particular, the image �f iþ1 of fiþ1 in S=ðf1, :::, fiÞ can be identified with the element

�f iþ1 ¼
X

vmiþ1, :::, vn

ehvmiþ1, :::, vnX
vmiþ1

miþ1 � � �Xvn
n

in the right-hand side of Eq. (2.3), where eh
 is the image of h
 in R vX1, :::,Xmib=ðf1, :::, fiÞ: Hence,

to show that �f iþ1 is a non-zero-divisor, it suffices by 2.5 to argue that one of the coefficients eh

is a unit. By Eq. (2.1) we know that fiþ1ð0, :::, 0,Xmiþ1, :::,XnÞ has a coefficient which is a unit in
R, and by Eq. (2.2) this means that one of the elements hvmiþ1, :::, vnð0, :::, 0Þ 2 R is a unit.
Consequently hvmiþ1, :::, vn ¼ hvmiþ1, :::, vnðX1, :::,XmiÞ will be a unit in R vX1, :::,Xmi b, so its imageehvmiþ1, :::, vn is also a unit, as desired.

Next, we show that fi 62 n2 þ ðf1, :::, fi�1Þ holds for all i. Suppose for contradiction that:

fi ¼
X
v

pvqv þ
Xi�1

w¼1

gwfw , where pv, qv 2 n and gw 2 S:

By assumption (b) we have that @fi
@Xj

ð0, :::, 0Þ 2 R is a unit for some mi�1 < j: It follows from the

identity above that:

@fi
@Xj

0ð Þ ¼
X
v

@pv
@Xj

0ð Þ qv 0ð Þ þ pv 0ð Þ @qv
@Xj

0ð Þ
 !

þ
Xi�1

w¼1

@gw
@Xj

0ð Þ fw 0ð Þ þ gw 0ð Þ @fw
@Xj

0ð Þ
 !

:

As already mentioned, the left-hand side is a unit, and this contradicts that the right-hand side
belongs to m: Indeed, we have pv 0ð Þ, qv 0ð Þ, fw 0ð Þ 2 m as pv, qv, fw 2 n: Furthermore, f1, :::, fi�1

only depend on the variables X1, :::,Xmi�1 by (a), so every @fw
@Xj

is zero. w

Example 2.7. In R vU,V,Wb the following (more or less arbitrarily chosen) sequence, correspond-
ing to t¼ 2 and m1 ¼ 2, satisfies the assumptions of Lemma 2.6:

f1 ¼ aþ U3 þ UV þ V and f2 ¼ bþ UV2 þW þW2 a, b 2 mð Þ:

Indeed, (a) is clear and (b) holds since @f1
@V 0, 0, 0ð Þ ¼ 1 ¼ @f2

@W 0, 0, 0ð Þ: So Proposition 2.2 implies
that if R is Tor-persistent, then so is A ¼ R vU,V ,Wb= f1, f2ð Þ:

Note that the fiber product ring

R ¼ k vXb= X4ð Þ �k k vYb= Y3ð Þ ffi k vX,Yb= X4, Y3, XYð Þ
is artinian, not Gorenstein, and by [16, Theorem 1.1] it is Tor-persistent. Hence the following
ring (where we have chosen a ¼ Y2 and b ¼ X2) is Tor-persistent as well:

A ¼ k vX,Y ,U,V,Wb= X4, Y3, XY, Y2 þ U3 þ UV þ V,X2 þ UV2 þW þW2ð Þ:
w

Proof of Theorem 1.1. The equivalence (i) () (iii) is noted in Remark 2.4. Let a1, :::, an be a set

of elements that generate m: We have bR ffi R vX1, :::,Xnb= X1 � a1, :::,Xn � anð Þ by [15, Theorem
8.12]. The sequence fi ¼ Xi � ai clearly satisfies the assumptions in Lemma 2.6, so the equivalence
(i) () (ii) follows. Note that R X1, :::,Xn½ � m,X1, :::,Xnð Þ and R vX1, :::,Xnb have isomorphic comple-

tions (both are isomorphic to bR vX1, :::,Xnb), so the equivalence (iii) () (iv) follows from the
already established equivalence between (i) and (ii). w
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3. Connections with the Gorenstein dimension

In this section, we give a few remarks and observations pertaining to Aulander’s G-dimension [1]
and self Tor vanishing. For a commutative noetherian local ring R,m, kð Þ, we consider the fol-
lowing property (which R may, or may not, have):

(TG) Every finitely generated R-module M satisfying TorRi M,Mð Þ ¼ 0 for all i � 0 has finite G-
dimension, that is, G� dimR Mð Þ < 1:

Every Tor-persistent ring has the property (TG), see [21, Proposition 1.2.10], and the converse
holds if the maximal ideal m is decomposable; see [17, Theorem 5.5].

Testing finiteness of the G-dimension via the vanishing of Tor, in some form, is an idea pur-
sued in a number of articles. For example, in [7, Theorem 3.11] it was proved that a finitely gen-
erated module M over a commutative noetherian ring R has finite G-dimension if and only if the

stable homology gTorRi M,Rð Þ vanishes for every i 2 Z: Furthermore, finitely generated modules
testing finiteness of the G-dimension via the vanishing of absolute homology, i.e. Tor, were also
examined in [8].

For the property (TG) we have the following stronger version of Proposition 2.2.

Proposition 3.1. Let R,m, kð Þ be a commutative noetherian local ring and let x ¼ x1, :::, xn be an
R-regular sequence. Then R has the property (TG) if and only if R=ðxÞ has it.
Proof. For the “if” part we proceed as in the proof of Lemma 2.1 with S ¼ R=ðxÞ: Note that hav-
ing replaced M with a sufficiently high syzygy, the sequence x becomes regular on M (this is
standard but see also [18, Lemma 5.1]). From the finiteness of, G� dimR=ðx Þ M=ðxÞMð Þ we infer

the finiteness of G� dimR Mð Þ from [21, Cor. (1.4.6)]. For the “only if” part proceed as in the
proof of Proposition 2.2. From the finiteness of G� dimR Nð Þ one always gets finiteness of G�
dimR= xð Þ Nð Þ (the assumption x 62 m2 is not needed) by [21, Theorem p. 39]. w

Now the arguments in the proof of Theorem 1.1 apply and give the following.

Theorem 3.2. Let R,m, kð Þ be a commutative noetherian local ring. The following conditions
are equivalent:

(i) R has the property (TG).
(ii) bR has the property (TG).
(iii) R vX1, :::,Xnb has the property (TG).
(iv) R X1, :::,Xn½ � m,X1, :::,Xnð Þ has the property (TG). w
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