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Below is given a brief outline of one particular point, namely that of chronometric
quantum-numbers for mass-zero equations. A complete description of these and related
matters, which results from the joint investigations of I.E. Segal, B. Speh, B. Prsted
and myself, will appear elsewhere. In this connection I would like to thank Segal,
Speh, Prsted and M. Harris for valuable discussions. The other aspects touched upon
in the talk are described in[ 1], and [2]. The chronometric theory is described in
[5]. For additional background and further results, c.f. [ 3] and literature cited
there.

1. Notation

- ® P

¢ = T, denotes the defining representation of Gl (2,C), i.e. 'Z.’(:: g—) = (X 5).
7, denotes the n-th fold symmetrized tensor product of = , acting on Vn =§ C 2,
and Ty denotes the trivial representation. The letters a,b,c,d,h,k,u,v,z,w denote

2 x 2 matrices.

2. Basics

The unitary representations of SU(2,2) corresponding to spin %—and mass o are

(Un+(g)f) (z) = 'Cn(cz + d)_1 det(cz + d)'1 f(g-lz), and
(2.1)
(U, () (2) = T _(a - (g7l2)e)F det(a - (g7'2)e)™ f(g7l2),
where g_1 =( i 2) &€ suU(2,2), g'lz = ii:g, and f(z) & V-

* This research was supported in part by a grant from the N.S.F.



166

Let

su2,2), = {g-(25) | 9 (.0 0)s= (It
(28 [ 9o 3)a-(o 01

z-z*
D = { z | 73 is strictly positive definite} , and

sU(2,2); = {g =

o=
]

{z| 2%z ¢1}.

0f course, the groups SU(Z,Z)D and SU(2,2)B

upper half-plane and B is the generalized unit disk. The Shilov boundary of D is

are isomorphic. D is the generalized

H(2) = { 2 x 2 hermitian matrices } = Minkowski space, whereas the Shilov boundary of
BisU(2) ={2x2 unitary matrices} . 6?5) = the universal covering group of
U(2) = R x sU(2) = Rx s% is the Segal cosmos.

The formulas (2.1) define representations of SU(Z,Z)D
that for SU(2,2)D, f is a holomorphic function on D, and that for SU(2,2)B,
holomorphic function on B. These representations are equivalent. In both versions

as well as SU(Z,Z)B provided
f is a

one can pass to the Shilov boundary and thus realize the representations on the respec-
tive space-times. One reason that the following claims are true is that the transition
from SU(Z,Z)D to SU(2,2)B (and from D to B) can be obtained through the action of an
element in the complexification of SU(2,2), and that all the expressions are analytic
in the variables g and z. Observe that once a choice of domain has been made the term
(a - (g_lz)c)_1 may be simplified: For g-1 & SU(2,2)D and z € D it is equal to

ze® + d* and in the B- situation it is equal to (a™ + zb™).

3. _Chronometric quantum numbers

The problem may be handled by means of the "ladder representations” [47] (see also[ 1]).
In contrast, the approach presented here is intrinsic in the sense that it deals
directly with the relevant function spaces and differential equations. In the follow-
ing we shall only consider the representations Un+ since the treatment of the Un_'s

follows from this by obvious modifications.

+ .
The domain D is particularly nice for describing the Hilbert space Hn that carries

the unitary irreducible representation Un+: H * is a reproducing kernel Hilbert space

n
and in the D-version the kernel is given as
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K "(z,w) = T, (Zé? ) 1 det( J~T el tr(z-w)k dm(k), (3.1)

where b(C f k = k* l tr k 2 0 and det k = 0} is the boundary of the solid for-
ward 11ght-c0ne C, and dm(k) is the usual Lorentz-invariant measure.

We wish to determine a complete set of quantum numbers for the representations Un+
From the point of view of Segal's cosmological theory as well as from that of group
theory, the natural way to do this is to use the maximal compact subgroup K of SU{2,2).
K coincides with the maximal subgroup of isometries of SU(2,2) under its action on
U(2). In terms of group theory we shall thus determine the decomposition of the
restriction of Un+ to K as a direct sum of finite-dimensional representations of K;

the so-called K-types.

In SU(2,2)B we thus choose K as

K= {(29) | uwv € u2), det(uv) =1} (3.2)

In particular, K = U(1) x SU(2) x SU(2)

1@1
e o
T = { ( i §i> l T é,ﬂ?} is Segal's time-translation subgroup of K.
0 e

The natural domain to use for the determination of the K-types is B. On B,

(U, (00 ) (2) = (U (20) 6) (2) = ¥ (v) det v f(ulz v), (3.3)

n oV n

hence the finite-dimensional K-irreducible subspaces consist of V -valued polynomials.
(3.3) clearly defines an action of K on the set of all V ~-valued po]ynom1a1s on B.
We denote this action by U Ut

Consider the representation P of K on the space of all € -valued polynomials defined
by

(Pluv) p) (2) = o (ulz v) (3.4)
()
Proposition 3.1 P(u,v) = gg a; 311}X2J§1;%1—g—
1=0 r=0 det u

For later use we observe that P leaves the ideal I = I(det z) of polynomials propor-
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tional to det z, invariant. Clearly then

o0 >
Proposition 3.2 P(u,v) = D D
I

The K-types of Un+ are, of course, to be found among the summands of lTn+(u,v) =

'tn(v) det v & P{u,v).

Proposition 3.3
min{n,1} "(nﬂ_zx_(v)@ T, (0)
¥=0 det uX+1+2r

©
]

r=

t’n(v) det v ® P(u,v) =

LP8

—_
o

However, since the Hilbert space of UnJr consists of solutions to certain differential
equations, some of the summands must be excluded. To see exactly which do not occur
io

we return to the domain D. By expanding the functions on D around the point i = (o 3

and by choosing K in this version as the subgroup of SU(Z,Z)D that leaves i fixed,
it follows (e.g. by a Gram-Schmidt argument) that the finite-dimensional subspaces
of functions on D that carry the irreducible K-representations are built up from
functions of the form

F(z) = j T (k) e tr(z+i)k ooy gm (k), (3.5)

where g is a V -valued polynomial. However, g determines a non-zero function Fq if
and only if there is an x in V_such that (“cn(k)g(k),x> is not identically zero

on b(C+). That is: Exactly those g's for which for all x in V , < “cn(k)g(k),x >=0
on b(C+) do not contribute to the K-types in Un+. Now observe that b(C+)

ficiently big subset of the variety of the prime ideal I(det z) that we may conclude:

is a suf-

\v(x S <Tn(k)_(1(k),x> =0 onb(ch) &
\/x € Vo o K l2)alz)x )y €1 (det z).
Let A = {gl\v/x eV, + (r, (2)az)x) € 1 (det z)}

A is clearly invariant under the action of 'lTn+, and even though it originally was
determined from the domain D, it follows by analyticity that

s . L~ . +
Proposition 3.4 The K-types in A are exactly those in Un that do not occur in Un .
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Let :? denote the linear map of A ® Vn into the space of C -valued polynomials,

(S(a®@x)) (z) = <% (2)a(2).x> (3.7)
Then
Py = S "(uv) ® det vz (W) (3.8)
T V)® Tq(u
Now choose a summand n+;;ix;gf+;§;rc ! Y

from B;+ and assume that q € A transforms according to this representation. It
follows from (3.8) and Proposition 3.1 that (75n(z)g(z),§’> transforms according to

Toin-2g () ® Tpay oy (W)
det u2¥+2r

Since g € A it follows from Proposition 3.2 that either y > 0 or r > 0. Thus

Proposition 3.5

+ rt'rH_'|(V) ® ’t] (u)

U "(u,v) = 53

n 1=0 det u

By analogous reasoning it follows that

Proposition 3.6

7 (V) ® Ty, lu)

1=0 det u
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