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ABSTRACT Representations of groups of causality-pre-
serving transformations on locally Minkowskian space-times,
by actions on classes of wave functions of designated transfor-
mation properties, are analyzed, in extension of the conven-
tional theoretical treatment of free relativistic particles. In
particular, the constraints of positivity of the enerjy and fin-
iteness of propagation velocity are developed, and te concept
of mass is explored, within the indicated framework.

The problems of the modelling of space-time (or the "cosmos"),
and of elementary particles, seem to have reached a stage where
certain very general considerations with clear-cut mathematical
interpretations can be brought to bear effectively. The present
work aims to develop systematically some of the implications
of these considerations, and to specify and derive relevant
properties of the possible physical systems. The motivation and
intuitive basis are thus physical, but the formulation and
techniques are perforce mathematical.

In the latter terms, we are concerned with harmonic analysis
of vector bundles over locally Minkowskian spaces; spaces of
cross sections defined by hyperbolic partial differential equa-
tions; and holomorphy features dual to the desideratum of
"positivity of the energy," which in turn is related to causal-
ity-as is also, in a different way, the hyperbolicity of the cited
equations.

It seems plausible that stable or quasi-stable free elementary
particles should be describable in a familiar theoretical-way by
"fields" that are cross-section spaces of the type indicated. If
one foregoes the sanctity of the Lorentz group and insists only
on the more fundamental features of temporal and spatial
isotropy and homogeneity, another possibility emerges, which
has found observationally cogent application to astronomy (see
refs. 1-3). This macroscopic indication supplements a variety
of previous microscopic ones in suggesting the potential physical
relevance of a study of the transformation properties of all
particle models of the type designated, under symmetry groups
implementing the requisite isotropy and homogeneity.
The basic representations
We recall that a causal manifold is a C- manifold that is en-
dowed with a smooth closed convex proper cone field; the
causal group of any such manifold m is the group denoted
G(m) of all diffeomorphisms that preserve the cone field.
Spatial and temporal homogeneity and isotropy are then nat-
urally definable, and it is known (see refs. 1, 4, and 5) that the
only causal 4-manifolds with these properties are locally Min-
kowskian; i.e., locally, have the same cone-field structure as the
future cone-field structure in Minkowski space.

There are only three such manifolds that are globally causal
in the sense that there exist no closed time-like loops in the
manifold: Minkowski space M, the universal covering space M
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of its conformal compactification M, and a hyperbolic space
M*. Both M and M* can be naturally realized as open sub-
manifolds of M, as orbits under subgroups Go and G1 of G(M)
that are locally homogeneous and isotropic both spatially and
temporally.

Infinitesimally, G(J) is isomorphic to the conformal group
of M; Go to its Poincare subgroup; and G1 to an associated
subgroup that is locally isomorphic to SO(2, 3). Globally,§ the
connected components of these-groups are isomorphic to the
corresponding components of SO(2,4)/Z2 in the case of G(M),
in which Z2 is the unique central subgroup of order 2 in the
indicated group; the universal covering group of the Poincare
group, in the case of Go, and to SO(2,3)/Z2, with a similar
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§ These results follow from the structure of the subgroups and of the
discrete center of G, which may be computed as follows: C is locally
isomorphic to SOo(2,4), which has the form SO(2).SO(4)-F, in which
F is a group that is topologically flat. Hence G may be expressed as
S0(2)-SO(4)-F, and the corresponding group D' of covering trans-
formations is generated by the kernels of the canonical homomor-
phisms of SO(2) onto S0(2) and SO(4) onto SO(4). In terms of the
usual parametrizations of SO(2) as RI and of S0(2) as [z E Cl: Iz
= 11, the first of these homomorphisms takes the form t - el', of
kernel D" = [2wn: n = 0, +1, .. . 1. In terms of the representation of
go(4) as 96(3) X .6(3), the second of these homomorphisms is the
canonical one modulo the Z2 group generated by the element a X
a, in which a is the unique central element of order 2 in SO(3).
On the other hand, the quotient GJD of d modulo its center D is

isomorphic to the adjoint group of G, which may also be expressed
as S0o,2,4)/fnIj. The element A = (rwa-e)-e of (S0(2).S0(3)-
SO(3)).F has as its square a generator of D"; and modulo D' is
identical to the central element -I in SOo(2,4), because the image
of a X e in 0(4) must be a central element of order 2, and hence -4;
while the image of wrin 0(2) is -I2. It follows from the latter fact that
A E D, and because G/D' [= SOo(2,4)] covers the adjoint group
[_ S0o(2,4)/U+Ij] exactly twice, D consists of D' U XDS.
Turning now to the subgroup of G generated by the infinitesimal

Poincare group, this is globally isomorphic to either the Poincare
group itself or to its (2-fold) universal covering group. With the same
notation as above, the element of C, (0.a-a).e is contained in the
center of the SO(4) subgroup of G. This subgroup overlaps with the
Poincare subgroup in the common sub-subgroup generated by all
infinitesimal spatial rotations, infinitesimally an 0(3) group. As a
subgroup of the SO(4) group, this locally 0(3) group is imbedded
in the following fashion (known, e.g., from the theory of angular
momentum): on representing SO(4) as SU(2) X SUC2), it is the di-
agonal, i.e. [U X U: U C SU(2)]. Now thecenter of SO(4) is gener-
ated by (-I) X (-I), which is contained in the 0(3) subgroup, and
hence in the Poincare group, which thus occurs in its simply con-
nected form as a subgroup of G.

BecauseM is the homogeneous space of G( modulo an extended-
Poincare subgroup Go (the extension being by scale transformations),
and Z2 C Go, it follows that the Z2 central subgroup ofG acts trivially
on M. On the other hand, the effective action of the Z., central
subgroup is readily computable from the foregoing, and it results that
G(a)o _ (/Z2. Similarly, G(M*)o _Oo(2,3)/Z2.
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definition of the Z2 subgroup in the case of G,. The global
groups are generated by these components together with an
operation of space reversal, which as an automorphism of the
infinitesimal causal group can be considered the same in all
cases.
The conventional relativistic particle of given mass and spin

has wave function in a bundle over M which may be obtained
by induction to G0 from a finite-dimensional representation
of the stationary subgroup C0,8, which representation is holo-
morphic relative to the complex structure on Go,. naturally
consequent to its isomorphism with SL(2,C). We are concerned
here with those representations of ( that are similarly obtained
by induction from finite-dimensional representations of the
stationary subgroup C, for the canonical action of C on M. This
stationary subgroup G, is locally isomorphic to the Poincare
group extended by scale transformations. We consider here only
those representations F of Gas that are trivial on a translation
subgroup, relative to this isomorphism, and essentially holo-
morphic on the homogeneous subgroup, in the sense of corre-
sponding to the restriction of a holomorphic representation of
GL(2,C), in the isomorphism of the homogeneous subgroup
with a subgroup of GL(2,C) of codimension 1. The restriction
tol (o of a representation of C of the typejust indicated yields,
on further restriction to an open orbit in M under the action of
do, a class of relativistic bundles that includes the conventional
ones in Minkowski space.

For X a character of D and F the given finite-dimensional
representation of C8, we denote as H"(F,X) the space of all C-
sections f of the bundle on M induced from the given repre-
sentation F of Car, such that f(dp) = X(d)f(p), for all d E D and
p E M; and we denote as U(F,X) the corresponding natural
representation of C in H-(F,X). The present note treats only
the case X = r, in which ir is the character that is the parity on
the Z. component of D and trivial on the Z2 component; this
case is distinguished by its close connection with the represen-
tations associated with the wave, neutrino, and other relativistic
wave equations for massless particles.
The concept of a positive-energy representation of a given

Lie group G of Lie algebra G is relative to a given invariant
closed convex cone C in G. A unitary representation V of G in
a Hilbert space is said to be of positive energy with respect to
C in case the self-adjoint generator of the one-parameter unitary
group [V(etX): t E R'] is nonnegative for all X E C. In the case
of nonunitary representations, which arise naturally in the
present connection, it is convenient to employ a definition ap-
plicable to arbitrary semi-simple groups satisfying the condi-
tion:
[1] If K is the maximal essentially compact subgroup of G,

there exists an element H E KF, which, together with its
transforms under the adjoint representation, has C as
its convex closure.

Specifically, a representation of such a group in a locally con-
vex quasi-complete topological linear space is said to be of
positive energy if the only- K-types that occur are such that the
one-dimensional representations of the group generated by H
within these K-types are periodic and positive-frequency in the
usual sense. It can be shown that the two notions of positivity
of the energy agree when both are applicable.

In the case of the Poincar6 group, positivity of the energy will
refer to the usual Lorentz-invariant cone of infinitesimal for-
ward temporal displacements. In the case of the groups O(n,2),

the term will refer to the unique minimal invariant cone, with
H taken as the generator of the center of K.

If V is an arbitrary continuous periodic one-parameter group
of linear transformations on a locally convex linear topological
space L, its positive-energy subspace, denoted as L+(V), is de-
fined as the closed linear space of the set of all vectors z E L
such that V(t)z = elt~z for all t E R1 and some X 2 0. If V' is
a continuous representation in L of a group C satisfying con-

dition 1, and such that the one-parameter group V given by the
equation V(t) = V'(etH) is periodic, its positive-energy sub-

space, denoted as L+(V'), is defined as the common part of the
L+(Va) as a varies over G, in which V. denotes the one-pa-
rameter group: a(t) = V-(a letHa).

Principal results
A redefinition of the energy, as in the chronometric theory (1),
leads naturally to a redefinition of the mass. In conventional
relativistic theory, the mass-square operator M2 is given es-

sentially by the D'Alembertian. More precisely, if V is the
representation of the Poincare group Go corresponding to the
field in question, a vector state 41 is "of mass-square M2" if
dV(o0)4' = -M24v, in which 0o is the element of the envel-
oping algebra of the Lie algebra of Co given by the equation

= - - Y2, in which Y1 is the infinitesimal gen-
erator of translation in the xi direction. On the other hand, from
the standpoint of the chronometric principle, -dV(o0) rep-
resents an apparent, rather than true physical, mass-square; for
localized states it should differ negligibly from the exact
physical mass-square, but may differ greatly for delocalized
states; it is not invariant under physial (chronometric) temporal
evolution, as the physical mass-square must be.

There are in fact two operators that enjoy the latter property,
as well as other appropriate invariance features, differ negli-
gibly from -dV(o0) in localized states (by terms at most of
order R-1, R being the "radius of the universe" in units of the
local distance scale), and closely resemble -dV(oo) analytically.
One of these operators is -dV(o1), in which denotes the
second-order Casimir operator of G1; it is invariant under C1,
as -dV(30) is invariant under Go, and deforms into -dV(o0)
as R o; it may be called the "chronometric mass-square,"
and is a natural definition from a group- or particle-theoretic
standpoint.
Our considerations thus far have ignored the presence in the

universe of a heterogeneous ensemble of masses, and the con-

sequent inertial mass proposed by Mach's principle. The inertial
mass may in fact be given a mathematical form comparable to
the chronometric via the circumstance that if 4' represents the
state of the universe, there will exist, at any given point of ob-
servation, a Lorentz frame-unique except for possible (but
implausible) accidental degeneracy-in which the physical
energy (dV(H)04,i), in which dV(H) represents the chro-
nometric (conserved) total hamiltonian, is minimal. Corre-
sponding to this frame there is an essentially unique decom-
position of the chronometric cosmos into time and space com-
ponents,M _ Rx S3. The analogue to Oo on such a structured
cosmos is a2/aT2 - A', in which T is the chronometric time

parameter and A' differs by a constant (fixed by the validity
of Huyghens' principle) from the Laplace-Beltrami operator
on S3, scaled so as to agree infinitesimally with the corre-

sponding Minkowski-space operator; this operator, say 02, may
likewise be regarded as a quadratic element of the enveloping
algebra of G. This operator reflects the actual disposition of
masses throughout the universe, is invariant under chronometric

temporal evolution, and in a localized state differs by unob-

servably little from 3o and 3 1.
While all three mass operators derive primarily from sym-

I A priori, the subgroup of ( whose Lie algebra is that of G5o (or C1)
is not necessarily simply connected, but because it is so in the present
case, we use the same notation for two conceptually slightly different
subgroups.

Proc. Natl. Acad. Sci. USA 75 (1978)



Applied Physical and Mathematical Sciences: Jakobsen et al.

metry principles, it is interesting to note the mathematical fact
that they are derivable in a natural way from Lorentzian
metrics. More specifically, each of the three groups in-
volved-Go, G1, and G2 = K-admits invariant Lorentzian
metrics on their open orbits in M, whose corresponding
D'Alembertians are identical with the respective mass-square
operators just indicated. These three operators may also be
characterized as quadratic elements of the enveloping algebra
of G that are invariant under the respective subgroups via the
adjoint-representation action, by virtue of work of Cooper (6),
an observation for which we are indebted to B. Kostant.
Thus there are three operators that have properties usually

associated with the mass-square operator, and which differ
negligibly in localized states, but are quite different from a

fundamental physical position. Now the quasi-stable elemen-
tary particles that are observed have real physical masses, and
so should be represented mathematically as vectors in the
positive mass-square subspace, but the possibility that these
subspaces are distinct, for the various mass-square operators,
is a priori quite tenable. It is therefore a considerable conceptual
simplification, as well as a source of mathematical reassurance,
that in fact these subspaces are essentially the same. More
specifically,
THEOREM 1. The representation U(F,ir) ofG contains a

nonempty positive-energy subspace, the restriction to which,
followed by further restrictions to the subgroups Go, G1, and
G2, are unitarizable, modulo possible finite-dimensional in-
variant subspaces; and the respective nonnegative mass-square
subspaces for Do, °1, and 02 in these representations contain
a common dense subspace.

While this result displays the conformal invariance of the
concept of the real-mass (as opposed to that "tachyon") particle,
it brings into question the character of the restriction U+(F,ir)
of U(F,ir) to the positive-energy subspace. This representation
has a particularly interesting structure, which has led to a model
for decay processes (7), and is mathematically unprecedent-
ed.
THEOREM 2. U+(F,ir) is essentially nonunitarizable, but

has a composition series whose infinite-dimensional factors
are unitarizable. In particular it admits an uncomplemented
infinite-dimensional invariant subspace, defined by a quasi-
invariant 11 differential system that is hyperbolic with respect
to the given causal structure.

In physical terms, the invariant subspace in question is that
for the massless fields of the spin type designated by F, and the
defining differential equation is an appropriate variant of the
wave equation. Such massless fields thus appear as discrete
isolated constituents of the general real-mass subspace, and so
differ from massive fieldsby much more than the vanishing of
the mass parameter m, in contrast with the familiar situation
in the case of the corresponding representations of the Poincar6
group.
On the other hand, there is a closer connection between wave

functions on M and on M than might have been expected, in
that all normalizable solutions of the corresponding differential
equations on Minkowski space (i.e., wave, etc., equations) ex-

tend uniquely to distributions defined and satisfying the ex-
tended differential equations everywhere on M; and conversely,
all sufficiently regular such distributions arise in this man-

ner.
The massive fields are contained in the quotient "massive"

representation, say V, modulo the massless subspace. The re-

striction V I do is essentially the familiar direct integral over all
real masses m of the infinitesimal Go-invariant subspaces de-

ll In the sense of refs. 8 and 9, as extended to systems.

fined by the corresponding do-invariant wave equations of
mass m. From the chronometric standpoint, these equations
represent only a local approximation to the physical behavior
of free particles of mass m; their proper description in the large
entails their formulation as eigenvectors of 13, rather than of
Do, of eigenvalue m2. This partially heuristic physical initiative
is substantiated mathematically by
THEOREM 3. On restriction to either Go or G1, the massive

representation splits into a multiplicity-free direct integral
(in the case of G1, direct sum) of irreducibly invariant sub-
spaces, modulo possible finite-dimensional invariant sub-
spaces.
Each of these subspaces is specified by the eigenvalues of

the corresponding mass-square operator, and defined by an
associated partial differential equation that is hyperbolic with
respect to the given causal structure.

Thus the chronometric massive wave functions may be
associated with particles of specific spin and mass essentially
along conventional lines. On the other hand, the Casimir op-
erators of the successive pseudo-orthogonal subgroups of Ci
SOO(2,3) [i.e., those having the same Lie algebras as 0(2),
0(2,1), 0(2,2), and 0(2,3) itself] provide a system of quantum
numbers, which together with the discrete center of C1 is
generically complete, and can agree exactly with conventional
ones only in the limit R -- c. In consequence, Theorem 3 es-
tablishes models for massive particles covariant with respect
to CI, satisfying the basic physical desiderata of positivity of
the energy and finiteness of the propagation velocity; which
models have the potential for greater precision than the con-
ventional ones similarly associated with Go.
The proofs of the foregoing theorems involve results and

methods given in refs. 10-15, and additional considerations to
be detailed elsewhere. It is possible that similar results are valid
for arbitrary characters X of D, except for the existence of the
massless invariant subspace.
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