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ABSTRACT We study a variant ofelementary particle theory
in which Minkowski space, MO, is replaced by a natural alterna-
tive, the unique four-dimensional manifold M with comparable
properties of causality and symmetry. Free particles are consid-
ered to be associated (i) with positive-energy representations in
bundles of prescribed spin over M of the group of causality-pre-
serving transformations on M (or its mass-conserving subgroup)
and (ii) with corresponding wave equations. In this study these
bundles, representations, and equations are detailed, and some
of their basic features are developed in the cases of spins 0 and
',j. Preliminaries to a general study are included; issues of covari-
ance, unitarity, and positivity of the energy are treated; appro-
priate quantum numbers are indicated; and possible physical ap-
plications are discussed.

There is only one four-dimensional space-time manifold, M,
other than Minkowski space-time MO that enjoys comparable
properties ofsymmetry, causality, and separability into time and
space components (1). M and its causal symmetry group SU(2,2)
have been applied to cosmology, providing a basis for the chron-
ometric redshift theory (2) primarily through the consideration
ofMaxwell's equations (3). These extend naturally to R, and the
energy of a photon in M splits Lorentz-covariantly into a local
and delocalized part. The local part is represented by the con-
ventional energy operator in MO, which can be regarded as a
submanifold of M; the delocalized part drives, essentially as an
interaction hamiltonian, a redshift in very good agreement with
objective observations on galaxies and quasars. Here we specify
some of the formalism involved in the development of similar
applications to particle theory, in the scalar and spinor cases,
within the general framework indicated in ref. 4.

Although principles originating in the chronometric redshift
theory are required to fix the physical interpretation, the pres-
ent direction also may in part be construed independently of
chronometric principles as towards the adaptation of conven-
tional particle theory to the naively most simple alternative.
This involves the replacement of the euclidean spatial part E3
ofMO by a sphere S of small but nonvanishing curvature, par-
alleling Minkowski's treatment ofthe relation between the Lor-
entz and Galilean groups. Consequently, we refer to the local
deformation of A into MO, and of SU(2,2) into the Poincare
group as the formation ofthe "flat" limit ofthe "curved" picture.
Chronometric geometry
The chronometric cosmos A may be invariantly described in
relation to MO as the universal cover ofthe causal (or, less phys-
ically, conformal) compactification M. We refer to ref. 5 for a
detailed description and here only review the most basic aspects
and treat some new points.

A causal manifold is one with an assignment to each of its
points ofa convex cone in the tangent space, representing phys-
ically the future directions at the point. The usual causality in
MO extends to a causal structure in M. Another causal structure
is obtained by identifying the tangent space at a point in U(2)
with the space of 2 x 2 hermitian matrices as usual and then
assigning the cone of all positive semidefinite matrices. It is
basic in our treatment that M and U(2) are equivalent as causal
manifolds; that the connected causal invariance group ofM is
SOo(2,4)/{± 1}; and that the same for U(2) is SU(2,2)/{±i, ± 1}.
M may be formulated as Ck2) and is then naturally a causal
manifold, equivalent to R1 x SU(2) with its natural causal struc-
ture when SU(2) is identified with S3 in the usual way.
We denote as G the group SU(2,2); if g is the element of G

given by the matrix(D in which A, B, C, D are 2 X 2 com-\CD/
plex matrices, g being represented naturally relative to the her-
mitian form z11 + Z22A - z323 - z44 that defines SU(2,2), and
ifZ is arbitrary in U(2), then g carries Z into (AZ + B) (CZ +
D)-', which we denote as gZ. This action determines a corre-
sponding action ofG on 0(2) = R; the subgroup ofG that leaves
fixed a given point in M is fr, where Pe is the Poincare group
extended by scale transformations.

U(1) X SU(2) covers U(2.by the map e"t x V ---e etV. We
denote the former space as M when it is endowed with the cor-
responding causal structure and parametrize it as the totality
of points (u-1,ug) x (u1,u2,u3,u4) in E2 x E4 so that u_12 + u%2
= 1 = u12 + u2 + u32 + u42 In these terms the corresponding
element of U(2) is (uj + iuO) (u1icr1 + u2icr2 + u3icr3 + U4),
where the oj are the usual Pauli matrices. We imbed MO
(causally) in U(2) by the map (xO,xj,x2,x3) ---e U = (1 + (iH/2))
(1 - (iH/2))-', where H = XoOto + x1o1 + x2a2 + x3oC3; near the
origin in MO, the coordinates uj (j = 0,1,2,3) of U agree with
the x within terms of second order in the xj.

CGronometric physics takes as its fundamental temporal evo-
lution group the transformations t x W ---* (t + s) X W [t x
W denoting an arbitrary point of R' x SU(2)] instead of the in-
finitesimally equivalent conventional group, (x0,x1,x2,x3) --e- (xO
+ s,xj,x2,x3). Similarly, as its fundamental spatial motion group,
it takes the isometry group of SU(2) in place of the euclidean
group on E3. These chronometric transformations generate the
subgroup K of G, parametrizable as R' x SU(2) x SU(2), with
the following action on M: s x U X V sends t X Winto (t + s)
X UWV-1. The center of ( is generated by the two transfor-
mations in K, =r X -I X I and Y7 = 0 x -I x -. The
physical (usual) scale-extended Poincare group is carried by the
given imbedding ofMO into U(2) into the subgroup ofG modulo
its center leaving fixed the matrix -I. The corresponding
subgroup of (L consists of those elements leaving invariant the
point ir X I ofM or any image of this point by an element of
the centerD ofG, such as the point 0 x -I. Note that although
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from a Minkowskian standpoint iT X I appears infinitely distant
in time and 0 x -I appears infinitely distant in space, from the
point of observation 0 x I corresponding to the origin in MO,
they both cover the same point -I of U(2); the space-time sep-

aration in M is only infinitesimally the same as that in Mo.
Equivalences of causal symmetries
The infinitesimal causal symmetries may be given a variety of
presentations, ofwhich four ofthe most useful are fiven in Table
1. The real projective quadric V -1 eiqi = q_1 + q02 _ 2
- q2 q3 = where q_1,qO,q1,q2,q3 parametrizes an

arbitrary point of projective 5-space, has a unique causal struc-
ture invariant under the group [locally SO(2,4)] ofprojectivities
that leave it fixed (within reversal), and is then equivalent to
M. The vector fields on M corresponding to the operators eiqi
(a/aqj) - ejqj (a/aq1) are consequently infinitesimal causal sym-
metries and, when lifted up to M, are denoted as Ly, forming
the entries of Table 1, column 1.
A basis for the vector fields on M is formed by the infinites-

imal generators Xj of the one-parameter causal groups of trans-
formations lifted up from the action U ---+ Uetoj on M, identified
with U(2). Column 2 (Table 1) gives the expressions for the L.
as linear combinations ofthe Xk. Expressions for the Xk in terms
of the Lij are: X0 = L-10, X1 = L14-L23, X2 = L24-L31, X3 =

L34-L12. Column 3 gives the matrix in su(2,2), where lower-case
letters denote the Lie algebra of the group designated by the
corresponding capitals, corresponding to L41 in the earlier-in-
dicated local isomorphism of SO(2,4) into SU(2,2); bi denotes
iorj (j = 0,1,2,3). Column 4 is the expression for the restrictions

Table 1. Presentations of infinitesimal causal symmetries of M

SO(2,4)
generator Vector field on M as linear combination of the Xj

L-1,0 Xo

L-1,1 -uou1Xo + u-1u4X, + u-lu3X2 - U-1U2X3

L-1,2 -UOU2XO - U-lU3Xl + U-lU4X2 + U-lUlX3

L-1,3 -uOu3XO + u lu2Xl - u-lulX2 + u lu4X3

L-,4 -uou4XO- u-lu1Xl - u-lu2X2- u-LU3X5

Lo, U-lulXO + ui4X + UOU3X2 - UOU2X3

Lo,2 U-lU2XO - UOu3Xl + UOU4X2 + UoUlX3

Lo,3 U-IU3XO + UOU2XI - UOU1X2 + UOU4X3

L1,2 (U1U3 + U2U4)Xl + (U2U3 - U1U4)X2 - (U +2

L2,3 2-(U2 + U3)X1 + (U1U2 + U3U4)X2 + (U1U3 - U2U4)X3

L3,1 (ulu2 - u3u4)Xl - (u1 + u3)X2 + (U1U4 + U2U3)X3

Lo,4 UlU4XO- UOU1XA - UOU2X2 - UoU3X3

L1,4 (U21 + z4)X1 + (U1U2 + U3U4)X2 + (U1U3 - U2U4)X3

L2,4 (ulu2 - U3U4)Xl + (U2 + U4)X2 + (U1U4 + U2U3)X3

L3,4 (U1U3 + U2U4)Xl + (U2U3 uu4)X 2 3

of the Ly to Mo as imbedded in M [lifted up from the imbedding
in M given earlier, forming two copies of Mo of which the one

containing the base point (1,0) x (0,0,0,1) is chosen] as linear
combinations of the Minkowskian a/dxa. The flat limit of the Ly
is seen from column 4 by replacing x, by xj/R in which R is the

"radius of the universe" S3 in laboratory units, then rescaling
Ly appropriately, and finally forming the limit as R ---+ oo.

Transformation properties of chronometric fields
The transformation properties of fields on M are determined
by those for the subgroup of G fixing one point; these form a

linear representation R of this subgroup Conversely, every

such representation R of pe determines a species of field on M
that form the R-bundle over M or homogeneous vector bundle
on Al induced from R. In particular, the standard relativistic
fields extend directly to M and are locally identical to these
extensions through the imbedding ofMo in M. We consider only
smooth, say C , fields.

Free particles in M are naturally described by k-invariant
wave equations (i) incorporating finite propagation velocity (rel-
ative to the given causal structure), positive energy (suitably
interpreted for antifermions, as usual), and G-covariance and
(ii) having flat limits in agreement with the conventional ones
in Mo for fields of the same species. The explicit treatment of
such questions is facilitated by the parallelization ofbundles on

M, which is possible because ofits group structure. Parallelizing
by left translations on M as U(2) and identifying MK with a

subgroup of G by mapping the element t x W of R into the
element t x W x I of K, we obtain:

SU(2,2)
generator

1 bo °0
2 0 boJ
1 0 bi'2 b 0J

2\-b10/J
1 0 b24
2 \-b2 0

1! 0 b.3
2k-b301 0 18
2 1 OJ
i (o b1A
2 bi 0J
i 0 b2
2kb2 0

i o b3
2 b30J
1 b30
2 0 b3/

2 0 b1J
1 b20
2 0 b2
i 0 18

1(11 o0
2 -b1_
1(b2 0
2 0 -b2j
1(b3 0 j
2 0 -b3/

Vector field on Mo as linear
combination of aj(=a/Ox)*

(1 -1/4 x2)ao + (xo/2)S

(1 - 1X4 X2)a1 - (xj2)S

(1 - /4x2)2 - (x2/2)S

(1 - 4 X2)a3 - (x3/2)S

-S

X13o + x0al

X2ao + Xoa2

x3do + Xo03

x2al-Xl2

x3a2 -X23

Xla3 -X3al

(1 + /4 X2)8o- (xo/2)S

(1 + ¼x2)0l + (xL/2)S

(1 + ¼X2)82 + (x2/2)S

(1 + 1/4 x2)83 + (x3d2)S

denotes the vector fieldxoxa+ x1a,+ x202 + x3A3, and x2= x2 -x2 -x2 x2
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THEOREM 1. Let V0 denote the representation of ( in the
bundle over M induced from the representation R of the
subgroup leaving fixed the point x0. If L denotes the left par-
allelization map, the parallelized action V(g) = LVo(g)L-' (g
EE G) takes the form

V(g): ¢F(x) --- R(xox-Ig g9(x)x1)((g-lx).
(F is here a function on M with values in the representation

space ofR, of "spin space" at the group unit; g-'(x) refers to the
action ofG as a transformation group on M. A proofofTheorem
1 is given in ref. 6. In general, g-'(x) can not be given explicitly
(except locally) or globally on M = U(2). The map g =

ACDJ --- AD-' is a local isomorphism of the subgroup of

SU(2,2) for which B = C = 0 into U(2) that is locally equivalent
to the earlier given map of M into G. Its inverse carries the

element Z of U(2) into the element (det Z)-1/4 Z OfG. With\oI/
this identification of M with a subgroup of G, the element
xOx-fgg-'(x)x0-l = g* (say, with x0 chosen as -l to facilitate
induction from given representations of the physical Poincare
group) takes the form

g* = (det Z1)1/4 (Z1 AW Z-1 B); W

= (A'Z + B')(C'Z + D'r-', g1 = (C,D,).

In infinitesimal form, the effect of the "multiplier" R(g*) is
additive, contributing an "internal" component to the total
group action, which includes in addition the "external" com-
ponent that consists of the negative of the vector field corre-
sponding to the infinitesimal group element. Specifically, if
X E- 'S, where ; denotes the Lie algebra of G, the internal
component of the action ofX on the R-bundle is (in its pres-
ently parallelized form) r(Y), in which r is the infinitesimal
representation corresponding to R and

Y = (1/4) tr (a + bZ-1 - cZ - d)

whee +( 1b

Z + d -Z-db)-CZ d a

where (a b is the representative for X in su(2,2).
kc d)

Scalar fields
These are defined by real one-dimensional representations R
of fr that are trivial on P itselfand have the form R(SA) = A" for
some real v, where SA is the transformation x --e A x on Mo.
Substitution in the expression just given for the internal action
of the generator of the one-parameter group Sep(t) shows that
this takes theform -(v/4)tr(Z + Z'1) = - vu1U4. Onlythe case
v = 1 admits a "massless" invariant subspace or equivalently
admits a covariant second-order wave operator. The salient facts
concerning scalar fields in this case are summarized in:
THEOREM 2. Let V denote the parallelized action of G on

the ensemble 9' of smooth scalar fields over M of the type in-
dicated. Let E] denote the differential operator XO - XI - X22
- X32 + 1 on S. Then (i) L] is invariant under the V(a), with a
in the maximal compact subgroup K of G, and covariant with
respect to G:

[O, v(W)] = m(W)L, [1]
where v denotes the infinitesi alform ofV, WE 'S, and m(W)
is a function on M.

(ii) The space N ofsmooth complex solutions to the equation
LF = 0 (the "massless subspace") admits a G-invariant de-
composition into subspaces N' and N-, on which -iv(Xo) is
respectively nonnegative and nonpositive; subspaces N+ admit
G-invariant positive-definite sesquilinear forms. On N' this
form may be expressed as <FP> = -i fSU(2 (a(D/Ot)+ d3u,
where d3u denotes the element of invariant volume on SU(2).

(iii) f admits the G-invariant sesquilinearform <<(F,>>
= f- (L](D)t d4u, where d4u denotes the element ofK-invariant
volume on M.

(iv) There is a maximal G-invariant subspace (the "positive-
energy" subspace) on which <<,»>> is positive semidefinite
and on which -iv(Xo) is nonnegative, spanned byfields (F that
are eigenvectors for v(X0) and for which LS(F = A(D for some
X s 0.

(v) There is no complementary G-invariant subspace in the
positive-energy subspace to the massless subspace: repeated
application of v(S), S being the infinitesimal generator of scale
transformations, carries every K-invariant subspace that is dis-
jointfrom the massless subspace into one having nontrivial in-
tersection with it.

Certain of the results and methods involved in this theorem
are contained in work of E. G. Lee (7), B. 0rsted (8), H. P.
Jakobsen and M. Vergne (9), and B. Speh (10) (cf. also ref. 4).
Our proof proceeds in outline as follows. The invariance of El
under the action ofK follows from Theorem 1. Since K together
with S generate G, it suffices for the proof of G-covariance, to
establish this in the case of S. By using Table 1 to express S as
a linear combination of the XP, a computation shows that Eq.
1 holds with m(S) = -2u-Iu4. Transformation by a general ele-
ment of G shows that m(W) is a scalar function on M for all W
in the Lie algebra of G. For the treatment of i, see ref. 8. For
iii, it suffices (as in the proof of i) to show invariance under S.
By evaluating (O/Ot)j(e-ts))t = 0 as

-4 + [(x2)2-4X2 + 8x62] [2(1 - 4 X2)2 + 2Xo2]-1 =-4u-Iu4
where J(T) denotes the Jacobian of the transformation T with
respect to the K-invariant measure on M, and by using the same
presentation of S as earlier, this invariance follows.
To treat the positive-energy subspace (and for later purposes,

such as diagonalization of quantum numbers), the following
basis for S is useful:

P8klmn = ein sinIP Ck 'cos P) Ylm ( +

where k,l,m,n are integral; k,l 2 0, -1 C m 1. Here p, 6,
and 4 are the polar coordinates defined by the equations ul
= sinp sin 6 cos 4, u2 = sinp sin 6 sin X), u3 = sin p cos 6, and
U. = COS p, where 0 c 4 < 2ir, 0 c 6 c IT, and 0 < p c ir;
CM1+ and Y1n denote the usual Gegenbauer polynomials and
spherical harmonics. The 3Bkmn are eigenfunctions of M with
eigenvalue (k + 1 + 1)2 - n2. Distinct (klmn are orthogonal rel-
ative to the given inner product; under K they are transformed
into other eigenfunctions of the same eigenvalue. The K-invar-
iance and nonnegativity of the inner product on the positive-
energy subspace follow.
To show G-invariance, it suffices as earlier to show invariance

under S. The action of S is given explicitly in the present rep-
resentation as follows:

v(S)13klmn = [(21 + k + 1)(-n + 1 + k + 1)/4(1 + k + 1)]
1k-1,lmn+I + [(k + 1)(-n - 1 - k -1)/4(1 + k + 1)]

Pk+1,lm,n+I + [(21 + k + 1) (n + I + k +1)/4(1 + k + 1)]
Pk-llmn-I + [(k + 1) (n - 1 - k - 1)/4(1 + k + 1)] f3k+l,lmn-i
From this the invariance and maximality ofthe positive-energy
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subspace follows as does the fact that repeated application of S
to any ofthe k,,,, in the positive-energy subspace, one ofwhich
must be contained in any nontrivial K-invariant subspace, even-
tually carries it into the massless subspace.
Spinor fields
In this case the representation R takes the form R(g) =

(T with T in SL(2,C) if g is a transformation that (i) car-

ries the ermitian matrix H, corresponding to an arbitrary point
of MO, into THT*; (ii) carries the scale transformation H ---e AH
into A3P2I4; and (iii) is trivial on the translation subgroup. In
terms of the SU(2,2) representation of the physical Poincare

group Go with g = (C D)RR takes the form R(g) =

l(A-B) det (A-B) 0
0 (A+C) det (A+C)-2) Go may be defined by

the condition that it leave -I invariant, which is equivalent to
the condition A - B + C - D = 0, implying that det (A + C)

det (A - B)1 for g in Go.

012° (byDefining yo i(~) ,Y = ( it, the canonical

Dirac operator after parallelization takes the form

vo= rOXO + Y1X1 + Y2X2 + Y3X3 - (3/2) y4ys,
acing in the space of all functions from M to complex 4-space
C4.
THEOREM 3. Let V denote the parallelized action ofG on the

spin bundle over M. Then
(i) Ql is K-invariant and covariant with respect to G: [ 5,v(W)]

= n(W) 26, where n(W) is a matrix-valued function on Mi, W
being arbitrary in %.

(ii) The space of smooth solutions T to the equation 26 T
= 0 admits a positive-definite G-invariant form: <Fd,> =
f<<<(F(x),(x)>>> d4u, where <«<,>>> denotes the usual
positive definite inner product in C4.

(iii) The entire spin bundle admits the G-invariant sesquilin-
earform <4dP> = ft <@ F(x),'(x)>' d4u, where <y,>I
denotes the Lorentz-invariant (indefinite) hermitian inner
product (in spin space).
The proof resembles that for Theorem 2, but is more com-

plicated. Similar results regarding the Dirac operator in MO are
given in the massless case by Gross (11) and in the massive case
as well in ref 9. General aspects ofcovariance of operators have
been treated by Kosmann (12).

Quantum numbers and physical discussion
A basic physical problem in the chronometric treatment of par-
ticles is the identification of quantum numbers that will agree
in the flat local limit with conventional relativistic ones and at
the same time be built up from the action ofthe mass-conserving
subgroup K of ;. This identification is essential for the corre-
lation of theory with realistic experiment, which can directly
measure only the flat (Minkowkian) quantum numbers because
only these are determined by the local structure of the wave
functions and experiments must be conducted within a local
region.
An appropriate system of quantum numbers constructed

from the generators of k consists in the following first- and sec-
ond-order expressions in the generators. For simplicity, v(Ly),
where v is the infinitesimal form of the representation V giving
the action of K, is denoted simply as L41.

As earlier, natural chronometric units are used in which h
= c = R = 1, where R is the radius of the universe SU(2) S3.

Table 2. Chronometric Quantum numbers
Expression Physical interpretation

-iL-,0 Chronometric energy
iL12 z-Component of angular

momentum
-(L122 + L232 + L312) Total angular momentum

(squared)
-(L142 + L2,42 + L42)1^ Total chronometric linear

momentum, denoted p
(LjL,34 + L2L14 + L3lL24)p-1 Chronometric helicity

The chronometric energy always exceeds the flat energy -i(a/
axo) in principle, but in sufficiently localized states there will
be no observable difference. The "superrelativistic" excess of
the chronometric over the flat energy is interpreted physically
as manifested in large-scale diffuse processes, such as cosmo-
logical redshifting and, possibly, gravitation. The linear mo-
menta L4 (. 1,2,3) have similar decompositions into flat and
superreiativistic (or local and delocalized) components, and p
will typically exceed the total flat linear momentum.

The angles 4 and 6 introduced earlier are identical with the
corresponding angles in MO, and the angular momentum quan-
tum numbers are identical with those for the flat case. The other
quantum numbers differ from their flat counterparts by terms
of order R` in laboratory units, but the helicity as a quotient
may be unstable in the flat limit for states of small total linear
momentum. In general, therefore, the chronometric and Min-
kowskian theoretical predictions may be expected to be quite
close energetically; however, they may differ in selection rules
and even energetically for phenomena involving sufficient de-
localization. The large masses of the elementary particles in
chronometric units, mp 104°, in part compensate for the
smallness of an effect of order R-'. Specific directions of pos-
sible applications may be indicated as follows.
A chronometric electron state with an approximately exact

flat mass M, where M2 = (a/ax1)2 + (a/ax2)2 + (a/ax3)2 -
(a/axo)2, would appear observationally as a well-defined ele-
mentary particle of spin 1/2 and mass M. In a sufficiently de-
localized state, the flat mass M could be much greater than the
chronometric mass m given by the equation m2 + ] = 0, where
E is the covariant wave operator earlier defined. Because the
flat and curved wave operators do not at all commute, such
states would be quite exceptional and therefore, expected to
have an extremely limited flat (observed) mass spectrum. Thus
the muon may be such a state.
The action of parity on K is to carry t X U x V into t x V

x U. It follows that it does not leave C invariant but carries it
into Cq. As central elements of ., both {and 'q will be absolute
invariants for a given particle species, and 71, which occurs in
conventional theory as the nontrivial center ofP, takes the value
-1 on spinor fields. Therefore, parity and the quantum number
4 which has no counterpart in MO, can not simultaneously be
conserved within an irreducible particle species. Besides the
nonconservation ofparity, a possible interpretation is a need for
parity doublets, which thus arise naturally from the group-the-
oretic analysis of fields on M of half-integral spin; on MO, they
have been considered for phenomenological reasons in refs. 13
and 14. With the latter interpretation, maximal parity violation
as represented by the usual chiral-invariant four-fermion inter-
action appears as the local form of a parity-conserving interac-
tion in M. This would not imply apparent parity violation for
other interactions. In the case ofquantum electrodynamics, for
example, photon wave functions on M are invariant under 4,
producing a cancellation in the integrated chronometric inter-
action hamiltonian due to antisymmetry under Cof the current

Proc. Nad Acad. Sci. USA 78 (1981)



Applied Physical and Mathematical Sciences: Segal et al.

between doublet members of opposite parity.
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