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Abstract. This is the second article in a series of three where we

study some quadratic algebras related to quantized matrix alge-

bras. In here, we study the algebraM

q

(2) by elementary methods

and construct the simple modules and the primitive ideals. We

relate this to Artin's programme of non-commutative algebraic ge-

ometry ([1]), in particular, we determine the point and line modules

of this algebra.

1. Introduction

In the �rst of this series of three articles, [2], we established that for

an quantized algebra U

q

(g) of type A

m+n�1

there is a decomposition

U

q

(g) = A

�

m;n

� U

q

(k) �A

m;n

;(1)

where A

�

m;n

and A

m;n

are quadratic algebras which moreover are U

q

(k)

modules. Here, k is the quantized enveloping algebra of a maximal

compact subalgebra of g obtained by viewing g as the complexi�cation

of the Lie algebra g

0

corresponding to a hermitian symmetric space

and (1) then generalizes the decomposition

U(g) = U(p

�

) � U(k) � U(p

+

):

This result has been generalized in [3] to arbitrary hermitian sym-

metric spaces.

Actually, the algebras A

m;n

and A

�

m;n

in (1) are not uniquely deter-

mined. One of the candidates for the part of e.g. A

m;n

is actually the

well-known quantized matrix algebra M

q

(n) ([4]). The latter has been

the subject of many investigations, (see e.g. [5] and references therein)
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but it seems that one always has been taking a somewhat di�erent point

of view, namely that of getting hold of a quantum GL(n) or SL(n).

Our point of view is really to take over Artins program [1]. According

to this program one must determine a certain associated variety, de-

termine the point, line, plane, etc. modules, the \fat points" and so

on, and relate these to the variety. It has been a guiding principle for

us that the variety should be \nice" and for this reason we choose a

family of quadratic algebras that does not reduce to M

q

(n) in the case

where m = n.

The previous discussion of the various families should mostly be

taken as an advertisement for our family. In the present article we

have chosen to compute all details in the special case M

q

(2) and here

the families do agree.

The material is organized as follows: In Section 4 we construct the

simple modules and the primitive ideals of M

q

(2). In Section 5 we �nd

the point and line modules of the algebra M

q

(2).

After having �nished this paper the articles by Vancli� [6], [7] were

brought to our attention. In there, the point and line modules have

been obtained forM

q

(2) by methods which are quite di�erent from our

quite elementary approach.

2. Simple representations and primitive ideals for M

q

(2).

In this section we consider the algebra M

q

(2), i.e. the C -algebra

generated by the elements z

1

; z

2

; z

3

and z

4

subject to the relations

(r

1

) z

1

z

2

= qz

2

z

1

(r

2

) z

1

z

3

= qz

3

z

1

(r

3

) z

2

z

3

= z

3

z

2

(r

4

) z

2

z

4

= qz

4

z

2

(r

5

) z

3

z

4

= qz

4

z

3

(r

6

) z

1

z

4

� z

4

z

1

= (q � q

�1

)z

2

z

3

;

(2)

where q 2 C n f0; 1;�1g.

We �nd all simple representations as well as the primitive ideals of

this algebra in case q is a primitive n'th root of unity. Throughout,

we assume that q 6= �1. In case q is not a root of unity the simple

representations are already well studied in the literature (cf. [8], [9]).

Later on we will �nd all point, line, and planes modules for the algebra.

It is well-known that M

q

(2) is an iterated Ore extension. From this

we get that M

q

(2) is a left and right Noetherian domain and M

q

(2) is

a free C -module with bases

z

k

1

1

z

k

2

2

z

k

3

3

z

k

4

4

k

i

2 N

0

i = 1 � � �4
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We also need the following relations for later purposes

z

1

z

j

4

= z

4

z

1

z

j�1

4

+ (q � q

�1

)z

2

z

3

z

j�1

4

=

z

r

4

z

1

z

j�r

4

+ (1 + q

�2

+ q

�2(r�1)

)(q � q

�1

)z

2

z

3

z

j�1

4

=

z

j

4

z

1

+ q(1� q

�j

)z

2

z

3

z

j�1

4

In case q is an n-th root of unity it is readily checked that z

n

j

; j =

1; 2; 3 and 4 are all central elements and thus M

q

(2) is a �nite module

over its center, hence in this case M

q

(2) is a P. I. algebra and all simple

representations are �nite dimensional, [10, Theorem 13.10,3].

Kaplansky's Theorem for P. I. algebras gives that any primitive ideal

ofM

q

(2) is maximal and the corresponding factoring is a central simple

algebra of �nite dimension over its center which is a �eld K.

Now the Artin-Tate lemma [10, 13.9.10] implies that K is a �nitely

generated C -algebra and K = C by the classical Nullstellensatz and

the fact that C is algebraically closed. Thus we have shown that all

primitive factoring of M

q

(2) are full matrix rings over C .

Throughout this section we assume q is a primitive n'th root of unity.

For short we let A denote M

q

(2). If V is a representation of A, z

i

(v)

denotes the representation of z

i

acting on v.

We will now determine all simple representations and all primitive

ideals of A. Observe that z

2

(z

3

) is a normal element and hence fv 2 V j

z

2

(v) = 0g is an invariant subspace. Thus, in a simple representation

z

2

(z

3

) is mapped either to zero or to an invertible operator.

Consider �rst those primitive ideals P for which A=P ' C . The

relation (r

6

) in (2) shows that in this case either z

2

or z

3

is in P .

If z

2

; z

3

2 P then A=P is a factor algebra of C [z

1

; z

4

], the polynomial

ring in 2 indeterminates, and therefore by the classical Nullstellensatz,

P = (z

1

� �

1

; z

2

; z

3

; z

4

� �

4

) for suitable �

1

; �

4

2 C .

Next assume z

2

2 P and z

3

=2 P . Then in A=P , z

1

z

3

= qz

3

z

1

, hence

z

1

2 P and likewise z

4

2 P .

So we have the following complete list of kernels of 1-dimensional

representations

� (z

1

� �

1

; z

2

; z

3

; z

4

� �

4

)

� (z

1

; z

2

; z

3

� �

3

; z

4

) and � (z

1

; z

2

� �

2

; z

3

:z

4

)

�

2

and �

3

in C n f0g.

We will next describe the primitive ideals P and simple represen-

tations S

p

for which z

2

2 P and dim

C

S

p

> 1. Since z

2

2 P , the

primitive ideals and simple representations are the ones for the algebra
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C [z

1

; z

3

; z

4

] with de�ning relations

(i) z

1

z

3

= qz

3

z

1

(ii) z

3

z

4

= qz

4

z

3

(iii) z

1

z

4

= z

4

z

1

:

This algebra is in fact A

1

= C [z

1

; z

4

][z

3

; �] where �(z

1

) = qz

1

and

�(z

4

) = q

�1

z

4

.

The representation theory for this algebra is treated in [11] in a more

general setting, but it is in fact quite easy to list the primitive ideals

and corresponding simple representations.

First notice that z

3

is a normal element in A

1

, so z

3

is represented by

an invertible matrix since it follows that z

3

=2 P due to the assumptions

on dimS

p

.

Let V be a simple representation. Then z

1

and z

4

commute and

we let v 2 V be a common eigenvector with eigenvalues �

1

and �

4

,

respectively. Since z

n

3

is central, we get that z

n

3

(v) = �v; � 6= 0, and

hence

C v + C z

3

(v) + � � �+ C z

n�1

3

(v)

is an invariant subspace of V . For instance, z

1

(z

i

3

(v)) = q

i

z

i

3

(z

1

(v)) =

q

i

�

1

z

i

3

(v). So in case either �

1

or �

4

is non-zero, dimV = n. If �

1

= 0,

z

1

= 0 by the above. But �

1

and �

4

cannot both be 0, since the

representation is assumed to have dimension strictly larger than 1.

Assuming �

1

= 0 and �

4

6= 0, the algebra A=P is a factor of C [z

3

; z

4

],

with de�ning relations

z

3

z

4

= qz

4

z

3

z

n

3

= �I and z

n

4

= �I;

� and � both non-zero. This algebra is in fact simple and therefore

isomorphic to M

n

(C ): It is easily seen that every element is a C -

combination of monomials of the form z

i

3

z

j

4

, 0 � i; j � n � 1, and

this representation is unique. Let a be a non-zero two-sided ideal and

pick f 6= 0 in a such that f =

P

m

v=0

p

v

(z

3

)z

v

4

, where f is a polynomial

of degree less than n and m is chosen minimal among all non-zero f 's

in a. If m 6= 0, then

q

�m

z

3

f � fz

3

=

m�1

X

v=0

(q

�m

� q

�v

)z

3

p

v

(z

3

)z

v

4

and by minimality ofm, p

m

(z

3

)z

m

4

2 a and hence p

m

(z

3

)z

n

4

= p

m

(z

3

)� 2

a. Thus m = 0.

Next, pick g = a

0

+ � � �+a

k

z

k

3

in a with a

k

6= 0 and k minimal. Then

a 3 gz

4

� q

k

z

4

g =

 

k�1

X

i=0

a

i

(1� q

k�i

)z

i

3

!

z

4

:
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Multiplying by z

n�1

4

gives that

P

k�1

i=0

a

i

(1 � q

k�i

)z

i

3

2 a and by the

minimality of k we get a

i

= 0 for i = 0; : : : ; k � 1, so z

k

3

2 a, hence

�I 2 a, hence a is the whole ring, Thus, the algebra is simple as

claimed.

Hence we have the following primitive ideals

� (z

1

; z

2

; z

n

3

� �

3

1; z

n

4

� �

4

1) �

3

; �

4

6= 0,

� (z

n

1

� �

1

1; z

2

; z

n

3

� �

3

1; z

4

) �

1

; �

3

6= 0,

and similar primitive ideals with z

2

and z

3

interchanged.

We are now left with the case z

1

(v) 6= 0, z

4

(v) 6= 0, z

2

2 P , and

z

3

(v) 6= 0, where v is a common eigenvector for z

1

and z

4

with eigen-

values �

1

and �

4

. Then

V = C v + � � �+ C z

n�1

3

v:

Observe that for any j = 0; : : : ; n� 1,

�

4

z

n�1

1

(z

j

3

(v)) = �

4

q

�j

z

j

3

(�

n�1

1

(v)) and

�

n�1

1

z

4

(z

j

3

(v)) = �

n�1

1

q

�j

z

j

3

(�

4

(v)):

Hence z

n�1

1

= dz

4

for some non-zero constant d and the algebra is thus

generated by z

1

and z

3

with de�ning relations z

1

z

3

= qz

3

z

1

z

n

3

= �I,

and z

n

1

= �I. This algebra is simple by the previous argument.

Thus we have the following primitive ideals corresponding to some

n dimensional simple representations:

(z

n

1

� �

1

; z

2

; z

n

3

� �

3

; z

4

� dz

n�1

1

);

where d; �

3

; �

4

are non-zero.

So far we have assumed that either z

2

or z

3

is in the primitive ideal

corresponding to the simple representation.

Suppose now that neither z

2

nor z

3

is in P , a primitive ideal of A, and

consider the corresponding simple representation V . Since z

2

and z

3

are normal elements they must act as isomorphisms on V . The simple

representations of A such that z

2

and z

3

act as isomorphisms are the

ones for the algebra obtained by adjoining the inverses of z

2

and z

3

to

A.

Let v be a common eigenvector for the commuting maps z

2

; z

3

and

z

1

z

4

. Denote the corresponding eigenvalues by �

2

; �

3

, and �, where �

2

and �

3

both are non-zero.

1

�

. Let us �rst assume that z

4

is not nilpotent on V ; then v; z

4

(v); : : : ;

z

n�1

4

(v) are all non-zero and hence linearly independent being eigenvec-

tor for z

2

with di�erent eigenvalues. Moreover, V

0

= Span(v; z

4

(v); : : : ;

z

n�1

4

(v)) is invariant under the action of z

2

; z

3

and z

4

. It is also in-

variant under z

1

and so V

0

= V . To see this, observe that z

n

4

= �I.
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So z

1

z

4

(v)) = �v, z

1

z

k

4

(v) = z

4

z

1

z

k�1

4

(v) + (q � q

�1

)z

2

z

3

z

k�1

4

(v), and

z

1

z

n

4

(v) = z

1

(�v) for some non-zero �. Thus V

0

is an invariant subspace

of V .

By I

q

we denote the matrix diag (1; q; : : : ; q

n�1

);

0

B

B

@

1

q

.

.

.

q

n�1

1

C

C

A

:

In the given base we have the following representation of A on V :

z

2

! �

2

I

q

z

3

! �

3

I

q

and thus z

3

= �

3

�

�1

2

z

2

z

4

!

0

B

B

@

0 �

1 0

.

.

.

1 0

1

C

C

A

and z

1

!

0

B

B

@

0 a

2

0

.

.

.

0 a

n

a

1

0

1

C

C

A

:(3)

Here, � 2 C n f0g. All entries in the matrices above that are not

explicitly given, are 0. The actual form of z

1

is a consequence of the

relation z

1

z

2

= qz

2

z

1

.

All de�ning relations except (r

6

) for the algebra M

q

(2) hold for the

matrices de�ned above.

From (r

6

) we get

a

2

� �a

1

= (q � q

�1

)�

2

�

3

a

3

� a

2

= (q � q

�1

)q

2

�

2

�

3

and

a

n

� a

n�1

= (q � q

�1

)q

2n�4

�

2

�

3

a

1

�� a

n

= (q � q

�1

)q

2n�2

�

2

�

3

Thus, we get that a

2

; : : : ; a

n

are uniquely determined by a

1

; �, and we

have to verify the last condition a

1

�� a

n

= (q � q

�1

)q

2n�2

�

2

�

3

. But

a

n

= a

1

� + (q � q

�1

)(�

2

�

3

)(1 + q

2

+ � � �+ q

2n�4

);

and since q

2

is an n'th root of unity we get the result.

This representation is in fact simple: Suppose U is a non-zero invari-

ant subspace and pick 0 6= u =

P

n�1

i=0

x

i

z

i

4

(v) such that the number of

non-zero x

i

's is smallest possible. Eventually after having applied z

4

a

number of times we may assume x

0

6= 0. Now �

2

u� z

2

(u) 2 U and has

fewer non-zero coe�cients thus u = x

0

v and U = V .
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To describe the corresponding primitive ideal we replace z

2

; z

3

and

z

4

by ~z

2

; ~z

3

and ~z

4

, where

~z

2

= �

�1

2

z

2

; ~z

3

= �

�1

3

z

3

; and ~z

4

= �

�

1

n

z

4

:

Then with these new generators we get ~z

2

= ~z

3

, ~z

n

4

= 1; ~z

n

2

= 1, and

~z

1

= c~z

�1

4

+ ~z

2

~z

�1

4

~z

2

. So the algebra is generated by ~z

2

and ~z

4

where

~z

n

2

= ~z

n

4

= 1 and ~z

2

~z

4

= q~z

4

~z

2

and we have already shown that this

algebra is simple.

In case z

1

is not nilpotent we get a similar result.

2

�

. We now assume that both z

1

and z

4

are nilpotent.

Let V

i

= fv 2 V j z

i

(v) = 0g, i = 1 and 4. If V

1

\ V

4

6= 0, then by

relation (r

6

), z

2

or z

3

is not injective on this invariant subspace. Thus

V

1

\ V

4

= 0.

Let U = fv 2 V j z

1

(v) = 0g. Clearly U is invariant under the action

of z

2

; z

3

, and z

1

z

4

and we can pick a common eigenvector, u 2 U , for

these three endomorphisms with corresponding eigenvalues �

2

; �

3

, and

�. Observe that � 6= 0 by previous argument.

As seen in the previous case, Span(u; z

4

(u); : : : ; z

n�1

4

(u)) is an invari-

ant subspace of V and hence equal to V .

If z

j

4

(u) 6= 0, then z

j

4

(u) is an eigenvector for z

2

with eigenvalue �

2

q

j

.

Thus V has a base (u; z

4

(u); : : : ; z

k�1

4

(u)) where z

k

4

(u) = 0.

In the corresponding matrix representation

z

2

! �

2

I

q

z

3

! �

3

I

q

; and

z

4

!

0

B

B

@

0

1 0

.

.

.

.

.

.

1 0

1

C

C

A

.

Since z

1

z

2

= qz

2

z

1

, we get as in (3)

z

1

!

0

B

B

@

0 a

2

0

.

.

.

0 a

k

a

1

0

1

C

C

A

:

From (r

6

) we get

0

B

B

@

a

2

.

.

.

a

k

0

1

C

C

A

�

0

B

B

@

0

a

2

.

.

.

a

k

1

C

C

A

= (q � q

�1

)�

2

�

3

I

q

2

:
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Let us for short write c = (q � q

�1

)�

2

�

3

and observe that a

1

= 0 since

z

1

is nilpotent. Hence

a

2

= c; a

3

= c+ cq

2

= c(1 + q

2

)

a

4

= (1 + q

2

) + cq

4

= c(1 + q

2

+ q

4

)

.

.

.

a

k

= c(1 + � � �+ q

2(k�2)

) and a

k

= �cq

2(k�1)

:

Thus, (r

6

) is satis�ed if and only if

c(1 + � � �+ q

2(k�2)

+ q

2(k�1)

) = 0;

hence q

2

must be a k'th root of unity. In conclusion, for n odd we get

for each �

2

; �

3

a representation of degree n.

For n even we get a representation of degree n=2 for each �

2

; �

3

and

one of degree n. But in the degree n representation a

n

2

+1

= 0, hence

this representation is not simple.

We claim that the remaining representations are simple.

Let U be an invariant subspace of V . Then by standard arguments,

U contains eigenvectors for z

2

and z

3

. But together, z

1

and z

4

permute

all eigenvectors, hence U = V .

We conclude this section by determining the primitive ideals in case

z

1

and z

4

acts a nilpotent matrices.

Consider �rst the case n odd:

z

n

1

; z

n

4

; z

n

2

� �I; and z

3

� �z

2

are in P:

Let us for simplicity set � = � = 1. In addition to the above, it is easy

to see that the central element z

1

z

4

� qz

2

z

3

acts as �q

�1

.

It follows that z

2

2

can be expressed via z

1

z

4

, and hence so can z

2

since

it is equivalent to z

n+1

2

. Furthermore, z

1

and z

4

satisfy (after having

absorbed the factor q � q

�1

into one of them)

z

1

z

4

� q

2

z

4

z

1

= 1:(4)

So the algebra is generated by z

1

and z

4

subject to the relation (4)

together with z

n

1

= z

n

4

= 0. We now prove that the latter algebra is

simple, hence isomorphic to A=P .

First observe that the algebra clearly has dimension at most n

2

. Next

consider a simple representation of the algebra on a vector space V . Let

v 2 V be a non-zero eigenvector of z

1

(of eigenvalue 0, of course). Then

the subspace V

0

= Spanfv; z

4

v; : : : ; z

n�1

4

g is clearly invariant and hence

equal to V . Furthermore,

z

1

(z

i

4

v) = (1 + q

2

+ � � �+ q

2i�2

)z

i�1

4

:



QUADRATIC ALGEBRAS OF TYPE AIII; II 9

It follows easily from this that fz

i

4

g

n�1

i=0

is a basis of V and hence V is

of dimension n.

Thus,

P = (z

n

1

; z

n

4

; z

n

2

� 1; z

3

� z

2

; z

1

z

4

� qz

2

z

3

+ q

�1

):

A similar but slightly more complicated argument shows that the

ideal

~

P below (where we again have set � = � = 1) is primitive in the

case where n is even. In fact, one can show that z

2

can be obtained

from expressions of the form z

i

1

z

i

4

; i = 0; : : : ; n� 1. Thus, the primitive

ideal is given as

~

P = (z

n=2

1

; z

n=2

4

; z

3

� z

2

; z

n

2

� 1; z

1

z

4

� qz

2

z

3

+ q

�1

):

Remark 2.1. Before summarizing our �ndings, we make some obser-

vations about equivalence of representations and primitive ideals:

� Primitive ideals are by de�nition annihilators of simple modules,

thus equivalent simple modules must de�ne the same primitive

ideal.

� As remarked earlier, if P is a primitive ideal in A then A=P is a

full matrix algebra. Thus,

A=P = S � : : : S;

| {z }

k

where S is a simple k-dimensional module whose annihilator is P .

� One may de�ne an A equivalence of simple representations by

saying that �

1

is equivalent to �

2

if there exists a graded automor-

phism � of A such that

8a 2 A : �

2

(a) = �

1

(�(a)):

The group of graded automorphisms of A is generated by the maps

(z

1

; z

2

; z

3

; z

4

) ! (�

1

z

1

; �

2

z

2

; �

3

z

3

; �

4

z

4

) with �

1

; : : : ; �

4

2 C

�

and

�

1

�

4

= �

2

�

3

and the map z

2

$ z

3

. The map z

1

$ z

4

may be

viewed as a conjugate-linear automorphism. When we list our

result below we do it modulo these graded linear or anti-linear

automorphisms

The result may then be given as follows:
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Theorem 2.2. Up to graded (possibly conjugate linear) isomorphism,

the algebra M

q

(2) has the following primitive ideals

primitive ideal dimension of rep.

1 (z

1

� 1; z

2

; z

3

; z

4

� 1) 1

2 (z

1

; z

2

; z

3

� 1; z

4

) 1

3 (z

n

1

� 1; z

2

; z

n

3

� 1; z

4

) n

4 (z

n

1

� 1; z

2

; z

n

3

� 1; z

4

� dz

n�1

1

) n

5 (z

n

1

� 1; z

n

2

� 1; z

2

� z

3

; z

4

� z

2

z

n�1

1

z

3

� cz

n�1

1

) n

6 (z

n

1

; z

n

2

� 1; z

2

� z

3

; z

n

4

; z

1

z

4

� qz

2

z

3

+ q

�1

) n (n odd)

7 (z

n=2

1

; z

n

2

� 1; z

2

� z

3

; z

n=2

4

; z

1

z

4

� qz

2

z

3

+ q

�1

) n=2 (n even)

Remark 2.3. Continuing the discussion in Remark 2.1 above, one

may call two representations quasi-equivalent if they are connected by

a non-graded automorphism. For instance the maps (z

1

; z

2

; z

3

; z

4

) !

(z

1

; z

2

; z

3

; z

4

+ c

i

z

i

2

z

n�i

3

z

n�1

1

) (i �xed) and (z

1

; z

2

; z

3

; z

4

) ! (z

1

; z

2

+

qaz

3

z

n

1

; z

3

; z

4

+ cz

n�1

1

+ az

2

3

z

n�1

1

) are examples of such. By means of

these, it is easy to see that 3 is quasi-equivalent to 4 and that 5 is

quasi-equivalent to (z

n

1

� 1; z

n

2

� 1; z

2

� z

3

; z

n

4

). Representations with

di�erent degree are of course inequivalent. Furthermore, it seems that

5 relations are needed for the primitive ideal in 6 and hence this would

appear to be inequivalent from the others. Indeed, we believe that they

are all inequivalent but have not been able to prove this. It also seems

di�cult to determine the group of automorphisms.

In case n is odd more can be said about A

2;2

. First observe that

for every primitive ideal P such that z

2

=2 P and z

3

=2 P we have

that dim

C

A=P = n

2

. Since both z

2

and z

3

are normal elements we

can form A[z

�1

2

; z

�1

3

] = B which is an Azumaya algebra by the Artin-

Procesi Theorem [10, 7.14 Theorem].

Since B is a �nitely generated projective module over its center C,

dim

C

m

B

m

is a constant and equal dim

F

B 


c

F = dim

F

Q(A) by [12,

Chap. II, x5, n

0

3], where F is the quotient of the center of A and also

C, and Q(A) is the quotient division-ring of A. (Posner's Theorem).

Notice dim

C

m

B

m

= dim

(C=m)

m

(B=mB)

m

= dim

C=m

B=mB, mB is

a maximal ideal in B, since B is Azumaya and C=m being a �eld

and a�ne over C is isomorphic to C by Nullstellensatz and Artin-Tate

lemma.

In case q is not a primitive root of unity the primitive ideals of the

factor algebra R

q

[SL(2)] of A (corresponding to z

1

z

4

� qz

2

z

3

= 1) were
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found in [13]. A complete list of the primitive ideals in this case is

(i) (z

2

; z

3

; z

1

� �; z

4

� �

�1

) ; � 6= 0

(ii) (z

2

)

(ii)

0

(z

3

)

(iii) (z

2

� �z

3

) ; � 6= 0:

3. Point, Line, and Plane Modules.

In this section we determine the point, line, and plane modules for

M

q

(2).

Let us �rst recall the de�nition from [14]:

De�nition 3.1. Let M be a cyclic Z graded module. We say

� M is a point module if h

M

(t) = (1� t)

�1

.

� M is a line module if h

M

(t) = (1� t)

�2

.

� M is a plane module if h

M

(t) = (1� t)

�3

.

In the paper [14], results for these classes of modules were obtained

for the four dimensional Sklyanin algebra. An examination of the ar-

guments in that paper reveals that only some general properties of the

Sklyanin algebra were in play. In fact, it was only used that the algebra

is Auslander regular, i.e. Auslander{Gorenstein of �nite global dimen-

sion. (For the de�nitions and simple properties of Cohen{Macaulay,

Auslander{Gorenstein, and Auslander regular the reader is referred to

[1], [15], and [14].)

ThatM

q

(2) satis�es these properties follows from the following result

due to T. Levasseur, cf. [16] and to the fact that gl dimM

q

(2) = 4 (cf.

Section 2).

Proposition 3.2. Suppose a graded ring B contains a regular nor-

malizing sequence z

2

; z

3

of homogeneous elements of positive degree.

If B=(z

2

; z

3

) is Auslander-Gorenstein of dimension l and satis�es the

Cohen-Macaulay property, then B is Auslander-Gorenstein of dimen-

sion l + 2 and satis�es the Cohen-Macaulay property.

Since M

q

(2) has global dimension 4, M

q

(2) is Auslander-regular as

well.

Thus, from [14, Corollary 1.11] we get

Proposition 3.3. Let M be a point, line or plane module, then M is

Cohen-Macaulay, M is n-pure and since such an M has e(M) = 1, M

is critical.

We �rst list some general results following the lines of [14]; all mod-

ules are graded modules.
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Proposition 3.4. An M

q

(2) module M is a plane module if and only

if M ' A=Aa; a 2 A

1

. Here, A

1

denotes the homogeneous elements of

degree 1.

Proof. Suppose M is a plane module. Then dimM

0

= 1 and dimM

1

=

3. Since dimA

1

= 4 and M is cyclic there exists a non-zero a 2 A

1

such that aM

0

= 0. Thus, M = AM

0

is a quotient of A=Aa and since

A is a domain, M and A=Aa have the same Hilbert series, hence they

are isomorphic.

A similar argument shows

Proposition 3.5 ([14, Proposition 2.8]). M is a line module if and

only if M ' A=Au + Av, where u; v 2 A

1

are linearly independent

elements such that A

1

u \ A

1

v 6= 0.

We �rst determine the point modules forM

q

(2). The main tool is the

following result from [1] which establishes a one-to-one correspondence

between point modules and the points on a certain variety related to

the algebra. The result is valid for a large class of quadratic algebras

and we shall state it in this generality.

Theorem 3.6 ([1]). Consider an a�ne quadratic algebra A, i.e.

A = T (V )=(R);

where V is a �nite-dimensional vector space over a �eld k and R �

V 
 V is the set of (quadratic) relations.

Let P = P(V

�

) and consider the associated variety � = V(R) �

P 
 P. The canonical projections P � P ! P are denoted �

1

and �

2

.

If �

1

(�

n

) = �

2

(�

n

) = E and the �

i

j

�

n

are injective then there is a

bijection

E $ fIsomorphism classes of point modulesg

given by

E 3 p$M(p)

where M(p) = A=(Ax

1

+ � � �+Ax

n

) and x

1

; : : : ; x

n

2 V are determined

by

V(x

1

; : : : ; x

n

) = fpg:

By Theorem 3.3 in [2] we have that

E = f[p

1

; p

2

; p

3

; p

4

] 2 P j p

1

p

4

� p

2

p

3

= 0 or p

2

= p

3

= 0g

and

�

n

= f(p; p

�

) 2 P � P j p 2 Eg;
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where �([p

1

; p

2

; p

3

; p

4

]) = [p

1

; qp

2

; qp

3

; q

2

p

4

] for any point on the quadric

and � acts as the identity on the line.

Thus the above result of [1] applies to give

Theorem 3.7. The point modules of A are (up to isomorphism) in

one-to-one correspondence with the points of E (determined above),

i.e. \there is a quadric and a line of point modules". In particular, the

variety of point modules is independent of q.

Plane modules are characterized by Proposition 3.5 and are in 1-1

correspondence with hyperplanes in P

3

.

We now determine the line modules. By Proposition 3.5, we need to

�nd all pairs of elements u; v 2 A

1

that are a) linearly independent over

C and for which b) A

1

u \ A

1

v 6= 0. Equivalently, we will characterize

the varieties in P

3

de�ned by complex vector spaces A

1

u+ A

1

v where

u; v satisfy a) and b).

First observe that we may add a scalar multiple of u to v (or vice

versa), and we may multiply either one by a non-zero complex number

without changing the variety and without a�ecting the properties a)

and b).

Now write

u = a

1

z

1

+ a

2

z

2

+ a

3

z

3

+ a

4

z

4

v = b

1

z

1

+ b

2

z

2

+ b

3

z

3

+ b

4

z

4

We divide our investigation into several cases:

1

�

: a

1

= b

1

= 0.

We claim that L ' A


B

L

0

, where B = C [z

2

; z

3

][z

4

; �

4

] and L

0

is a

point module over B.

First of all, the point modules over B are easy to �nd. To wit,

an argument similar to the one in Proposition 3.4 shows that L

0

is a

point module over B if and only if L

0

= B=Bu + Bv where u; v are

linearly independent elements in B

1

such that B

1

u \ B

1

v 6= 0. But a

straightforward computation shows that the latter condition is always

satis�ed for non-zero u; v (and then of course we also have A

1

u\A

1

v 6=

0. Next notice that the PBW Theorem tells us that A is a free B

module. Thus

A


B

B=Bu+Bv ' A=Au+ Av = L;

i.e. we have shown that in this case the line modules over A are in 1-1

correspondence with the point modules over B (quantum P

2

).

2

�

: a

1

6= 0 or b

1

6= 0.

We may without loss of generality assume that a

1

= 1; b

1

= 0.
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Either b

2

= b

3

= 0 or we may assume b

2

6= 0 in which case we may

take a

2

= 0. Let us consider the last case �rst.

2

�

(i)

u = z

1

+ a

3

z

3

+ a

4

z

4

and v = z

2

+ b

3

z

3

+ b

4

z

4

:

Suppose we have a non-trivial relation

(r

1

z

1

+ r

2

z

2

+ r

3

z

3

+ r

4

z

4

) � (z

1

+ a

3

z

3

+ a

4

z

4

)

= (s

1

z

1

+ s

2

z

2

+ s

3

z

3

+ s

4

z

4

) � (z

2

+ b

3

z

3

+ b

4

z

4

) :

We get r

1

z

2

1

= 0, s

2

z

2

2

= 0 and hence r

1

= s

2

= 0.

Moreover,

r

2

z

2

z

1

= s

1

z

1

z

2

so r

2

= s

1

q ;

r

3

z

3

z

1

= s

1

b

3

z

1

z

3

so r

3

= s

1

b

3

q ;

r

4

z

4

z

1

= s

1

b

4

z

1

z

4

so r

4

= s

1

b

4

;

since the relation is non-trivial, s

1

6= 0, and we may multiply the

relation by s

�1

1

to get

(qz

2

+ qb

3

z

3

+ b

4

z

4

)(z

1

+ a

3

z

3

+ a

4

z

4

) =

(z

1

+ s

3

z

3

+ s

4

z

4

)(z

2

+ b

3

z

3

+ b

4

z

4

) :

Consequently,

b

4

a

4

z

2

4

= s

4

b

4

z

2

4

so a

4

b

4

= s

4

b

4

qa

4

z

2

z

4

= s

4

z

4

z

2

so q

2

a

4

= s

4

:

If a

4

= b

4

= 0 we are back in case 1

�

with z

1

replaced by z

4

.

2

�

(i) a) If b

4

6= 0 then a

4

= s

4

= q

�2

s

4

so a

4

= s

4

= 0 and we have the

following relation

(qz

2

+ qb

3

z

3

+ b

4

z

4

)(z

1

+ a

3

z

3

) =

(z

1

+ s

3

z

3

)(z

2

+ b

3

z

3

+ b

4

z

4

)

and we conclude

(i) qb

3

a

3

z

2

3

= s

3

b

3

z

2

3

so (qa

3

� s

3

)b

3

= 0;

(ii) b

4

a

3

z

4

z

3

= s

3

b

4

z

3

z

4

so a

3

= qs

3

;

(iii) qa

3

z

2

z

3

= s

3

z

2

z

3

+ b

4

(q � q

�1

)z

2

z

3

;

and by (ii) and (iii), qa

3

�q

�1

a

3

= b

4

(q�q

�1

), so a

3

= b

4

. If b

3

6= 0 then

s

3

= qa

3

= q

2

s

3

so s

3

= 0 and a

3

= 0 and hence b

4

= 0, a contradiction.

Thus b

3

= 0 and the pair (u; v) = (z

1

+a

3

z

3

, z

2

+a

3

z

4

) does determine a

line module. The variety in P

3

is f[�a

3

t

1

;�a

3

t

2

; t

1

; t

2

] j t

i

2 C g which

is a line on the quadric E.

Similarly, z

1

+ a

2

z

2

and z

3

+ a

2

z

4

determine line modules and the

variety in P

3

is

f[�a

2

t

1

; t

1

;�a

2

t

2

; t

2

] j t

i

2 C g:
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2

�

(i) b) b

4

= 0 and a

4

6= 0.

The relation in this case is

(qz

2

+ qb

3

z

3

)(z

1

+ a

3

z

3

+ a

4

z

4

) =

(z

1

+ s

3

z

3

+ s

4

z

4

)(z

2

+ b

3

z

3

)

Thus

qa

3

z

2

z

3

= s

3

z

2

z

3

so s

3

= qa

3

qa

4

z

2

z

4

= s

4

z

4

z

2

so s

4

= q

2

a

4

qb

3

a

4

z

3

z

4

= s

4

b

3

z

4

z

3

so s

4

b

3

= q

2

b

3

a

4

qb

3

z

3

z

1

= b

3

z

1

z

3

so qb

3

= qb

3

qb

3

a

3

z

2

3

= s

3

b

3

z

2

3

so b

3

(qa

3

� s

3

) = 0

In fact,

(qz

2

+ qb

3

z

3

)(z

1

+ a

3

z

3

+ a

4

z

4

) =

(z

1

+ qa

3

z

3

+ q

2

a

4

z

4

)(z

2

+ b

3

z

3

);

and hence (z

1

+ a

3

z

3

+ a

4

z

4

; z

2

+ b

3

z

3

) determines a line module. The

variety in P

3

is f[�a

3

t

1

� a

4

t

2

;�b

3

t

1

; t

1

; t

2

] j t

i

2 C g and this is not a

line on the quadric since a

4

6= 0.

2

�

ii) a

1

= 1; b

1

= b

2

= b

3

= 0.

We may take u = z

1

+ a

2

z

2

+ a

3

z

3

and v = z

4

. But it is easily seen

then that A

1

u \ A

1

v = 0, so in this case we get no line modules.

Summing up, we have found the following types of line modules.

1

�

: Line modules coming from point modules over C [z

2

; z

3

][z

i

; �

i

]; i =

1; 4.

2

�

i)(a) Lines on the de�ning quadric corresponding to

u = z

1

+ a

3

z

3

; v = z

2

+ a

3

z

4

or

u = z

1

+ a

2

z

2

; v = z

3

+ a

2

z

4

:

2

�

i)(b) Special lines where

u = z

1

+ a

3

z

3

+ a

4

z

4

; v = z

2

+ b

2

z

3

:

This is also the result of Vancli� ([7]).
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