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ABSTRACT. This is the last article in a series of three where we
study some quadratic algebras related to quantized matrix alge-
bras. In here we determine the full set of so-called cyclic represen-
tations of the quantized matrix algebra M,(3). Specifically, these
are irreducible representations in which all generators are invert-
ible and the assumption on ¢ is that it is a primitive mth root of
1, with m > 3.

1. INTRODUCTION

The representation theory of M, (n) is related to the representation
theory of the algebra of functions on the quantized SL(n), roughly
speaking by setting the quantum determinant equal to 1. Thus the in-
vestigation in [?] is of importance. Even more so are the articles by De
Concini and Lyubashenko [?] and De Concini and Procesi [?], [?] which
culminate in a complete classification of the irreducible representations
of the quantum function algebras, corresponding to a simple complex
Lie group, at a root of unity. But besides these representations, a com-
pletely new class of representations, cyclic representations, of M,(n)
have been constructed and studied by different authors (e.g. [?], [?]).

In this article we study the cyclic representations of the quantum
matrix algebra M,(3) and construct all the irreducible cyclic M,(3)
modules explicitly.

2. CycLic M,(3)-MODULES

Recall that M,(n) is given by the relations
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ZijZiy = qZipZ;;if j <k,

ZiiZr; = QZrjZijifi <k,

ZijZs ZgZyj it i < st <7,

ZiiZsy = ZsuZij+ (q—q N ZiuZs;ifi<s,j<t,

Let Z = {(xy, @9, ,x,)) | 2" =1 for i =1,2,--- ,n}. Define
T; :I—)I,

(xlax%' T 7xn) = (xla 3 Li—1, 4T, Tig1, 7 7xn)'

Let G be the automorphism group of Z generated by 7; for all i =
1,2,-+-,n. Let T be the subgroup of G generated by 7; = 7;7;41 for all
i=1,2,--- ,n—1.

Definition 2.1. An M,(n)-module V is called cyclic if every generator
Z; ; 1s invertible on V.
By using induction it is easy to prove that
Lemma 2.2. Ifi <k and j <1, then
ZiaZiy = 232+ (0" = ) 22 235

and
Zig 2}y = 2y Zig+ (a4 — ¢ 7) ZinZi s 27,
Corollary 2.3. If q is an mth root of unity, then Z": is a central

element for all 1,7 =1,2,-++ n.

Remark 2.4. Let V' be an irreducible cyclic module. Since Z['; is cen-
tral there ewists an a; ; € C* such that Z5=a;; onV.

For any x = (A1, Ag, vy Ap, 1, floy -+ 5 i) € (C*)?" we define an

automorphism x of M,(n) by
X(ZZ,]) = )\ZM]ZZ’J fOl" all Z,j = 1, 2, e, N

These automorphisms x generate a group K of automorphisms of
M,(n) which is isomorphic with (C*)?*~1.

By the action of K we can assume that

Zyy ;= 1foralle

on an irreducible cyclic M,(n)-module V. Hence the cyclic module V/

admits a weight space decomposition with respect to the commutative
subalgebra H generated by Z,,,_;; for all i

V= @IV(-’L‘l,.’L’Q, e an)a
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where

V(zy, xo, - x,) ={v €V | Zy11-i,v = zv for all i}.
If V(zy,29, - ,2,) # 0, (x1,29,---,x,) is called a weight of V' and
V(zy,xe,--- ,x,) is called a weight space, a non-zero element from
V (1, e, -, xy,) is called a weight vector of weight (zq, s, -+, z,) and

dim V' (xy, 9, -+ ,x,) is called the multiplicity of the weight (xy, 2o,

-, x,). We denote by P(V) the set of weights of the module V.
Clearly we can always assume that (1,1,---,1) is a weight of V', by
the action of K.

Theorem 2.5. Let V' be an irreducible cyclic M,(n)-module. Then
dim V' = dm" ! for some positive integer d.

Proof. For any weight space V (z1,z9,- -, x,) we have
ZniiV(x1, 29, -+ 1) C V(77z'_1(331,$2, T Tp)
fori=1,2,---,n—1and
Zn—i+1,i+1v(l‘1, Lo, n) CV(gi(wr, 20, ,2p))

fori =1,2,---,n — 1. Since both Z,,_;; and Z,_;1 41 are invertible
we have

dim V(zy, g, -+ ,x,) = dim V(P(xy, 2, -+ ,x,)) for all ¢ € T.

So the weight set P(V') is T-invariant and the weight multiplicities are
also T-invariant. Obviously, each T-orbit of P(V) consists of m" !
elements. This completes the proof. O

Definition 2.6. If d = 1, the module V is called a minimal cyclic
module.

Clearly, if V' is a minimal cyclic module, then P(V) =T(1,1,---,1)
and each weight is of multiplicity one.
Obviously we have

Lemma 2.7. Let V be a minimal cyclic module and let v € V(xy, s,
-, x,). Then

(I Zy v | si=0,1,-+- ;m—1,i=1,2--- ,n—1}
s a basis of V.
Let 0,D € End(C™) be defined such that with respect to the stan-
dard basis vy, v1, -, 1 of C™,

o(vj) = vj11, and D(vj) = ¢/v; for all j =0,...,m —1 € Z/m - Z.
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We denote by o; and D;, for i =1,2,--- ,r, the operators 1 ® 1 ®---®
c®l---®land 1®1®---®D®1---®1 on (C™)" with o and D,
respectively, in the ¢th position.

Now let us focus on the classification of the cyclic M,(3)-modules.
Let V' be a minimal cyclic module over M,(3). Then we have

Z31 = Dy, Zsy = DDy, Z13 = Dsy;

L3y = N 01, Loz = A\p03.
Lemma 2.8.
Zsz = g\ Ao DT Dy oy0y = ¢ M Aeoi 09 Dy DG

Proof. By Lemma 7?7 we need only compute the action of Z3 3 on each
basis element Z§,Z3 ;v. Clearly we have

a b __ _—a—brza b
Z3,3Z3,2Z2,3U =q Z3,2Z2,3Z3,3U-

Obviously Z33v is also a weight vector of the same weight as Z3 225 3v
with respect to D; and Ds. Hence there exists a ¢ € C* such that

Z373U = CZ37222,3U.

Therefore
Z3 375,23 50 = cA1Ag0102 Dy Dy (25, 75 gv).
By
ZooZ33 = Zy3Zoo+ (4 —q ") 223232
we have ¢ = ¢~ !. This completes the proof. O

Lemma 2.9.
ZQl = O'i = /B_DQO.I_I —+ )\I_IQD%DQO'I_I,
Zlg = O'; = ’I’].l)l(J'Z_1 —+ )\Q_IQDngO'EI
for some 3,n € C.

Proof. By computing the weight of Zy ;v we know that there exists a
non-zero complex number d such that

ZQJU = dZ?:,Ql’U
Let us compute the action of Z5; on Z§,2Z§730. We have

Z31 25325 30 = (2§ 3201 + (q — ¢ %) ZapZ31 255" ) Z3 30

— dqbZ;ngg’gv + qD%DgZ;ngg’gv — q1*2“D%DQZg,glz§,3v.
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So Zyy = BDyoyt + 3'D2Dyoy* for some 3, 3" € C. By
Zo1Zso = ZsoZoy + (@ — q ") Za2Z3,
we have
Zyy = BDyot + A\ 'qDiDyo !
Similarly we can determine Z; 5. This completes the proof. O
Analogously to the computation of Z33 we get
Zn = (B4 DY) (n+q); ' D3)oy oy
By
Zn1Zs3 = ZssZny + (q — ') Z13 23
we obtain
pn = 0.

This concludes our analysis. It is not hard to see that the imposed
conditions also are sufficient to guarantee that we have a module.

Theorem 2.10. Let V' be a minimal cyclic M,(3) module. Then we
can identify V. with (C™)®? and choose the basis of V' properly such
that the action of the generators of the algebra M,(3) are given by the
following formulas:

Zi31 = Dy, Zog = D1 Dy, Zy3 = Do
Z3g = M0, Zaz = Aa072;
Zy = D07 + A 'qDIDsyor
Ziy =nDyoyt + N\, tqD Dioy Y
Zin = (B+ g\ DY)(n+ qAy ' Dy)or oyt

L33 = q)\l)\2D1_1D2_10102;

where A1, Ay are free non-zero parameters and 3,n € C satisfy fn =0,
B4+ A" #0 and n™ 4+ \,™ # 0.

In the following we can assume that dim V' > m? for an irreducible
cyclic M, (3) module.
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Proposition 2.11. Let q be a primitive mth root of unity for some
odd integer m. Let V be an irreducible cyclic M,(3)-module which is
not a minimal cyclic module. Then

dimV = m?,
and
{25,723, 75 30 | a,b,c=0,1,--- ,m—1}
15 a basis of V' for any weight vector v € V.

Proof. If Z3 3v is also a weight vector, then a similar computation as in
the minimal cyclic case shows that Z33 = gA\1A\20109 and furthermore
the action of the Z; 5, Z5; and Z;; are the same as the minimal cyclic
case which is a contradiction! Hence Z33v is not a weight vector if V'
is an irreducible cyclic M,(3) module and dim V' > m?. Clearly we can
assume that

Z331) - E qul,xg,qma
'

Ta
where vgp, ot gos € V(q71, 7, q73). By
ZonZiny = ZazZoy + (@ — ¢ 1) 293739
we get

2330 = Ugay wa,q0s T Vgar ,q2x2,qus

and Vg, gog0s 7 0, Vgzy q2as.qzs 7 0. Hence the weight set P(V) of V' is
< T,72 > invariant. Since m is odd we get P(V) = Z. This proves
that dim V' = m? and each weight space is of dimension one. Hence

{Z??,ZZS,?)Z??,BU | a, ba c= 07 17 T, — 1}
is a basis of V for any weight v € V. O

Now we fix a weight vector v € V(1,1,1) and identify V" with (C™)®?
by the following linear map:

(V) Z§72Z§,3Z§73v — /\‘ngAgua R vy ® v,
Then a simple computation shows that

_ _ _ ~17y-1
Z3,2 = \io1, Z2,3 = A0, 23,3 = )\3D1 D2 03,

Z31 =D D3, Zy3 = Dy Ds,
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Lemma 2.12.
m—1
Z2’2 =7 = q )\1)\2)\ D1D20'10'20'3 + Z azD1D2D 010203 )
1=0
where a; € C.

Proof. At first we only consider the relations among the generators
Zij,t+j > 4. By direct verification we see that the stated Z,y = Z
satisfies the relations for arbitrary a; € C fors = 0,1,--- ,m — 1. If
Z9 = X satisfies the same relations among the generators Z; ;,7+j >
4, then we write X — q*1A1A2A§1D1D20102051 into a sum of different
monomials of Dy, Dy, D3 and o1, 09,03. Then each of the monomials
Y commute with Z3;, Z3 3 and Z; 3 and satisfy:

YZ30=qZ32Y, Y253 =qZs3Y.

Hence Y must be a multiple of D;D,D;*otobos" for some i. This
completes the proof. O

Lemma 2.13.
Z271 = )\fqulD;),ZO'l_l + CD2D3O'1_1,

ZLQ = )\Q_IQDQD;),ZO'Q_I + bD1D3O'2_1
for some b, c € C.

Proof. By the results in [?] we know that (Z5 125 o —qZ312> Q)ng_l and
(Z12Z53 — qu,3Z272)Z§}fl are central elements of the algebra M,(3).
Therefore they are scalars when acting on an irreducible M, (3) mod-
ule. Hence the most general form of the elements are the given. It is
straightforward to verify that these elements do satisfy all the relations
with the elements Z; ; for i + j > 4. O

Lemma 2.14.
Ziy = )\_IA_IDIDQDZUI_I 1z
+gA;'0D?D30; oyt + eD3D30y toy b + ¢PedDy Dy Dioy oy P 27

where b, c are complex constants.

Proof. Let Z11 = a;jkrse D} D} Dk010203 By
i3 = qlr3210, L1243y = qL3141,
we have

_ ik s s m—s—1
Ziy = E aijks D1 Dy D301050% :
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Zh1 739 = ZsoZhy + (@ —q ) 21273,
we have
Zig=
g\ '0D?D2o toy,t + N PN DDy D20 oy, Y 7+ (%),

where (x1) does not contain D;.
Similarly we also get

Zl 1=
g\, 'eD2D2g oyt + N PN DI Do D20y toy Y 7 4 (%),

where (x3) does not contain Ds.
Hence we have

Zia=M'"\N'DiDyDio oy Z
+q 10 D2D30; toy t + ¢D2D30; toy t + (%3),
where (%3) does not contain Dy, Do, Finally, by checking the identity

Zl,1Z272 — ZQyQZLl = (q_qil)ZQJZl,Q it follows that (*3) must have the
indicated form. O

That the above generators do in fact define a module is elementary to
verify. In order that it be cyclic, we need to impose the further require-
ments that 0™ # —\;™, ¢ # =A™, and Y7 balt £ —APAPA;™
Thus we can state

Theorem 2.15. Let V' be an irreducible cyclic M,(3) module of di-
mension m®. Then we can identify V with (C™)* as given by (V). By
choosing the basis of V' appropriately, the action of the generators of
M,(3) are given by

Z39 = MN01, Zag = AaOa, Zy3 = \3Dy "Dy o3,
Z31 = D\D3, 71 3 = Dy D3,
m—1

Z2’2 =7 = q )\1)\2)\ D1D20'10'20'3 + Z azD1D2D 010203 )

=0

Z271 = )\l_qulD;),ZO'l_l + CD2D3O'1_1,

ZLQ = )\gqugD;),ZO';l + bD1D3051,
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and

Zl,l - A;lAngngD?%U;lU;lZ

+gA\ D2 D307 05 + ¢D3D3oy oy + ¢?cdDy Dy Dioy oy ' 2

where A\, Ao, A3 € C*, a; € C fori =0,1,--- ,m—1, and b,c € C,
DA =A™ e A AT and YT alt AP,

[1]
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