QUADRATIC ALGEBRAS OF TYPE AIII; III

HANS PLESNER JAKOBSEN, SØREN JØNDRUP, AND HECHUN $\operatorname{ZHANG}^{1,2}$

Department of Mathematics, Universitetsparken 5 DK-2100 Copenhagen Ø, Denmark E-mail: jakobsen, jondrup, and zhang, @math.ku.dk

ABSTRACT. This is the last article in a series of three where we study some quadratic algebras related to quantized matrix algebras. In here we determine the full set of so-called cyclic representations of the quantized matrix algebra $M_q(3)$. Specifically, these are irreducible representations in which all generators are invertible and the assumption on q is that it is a primitive mth root of 1, with $m \geq 3$.

1. Introduction

The representation theory of $M_q(n)$ is related to the representation theory of the algebra of functions on the quantized SL(n), roughly speaking by setting the quantum determinant equal to 1. Thus the investigation in [?] is of importance. Even more so are the articles by De Concini and Lyubashenko [?] and De Concini and Procesi [?], [?] which culminate in a complete classification of the irreducible representations of the quantum function algebras, corresponding to a simple complex Lie group, at a root of unity. But besides these representations, a completely new class of representations, cyclic representations, of $M_q(n)$ have been constructed and studied by different authors (e.g. [?], [?]).

In this article we study the cyclic representations of the quantum matrix algebra $M_q(3)$ and construct all the irreducible cyclic $M_q(3)$ modules explicitly.

2. Cyclic $M_q(3)$ -modules

Recall that $M_q(n)$ is given by the relations

¹Permanent address: Dept. of Applied Math, Tsinghua University, Beijing, 100084, P.R. China

²The last author is partially supported by NSF of China

$$Z_{i,j}Z_{i,k} = qZ_{i,k}Z_{i,j} \text{ if } j < k,$$

$$Z_{i,j}Z_{k,j} = qZ_{k,j}Z_{i,j} \text{ if } i < k,$$

$$Z_{i,j}Z_{s,t} = Z_{s,t}Z_{i,j} \text{ if } i < s, t < j,$$

$$Z_{i,j}Z_{s,t} = Z_{s,t}Z_{i,j} + (q - q^{-1})Z_{i,t}Z_{s,j} \text{ if } i < s, j < t,$$

Let
$$\mathcal{I} = \{(x_1, x_2, \dots, x_n)) \mid x_i^m = 1 \text{ for } i = 1, 2, \dots, n\}$$
. Define $\tau_i : \mathcal{I} \longrightarrow \mathcal{I}$,

$$(x_1, x_2, \cdots, x_n) \mapsto (x_1, \cdots, x_{i-1}, qx_i, x_{i+1}, \cdots, x_n).$$

Let G be the automorphism group of \mathcal{I} generated by τ_i for all $i = 1, 2, \dots, n$. Let T be the subgroup of G generated by $\eta_i = \tau_i \tau_{i+1}$ for all $i = 1, 2, \dots, n-1$.

Definition 2.1. An $M_q(n)$ -module V is called cyclic if every generator $Z_{i,j}$ is invertible on V.

By using induction it is easy to prove that

Lemma 2.2. If i < k and j < l, then

$$Z_{k,l}Z_{i,j}^s = Z_{i,j}^s Z_{k,l} + (q^{-1} - q^{2s-1}) Z_{i,l} Z_{k,j} Z_{i,j}^{s-1}$$

and

$$Z_{i,j}Z_{k,l}^s = Z_{k,l}^s Z_{i,j} + (q - q^{1-2s}) Z_{i,l} Z_{k,j} Z_{k,l}^{s-1}.$$

Corollary 2.3. If q is an mth root of unity, then $Z_{i,j}^m$ is a central element for all $i, j = 1, 2, \dots, n$.

Remark 2.4. Let V be an irreducible cyclic module. Since $Z_{i,j}^m$ is central there exists an $a_{i,j} \in \mathbb{C}^*$ such that $Z_{i,j}^m = a_{i,j}$ on V.

For any $\chi=(\lambda_1,\lambda_2,\cdots,\lambda_n,\mu_1,\mu_2,\cdots,\mu_n)\in (\mathbb{C}^*)^{2n}$ we define an automorphism χ of $M_q(n)$ by

$$\chi(Z_{i,j}) = \lambda_i \mu_j Z_{i,j}$$
 for all $i, j = 1, 2, \dots, n$.

These automorphisms χ generate a group K of automorphisms of $M_q(n)$ which is isomorphic with $(\mathbb{C}^*)^{2n-1}$.

By the action of K we can assume that

$$Z_{n+1-i,i}^m = 1$$
 for all i

on an irreducible cyclic $M_q(n)$ -module V. Hence the cyclic module V admits a weight space decomposition with respect to the commutative subalgebra H generated by $Z_{n+1-i,i}$ for all i:

$$V=\oplus_{\mathcal{I}}V(x_1,x_2,\cdots,x_n),$$

where

$$V(x_1, x_2, \dots, x_n) = \{v \in V \mid Z_{n+1-i,i}v = x_iv \text{ for all } i\}.$$

If $V(x_1, x_2, \dots, x_n) \neq 0$, (x_1, x_2, \dots, x_n) is called a weight of V and $V(x_1, x_2, \dots, x_n)$ is called a weight space, a non-zero element from $V(x_1, x_2, \dots, x_n)$ is called a weight vector of weight (x_1, x_2, \dots, x_n) and $\dim V(x_1, x_2, \dots, x_n)$ is called the multiplicity of the weight (x_1, x_2, \dots, x_n) . We denote by P(V) the set of weights of the module V. Clearly we can always assume that $(1, 1, \dots, 1)$ is a weight of V, by the action of K.

Theorem 2.5. Let V be an irreducible cyclic $M_q(n)$ -module. Then $\dim V = dm^{n-1}$ for some positive integer d.

Proof. For any weight space $V(x_1, x_2, \dots, x_n)$ we have

$$Z_{n-i,i}V(x_1, x_2, \cdots, x_n) \subset V(\eta_i^{-1}(x_1, x_2, \cdots, x_n))$$

for $i = 1, 2, \dots, n - 1$ and

$$Z_{n-i+1,i+1}V(x_1,x_2,\cdots,x_n)\subset V(\eta_i(x_1,x_2,\cdots,x_n))$$

for $i = 1, 2, \dots, n-1$. Since both $Z_{n-i,i}$ and $Z_{n-i+1,i+1}$ are invertible we have

$$\dim V(x_1, x_2, \dots, x_n) = \dim V(\phi(x_1, x_2, \dots, x_n))$$
 for all $\phi \in T$.

So the weight set P(V) is T-invariant and the weight multiplicities are also T-invariant. Obviously, each T-orbit of P(V) consists of m^{n-1} elements. This completes the proof.

Definition 2.6. If d = 1, the module V is called a minimal cyclic module.

Clearly, if V is a minimal cyclic module, then $P(V) = T(1, 1, \dots, 1)$ and each weight is of multiplicity one.

Obviously we have

Lemma 2.7. Let V be a minimal cyclic module and let $v \in V(x_1, x_2, \dots, x_n)$. Then

$$\{\prod_{i=1}^{n-1} Z_{n-i+1,i+1}^{s_i} v \mid s_i = 0, 1, \cdots, m-1, i = 1, 2, \cdots, n-1\}$$

is a basis of V.

Let $\sigma, D \in End(\mathbb{C}^m)$ be defined such that with respect to the standard basis v_0, v_1, \dots, v_{m-1} of \mathbb{C}^m ,

$$\sigma(v_j) = v_{j+1}$$
, and $D(v_j) = q^j v_j$ for all $j = 0, \dots, m-1 \in \mathbb{Z}/m \cdot \mathbb{Z}$.

We denote by σ_i and D_i , for $i = 1, 2, \dots, r$, the operators $1 \otimes 1 \otimes \dots \otimes \sigma \otimes 1 \dots \otimes 1$ and $1 \otimes 1 \otimes \dots \otimes D \otimes 1 \dots \otimes 1$ on $(\mathbb{C}^m)^r$ with σ and D, respectively, in the *i*th position.

Now let us focus on the classification of the cyclic $M_q(3)$ -modules. Let V be a minimal cyclic module over $M_q(3)$. Then we have

$$Z_{31} = D_1, Z_{22} = D_1 D_2, Z_{13} = D_2;$$

 $Z_{32} = \lambda_1 \sigma_1, Z_{23} = \lambda_2 \sigma_2.$

Lemma 2.8.

$$Z_{33} = q\lambda_1\lambda_2D_1^{-1}D_2^{-1}\sigma_1\sigma_2 = q^{-1}\lambda_1\lambda_2\sigma_1\sigma_2D_1^{-1}D_2^{-1}.$$

Proof. By Lemma ?? we need only compute the action of $Z_{3,3}$ on each basis element $Z_{3,2}^a Z_{2,3}^b v$. Clearly we have

$$Z_{3,3}Z_{3,2}^aZ_{2,3}^bv=q^{-a-b}Z_{3,2}^aZ_{2,3}^bZ_{3,3}v.$$

Obviously $Z_{3,3}v$ is also a weight vector of the same weight as $Z_{3,2}Z_{2,3}v$ with respect to D_1 and D_2 . Hence there exists a $c \in \mathbb{C}^*$ such that

$$Z_{3,3}v = cZ_{3,2}Z_{2,3}v.$$

Therefore

$$Z_{3,3}Z_{3,2}^aZ_{2,3}^bv=c\lambda_1\lambda_2\sigma_1\sigma_2D_1^{-1}D_2^{-1}(Z_{3,2}^aZ_{2,3}^bv).$$

Ву

$$Z_{2,2}Z_{3,3} = Z_{3,3}Z_{2,2} + (q - q^{-1})Z_{2,3}Z_{3,2}$$

we have $c = q^{-1}$. This completes the proof.

Lemma 2.9.

$$Z_{21} = \sigma_1' = \beta D_2 \sigma_1^{-1} + \lambda_1^{-1} q D_1^2 D_2 \sigma_1^{-1},$$

$$Z_{12} = \sigma_2' = \eta D_1 \sigma_2^{-1} + \lambda_2^{-1} q D_1 D_2^2 \sigma_2^{-1}$$

for some $\beta, \eta \in \mathbb{C}$.

Proof. By computing the weight of $Z_{2,1}v$ we know that there exists a non-zero complex number d such that

$$Z_{2,1}v = dZ_{3,2}^{-1}v.$$

Let us compute the action of $Z_{2,1}$ on $Z_{3,2}^a Z_{2,3}^b v$. We have

$$Z_{2,1}Z_{3,2}^a Z_{2,3}^b v = (Z_{3,2}^a Z_{2,1} + (q - q^{1-2a}) Z_{2,2} Z_{3,1} Z_{3,2}^{a-1}) Z_{2,3}^b v$$

$$= dq^b Z_{3,2}^{a-1} Z_{2,3}^b v + q D_1^2 D_2 Z_{3,2}^{a-1} Z_{2,3}^b v - q^{1-2a} D_1^2 D_2 Z_{3,2}^{a-1} Z_{2,3}^b v.$$

So
$$Z_{2,1} = \beta D_2 \sigma_1^{-1} + \beta' D_1^2 D_2 \sigma_1^{-1}$$
 for some $\beta, \beta' \in \mathbb{C}$. By

$$Z_{2,1}Z_{3,2} = Z_{3,2}Z_{2,1} + (q - q^{-1})Z_{2,2}Z_{3,1}$$

we have

$$Z_{2,1} = \beta D_2 \sigma_1^{-1} + \lambda_1^{-1} q D_1^2 D_2 \sigma_1^{-1}.$$

Similarly we can determine $Z_{1,2}$. This completes the proof.

Analogously to the computation of Z_{33} we get

$$Z_{11} = (\beta + q\lambda_1^{-1}D_1^2)(\eta + q\lambda_2^{-1}D_2^2)\sigma_1^{-1}\sigma_2^{-1}.$$

Ву

$$Z_{11}Z_{33} = Z_{33}Z_{11} + (q - q^{-1})Z_{13}Z_{31}$$

we obtain

$$\beta \eta = 0$$
.

This concludes our analysis. It is not hard to see that the imposed conditions also are sufficient to guarantee that we have a module.

Theorem 2.10. Let V be a minimal cyclic $M_q(3)$ module. Then we can identify V with $(\mathbb{C}^m)^{\otimes 2}$ and choose the basis of V properly such that the action of the generators of the algebra $M_q(3)$ are given by the following formulas:

$$Z_{31} = D_1, Z_{22} = D_1 D_2, Z_{13} = D_2;$$

$$Z_{32} = \lambda_1 \sigma_1, Z_{23} = \lambda_2 \sigma_2;$$

$$Z_{21} = \beta D_2 \sigma_1^{-1} + \lambda_1^{-1} q D_1^2 D_2 \sigma_1^{-1};$$

$$Z_{12} = \eta D_1 \sigma_2^{-1} + \lambda_2^{-1} q D_1 D_2^2 \sigma_2^{-1};$$

$$Z_{11} = (\beta + q \lambda_1^{-1} D_1^2) (\eta + q \lambda_2^{-1} D_2^2) \sigma_1^{-1} \sigma_2^{-1}$$

$$Z_{33} = q \lambda_1 \lambda_2 D_1^{-1} D_2^{-1} \sigma_1 \sigma_2;$$

where λ_1, λ_2 are free non-zero parameters and $\beta, \eta \in \mathbb{C}$ satisfy $\beta \eta = 0$, $\beta^m + \lambda_1^{-m} \neq 0$ and $\eta^m + \lambda_2^{-m} \neq 0$.

In the following we can assume that dim $V > m^2$ for an irreducible cyclic $M_q(3)$ module.

Proposition 2.11. Let q be a primitive mth root of unity for some odd integer m. Let V be an irreducible cyclic $M_q(3)$ -module which is not a minimal cyclic module. Then

$$\dim V = m^3$$
,

and

$$\{Z_{3,2}^a Z_{2,3}^b Z_{3,3}^c v \mid a, b, c = 0, 1, \cdots, m-1\}$$

is a basis of V for any weight vector $v \in V$.

Proof. If $Z_{3,3}v$ is also a weight vector, then a similar computation as in the minimal cyclic case shows that $Z_{3,3}=q\lambda_1\lambda_2\sigma_1\sigma_2$ and furthermore the action of the $Z_{1,2},Z_{2,1}$ and $Z_{1,1}$ are the same as the minimal cyclic case which is a contradiction! Hence $Z_{3,3}v$ is not a weight vector if V is an irreducible cyclic $M_q(3)$ module and dim $V>m^2$. Clearly we can assume that

$$Z_{33}v = \sum_{x_2'} v_{qx_1, x_2', qx_3},$$

where $v_{qx_1,x'_2,qx_3} \in V(qx_1,x'_2,qx_3)$. By

$$Z_{22}Z_{33} = Z_{33}Z_{22} + (q - q^{-1})Z_{2,3}Z_{3,2}$$

we get

$$Z_{33}v = v_{qx_1, x_2, qx_3} + v_{qx_1, q^2x_2, qx_3}$$

and $v_{qx_1,x_2,qx_3} \neq 0$, $v_{qx_1,q^2x_2,qx_3} \neq 0$. Hence the weight set P(V) of V is $\langle T, \tau_2^2 \rangle$ invariant. Since m is odd we get $P(V) = \mathcal{I}$. This proves that $\dim V = m^3$ and each weight space is of dimension one. Hence

$$\{Z_{3,2}^a Z_{2,3}^b Z_{3,3}^c v \mid a, b, c = 0, 1, \cdots, m-1\}$$

is a basis of V for any weight $v \in V$.

Now we fix a weight vector $v \in V(1, 1, 1)$ and identify V with $(\mathbb{C}^m)^{\otimes 3}$ by the following linear map:

$$(\nabla) \qquad Z_{3,2}^a Z_{2,3}^b Z_{3,3}^c v \mapsto \lambda_1^a \lambda_2^b \lambda_3^c v_a \otimes v_b \otimes v_c$$

Then a simple computation shows that

$$Z_{3,2} = \lambda_1 \sigma_1, Z_{2,3} = \lambda_2 \sigma_2, Z_{3,3} = \lambda_3 D_1^{-1} D_2^{-1} \sigma_3,$$

$$Z_{3,1} = D_1 D_3, Z_{1,3} = D_2 D_3,$$

Lemma 2.12.

$$Z_{2,2} = Z := q^{-1}\lambda_1\lambda_2\lambda_3^{-1}D_1D_2\sigma_1\sigma_2\sigma_3^{-1} + \sum_{i=0}^{m-1} a_iD_1D_2D_3^{-2i}\sigma_1^i\sigma_2^i\sigma_3^{-i},$$

where $a_i \in \mathbb{C}$.

Proof. At first we only consider the relations among the generators $Z_{i,j}$, $i+j \geq 4$. By direct verification we see that the stated $Z_{2,2} = Z$ satisfies the relations for arbitrary $a_i \in \mathbb{C}$ for $i=0,1,\cdots,m-1$. If $Z_{2,2} = X$ satisfies the same relations among the generators $Z_{i,j}$, $i+j \geq 4$, then we write $X - q^{-1}\lambda_1\lambda_2\lambda_3^{-1}D_1D_2\sigma_1\sigma_2\sigma_3^{-1}$ into a sum of different monomials of D_1, D_2, D_3 and $\sigma_1, \sigma_2, \sigma_3$. Then each of the monomials Y commute with $Z_{3,1}, Z_{3,3}$ and $Z_{1,3}$ and satisfy:

$$YZ_{3,2} = qZ_{3,2}Y, YZ_{2,3} = qZ_{2,3}Y.$$

Hence Y must be a multiple of $D_1D_2D_3^{-2i}\sigma_1^i\sigma_2^i\sigma_3^{-i}$ for some i. This completes the proof.

Lemma 2.13.

$$Z_{2,1} = \lambda_1^{-1} q D_1 D_3 Z \sigma_1^{-1} + c D_2 D_3 \sigma_1^{-1},$$

$$Z_{1,2} = \lambda_2^{-1} q D_2 D_3 Z \sigma_2^{-1} + b D_1 D_3 \sigma_2^{-1},$$

for some $b, c \in \mathbb{C}$.

Proof. By the results in [?] we know that $(Z_{2,1}Z_{3,2}-qZ_{3,1}Z_{2,2})Z_{1,3}^{m-1}$ and $(Z_{1,2}Z_{2,3}-qZ_{1,3}Z_{2,2})Z_{3,1}^{m-1}$ are central elements of the algebra $M_q(3)$. Therefore they are scalars when acting on an irreducible $M_q(3)$ module. Hence the most general form of the elements are the given. It is straightforward to verify that these elements do satisfy all the relations with the elements $Z_{i,j}$ for $i+j\geq 4$.

Lemma 2.14.

$$Z_{1,1} = \lambda_1^{-1} \lambda_2^{-1} D_1 D_2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} Z$$

$$+ q \lambda_1^{-1} b D_1^2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} + c D_2^2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} + q^2 c d D_1 D_2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} Z^{-1},$$
 where b, c are complex constants.

Proof. Let
$$Z_{1,1} = \sum a_{ijkrst} D_1^i D_2^j D_3^k \sigma_1^r \sigma_2^s \sigma_3^t$$
. By $Z_{1,1} Z_{1,3} = q Z_{1,3} Z_{1,1}, \ Z_{1,1} Z_{3,1} = q Z_{3,1} Z_{1,1}$

we have

$$Z_{1,1} = \sum a_{ijks} D_1^i D_2^j D_3^k \sigma_1^s \sigma_2^s \sigma_3^{m-s-1}$$

By

$$Z_{1,1}Z_{3,2} = Z_{3,2}Z_{1,1} + (q - q^{-1})Z_{1,2}Z_{3,1}$$

we have

$$Z_{1,1} = q \lambda_1^{-1} b D_1^2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} + \lambda_1^{-1} \lambda_2^{-1} D_1 D_2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} Z + (\star_1),$$

where (\star_1) does not contain D_1 .

Similarly we also get

$$Z_{1,1} = q \lambda_2^{-1} c D_2^2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} + \lambda_1^{-1} \lambda_2^{-1} D_1 D_2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} Z + (\star_2),$$

where (\star_2) does not contain D_2 .

Hence we have

$$Z_{1,1} = \lambda_1^{-1} \lambda_2^{-1} D_1 D_2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} Z$$

+ $q \lambda_1^{-1} b D_1^2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} + c D_2^2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} + (\star_3),$

where (\star_3) does not contain D_1, D_2 , Finally, by checking the identity $Z_{1,1}Z_{2,2}-Z_{2,2}Z_{1,1}=(q-q^{-1})Z_{2,1}Z_{1,2}$ it follows that (\star_3) must have the indicated form.

That the above generators do in fact define a module is elementary to verify. In order that it be cyclic, we need to impose the further requirements that $b^m \neq -\lambda_2^{-m}$, $c^m \neq -\lambda_1^{-m}$, and $\sum_{i=0}^{m-1} a_i^m \neq -\lambda_1^m \lambda_2^m \lambda_3^{-m}$. Thus we can state

Theorem 2.15. Let V be an irreducible cyclic $M_a(3)$ module of dimension m^3 . Then we can identify V with $(\mathbb{C}^m)^3$ as given by (∇) . By choosing the basis of V appropriately, the action of the generators of $M_q(3)$ are given by

$$Z_{3,2} = \lambda_1 \sigma_1, Z_{2,3} = \lambda_2 \sigma_2, Z_{3,3} = \lambda_3 D_1^{-1} D_2^{-1} \sigma_3,$$

$$Z_{3,1} = D_1 D_3, Z_{1,3} = D_2 D_3,$$

$$Z_{2,2} = Z := q^{-1} \lambda_1 \lambda_2 \lambda_3^{-1} D_1 D_2 \sigma_1 \sigma_2 \sigma_3^{-1} + \sum_{i=0}^{m-1} a_i D_1 D_2 D_3^{-2i} \sigma_1^i \sigma_2^i \sigma_3^{-i},$$

$$Z_{2,1} = \lambda_1^{-1} q D_1 D_3 Z \sigma_1^{-1} + c D_2 D_3 \sigma_1^{-1},$$

$$Z_{1,2} = \lambda_2^{-1} q D_2 D_3 Z \sigma_2^{-1} + b D_1 D_3 \sigma_2^{-1}.$$

8

and

$$\begin{split} Z_{1,1} &= \lambda_1^{-1} \lambda_2^{-1} D_1 D_2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} Z \\ &+ q \lambda_1^{-1} b D_1^2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} + c D_2^2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} + q^2 c d D_1 D_2 D_3^2 \sigma_1^{-1} \sigma_2^{-1} Z^{-1}, \\ where \ \lambda_1, \lambda_2, \lambda_3 &\in \mathbb{C}^*, \ a_i \in \mathbb{C} \ for \ i = 0, 1, \cdots, m-1, \ and \ b, c \in \mathbb{C}, \\ b^m \neq -\lambda_2^{-m}, \ c^m \neq -\lambda_1^{-m}, \ and \ \sum_{i=0}^{m-1} a_i^m \neq -\lambda_1^m \lambda_2^m \lambda_3^{-m}. \end{split}$$

References

- [1] Ya. S. Soibelman, The algebra of functions on a compact quantum group, and its representations, Leningrad Math. J. 2,161–178 (1991).
- [2] C. De Concini, V. Lyubashenko, Quantum function algebra at roots of 1, Adv. in Math. 108, 205-262(1994).
- [3] C. De Concini, C. Procesi, *Quantum groups*. Lecture notes in mathematics **1565**, 31–140 Springer (1993).
- [4] C. De Concini, C. Procesi, Quantum Schubert cells and representations at roots of 1, preprint 1995.
- [5] V. Chari, A.N. Pressley, Minimal cyclic representations of quantum groups at roots of unity C.R.Acad.Sci. Paris. 313, Series 1,429-434 (1991).
- [6] E. Date, M. Jimbo, K. Miki and T. Miwa, Cyclic representations of $U_q(\mathfrak{sl}(n+1,\mathbb{C}))$ at $q^N=1$. Publ. Res. Inst. Math. Sci. 27, 347–366 (1991).
- [7] H.P. Jakobsen, H.C. Zhang, *The center of quantized matrix algebra*. to appear in J. Alg.

Department of Mathematics, Universitetsparken 5, DK–2100 Copenhagen \emptyset , Denmark

E-mail address: jakobsen@math.ku.dk, jondrup@math.ku.dk