TENSORING WITH SMALL QUANTIZED REPRESENTATIONS

HANS PLESNER JAKOBSEN

ABSTRACT. We give an elementary proof of the associativity of the reduced tensor
product that also works for primitive roots of -1. At the same time, we get a useful
understanding of how representations “fuse” into each other.

1. INTRODUCTION

Following the fundamental paper of Reshetikin and Turaev [18], a number of in-
vestigations of invariants for 3-manifolds, e.g. [20], [21], and [7], uses implicitly or
explicitly a “reduced tensor product” @ which is applied to a finite set I of represen-
tations of an algebra A. For 71,73 € I, @73 is obtained from 7y @ 73 by removing,
in a prescribed way, a maximal summand of “quantum dimension zero”. The crucial
requirements are that I must be closed under this tensor product and ® must be
associative.

In the case where A is a quantum group at a primitive root of 1, the associativity,
while apparently “well known to physicists”, to our knowledge was first rigorously
established in [20] for the case of A, and the general case was obtained in [1].

Especially the investigation [7] requires explicitly the representations to be uni-
tary, and for this reason one is forced to consider primitive roots of (-1). At the
same time the investigation in [1] uses some deep results from algebra as well as
Lusztig’s canonical bases and hence a more elementary approach might give a useful
perspective. The current paper is the result of the desire to meet these requirements.

Our basic tool is what we call a “small” representation of a quantum group. This
concept is defined in terms of a number of, for our purposes, useful properties. It
turns out that each quantum group has at least one such.

It may be said that our approach is in spirit related to that of [21]. Upon describing
our program to Andersen we learned that he and Paradowski, in anticipation of
certain results Lusztig’s book [17], had launched a program which, among other
things, would deal with other roots of 1. Their efforts have recently found a successful
completion in [5].

Finally, we would like to thank H.H. Andersen as well as the members in our local
g-group, B. Durhuus, A. Jensen, S. Jgndrup, and R. Nest, for helpful conversations.
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2 JAKOBSEN

2. NOTATION AND BACKGROUND RESULTS

We consider the Cartan matrix {a;;}7._, corresponding to a simple finite dimen-
sional complex Lie algebra and let Ui denote the quantum group over the field
K = Q(q) generated by the 4n generators By, ..., E,, Fy, ..., F,, KE, ... K* with
the usual “quantized Serre relations”. For ¢ =1,...,n we let d; € {1,2,3} be chosen
such that {d;a;;} is symmetric, and more generally use the notation of [2].

Ny denotes the non-negative integers.
We recall the following definition:
Definition 2.1 (Lusztig [16]). Let A = Z[q, ¢ "].
o Ut is the A-subalgebra of Uy generated by EZ(T),T > 0,2 =

, sy T
o U} is the A-subalgebra of Ux generated by FZ»(T),T >0,e=1,...,n.
o UY is the A-subalgebra of U generated by K=, and [&;;c ] , where

e:=1,....n,c € Z,t € Nj.

Finally, Us s the A-subalgebra of Ux generated by EZ»(T),FZ»(T),[&’»“—Ll r > 0,2 =
1,...,n, and we introduce the notation Us(b™) = U, U§.

For w € (Q(¢)*)" we denote by L(w) the unique irreducible highest weight module
for Ux. Tf A = (¢h™, ... ¢%™) for some my,...,m, € Ny, we have in a natural
way a Ug-submodule L4(A) of L(A) generated by the primitive vector.

In the following our field is always C. For a ( € C* we let U, = Uy @4 C where C
is made into an A -algebra by specialization at (. Similarly, for any A-module M we
set M, = M @ C. C; likewise denotes the specialization of the integrable modules.
We will always take ( to be a primitive {th root of 1 or, occasionally, we take ( = 1.
We assume throughout that ¢ is prime to the non-zero entries in the Cartan matrix
and that it is bigger than the Coxeter number.

Remark 2.2. In many cases one is interested in yet another quantum algebra, Uy,
defined directly from the Serre relations by viewing the parameter g in the Serre
relations as a complex number. In the case where g is not a root of unity there is not
a great deal of difference, but in the root of unity case, which is the interesting one,
this algebra has a big center. Indeed, it is finite dimensional over its center ([6]).
The results about representations and tensor products that we obtain below carry over
directly to Uy basically because Uy, is a subalgebra of U,. Observe that high powers of
the elements E" and th are mapped to zero in representations. This follows because
they are of the form e.g. El = [h]g,!- EZ»(h) and [h]! specializes to zero at a primitive
(th root of unity provided that h > (.

Definition 2.3. Let M, be a finite-dimensional module and let ¢ be an endomor-
phism. The quantum trace tr:(¢) is given by the formula

(1) tre(9) = tr(K3,9),
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where Ky, = [Igep+ Kp. In particular, the quantum dimension is given by
(2) dime(M¢) = tr(Ks,).

Let X = Z"and XT =Ny CX. It A = (\,...,\,) € X we denote by &, the

following character of Ug:

o e (5[],

and we extend this to a character, also denoted £,, on Us(b7) in the usual way.
The induced module corresponding to A (see Definition 3.1 below) is denoted by
HP(A), and the irreducible highest weight module is denoted by L¢(A).

The following formula is well known: ([11])
Proposition 2.4.
dp(Atp.BY) _ g=dp(Atr,0Y)

. B q
(4) dimy(A) = ﬁelsz qe(pPY) — g=dp(pfY)

Finally we recall the Shapovalov determinant of the hermitian form in the quantum
case as proved by de Concini and Kac ([6], see also [10] ): If A € X, the determinant of
the contravariant hermitian form on the weight space M:(A)~" of the Verma module

M¢(A) of highest weight A (and type (+,+,...,4)) is given by

([ | Cdﬁ(Aer— mEevy _ C—dﬁ(A-I—p—%ﬁ,ﬁV))Par(ﬁ—mﬁ)
m dg

) detm = 4 —d
() C(n) BH H (ds — (—ds

eAtT meN

We denote by C' the first dominant alcove,

(6) C={AeXT|(A+p,aY)<l forallae AT}

The following has been established in [2], but it is also an easy consequence of the
formula (5) together with the generic irreducibility of the induced modules ([2]):

Proposition 2.5. If A € C, then H{(A) = L¢(A).
Finally, we let ap denote the highest short root.

Lemma 2.6.
(7) (A+p,a¥)

attains its maximum precisely for a = ag.
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Proof. We shall assume that there are two root lengths since the claim otherwise is
trivially true. If ap denotes the highest root, then this is long, and ag = ap — a; for
some short root a,. It follows that

(a0, av0)
(avny an)

where the strict inequality follows because of the presence of p. [

(8) (A+p,ay) = ((A+pef) + (A +p,ag))

< (A4 p,ay),

3. INDUCTION

We now briefly introduce the induced modules of H.H. Andersen et al ([2]): Let
Ca denote the category of integrable U4-modules and introduce the notation C,(b™)
for the category of integrable U4(b™)-modules.

The induction functor

(9) H(Ua/Ua(b7), =) : Ca(b7) — Ca
is defined by
Definition 3.1. Let M be a Ua(b™)-module in C4(b™). Set

(10)
homy, (5-y(Ua, M) = {f € hom(Uyx, M) | fw*u') = f(u'),u' € Up,u® € Ug(b7)},

and consider this as a U-module via
(1) uf(@) = f(eu).
Let F'(V) denote the integrable part of any g-module V' and set

(12 (U fUs(67), M) = F(homy ooy(Ua, M)
for any Ua(b7)-module. We call this the induced module and set
(13) HA(A) = H3(Ua/Ua(b7),€n)

for the one-dimensional representation {n of b=, (A dominant integral.)
Finally, we introduce in a similar way the induction functor HY and the modules

HY.(A).

In the following we wish to evaluate finite-dimensional Ux-modules. This we define
as follows, where we use the fact ([2]) that such modules are completely reducible
together with the following result:

Lemma 3.2. Let A be dominant integral. Then
(14) Hy(A) = K @4 HY(A).
Proof. This follows because A — K is flat ([2]). O

Lemma 3.2 also tells what the Uj-invariant subspaces of H(A) are, since HY(A)
is known ([3]) to be an irreducible Ugx-module.
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Lemma 3.3. Any non-zero Uga-invariant subspace of HY(A) has the same weight
multiplicities as the full space.

Proof. Specializing H{(A) at a generic ( gives a U; -module which is known to be
irreducible (and the weight multiplicities in H(A) are the same as e.g. in H}(A)).
The statement follows immediately from this. [

The following result has been established for primitive roots of 1 by Andersen
[1], basically using Kempf vanishing as established in [2]. It has been extended to
arbitrary roots of 1 in [19], by employing deep results about canonical bases.

Proposition 3.4.
(15) HY(A) = C o4 HY(A).

Proof. The weight multiplicities in UC+ are equal to those in U}. Furthermore, it is
clear that a weight space in HG(A) cannot specialize to zero since the elements in
HY(A) simply are homomorphisms that satisfy a certain finiteness condition. Hence,
specializing to zero would mean that A specializes to zero, which is absurd. (c.f.

Lemma 3.3).

Suppose now that specialization is not surjective. Consider the right U4-module

(16) Ra(A) =14 Qua6-) Ua,

where 1, denotes the 1-dimensional U4(b~)-module defined by the character £4. In
an appropriate sense, the left module homg, ;-)(U4,14) is the dual of this module.
The Weyl module is equivalent to the quotient of R4(A) by the space P4 generated
by the elements £®) @ 1, s > \;. Comparing with the situation at a generic ¢ it
follows (analogous to the proof of Lemma 3.3) that this is the dual of H(A).

In a similar way,
(17) Re(A) = &x Quyem) U

is the dual of homy, (- (U¢, €a). We know ([2]) that HZ(A) is finite-dimensional (and
its weights are conjugate under the Weyl group).

The polar P (annihilator) of HZ(A) in R¢(A) is, naturally, invariant. Since the
specialization HY(A) — HP(A) is injective, P € (P4)c. On the other hand, P
contains, by a simple computation, the specialization of the elements EZ»(S) @1, s> \.

Thus, (Pa)e € P:. O

By Lemma 3.2 and Proposition 3.4 we may say that HQ(A) has been obtained by
specialization of the module Hy-(A) or that HZ(A) is Hy(A) “evaluated at (7. We
will do that and also extend the terminology to e.g. tensor products of such modules.
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4. TENSORING WITH THE ADJOINT REPRESENTATION

We denote the adjoint representation by Ad and we denote the representation
whose highest weight is that of ag by Ad’ (the “little adjoint” representation). More
precisely, the names of these representations ought perhaps to have the prefix “the
quantum analogues of”, but we omit this.

We first prove four lemmas for the “generic case” Ug. In fact, we prove them for
the specializations to ( = 1. Since we have complete reducibility over the field K,
there will be a perfect match-up between the primitive vectors in the K-modules
considered (and their weights) and the primitive weight vectors in the specializations

of the modules (as defined below).

Lemma 4.1. Let

(18) xA1+A2 —w — Z yA1—W1 ® ZAQ—W2

w1 207"‘}2 Zovwl w2 =w

be a non-zero highest weight vector in L1(A1) @ Li(Az) of highest weight Ay + Ay —w.
Then ya, and zp, occur in non-zero expressions.

Proof. 1f not, let, say, ya,—¢ be a weight vector of a highest weight occurring in the
sum. It follows that this must be a highest weight vector in L1(A1). O

Lemma 4.2. The natural map
is a g-map. It is non-trivial exactly when Li(A) is non-trivial.

Proof. Obvious. O

Before stating the next lemma we need some notation: For each o € A, choose
€a € go and e_, € g_, such that B(e,,e_,) = 1, where B denotes the Killing form.
For each simple root a;,7 = 1,...,n, choose h;, h* € hh such that
(20) hi = [ea; €-a,], and
(21) Vi, g [hi,z%] = 0ij%a,-

Lemma 4.3. Let Li(A) be a highest weight representation of highest weight A and
highest weight vector vy. The vector

(22) Yea@envat+ Y A @hivp € Ady @ Li(A)
aEN =1

is a highest weight vector of weight A if and only if A # 0.

Proof. This follows easily from [11, pages 19-20]. O

Lemma 4.4. There can be at most as many copies of L1(A) in Ady @ L1(A) as there
are A; # 0.
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Proof. A highest weight vector of weight A in Ad; @ L1(A) must have the form
(23) U—Zczh ®UA—|— Z Zx ®vA wo

peEAT g
where v) denotes a non-zero highest weight vector in Li(A), z, € g*, and vl({lﬂ €

L1(A) has weight A — p. Suppose A; = 0. Then
(24) Z}I—f) = —ch;' @ vp + (rest)

where the “rest” term cannot contain anything proportional to Z]+ @ vp, since this
would have to originate from =z (2} @ vl(xk_)a]) and by assumption, L;(A)*=% = 0.

Thus, ¢; =0. O

Proposition 4.5.
(25) homy, (HY(A), Ad @ H3(A)) = homy, -y (HG(A), Ad @ &y ).

Proof. This follows directly from the Frobenious reciprocity law combined with the
so-called tensor identity. [

Proposition 4.6. The multiplicity of the representation L(A) in Ad®@ L(A) is equal
to the number of simple roots «; for which A; # 0.

Proof. We may pass between Hy-, H}, and L(A) at our convenience. We first consider
a representation Ay for which exactly one A;; # 0. As mentioned previously, we may
use the results for ( = 1 in the generic case and so, by combining Lemma 4.2 with
Lemma 4.4, it follows that L(Ag) occurs exactly once in Ad @ L(Ag). Thus, by
Proposition 4.5 there is exactly one non-trivial U(b~)-homomorphism ¢g : L(Ag) —
Ad & &y, , and ¢ satisfies in particular

(26) ¢0(v1\0) = hio @ €,

where ¢;, denotes a non-zero element in the 1-dimensional module &,,.

Let us now consider an arbitrary finite-dimensional highest weight module L(A),
and let V© be the U, (b~ )-invariant subspace consisting of all weight vectors of weight
strictly smaller than A. The quotient map

(27) 7 L(A) @ Ad® &y — L(A) )V @ Ad @ €n,

is then a b™-module map. The target space is clearly isomorphic to Ad @ &x @ &a,,
and we view 7 as taking its values in this space. All in all, we now have a non-trivial

U(b~)-map
(28) 70 (1@ ¢o): L(A) @ L(Ag) — Ad @ Epga,-

Evidently, this map is also non-zero when restricted to the Uj4-invariant subspace

L(A + Aog) € L(A) ® L(Ao). In fact, we must clearly have
(29) o ¢0(v1\+1\0) = hio ® 6iov

where ¢;, denotes a non-zero element in € ya, .
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It follows from this argument that there is a U4(b~)-map from any L(A) with
A; # 0 to the corresponding module Ad @ &4, and this map sends the highest weight
vector vy to an element of the form h; ® ¢ with ¢ #0. O

There are analogous results for Ad*:

Lemma 4.7. For the algebras B,,, Gy, and Fy there can be at most as many copies

of L(A) in Ad' @ L(A) as there are A; # 0.
Proof. This follows by the same kind of argument as for Ad. [

Proposition 4.8. For the algebras B, Gy, and Fy the multiplicity of the represen-
tation L(A) in Ad" @ L(A) is equal to the number of simple short roots a; for which
A £ 0.

Proof. This follows by arguments similar to those for Ad. One simply has to introduce
the 0-weight space in Ad* in the left-hand tensors in the vector in (22). [

5. FILTRATIONS

The following definition of a tilting module is not the usual definition, but it is a
theorem [1] that we loose no generality by doing it. Let I' be a commutative A-algebra

and set Ur = Uy @4 1.
Definition 5.1. A good filtration of an integrable Ur-module M is a filtration

with F;/F;,_y = HR(A;) for some Ay € Xt,i = 1,...,n. A tilting module is an
integrable module for which both M and M* has a good filtration.

The following follows from general results of Donkin and Ringel as proved by

Paradowski and Andersen [5]:

Proposition 5.2. For each A € X there is a unique indecomposable tilting module
d(A) satisfying

o Fvery weight p of D(A) satisfies p < A.

® dlmD(A)A =1.

The crucial property we shall be using is the following ([1])

Proposition 5.3. Let M be a tilting module. Then there exist uniquely determined
non-negative integers an(M), N € X, such that

(31) M = Gpex+ D(A) ),

Proposition 5.4.
(32) H2(Ay) @ HY(Ay)
has a good filtration.
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Proof. Clearly we may view HY(Ay) @ HY(Az) as a space of homomorphisms defined
on Uy @ Uy and with values in &y, @ €x,. Analogous properties are held by the
specialized objects.

We may then decompose

(33) HP(Ay) @ HP(Ay)

directly by considering a filtration according to the “degree of vanishing on the diago-
nal” in the spirit of [9]. At the same time, we will pay attention to the decomposition
of the tensor products of the corresponding U4- and Ux-modules, especially because
we have complete reducibility for the latter.

First consider the restriction homomorphism

(R%(@))(w) = &(A(u)).
That R° indeed takes values in the said space follows from the formulas ([16])

(35) A(EZ(T)) — Z qdit(T_t)Ei(T_t)[(; & EZ»(t)7
t=0

(36) AEDY = 3 t=0p® o =t g9,
t=0

(37) AK)) = K;@K,.

The surjectivity of R comes about as follows: It follows either from (35) or by
using the counit that

(38) AC . UC — Ug ® UC

(restricted to Ug’) is injective. On the level of homomorphisms, i.e. forgetting the
finiteness criterion for being in a space H°, we then obtain all homomorphisms.

Finally, the finiteness condition does not affect this at all. This is because we in
the generic case (or in the Uy-case) get as image a module which contains all weights
(Lemma 3.3). The claim then follows from Proposition 3.4. Put differently, the only
way surjectivity could be ruined would be if A, were to map some element which
is not in the annihilator of Hg(Al + A;) into the annihilator of Hg(/\l) ® Hg(/\g) in
UC+ ® UC+‘ But A¢ is the localization of A4 hence the latter would have to share this
property. But this clearly is in conflict with the fact that for generic ( we have full
reducibility (with one summand equivalent to HZ(A; + Ay)).

Now let K° denote the kernel of the map — “the homomorphisms that vanish on
the diagonal A”. Then we proceed to analyze K° according to the degree of vanishing
on the diagonal:

Consider a (PBW) decomposition

(39) USUT @ Ut =S AUY)

where S C USUT @ UY is chosen such that the decomposition u = sA(u;) of an
element v € USUL @ UF is unique. To be specific, choose S = USUT @ 1. It follows
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easily by induction on the hight of the weight of the term in the second place in the
tensor product that this choice has the desired properties.
At the first level we then consider maps

(40) R': K — HY (A + Ay — )
given by

(a1) (RY(6))(u) = 650, A(w)),
(1)

where s,, = ;" @ 1. For similar reasons we again have surjectivity (if non-trivial).
For each 7 we then get a kernel K! and these kernels together span the space of
homomorphism that vanish to the first order on the diagonal. This argument may
clearly be continued to give the full filtration. O

Remark 5.5. Notice that we actually only need this result in the case where the
modules HZ(Ay) and HY(Ay) are irreducible. In this case an even simpler proof of
Proposition 5.4 may be given by elementary bookkeeping of weights.

Corollary 5.6. Let Ay, Ay € X, Suppose that the dual of H)(A;) is equal to Hg([\z)
for some A; € Xt fori=1,2. Then

(42) H2(Ay) @ HY(Ay)
is a tilting module.

Proof. This follows directly from the definition of tilting module together with Propo-
sition 5.4. O

6. SMALL REPRESENTATIONS

Lemma 6.1. Suppose

(43) (A + prag) = 2 and (Mg, a5) =y,

and suppose A is a highest weight representation that occurs in Ay @ Ay. Then
(44) (At pag) <oty

with equality especially when A = Ay + As.

Proof. Trivial. [

We now introduce some terminology:
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Definition 6.2. A representation Ayq is called good if
(45) (Agdvo‘g) <2,

and if, furthermore, for any representation A, the only representation A in L(A) ®
L(Agq) for which

(46) (A+p,ag) = (A +pag) +2
is A=A+ Ay

The representation A, is called excellent if
(47) (Ae,a) < 1.

The representation Ay is called small if it is either good or excellent. Finally, A,
is called generating if any A occurs is the nth fold tensor product of A, with itself.
The following is easily verified:

Lemma 6.3. For any g there is a small representation. Moreover, with the exception
of B, it can be chosen to be generating. In the case of B, there is exactly one
representation which is not generated, namely A = (0,...,0,1).

Remark 6.4. Since the mentioned representation for B, in particular satisfies
(48) YAeD:(Aoy) <!,
we do not have to take it into consideration, c.f. the proof of Proposition 8.2.

Definition 6.5. We denote the representation in Lemma 6.3 by As.

Definition 6.6. Suppose thal Hg(/\l) and Hg(/\g) are irreducible. Let Hg(Kl) and
Hg(Kg) denote the dual representations. We then denote by K°(Ay, Ag) the kernel in
HR(A1) @ H(Ag) of the restriction homomorphism R® (34) and we denote by P° the
annthilator in Hg(/\l) ® Hg(/\g) of K°(Ay, Ay).

Proposition 6.7. Suppose that A,y is good and that

(19) (At pray) =~ 1.

Then K°(A1, Ay) is semi-simple and P° is equivalent to HP(A + Agq). Let
(50) P =K"nP°.

Then Py is equivalent to Hg(/\) and is non-complemented in P°. Let Wy =K% Py.
Then there is an invariant subspace Wy such that

(51) H{(A) @ HY(Aga) = Wi & W
Finally, there is a non-split exact sequence

(52) O—>H2(A—|—Agd)—>W2—>Hg(A)—>O.
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Proof. The most important observation is that according to Definition 6.2 and for-
mula (5), the Verma module of highest weight A + A4 contains a primitive vector of
weight A and multiplicity 1. Clearly, P° as an A-module must be the Weyl module,
hence also the specialized module and the primitive vector of weight A is contained
in this space. It is clear that K% is always completely reducible since its weights
are all below the critical height. Hence all primitive weight vectors of weight A are
contained in K°. Hence P; is non-trivial and can be reached from the highest weight
space. Consider the space

(53) HY(A) © HY(A,0) /P

For similar reasons, this is completely reducible and there will be the same number
of summands of highest weight A in (53), say r, as there are in K° or “generically”.
The reason behind this fact is that

(54) (H2(A) © HY(Aga)/K®) = He(A 4 Aga) (= PY),
hence, because K° N P? = Hg(/\), PY + KP is not the full space.

In the space of primitive vectors of weight A we now choose a basis containing the
one from P? We can use the remaining r — 1 in the decomposition (53). Let Wy
denote the remaining summand in (53). Then we may take W5 as the inverse image
of this space in the full tensor product. The other claims follow immediately. [

Remark 6.8. There are of course identical results for the case where the two factors
in the @-product are interchanged. We shall see later (Corollary 7.4) that dim,Wy =
0.

7. TECHNICAL MATTERS

To substantiate some of our previous and coming claims, we present here some
facts about simple Lie algebras and selected representations of these.

For the classical groups, the defining representation is A;. We label the simple
roots as in [8].

g Highest short root = ag Qg Ad A (A o))

An anq —|—Oé2—|—"'—|—Oén )\1 —I')\n (&%) )\1 (1) ()\2 (1))
B, o +as+ -+ a, A A | A (1) (N (2),7 < n)
C, o1 + 200 + -+ 2021 + Ao 20 | A (1) (N (2),0>1)
Dn anq —|—2062 + .- —|—20én_2 —|—Oén_1 —|—Oén )\n_g (&%) )\1 (1)7)\n—1 (1)7)\n (1)
e o1 + 209 + 203 + 3oy + 205 + g Ao 8% A (1), X6 (1)

E7 20[1 + 20[2 + 30[3 + 40[4 + 30[5 + 20[6 + (8744 )\1 Qg )\7 (1)

Eg 20[1 + 30[2 + 40[3 + 60[4 + 50[5 + 40[6 + 30[7 + 20[8 )\8 Qg )\8 (2)

G2 20[1 + (%)) )\1 )\2 )\1 (2)

F4 (64] + 20[2 + 30[3 + 20[4 )\4 )\1 )\4 (2)
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g | As ((As, ) Comment Also small

A, A1 (1) Defining Ai (1) and (A1 4+ M) (2) (Ad)
B, A (2) Defining and Ad° An (1) (not really needed)

C, A1 (1) Defining Ay (2) (AdY)

D, A1 (1) Defining Mot (1), A, (1), and A, _ (2) (AdY)
B A1 (1) - A6 (1) and Az (2) (Ad)

b Az (1) - A1 (2) (Ad)

Ey As (2) Ad = Ad° -

Gy A (2) Ad’ -

Iy A1(2) Ad’ -

Lemma 7.1. Let m € N, that q is an [th root of —1, and o € AT. Suppose that

(55) (A+p, ") =1+m.
Then
(56) dimg(A — ma) = (—=1)")dim,(A),

where ((S,) denotes the length of the element S, of the Weyl group.

Proof. We have that

(57) (A—I—p—moz,ﬂv) = (Sa(A+p)+ZOé7ﬂv)7

and

(58) qdﬁ(lo‘vﬁv) — q—dﬁ(loz,ﬁv) _ (_1)(0[75)
Thus,

qdﬁ(A+p,ﬁV) _ q—dﬁ(A+p,ﬁV)
qdﬁ(pvﬁv) — q_dﬁ(p7ﬁv)

(59) dlmq(A — moz) = (_1)25€A+(a7ﬁ) H
BESa(AT)

(60) = (=1)PI(=1)"5)dim, (M),
as follows from e.g. Humphreys Lemma 10.3.A. O

Lemma 7.2. For the algebras Gy, Fy; and Fs the lengths of the reflexions corre-
sponding to the highest short root are 5, 15, and 57, respectively.

Proof. This follows in an elementary way from a representation of the relevant root
systems, see e.g. Humphreys p. 65. [

Lemma 7.3. For (G5 the representation A\ = 2aq + a3 has dimension 7. We have

(61) ((n1 4 1,n9 + 1), (201 + a2)) = 2(ny + 1) + 3(ny + 1).
If ny =0 there may be a problem with L(A) C L(A\) @ L(A). However, if we demand

that [ is not divisible by 3 then this cannot occur.
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For Fy the dimension of Ay = a1 + 209 + 3az + 2a is 26. The 0-weight space is
2-dimensional and

(62) ((ny+ 1,na+ 1,ns+ 1,ns + 1)), (1 + 202 + 3as + 204)) =
(ni+1)+4(n2+ 1)+ 3(ns + 1) + 2(ng + 2).

Clearly, ns = 0 is impossible. In fact, ns must be odd if the expression in (62) is to
equal | — 1.

Finally, by combining Lemma 7.1, Lemma 7.2, and Lemma 7.3 with Proposi-
tion 6.7, we get

Corollary 7.4. The representation Wy in (52) has g-dimension 0.

8. TENSORING VERSUS ¢-DIMENSION
The following is a fundamental result:

Proposition 8.1 (Andersen, [1]). Let E, M € C be finite-dimensional and suppose
that try(f) =0 for all f € Endy, (M). Then tr,(¢) =0 for all ¢ € Endy,.(F @ M).
In particular, dim,(Q) = 0 for all summands of @ M.

We can now state our main result:

Proposition 8.2. Let Ay and Ay be in the first dominant alcove C. Then L¢(A1) @
L¢(Ag) is a direct sum

(63) Le(A1) @ Le(Az) = Le(Aiy) @ -+ @ Le(Aignr2) B 5,
where Nyy, ..., Nina,2)) € C and S is a direct sum
(64) S = @D(Ax),

where each D(Ay) has g-dimension 0.

Proof. Let s = (A1 + Ay + p,ay). For s < ( everything is completely reducible and
hence all right. In fact, even for s = ¢ we have the result since the induced modules
stay irreducible in the closure C of the fundamental alcove. Next we observe that
the result is true if one of the factors is Ag (Proposition 6.7 and Corollary 7.4). Next
observe that for any representation A € €', L¢(A) = HZ(A) and C' is closed under
taking dual modules. Thus, we can use the results of Section 5, in particular the
important results, Proposition 5.3 and Corollary 5.6.

Suppose now that the formula (63) holds for a given pair Ay, Az. It then follows
that the module S is a direct sum of D(A;)’s, each of ¢-dimension 0. By tensoring
both sides by As and using Proposition 8.1 we clearly get a right-hand-side which
is a direct sum of simple modules L¢(A;) with A; € €' and a module S for which

tr,(¢) = 0 for all ¢ € Endy(5).
Concerning the left-hand-side, we can consider the tensor product As®@A; which we
can assume to decompose into a direct sum §;A; of representations from €' and thus
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the left-hand-side is a sum of the form @;A; @ Ay. (We might, of course, have chosen
to tensor Ag onto Ay first instead.) It follows by the uniqueness of the decomposition
of tilting modules that each of the summands A; @ Ay satisfies a formula like (63).
Moreover, the left-hand-side can be written as a direct sum of tilting modules, hence
so can the right-hand-side. Moreover, by the uniqueness of the decomposition into
tilting modules, we can keep track of all the tilting modules with ¢-dimension 0 on
the right-hand-side and hence on the left-hand-side.

Thus, we can extend the set of Ay, Ay € C' x C for which (63) holds. Eventually,
by the property of Ag, we get it to hold for all pairs in C' x C'. O

We can now introduce the reduced tensor product @:

Definition 8.3. In the notation of Proposition 8.2 we set

(65) Le(M) @ Le(Az) = Le(Ni) @+ @ Le(Aign(a,2)))-

Theorem 8.4. The reduced tensor product is associative.

Proof. Consider

(66) Le(A1) @ Le(Ag) @ Le(As).
It we first decompose the tensor product involving Ay, Ay and then tensor onto the
result with L¢(A3) we get a result, call it (1-2)-3, which by Proposition 8.2 is a sum

of simple modules corresponding to certain A; € C together with a module S5 such
that each summand of Sy3 3 has ¢-dimension 0.

(67) (1-2)-3 = @Z'LQ(AZD’S) @ Si2,3.

In the same way we get a result 1-(2-3) for the other way of grouping together in
the tensor product,

(68) 1-(2-3) = @, Le (A7) @ 51 250

By the associativity of the usual tensor product, (1-2)-3=1-(2-3), and cutting
down by central character to one of the simple summands we get

(69) Nfz,SLC(Ai) D Siz,:a = Nf,z:aLC(Ai) D Siz,:a-

Taking ¢-dimension on both sides we get that me = Nf723. O
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