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Re
eived XXX

We determine what should 
orrespond to the Dira
 operator on 
ertain quantized

hermitian symmetri
 spa
es and what its properties are. A new insight into the quantized

wave operator is obtained.

1 Introdu
tion

In the arti
les [3℄, [1℄, [2℄, [4℄, [5℄, and [6℄ it was shown how intertwining dif-

ferential operators on spa
es of ve
tor valued holomorphi
 fun
tions on hermitian

symmetri
 spa
es of the non-
ompa
t type are intimately 
onne
ted both with ho-

momorphisms between generalized Verma modules and with singular unitary rep-

resentations through what was 
alled the \missing k types". It was 
lear from the

outset that the 
onstru
tion was appli
able in a mu
h broader 
ontext for 
lassi
al

(semi-simple) Lie algebras. Later, it was natural to extend it further to quantum

groups, in parti
ular after the 
lassi�
ation of unitarizable highest weight modules

was obtained [7℄.

In 
onne
tion with the generalization to quantum groups of the above, one needs

of 
ourse to �nd good repla
ements of hermitian symmetri
 spa
es, holomorphi


fun
tions, and, �nally, di�erential operators. We believe that we through the dis-


overy of quadrati
 algebras asso
iated to hermitian symmetri
 spa
es, see e.g. [8℄,

have found the right setting.

In a series of papers, 
.f. [10℄, [11℄, and referen
es 
ited therein, Dobrev has

studied a quantization of the d'Alembert operator and its invarian
e properties

and has also addressed the issue of relevant spa
es. The quantized wave operator is

also dis
ussed in [9℄ whi
h has some overlap with Dobrev's work, both mathemati
al

and notational, but in fa
t, Dobrev's methods have mu
h more in 
ommon with

the earlier work 
ited above. Even more so, the methods in those referen
es rea
h

mu
h further as we will illustrate below by giving \the quantization of the Dira


operator" in the setting of quantum groups. Our approa
h shows that the quantized

wave operator is a major part of the quantized Dira
 operator; in some sense the

term that represents the most \non-
ommutative" part.

2 Basi
s

For any hermitian symmetri
 spa
e there is a (matrix valued) �rst order holo-

morphi
 di�erential operator that intertwines two unitary highest weight repre-

sentations. Sometimes there are even two. These operators might be 
alled \Dira


operators" and they all have quantizations. In order to keep the presentation simple

Cze
hoslovak Journal of Physi
s, Vol. 50 (2000), No. 0 A 1



Jakobsen

and at the same time treat the most relevant 
ase for physi
s, we will only give the

details here in the 
ase of su(2; 2) and its quantized enveloping algebra U

q

(su(2; 2)).

To be spe
i�
, U

q

= U

q

(su(2; 2)) is generated by
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with the usual relations of whi
h we only list those we need in the following:
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2.1 The quadrati
 algebra
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Then the four w

i

s generate a quadrati
 algebra denoted A

q

. The relations are the

usual ones,

w

1

w

2

= qw

2

w

1

; w

1

w

3

= qw

3

w

1

; w

3

w

4

= qw

4

w

3

; (4)

w

2

w

4

= qw

4

w

2

; w

2

w

3

= w

3

w

3

; w

1

w

4

� w

4

w

1

= (q � q

�1

)w

2

w

3

:

The element w

1

w

4

� qw
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is in the 
enter of A

q

, and at a generi
 q, the 
enter

is generated by this element.

There is an a
tion (this is the 
o-adjoint a
tion k ? w =

P

i
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This a
tion is derived from a left a
tion in the quantized enveloping algebra

but is not identi
al with this a
tion. For later use we re
ord here the identities

F
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There are analogous equations for the index � obtainable simply by the inter-


hange 2

!

 

3.

Observe that
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Later on, we shall use fun
tions de�ned on the quadrati
 algebraA

q

, in parti
ular

polynomial fun
tions. A
tually, we wish to work with fun
tions on C

4

. For this

reason we introdu
e the symbols
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torial.
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To a (polynomial) fun
tion f on A
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e the fun
tion 	
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The motivation for this normalization is perhaps a little 
imsy, but we mention

that that the so-
alled \divided powers" algebra is more fundamental than others.

Furthermore, the spa
e of fun
tions thus de�ned on C

4

a
tually 
omes equipped

with an asso
iative ?-produ
t. See [9℄ for further details.

Later on we shall en
ounter right multipli
ation operators on the spa
e of fun
-

tions on A

q

, i.e. operations of the form ((w

R

0

)

y

�f)(w




) = f(w




w

0

). Below, w

0

will

be either w

1

; w

2

; w

3

; w

4

, or w

1

w

4

�qw

2

w

3

. Transformed into operators on fun
tions

on C

4

via (8) these be
ome q-di�erential operators expressible in terms of, among

other things, the usual q-di�erential operators on C

1

as well as s
aling operators

(
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In terms of un-quantized operators, if q = e
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The last de�ned operator is of 
ourse nothing else but the quantized wave oper-

ator. At the most singular point of unitarity for representations in spa
es of s
alar

valued fun
tions it is an intertwining di�erential operator.
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3 Indu
ed representations

Let B

+

denote the part of U

q

generated by the elements K
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This, on the other hand 
an be dire
tly translated into the following statement:

Let M

�

be the Verma module of highest weight � and let 0 6= v

�
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highest weight ve
tor. Then u
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� v

�
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�

.

Theorem 3.1 (H-J, [1℄, [2℄, [6℄ ) There is a bije
tive 
orresponden
e between

intertwining di�erential operators and homomorphisms between generalized Verma

modules.

4 Dira
 operators

In the present 
ase we shall study two representations and intertwiners (whi
h

will be the quantized Dira
 operators) thereon.
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e of polynomials on C
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e H
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ase, �
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) =
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) = q, and �

Æ
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) = q
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. In the 
ase where x = 2 and q is real there is a

unitary highest weight representation in a subspa
e (the kernel of the operator D

+

below). If x 6= 2 we may still have an intertwiner provided that q = e

2��i�p

2x�4

for some

integer p.
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The target spa
e thus 
onsists of fun
tions that are non-zero only on expressions

of the form p
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Of 
ourse, there is an analogous operator D
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It is easy to see that D
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With the ex
eption of the term �q

�1

z

4

(1 � q

�2

)K

4

�

q

, the operators D

�

look

like any simple-minded generalization of the Dira
 operator to the q realm. How-

ever, there is the extra term whi
h represents the departure from the \quasi-


ommutative" situation. We have in [9℄ seen the �rst indi
ations of an auxiliary

bundle, whi
h in fa
t 
an be 
onstru
ted using �

q

, in whi
h the new �rst order dif-

ferential operators are the 
ovariant derivatives. We leave this point to subsequent

investigations.
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