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1. Introduction

The class of q-deformations of the coordinate algebras of simple matrix Lie groups derived
from so-called FRT bialgebras is of great importance in quantum group theory. These
bialgebras arise as suitable extensions and quotients of the coordinate algebra Oq(M(n)) of
the quantum matrix space and have been a topic of interest ever since they were introduced
by L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtadzhyan in 1990 [4]. We will refer
to Oq(M(n)) as the FRT algebra. Other quantizations of the coordinate algebras of matrix
groups have been proposed and studied, not the least the quantum deformation Aq(n)(d−1)
of general linear groups introduced by R. Dipper and S. Donkin in [3] as the localization of a
quantum version Aq(n) of the coordinate algebra of n× n matrices at a non-central element
d, the q-determinant. The FRT and Dipper-Donkin quantum algebras share some common
properties, for instance the same classical limit as the parameter of deformation q goes to
1. They are also related in another way, as we will explain in Section 2. In other aspects,
however, e.g. P.I. degrees, they are different (see [12]).

In 2001, S. Fomin and A. Zelevinsky introduced a new class of commutative rings under
the name of cluster algebras [5]. A cluster algebra is generated by a set of generators called
the cluster variables; clusters are not given at first but are obtained from an initial one via a
process of mutations. One of their main motivations for introducing this new class of algebras
was to provide an algebraic framework for studying total positivity in semisimple groups
and canonical bases for quantum groups. Later, in [1], A. Berenstein and A. Zelevinsky
introduced quantum deformations of cluster algebras pertaining to a notion of canonical
basis in cluster algebras.

The theory of cluster algebras has developed vastly in recent years. In particular with
the advent of quantum cluster algebras it became a challenge to relate the above mentioned
coordinate algebras of matrix groups to that theory, notably to write down so-called quantum
seeds for these, thus describing their possible cluster algebra structure. Right from the
beginning some general and strong results were obtained [1]. Later, a method has been
developed by H. P. Jakobsen and H. Zhang [14] targeting directly the FRT algebras. The
approach in [1] has recently been extended in [7].
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In this paper we construct quantum seeds associated to quantum matrix algebras Mq

belonging to a certain family, which includes in particular the FRT algebra Oq(M(n, r)) and
the Dipper-Donkin algebra Aq(n, r). (These algebras were originally defined as coordinate
algebras of n× n matrices, but we will here extend the defining relations to arbitrary n× r
matrices while maintaining the notation.) For other deformations of the matrix algebras,
see [13], and references cited therein. For the purposes of the present article, one can view
these algebras as being defined over C, with q being a so-called ‘dummy’ parameter, leaving
open even the possibility of q being a root of unity, though the latter case will not be
pursued much here. Each quantum matrix algebra Mq has an associated quasi-polynomial
algebraMq whose generators have commutation relations given in terms of an integer skew-
symmetric matrix HM (see Definition 2.7) which will play a central role in the determination
of the initial clusters.
The complicated nature of the classification already on the level of cluster algebras ([5, 6])
has been intimidating for explicit constructions of large scale examples of, say, initial seeds
(cf. below). Indeed, only very few low dimensional examples were computed ([8], [7]). In
this sense it is a surprise that elementary operations can be used to obtain far reaching and
very explicit conclusions. In particular, to construct an initial seed for Oq(M(n, r)) both in
the guise of the FRT as for the Dipper-Donkin algebra. Indeed, the method of Gauss Elimi-
nation on the level of the matrix blocks of HM leads to both results pertaining to the case of
q a root of unity, viz. the degree of algebras, and to explicit compatible pairs (ΛM, BM) for
a family of quantized matrix algebras. Some detailed information about the q commutation
relations between quantized minors in the quantized matrix algebra and how they can be
computed by considering the q commutation relations between the diagonals of these minors,
but now computed in the associated quasi-polynomial algebras, are needed too. To wit, this
connection allows us to perform a simple change-of-basis operation on HM whereby ΛM is
obtained. Later, some elementary algebra is needed too. In the end, the results themselves
are not only very explicit but also very striking. The structural ‘defining matrices’ ΛM are
integer nr×nr matrices and as their sizes increase, there are no bounds on the integers that
may occur. Nevertheless, in case they are invertible (at least in the cases considered), their
inverses have entries from {−1, 0, 1} or {−2, 0, 2}.
As a consequence of our approach it turns out that we can, with a little extra effort, deter-
mine the centers of the underlying quantized matrix algebras. Further results relate to block
diagonal forms. This leads further to a complete determination of the degrees of specialized
versions of the algebras when q is an arbitrary root of unity.

More precisely, the structure of the paper is the following. In Section 2 we present the
algebras Mq as certain subalgebras of the algebra Pq = Pq(n, r). This latter was originally
introduced and studied in [12]: it is a semidirect product

Pq(n, r) = Oq(M(n, r)×s L[R1, . . . , Rn, C1, . . . , Cr] ⊂ Uq(gn+r),

where L[R1, . . . , Rn, C1, . . . , Cr] denotes the algebra of Laurent polynomials in n ‘row opera-
tors’ Rα and r ‘column operators’ Cj that come directly from a quantized Cartan subalgebra
in Uq(gn+r). One fundamental assumption is that

Oq(M(n, r))×s L[R1, . . . , Rn, C1, . . . , Cr] =Mq ×s L[R1, . . . , Rn, C1, . . . , Cr],
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but other more technical assumptions are also imposed to ensure that quantized minors
can be defined in Mq. Indeed, we introduce a family V+

M of nr minors χαj ∈ Mq which
are quasi-commuting, i.e. χαjχβt = qΛαj,βtχβtχαj. The quasi-commutation matrix ΛM which
encodes their commutation relations is related to the matrix HM via

ΛM = TtHMT,

where T is an explicitly given matrix. (See Proposition 2.11.)
We finish Section 2 by introducing our object of interest: quantum seeds and compatible
pairs (ΛM, BM) associated to a family of minors V+

M.
In Section 3 the Gauss Elimination is carried out in block form for some matrices HM,

including the ones associated to the FRT and the Dipper-Donkin algebras, as well as for
Pq(n, r). The resulting upper triangular block matrix is sufficiently well determined that
one can read off the determinant, the rank, and in case of invertibility, the blocks of the
inverse. Many results of [9] and [12] are extended, while others are given elementary proofs.
This Section also carries the first version of the very striking form of the entries of the inverse
matrix H−1

M .
The results of Section 3 are put to further use in Section 4 where block diagonal forms as

well as degrees of the various algebras are determined.
Section 5 deals with the quasi-commutation matrices ΛM for some relevant quantum

matrix algebras of our family. Again we can very explicitly give the inverse matrices Λ−1
M

(when they exist) and observe the striking forms they take. In case of positive co-rank, the
kernels can also be determined very explicitly. This furthermore carries immediate results
for the centers, both generically, as well as in the case where q is a primitive root of unity.

Finally, in Section 6, it is explained how the results of Section 5 carry all relevant infor-
mation for the determination of compatible pairs.

Notation. All algebras we will consider are over the field C. We will use the notation I for
the identity matrix of any order. When needed, we will indicate with a subscript its rank. If
not specified differently, indices in lower case Greek letters α, β, . . . run from 1, . . . n, while
lower-case Latin letters i, j, . . . indicate indices running from 1 to r. Here r, n are two fixed
positive integers.

2. The general set-up

Let q be a fixed non-zero complex number. The coordinate algebra Oq(M(n, r)) of the
quantum n × r matrix space is the associative algebra generated by elements Zαj, α =
1, 2, · · · , n, j = 1, 2, · · · , r, subject to the following defining relations:

ZαjZαk = qZαkZαj , j < k,

ZαjZβj = qZβjZαj , α < β,

ZαjZβl = ZβlZαj , α > β, j < l,

ZαjZβl = ZβlZαj + (q − q−1)ZαlZβj , α < β, j < l. (2.1)

The quantized matrix algebras Oq(M(n, r)) were introduced (in the case n = r) by Faddeev,
Reshetikhin and Takhtadzhyan in [4]. We will refer to the general algebra Oq(M(n, r)) as
the FRT algebra.
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Following [2, p. 58] we consider the associated quasi-polynomial algebra Oq(M(n, r)) of
Oq(M(n, r)). This is the associative algebra generated by elements zαj, α = 1, 2, · · · , n,
j = 1, 2, · · · , r, subject to the following defining relations:

zαjzαk = qzαkzαj , j < k,

zαjzβj = qzβjzαj , α < β,

zαjzβl = zβlzαj , otherwise. (2.2)

As in [12] we introduce a new quantum algebra Pq = Pq(n, r) containingOq(M(n, r)) while
having additional, mutually commuting, generators Rα, R

−1
α , α = 1, . . . , n, and Cj, C

−1
j ,

j = 1, . . . , r with the following additional relations

R±1
α Zβi = q±δα,βZβiR

±1
α , C±1

j Zαi = q±δj,iZαiC
±1
j ,

RαR
−1
α = 1 , CjC

−1
j = 1 (2.3)

for all α, β = 1, . . . , n and i, j = 1, . . . , r. (As shown in [12], this is related to a quantization
of a parabolic subalgebra of su(n, r).) We let P+

q denote the subalgebra of Pq generated by
the generators Zαi of Oq(M(n, r)) together with the elements Rα, α = 1, . . . , n and Cj, j =
1, . . . , r.

The algebra Pq contains a central element Z =
∏

αRα

∏
j C
−1
j . This redundancy is pre-

served for convenience.
Recall that in Oq(M(n, r)) one can define a ‘bar’ involution p 7→ p as the unique C-linear

algebra anti-automorphism such that:

q̄ = q−1 and Zαj = Zαj for all α, j.

The bar anti-automorphism is used in the definition of the (dual) canonical basis. See e.g.
[13].

Definition 2.1. We extend the bar operation to a linear anti-automorphism of Pq by the
extra stipulation:

∀α : Rα = Rα and ∀j : Cj = Cj.

2.1. The general family. We wish to introduce and study a class of quantized matrix
algebras from the above.
For each β = 1, . . . , n and each i = 1, · · · , r, fix Mβi to be a monomial in the generators
{R±1

α , C±1
j }α=1...n,j=1,...r (we occasionally suppress the range of the indices when it is clear).

Once such monomials Mβi have been fixed, there exist integers Φβi
αj uniquely determined by

(2.3) as

MαjZβi = qΦβiαjZβiMαj. (2.4)

We assume that ∀α = 1, · · · , n,∀j = 1, · · · , r :

MαjMα+γ,j+k = Mα,j+kMα+γ,j for all admissible γ, k ∈ N. (2.5)

This implies that ∀α = 1, · · · , n,∀j = 1, · · · , r :

Φβi
αj + Φβi

α+γ,j+k = Φβi
α+γ,j + Φβi

α,j+k for all admissible γ, k ∈ N. (2.6)
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We will also need some relations between the symbols Φβi
αj that allow us to do specific

computations and at the same time implies the following identity

Φβi
αj + Φβ+γ,i+k

αj = Φβ+γ,i
αj + Φβ,i+k

αj for all admissible γ, k ∈ N, (2.7)

valid ∀α = 1, · · · , n,∀j = 1, · · · , r. Actually, the equations (2.6) and (2.7) together are
equivalent to

∀α, β, i, j : Φβi
αj = aβα + bβj + ciα + dij,

for some appropriate integer-valued functions a, b, c, and d. This, on the other hand, is
clearly equivalent to the assumption which we now impose:

Assumption : ∀α, j : Mαj = RαRjCαCj, (2.8)

where Rx and Cy denote momomials in the row, respectively column, operators.
All together, these conditions easily imply

Lemma 2.2. Let α1, . . . , αs ∈ {1, . . . n} be pairwise different and let j1, . . . , js ∈ {1, . . . r}
be pairwise different. The integer Ψ in

qΨZα1,jσ(1)Zα2,jσ(2) · · ·Zαs,jσ(s) = MβtZα1,jσ(1)Zα2,jσ(2) · · ·Zαs,jσ(s)M
−1
βt ,

while in general depending on β, t, α1, j1, . . . , αs, js, does not depend on σ ∈ Ss. Likewise,
the integer Φ in

qΦZβt =
(
Mα1,jσ(1)Mα2,jσ(2) · · ·Mαs,jσ(s)

)
Zβt

(
Mα1,jσ(1)Mα2,jσ(2) · · ·Mαs,jσ(s)

)−1

,

while in general depending on β, t, α1, j1, . . . , αs, js, does not depend on σ ∈ Ss.

We finally add the following condition to our list of assumptions:

∀α, j : Φαj
αj = 0. (2.9)

(This could also be deduced from the stronger assumption that for no x does Rx contain
Rx, with a similar assumption for the monomials Cy. However, we shall not pursue these
matter further here.)

Definition 2.3. The quantum algebra Mq is the subalgebra of Pq generated by the elements
Wαj := ZαjMαj, α = 1, . . . , n, j = 1, . . . , r.

The first condition (2.5) guarantees that the relations of Mq are similar to those of the
FRT quantized matrix algebra. The use of the second condition (2.7) is through Lemma 2.2,
while we observe that the third condition (2.9) implies

∀(α, j) = (1, 1), · · · , (n, r) : ZαjMαj = MαjZαj.

The following then is clear:

Lemma 2.4. For all α, j : Wαj = Wαj.
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2.1.1. The Dipper-Donkin quantized matrix algebra. Let θ : Z 7→ {0, 1} be the discrete Heavi-
side function defined as usual by θ(z) = 1⇔ z > 0. Let us setMαj := Rα+1 . . . RnC

−1
j+1 . . . C

−1
r ,

so that Φβi
αj = θ(β − α)− θ(i− j). The resulting quantized matrix algebra has relations

WαjWβk = q2WβkWαj β > α, k ≤ j

WαjWαk = WαkWβj ∀α, ∀j, k
WαjWβk = WβkWαj + (q2 − 1)WβjWαk β > α, k > j. (2.10)

Definition 2.5. The quadratic algebra generated by elements Wαj with relations (2.10) is
called the Dipper-Donkin quantized matrix algebra and will be denoted by Dq2(M(n, r)).

This algebra was introduced and studied in [3], in case n = r. It is traditionally defined
using q instead of q2 in (2.10) (It was originally denoted by Aq(n)).

2.2. Quantum minors. Let m ≤ min{n, r}. Given two sets α = {α1, α2, . . . , αm} ⊆
{1, . . . , n} such that α1 < α2 < · · · < αm and j = {j1, j2, . . . , jm} ⊆ {1, . . . , r} such that
j1 < j2 < · · · < jm, one can define

ξαj (Z) := ξαj := Σσ∈Sm(−q)`(σ)Zα1,jσ(1)Zα2,jσ(2) · · ·Zαm,jσ(m)

= Στ∈Sm(−q)`(τ)Zατ(1),j1Zατ(2),j2 · · ·Zατ(r),jm . (2.11)

The elements ξαj ∈ Oq(M(n, r)) are called the quantum m-minors.

In the above expression - now seen in Pq - we can replace each Zαj by WαjM
−1
αj and then

collect all the Mαj factors to the (say) right. By means of the first assumption, we get an
expression

ξαj = χ̃α
j (Mα1j1 · · · · ·Mαmjm)−1 . (2.12)

Since ξαj = ξαj it follows that χ̃α
j = (Mα1j1 · · · · ·Mαmjm) χ̃α

j (Mα1j1 · · · · ·Mαmjm)−1. This
implies that we may write χ̃α

j = qaχα
j for some integer a in such a way that χα

j is invariant
under the bar operator.

Definition 2.6. We call the element χα
j ∈ Mq the quantum minor (for the configuration

α = {α1, α2, . . . , αm} ⊆ {1, . . . , n}, with α1 < α2 < · · · < αm, and j = {j1, j2, . . . , jm} ⊆
{1, . . . , r} with j1 < j2 < · · · < jm). We may clearly write, for some functions `

(1)
M , `

(2)
M :

Sm 7→ Z:

χα
j (W ) = χα

j = Σσ∈Sm(−q)`
(1)
M (σ)Wα1,jσ(1)Wα2,jσ(2) · · ·Wαm,jσ(m)

= Στ∈Sm(−q)`
(2)
M (τ)Wατ(1),j1Wατ(2),j2 · · ·Wατ(m),jm ,

χα
j = χα

j ,

ξαj = qα
α
j χα

j (Mα1j1 · · · · ·Mαmjm)−1 ,

q2αα
j χα

j = (Mα1j1 · · · · ·Mαmjm)−1 χα
j (Mα1j1 · · · · ·Mαmjm) (2.13)

The last equations, which follow easily from the above, are inserted for the sake of §2.5.

6



2.3. q-Laurent polynomial algebras. Let Mq be a quantum matrix algebra as above
and let Mq be the associated quasi-polynomial algebra. Let us for simplicity denote the
generators of Mq by Wαj and the generators of Mq by wαj, where in both cases 1 ≤ α ≤ n
and 1 ≤ j ≤ r.
We first introduce the nr × nr matrix HM = (Hαj,βk) defined by

wαjwβk = qHαj,βkwβkwαj . (2.14)

We are using the basis {w11, . . . , w1,r, w2,1, . . . , w2,r, . . . , wn,1, . . . , wn,r} and represent H as
an n× n block matrix consisting of r × r blocks Hαβ (also see (3.2)).

Definition 2.7. Let L = LMq
be the q-Laurent algebra generated by Mq. We call HM the

defining matrix of L.

(More generally, we may consider a generic algebra with generators wαj and relations given
as in (2.14)).

The matrices H will be examined in §3 in many interesting cases. However, for many
issues involving cluster algebras, it is much more useful to consider the family of q-commuting
elements (quantum minors) χαj ∈Mq which we are now going to introduce.

To each 1 ≤ α ≤ n and 1 ≤ j ≤ r, let χαj be the quantum minor χα
j of biggest order m

inMq fulfilling the following conditions: if γ is a row number of χα
j , i.e. γ ∈ α, then γ ≤ α

and if c ∈ j is a column number, then c ≤ j. Specifically,

(1) for α ≥ j, χαj := χ
{α−j+1,α−j+2,...,α}
{1,2,...,j} ,

(2) for α < j, χαj := χ
{1,2,...,α}
{j−α+1,j−α+2,...,j}.

With reference to [14, §6], this family of quantum minors corresponds to the broken line
L+. The extreme opposite construction to the above, where the conditions on the row and
column numbers are changed to γ ≥ α and c ≥ j corresponds to the broken line L−. Indeed
one may define a family for each broken line as defined in [14], but we will not pursue this
here. Notice, however, §2.5.

Definition 2.8. We denote the family of minors χαj ∈Mq given as above by V+
M.

The family contains nr elements. The following result follows from [14] - where it was
proved to hold for the FRT algebra O(Mq(n, r)) - in combination with Section 2.1. See [14,
Proposition 6.5] for details.

Proposition 2.9. Any two members χαj and χβk of V+
M q-commute. Thus a skew-symmetric

integer matrix Λ = ΛM may be defined by

χαjχβk = qΛαj,βkχβkχαj. (2.15)

As for the q-commutations between such minors, each minor χαj may be represented by
its “diagonal” χdαj in Mq. This is given by{

χdαj := wα,jwα−1,j−1 · · ·wα−j+1,1 if α ≥ j

χdαj := wα,jwα−1,j−1 · · ·w1,j−α+1 if α ≤ j
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Proposition 2.10. Let Λ = ΛM be as above. The following holds in Mq:

χdαjχ
d
βk = qΛαj,βkχdβkχ

d
αj. (2.16)

Proof. It is easy to see that there is a PBW type basis in an algebra Mq as above. We
may choose this so that the monomials appearing in the minors are elements of this basis.
Furthermore, we may order the monomials according to a lexicographical ordering. The di-
agonal in any minor is biggest among the monomials appearing as summands in it. Products
of monomials may be expressed in the PBW basis using the relations of the algebra. When
this is done for the product of two minors, the highest order term will be a rewriting of the
product of the two diagonals, and here we may ignore auxhilary terms of lower order and
rewrite according to L. Thus, (2.15) holds on the level of the diagonals modulo lower order
terms. To obtain the q exponent Λαj,βk it thus suffices to consider these diagonals in L. �

Proposition 2.11. The matrix ΛM defined in (2.15) is given by

ΛM = TtHMT, (2.17)

where T = (Tβk,αj) is the upper-diagonal matrix whose entries are either 1 or 0:

Tβk,αj =

{
1 if ∃x ∈ {0, 1, . . . ,min{α, j} − 1} s.t. (β, k) = (α− x, j − x),

0 otherwise
. (2.18)

Proof. On the one hand we can write Tβk,αj =
∑min{α,j}−1

x=0 δβ,α−xδk,j−x, so that

(TtHMT)αj,βk =

min{β,k}−1∑
x=0

Ttαj,γiHγi,β−x k−x =
∑

x=0,...,min{β,k}−1

y=0,...,min{α,j}−1

Hα−y j−y,β−x k−x

=
∑

b=k,...,k−min{β,k}+1

a=j,...,j−min{α,j}+1

Hα−j+a a,β−k+b b. (2.19)

On the other hand, following Proposition 2.10, we can compute the entries of the matrix
ΛM from the commutation relations of the minors χdαj. Let us start by considering the case
α ≥ j, β ≥ k:

χdαjχ
d
βk =

j∏
a=1

wα−j+a,a

k∏
b=1

wβ−k+b,b = qΛαj,βkχdβkχ
d
αj,

where Λαj,βk =
∑

a=1,...,j

b=1,...,k
H(α−j+a)a,(β−k+b)b. This coincides with (TtHMT)αj,βk as from (2.19)

for α ≥ j, β ≥ k.
The other cases are proved in analogous way, writing for β < k:

χdβk =

β∏
b=1

wb,k−β+b =
k∏

c=k−β+1

wβ−k+c,c .

�
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2.4. Quantum seeds. Quantum seeds were introduced and first studied by Berenstein
and Zelevinsky in [1]. We will study a sub-class of quantum seeds:

{V+
M,ΛM, B̃M}. (2.20)

(See [1]) for terminology).
The elements χαj - forming the initial cluster V+

M (see Definition 2.8) - satisfy the quasi-
commutation relations (2.15) that depend on the anti-symmetric matrix ΛM. According to
the general theory, the adjacent clusters are obtained from the initial one via a process of
mutations done in terms of the integer matrix B̃M. The quasi-commutation matrix ΛM and
the exchange matrix B̃M are required to satisfy a compatibility condition that ensures that
the resulting clusters are still quasi-commuting.
In our case, the matrix B̃M is a nr × c matrix, c ≤ nr, fulfilling the requirement that

ΛMB̃M =

(
−2Ic
0d×c

)
, (2.21)

where d = nr − c. This equation implies that the pair (ΛM, B̃M) is compatible in the sense
of [1, Definition 3.1]. Indeed, it is a special instance of the compatibility condition, where
generic diagonal matrices are allowed in the place of −2Ic. A natural, almost classical, choice
consists in requiring that B̃M is an nr× (nr− (n+ r−1)) matrix corresponding to declaring
the n + r − 1 covariant minors χn1 . . . , χnr, . . . , χ1r as precisely the non-mutable elements.
However, we want to maintain the freedom to choose a larger set of minors as mutable, hence
we solve (2.21) for c = rk(ΛM). (See also §6.)

2.5. Relations related to the determination of the B matrix.
Let us consider as above a set α = {α1, α2, . . . , αm} ⊆ {1, . . . , n} with α1 < α2 < · · · < αm.

Along with this, we introduce three subsets αL,αR, and αo of α: αL = {α2, . . . αm},αR =
{α1, . . . , αr−1}, and αo = {α2, . . . , αr−1}. We assume m ≥ 2. Then at most αo may be
empty. We define analogous subsets for j = {j1, j2, . . . , jm} ⊆ {1, . . . , r}, with j1 < j2 <
· · · < jm.

Definition 2.12. In the above notation set

Xt = χαL
jL
, Xb = χαR

jR
, Xo = χαo

jo
,

D = χα
j , YL = χαR

jL
, YR = χαL

jR
.

(2.22)

If αo = ∅ we set Xo = 1.

Proposition 2.13. The elements in Definition 2.12 q-commute. Moreover, there are integers
aαj , c

α
j such that

XtXb = qa
α
j XoD + qc

α
j YLYR. (2.23)

The elements in the q-Laurent algebra given by

qa
α
j XoD(Xb)

−1 and qc
α
j YLYR(Xb)

−1 (2.24)

are invariant under the bar operation.

Proof. This result holds in Oq(M(n, r)) ([14, Corollary 6.14 and Theorem 6.17]), and the
result follows easily from that. �
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In the mentioned case in Oq(M(n, r)), aαj = 0, and cαj = 1.

The following is obvious:

Proposition 2.14. The element
X−1
o D−1YLYR

commutes with all elements Rβ, Ck.

Proposition 2.15. Introduce the integer d = dαj such that qdX−1
o D−1YLYR is bar invariant.

When we consider this as an element in Pq constructed from Mq, different choices of Mq

will yield the same element in Pq.
Proof. The element in Oq(M(n, r)) constructed according to this recipe has d = 0. When we
insert the elements WβkM

−1
βk in the positions of the elements Zβk and move all Mβk elements

to the, say, right, we get an element of the mentioned form forMq possibly multiplied with
a monomial in the elements Rβ, Ck. However, it follows easily from the assumptions on the
Mβk’s that this monomial is a constant equal to 1. �

Corollary 2.16. The constructions of a quantum seed for any broken line as given in [14]
can be used for any quantum algebra Mq as above.

Proof. One can observe that the element X−1
o D−1YLYR in general satisfies the same kind of

q-commutation relations as the specific element considered in [10]. Specifically, it commutes
with all elements of the relevant set of variables with the exception of one (with which
it q-commutes with a non-zero q exponent). With the crucial results Proposition 2.13 and
Proposition 2.14 at hand, the result now follows by leafing through the arguments in [10] and
observing that they only rely on the formulas given in the mentioned propositions together
with the q-commutation property satisfied by the mentioned element. �

3. The inverse of the matrix H of the associated quasi-polynomial algebras

Consider a quantized matrix algebra with nr generators wαj for α = 1, . . . , n and j =
1, . . . , r. Suppose we are given two integer r × r matrices A = (aij) and M = (mij) with
At = −A and that the relations among the generators wαj are given as follows

wαjwαk = qajkwαkwαj , ∀α, ∀j ≤ k;

wαjwβk = qmjkwβkwαj , ∀α < β, ∀j, k; (3.1)

The above relations can be rewritten (in accordance with (2.14)) as

wαjwβk = qHαj,βkwβkwαj , α, β = 1, . . . , n; j, k = 1, . . . , r; (3.2)

where the integers Hαj,βk are the components of the matrix H made up of n × n blocks
(Hαβ)α,β=1,...,n defined in terms of the r × r matrices A,M , and N = −M t as

H =



A M M M · · · M
N A M M · · · M
N N A M . . . M
N N N A · · · M
...

...
...

... · · · ...
N N N N · · · A

 . (3.3)
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We will use both the notations (Hαβ)jk and Hαj,βk to indicate the component (j, k) in the
block Hαβ of the matrix H. By construction, H is skew symmetric: Hαβ = −(Hβα)t (where
here the transposition t indicates the transposition inside the block).
Our standing assumption will be that A−N is invertible. We set

X := (A−N)−1(A−M). (3.4)

Notice that hence X itself is invertible since A−M = −(A−N)t. Finally, we assume that
I−X is invertible, or, equivalently, that M −N is invertible.

3.1. First reductions. We are interested in studying the invertibility of the matrix H.
With this aim, we will now perform Gauss elimination on the blocks of H. Subtracting
(block) row 2 from 1, 3 from 2, etc. in H results in the matrix

H1 =



A−N M − A 0 0 · · · 0
0 A−N M − A 0 · · · 0
0 0 A−N M − A . . . 0
...

...
...

...
...

...
0 0 0 · · · A−N M − A
N N N · · · N A

 .

Thanks to our original assumptions, by using the first row we can remove the leftmost N
in the last row. Then we can use row 2 to remove the next N in the last row, and so on
until an upper diagonal block matrix H2 results:

H2 =



A−N M − A 0 0 · · · 0
0 A−N M − A 0 · · · 0
0 0 A−N M − A . . . 0
...

...
...

... · · · ...
0 0 0 · · · A−N M − A
0 0 0 · · · 0 F

 ,

where

F = (A−N) +N(I +X + · · ·+Xn−1).

Using our assumptions, we easily find that

F = (M −NXn)(I−X)−1. (3.5)

If we furthermore assume that M is invertible, we see that

Lemma 3.1. The null space of F is equal to the +1 eigenspace of (M−1N)Xn.

We now make further changes to the matrix H2: we add (A −M)(A − N)−1 times row
n − α to row n − α − 1 for α = 1, 2, . . . , n − 2 (we multiply the blocks from the left). The
resulting matrix is

11



H3 =



A−N 0 0 0 · · · (M − A)Xn−2

0 A−N 0 0 · · · (M − A)Xn−3

0 0 A−N 0 . . . (M − A)Xn−4

...
...

...
... · · · ...

0 0 0 · · · A−N M − A
0 0 0 · · · 0 F

 . (3.6)

In the following we will be interested in the following r × r matrices:

Nr =


−1 −1 −1 −1 · · · −1
0 −1 −1 −1 · · · −1
0 0 −1 −1 . . . −1
...

...
...

... · · ·
...

0 0 0 · · · −1 −1
0 0 0 · · · 0 −1

, Mr = −N t
r ,

Sr =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 . . . 0
...

...
...

... · · ·
...

0 0 0 · · · 0 1
−1 0 0 · · · 0 0

 , Xr =



0 1 0 0 . . . 0
0 0 1 0 · · · 0
0 0 0 1 . . . 0
...

...
...

... · · ·
...

0 0 0 . . .
... 1

−1 −1 −1 −1 · · · −1

.

It is easy to see that the matrix Nr is invertible, with inverse

N−1
r =



−1 1 0 0 . . . 0
0 −1 1 0 · · · 0
0 0 −1 1 . . . 0
...

...
...

... · · · ...

0 0 0 . . .
... 1

0 0 0 0 · · · −1


= −(M−1

r )t

and that Xr = N−1
r Mr. Furthermore, observe that Xr+1

r = I (also see (3.20)), Srr = −I, and
S−1
r = Str.

We shall take special interest in the following cases corresponding to different choices for
the matrices A and M which are building blocks of the matrix H, introduced in (3.3). To
distinguish among the different cases, we introduce a subscript for the relevant matrices.

• ‘Dipper-Donkin’: AD = 0, MD = Mr. Here ND = Nr, X becomes XD = Xr and F
becomes FD = NDXD(I−Xn−1

D )(I−XD)−1.

• ‘FRT’: AS = −(Mr + Nr), MS = I. Here NS = −I, X becomes XS = Sr and F
becomes FS = (I+ Snr )(I− Sr)−1. Notice that AS = Sr + S2

r + · · ·+ Sr−1
r and A−N

becomes AS + I = 2(I−Sr)−1. (We use the subscript S to refer to the FRT ‘standard’
quantum deformation of matrix algebras.)
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• ‘Combined I’ : AcI = Mr + Nr, McI = Mr. Here NcI = Nr and X and F become
respectively XcI = X−1

D and FcI = Mr(I−Xn+1
cI )(I−XcI )

−1.

• ‘Combined II’ : AcII = Mr + Nr, McII = Nr. Here NcII = Mr, X becomes XcII =
XD = Xr and FcII = Nr(I−Xn+1

r )(I−Xr)
−1.

With the above first two choices of matrices, the resulting matrices HD and HS describe
the commutation relations of the generators of the quasi-polynomial algebra associated re-
spectively to the Dipper-Donkin (Definition 2.5) and FRT (2.1) quantum matrix algebras.
The last two choices are a ‘combination’ of the previous ones (also see §4.2).

Thanks to (3.6), det(H) = det(F )(det(A−N))n−1, thus we easily obtain:

Corollary 3.2. In the above cases, the determinant of the matrix H reduces to the following:

• detHD = detFD;
• detHS = 2(r−1)(n−1) detFS;
• detHcI = detFcI ;
• detHcII = (−1)r(n−1) detFcII .

3.2. The rank of H. We determine the rank of the matrix H in each of the cases listed
above.

3.2.1. Dipper-Donkin case. The characteristic polynomial pD(z) of XD is easily computed
to be

pD(z) = det(zI−XD) = zr + zr−1 + · · ·+ z + 1 =
r∏
p=1

(z − εp), (3.7)

where εp := e2πi·p/(r+1), p = 1, 2, . . . , r are the r distinct solutions to εr+1 = 1, ε 6= 1.
It follows that the corank cD of HD, which is equal to the corank of FD and so equal to

the corank of (I−Xn−1
D ) can be determined as follows. From (3.7), it follows that cD is the

number of integers p = 1, . . . , r for which p(n−1)
r+1

∈ Z. We assume that n > 1 and, with no
loss of generality, we may assume that n ≥ r. Let s be the greatest common divisor of r+ 1
and n− 1:

n− 1 = xs and r + 1 = ys with x, y relatively prime.

Proposition 3.3. Let s = g.c.d.(n− 1, r + 1), then the corank of HD is

cD = corank(HD) = s− 1.

Proof. We keep using the notation introduced above. A solution p must satisfy px = qy
for some integer q. Hence since x and y are relatively prime, it has to be p = p′y for some
positive integer p′ and p < r+ 1 = ys. Thus p′ = 1, · · · , s− 1 will yield the solutions, where
the solutions (p, q) are of the form (jy, jx) for j = 1, . . . , s− 1. �

Corollary 3.4. If r = n then

corank(HD) =

{
0 if n = r is even,
1 if n = r is odd .

Proof. It is clear that n− 1 and n+ 1 are relatively prime if n is even. If n is odd then n− 1
and n+ 1 of course are even and have a common factor of 2. �
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3.2.2. FRT case. The matrix XS has characteristic polynomial zr + 1 and hence its eigen-
values are the r rth roots of −1. One easily recovers the result from [9]:

Corollary 3.5. (cf. [9, Prop. 4.5.]) Let s = g.c.d.(n, r). Specifically, let n = xs and r = ys.
Then HS is non-invertible if and only if both x and y are odd. In this case,

cn,r := corank(HS) = s. (3.8)

3.2.3. ‘Combined’ cases. Since XcI = X−1
D and the r-th roots of unity are invariant under

taking inverses, the characteristic polynomials for X±1
D are easily seen to be identical. Here,

due to the factor (I−Xn+1
r ) in FcI , we let s denote the greatest common factor of r+ 1 and

n+ 1:
n+ 1 = xs and r + 1 = ys with x, y relatively prime.

The case HcII is completely analogous.

Proposition 3.6. The coranks are given by

corank(HcI ) = s− 1 = corank(HcII ).

Corollary 3.7. If r = n, then corank(HcI ) = r = corank(HcII ).

3.3. The inverse matrix H−1. In this section we compute explicitly the inverse matrix
of H (when it exists). We set Y := (A − M)(A − N)−1. Notice that Y = (X t)−1. For
typesetting reasons, set AN := (A−N)−1 and Xn−2 := (I+X +X2 + · · ·+Xn−2). Consider
the n× n block matrix K made of r × r matrices given by

K =



I Y − I Y 2 − Y Y 3 − Y 2 · · · Y n−2 − Y n−3 −Y n−2

0 I Y − I Y 2 − Y · · · Y n−3 − Y n−4 −Y n−3

0 0 I Y − I · · · Y n−4 − Y n−5 −Y n−4

0 0 0 I · · · Y n−5 − Y n−6 −Y n−5

...
...

...
... · · ·

...
...

0 0 0 0 · · · I −I
−NAN −NXAN −NX2AN −NX3AN · · · −NXn−2AN I + NXn−2AN


.

(3.9)
Then

H3 = KH (3.10)

(see (3.6)), as one can verify with some algebra by using immediate equalities like Y (M−A) =
(M − A)X and X = AN(A−M).

Since clearly Y α = (A−N)Xα(A−N)−1, we have K = (A−N)K2, where

K2 =



I X − I X2 −X X3 −X2 · · · Xn−2 −Xn−3 −Xn−2

0 I X − I X2 −X · · · Xn−3 −Xn−4 −Xn−3

0 0 I X − I · · · Xn−4 −Xn−5 −Xn−4

0 0 0 I · · · Xn−5 −Xn−6 −Xn−5

...
...

...
... · · ·

...
...

0 0 0 0 · · · I −I
−ANN −ANNX −ANNX2 −ANNX3 · · · −ANNXn−2 I + ANNXn−2


(AN).
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Finally let

H4 =



I 0 0 0 · · · −Xn−1

0 I 0 0 · · · −Xn−2

0 0 I 0 . . . −Xn−3

...
...

...
... · · · ...

0 0 0 · · · I −X
0 0 0 · · · 0 ANF

 . (3.11)

A direct computation shows that K2H = H4.

Lemma 3.8. The matrix H4 is invertible if and only if F is, and in this case the inverse
matrix is

H−1
4 =


I 0 0 0 . . . Xn−1F−1(A−N)
0 I 0 0 . . . Xn−2F−1(A−N)
...

...
...

0 0 0 I XF−1(A−N)
0 0 0 0 F−1(A−N)

 . (3.12)

Proof. By direct check one verifies that H4H
−1
4 = I = H−1

4 H4. �

Proposition 3.9. If H is invertible the blocks of its inverse are given as follows:

H−1
αβ =


(I−Xn−αF−1NXα−1)(A−N)−1 if α = β

(−Xn−αF−1NXβ−1)(A−N)−1 if α > β

−(H−1
βα )t if α < β

, (3.13)

where t denotes the transposition inside the block.
In particular, for H = HD, n = r the inverse matrix has blocks

(H−1
D )αβ =


−(I +Xn

r (I +Xr)
−1)N−1

r if α = β

−Xβ−α−1
r (I +Xr)

−1N−1
r if α > β

−Xβ−α+1
r (I +Xr)

−1N−1
r = −((H−1

D )βα)t if α < β ,

(3.14)

while for H = HS, n = r + 1

(H−1
S )αβ =


0 if α = β
1
2
(Sβ−α+1

r − Sβ−αr ) if α > β
1
2
(Sβ−αr − Sβ−α−1

r ) = −((H−1
S )βα)t if α < β

. (3.15)

Proof. When H is invertible, then H−1 = H−1
4 K2. Thus, for α 6= n we compute

H−1
αα = (K2)αα + (H−1

4 )αn(K2)nα = (I−Xn−αF−1NXα−1)(A−N)−1

When α = n one computes H−1
nn = F−1(A−N)(I + (A−N)−1NXn−2)(A−N)−1, which is

proved to coincide with (I − F−1NXn−1)(A − N)−1 with some simple algebra. For α > β,
we easily compute H−1

αβ = −Xn−αF−1NXβ−1(A−N)−1 in both cases α 6= n and α = n.
In the Dipper-Donkin case H = HD (see page 12), n = r, equation (3.13) reduces to (3.14).
Indeed it is enough to observe that we here have

∀ α : F−1NXα = −Xα+1
r (I +Xr)

−1.
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Finally, let us consider H = HS (full rank case). Recall that in this case, X = Sr, N = −I,
(A−N)−1 = 1

2
(I− Sr), and F = (I + Snr )(I− Sr)−1. Equation (3.13) becomes

(H−1
S )αβ =


1
2
(I− Sr)(I + Sn−1

r )(I + Snr )−1 if α = β
1
2
Sn+β−α−1
r (I− Sr)2(I + Snr )−1 if α > β

−1
2
Sβ−α−1
r (I− Sr)2(I + Snr )−1 = ((−H−1

S )βα)t if α < β

. (3.16)

For n = r + 1 we get (3.15), using Snr = −Sr. �

Remark 3.10. ¿From (3.14) we observe that in the case n = r, the diagonal blocks (H−1
D )αα

are independent of α and the off-diagonal blocks (H−1
D )αβ depend only on the difference β−α,

so that the block entries of H−1
D are constant along diagonals and are completely determined

by the blocks in the, say, first block row. The same observation is valid for the matrix H−1
S

(r, n full rank case) as can be seen from (3.16).

3.3.1. Dipper-Donkin, full rank case. We compute explicitly the inverse matrix H−1
D in the

case n = r even.

Let us initially assume that we are in the full rank case (but r, n not necessarily equal).
We need to focus on the term FD: we need the (integer) matrix

F̃D :=
I−Xn−1

D

I−XD

= I +XD + · · ·+Xn−2
D

to be invertible. Notice first that XD is diagonalizable with a diagonal D consisting of the r
distinct points in Rr = C \ {1} for which εr+1

i = 1. It follows from the discussion before (see
page 13) that for a pair r, n corresponding to full rank, the map εi 7→ εn−1

i is a bijection of
Rr onto itself. Thus FD is similar to the diagonal matrix (I−Dn−1)(I−D)−1 of determinant
1, and we obtain

Lemma 3.11. FD is an integer matrix. If it is invertible, then it has determinant 1.

Lemma 3.12. The following special cases hold:

• If (r, n) = (r, r + 1) then FD = −ND.
• If (r, n) = (r, r) and r is even, then FD = −NDX

−1
D (I +XD). Furthermore,

(I +XD)(I +X2
D +X4

D + · · ·+Xr
D) = I . (3.17)

Proof. Small computations easily yield most of the above; the last identity follows since
I +XD +X2

D + · · ·+Xr
D = 0. �

Furthermore, notice that the interesting term in F−1
D is I−Xr

I−Xn−1
r

. In the full rank case i.e.

for g.c.d.(n-1,r+1)=1, choose a, b ∈ Z such that a(n − 1) + b(r + 1) = 1. Without lost of
generality we can assume that a > 0 and that a is the smallest positive integer which satisfies
the above equality. Then

I−Xr

I−Xn−1
r

= I +Xn−1
r + · · ·+X(a−1)(n−1)

r . (3.18)

16



For instance, when n = r = 2p, then a = p, b = 1 − p and the above is simply the sum∑p
j=1 X

j(r−1)
r .

Let Eij denote the matrix unit of position i, j with i, j = 1, . . . , r. (We will for convenience
set Eij = 0 when at least one between i and j are not in {1, 2, . . . , r}.) Define an r×r matrix

T = (tij) by T =
∑r−1

i=1 Ei,i+1, i.e.

tij =

{
1 if j − 1 = i , j ≥ 2
0 otherwise.

(3.19)

Lemma 3.13. For each i = 0, 1, . . . , r,

X i
D = T i + (T t)r−i+1 −

r∑
s=1

Er−i+1,s.

Proof. This follows easily by (finite) induction. �

For future use, also notice that the explicit form of X i
D, i ≤ r, is

X i
D =



0

0
... Ir−i
0

−1 . . . −1 −1 −1 . . . −1
0

Ii−1
... 0
0


← row r − i+ 1 (3.20)

and that we, furthermore, by direct computation, have

Lemma 3.14. For i = 0, 1, . . . , r,

X i
D(I− T ) = T i − T i+1 + (T t)r−i+1 − (T t)r−i (3.21)

and

X−iD (I− T ) = −
(
X i−1(I− T )

)t
. (3.22)

We can now compute explicitly the entries of the matrix H−1
D (also see (5.8) below for a

specific example: n = r = 4):

Proposition 3.15. Let n = r even. The components (H−1
D )ab, a, b = 1, . . . , r2, of the inverse

matrix of HD are constant along the diagonals, i.e. (H−1
D )ab = (H−1

D )a+c,b+c for all admissible
c ∈ Z, and they are given as follows: (H−1

D )aa = 0 and for b > a

(H−1
D )ab = −(H−1

D )ba =

 0 [b− a] = [1]
1 [b− a] = [3], [5], . . . , [r + 1]
−1 [b− a] = [2], [4], . . . , [r]

(3.23)

where [·] denotes the class of an integer in Z/(r + 1)Z = {[1], [2], . . . , [r + 1]}.
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Proof. Starting with Remark 3.10, in order to determine the matrix H−1
D it is enough to

determine the first row of blocks: (H−1
D )1β, β = 1, . . . , n = r. Next

(H−1
D )αβ =

{
(H−1

D )α−β+1,1 = −((H−1
D )1,α−β+1)t α ≥ β

(H−1
D )1,β−α+1 α ≤ β.

First we examine the diagonal block. From (3.14), (H−1
D )11 = (I+Xr

D(I+XD)−1)(I− T ).
By making use of equations (3.17) and (3.21) we get

(H−1
D )11 =

−T +

r/2∑
i=1

(
T 2i−1 − T 2i

)+

T t +

r/2∑
i=1

(
(T t)r−2i+2 − (T t)r−2i+1

) ,

where the second term is the transposed of the first one. Since T i =
∑r−i

j=1Ej,j+i, we have

that the block (H−1
D )11 is completely determined by its (say) first row and (also using T r = 0)

that this is given by
(
(H−1

D )11

)
1j

= (0, 0,−1, 1,−1, 1, . . . ,−1, 1) i.e.

(
(H−1

D )11

)
1j

=

 0 j = 1, 2
1 j > 1 odd
−1 j > 2 even .

(3.24)

An analogous argument shows that the off-diagonal blocks (H−1
D )1β, β 6= 1, consist of a sum

of powers of T and T t. Specifically

(H−1
D )1β = T − T 2 + T 3 + · · ·+ T β−1 − T β+1 + T β+2 + · · ·+ T r−2 − T r−1 − (T t)r−1 +

(T t)r−2 − (T t)r−3 + · · ·+ (T t)r−β+2 − (T t)r−β + (T t)r−β−1 + · · ·+ T t − I

for β even and

(H−1
D )1β = I− T + T 2 + · · ·+ T β−1 − T β+1 + T β+2 + · · · − T r−2 + T r−1 +

+(T t)r−1 − (T t)r−2 + · · ·+ (T t)r−β+2 − (T t)r−β + (T t)r−β−1 + · · ·+ (T t)2 − T t

for β odd. Notice that contrary to the diagonal blocks, the block (H−1
D )1β, β 6= 1, is not

antisymmetric, (H−1
D )1β 6= −((H−1

D )1β)t, but still its entries are constant along the diagonals
(due to the specific form of T ), so that it is determined by its first row and first column.
From the above expressions we have

(
(H−1

D )1β

)
1j

=


0 j = β+1

1 j = β, β−2, β−4,...

−1 j = β−1, β−3,...

−1 j = β+2, β+4,...

1 j = β+3, β+5,...

;
(
(H−1

D )1β

)
i1

=


0 i = r−β+2

1 i = r−β, r−β−2,...

−1 i = r−β+1, r−β−1,...

1 i = r−β+3, r−β+5,...

−1 i = r−β+4, r−β+6,...

(3.25)

for both β odd or even (β 6= 1), i, j = 1, . . . , r.

We can now prove that the components (H−1
D )ab, a, b = 1, . . . , r2, are constant along the

diagonals. It remains to prove it when passing from a block to a nearby one, for instance
we need to prove that ((H−1

D )1β)ir = ((H−1
D )1,β+1)i+1,1 for all i 6= r, β 6= 1. To do that it is
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enough to compare the expressions of ((H−1
D )1β)ir = ((H−1

D )1β)1,r−i+1 and ((H−1
D )1,β+1)i+1,1

resulting from (3.25). Similarly we can prove the result for all other cases:

((H−1
D )12)ri = ((H−1

D )22)1,i+1 , ((H−1
D )11)ir = ((H−1

D )12)i+1,1 ,

((H−1
D )αβ)ri = ((H−1

D )α+1,β)1,i+1, α + 1 < β, i 6= r .

Summarizing, we conclude that H−1
D is determined by its first row. From the previous

computations,

(H−1
D )1b = (. . . | . . . , 1,−1, 1,−1, 1, 0,−1, 1,−1, 1, . . . |︸ ︷︷ ︸ . . . )

↑
block (HD)1β

,

where the 0’s in block β occurs in position b = (β − 1)(r + 1) + 2, the 1’s for b = . . . , (β −
1)(r + 1)− 1, (β − 1)(r + 1) + 1, (β − 1)(r + 1) + 4, (β − 1)(r + 1) + 6, . . . , and the −1’s in
the remaining positions. ¿From this, together with the equation (H−1

D )ab = (H−1
D )a+c,b+c, we

deduce formula (3.23). �

3.3.2. Dipper-Donkin case r = n odd. In this last part of the section we return to the result
of Corollary 3.4. For r = n odd the matrix HD is not invertible, nevertheless we can construct
a ‘partial left inverse’ as follows. (See also §6.)

Let us introduce the invertible matrix Un = I +
∑

1≤2i+1<nEn,2i+1. We further introduce

the matrix P :=
∑n

k=1En,k which has all entries zero, but for the last row of 1’s. Thus we
can rewrite the matrices Xr and T as Xr = N−1

r + I− P and T = Xr + P . The following is
elementary:

Un(I +Xr) =

{
I + (Xr + P ) = 2 +N−1

r for n even
I + (Xr + P )− En,n for n odd.

Further, we have easily that the term ANF in the matrix (3.11) here is given as ANF =
(I +X−1

r ).
Thus the invertible integer matrix Vn := (I + T )−1UnXr of determinant 1 is such that

Vn(I +X−1) = I if n is even and Vn(I +X−1) = I− En,n + En−1,n − En−2,n + · · · − E1,n if n
is odd. For n odd, we introduce the notation

Ẽn := En,n − En−1,n + En−2,n + · · ·+ E1,n . (3.26)

Consider the matrix

Zn =



I 0 0 . . . 0 Xn−1Vn
0 I 0 . . . 0 Xn−2Vn
0 0 I . . . 0 Xn−3Vn

. . . . . . . . . . . .
. . . . . .

0 0 0 0 I XVn
0 0 0 0 0 Vn

 .

Then by using the matrix H4 = K2H in (3.11), we have ZnK2H = In when n is even and
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ZnK2H =



I 0 0 . . . 0 −Xn−1Ẽn
0 I 0 . . . 0 −Xn−2Ẽn
0 0 I . . . 0 −Xn−3Ẽn

. . . . . . . . . . . .
. . . . . .

0 0 0 0 I −XẼn
0 0 0 0 0 I− Ẽn


(3.27)

when n is odd, in agreement with Corollary 3.4. (For n = r even, Zn = H−1
4 , see (3.12).)

3.3.3. The Dipper-Donkin case for n = r+ 1. We finally analyse the inverse matrix H−1
D for

n = r + 1. In this case (3.13) simplifies considerably because in this case F = −N . Then

(H−1
D )αβ =


(I +X−1

r )(I− T ) if α = β

Xβ−α−1
r (I− T ) if α > β
−((H−1

D )βα)t if α < β ,

(3.28)

so that H−1
D is constant along (block) diagonals as it was for n = r.

Next, from (3.21) it is immediate to see that

(H−1
D )αα = T t − T =

r−1∑
i=1

(Ei+1,i − Ei,i+1)

We need only to compute the blocks (H−1
D )αβ for (say) α = 1, β ≥ 2. First, for 1 ≤ α < β,

from (3.22) together with (3.21) we get

H−1
αβ = −(H−1

βα )t = T β−α − T β−α+1 + (T t)r−β+α+1 − (T t)r−β+α ,

so that

Lemma 3.16. For each β = 2, . . . r it holds that

(H−1
D )1β = T β−1 − T β + (T t)r−β+2 − (T t)r−β+1

=

r−β+1∑
i=1

Ei,i+β−1 −
r−β∑
i=1

Ei,i+β +

β−2∑
i=1

Er−β+i+2,i −
β−1∑
i=1

Er−β+i+1,i (3.29)

Moreover, a little algebra shows that:

Lemma 3.17. For n = r+1, the entries of the matrix H−1
D are constant along the diagonals.

Specifically, for each a, b = 1, . . . , r(r + 1): (H−1
D )ab = (H−1

D )a+c,b+c for all admissible c ∈ Z.

3.3.4. The FRT case for n = r+ 1. Let us now address the FRT case as given on page 12.

Lemma 3.18. The following special cases hold:

• If (r, n) = (r, r + 1) then FS = I.
• If (r, n) = (r, r − 1) then FS = −S−1

r

• If (r, n) = (r, 2r) then FS = 2(I− Sr)−1.

We analyse from (3.15) the inverse matrix H−1
S for n = r + 1. As observed in Remark

3.10, it is enough to compute the blocks (H−1
S )αβ for (say) α = 1, β ≥ 2.
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Proposition 3.19. For each β = 2, . . . r it holds that

2(H−1
S )1β =

r−β+1∑
i=1

Ei,i+β−1 −
β−1∑
i=1

Er−β+i+1,i −
r−β+2∑
i=1

Ei,i+β−2 +

β−2∑
i=1

Er−β+i+2,i (3.30)

Proof. By induction one can prove that for each ` ≤ r,

S` =
r−∑̀
i=1

Ei,i+` −
∑̀
i=1

Er−`+i,i = T ` − (T t)r−` , (3.31)

and the formula (3.30) then follows immediately from (3.15). �

Notice that the matrix H−1
S does not have constant values along the diagonals, contrary

to what happens for the Dipper-Donkin cases n = r (see Prop. 3.15) and n = r+ 1 (Lemma
3.17). For example, for n = r + 1 = 6 one has

(H−1
S )12|(H−1

S )13 =
1

2


−1 1 0 0 0 0 −1 1 0 0
0 −1 1 0 0 0 0 −1 1 0
0 0 −1 1 0 0 0 0 −1 1
0 0 0 −1 1 −1 0 0 0 −1
−1 0 0 0 −1 1 −1 0 0 0

 .

4. Block diagonals. Degrees

Recall that a skew symmetric N ×N integer matrix J of corank(J) = c, when viewed as
a quadratic form, can be transformed to a block diagonal form by an integer matrix L of
determinant 1. Specifically,

LtJL = Diag(D1, D2, . . . , Dk, 0, 0, . . . , 0)

where k = 1
2
(N − c) and each Di, i = 1, . . . , k is a non-trivial skew symmetric 2× 2 integer

matrix.

Remark 4.1. By the work of De Concini and Procesi [2] the block diagonal form yields the
degree of the quantized matrix algebra in case q is a primitive mth root of unity.

We can apply this result to J = HD (see page 12). First, let us assume that HD is
invertible.

Corollary 4.2. Suppose HD is invertible. Then a block diagonal form of HD consists of 1
2
rn

blocks of the form

(
0 1
−1 0

)
.

Proof. It follows, by combining Lemma 3.11 with Corollary 3.2, that detHD = 1 in this
case. �

As for the situation for FRT, we have the following result adapted to the current termi-
nology. Let d0 = bn+r−1

2
c.
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Proposition 4.3. [9, Proposition 4.11] The non-trivial blocks in a block diagonal form of

the defining matrix HS are: d0 matrices of the form

(
0 1
−1 0

)
and max{0, nr−cn,r

2
− d0}

matrices of the form

(
0 2
−2 0

)
or

(
0 4
−4 0

)
, where cn,r = corank(HS).

Recall: n = xs and r = ys. According to Corollary 3.5, cn,r = s, but only in case both x
and y are odd. We assume throughout that r ≥ n > 1. In case of a regular matrix x, y must
have opposite parities. According to Corollary 3.2, the determinant of D is given by

detD = 2(n−1)(r−1) detFS

where FS = 1+Sn

1−S . In this case it is easy to see that 1
2
nr − d0 ≥ 0. If f denotes the number

of blocks with 4’s then it is easy to see that Proposition 4.3 yields

detHS =

{
2nr−n−r+1+2f if s is odd
2nr−n−r+2+2f if s is even.

The number f was only determined in a few special cases in [9]. We can now use Corollary 3.2
to determine it. Specifically, one may use some elementary Gauss Elimination moves on
1 + Sn, or F , to conclude that det(1 + Sn) = 2s, or equivalently, detF = 2s−1. We give a
short sketch of this result. Let us introduce a more general configuration 1+ε1T

n+ε2(T t)r−n,
where ε1, ε2 are ±1. It may be assumed that they are never −1 at the same time. T is the
r × r matrix of (3.19). We are interested in ε1 = −ε2 = 1, but will encounter more general
configurations in the reduction process. It is indeed easy to see that we can reduce the
dimensions by splitting off diagonals of 1’s as follows:

r > 2n : (n, r, ε1, ε2) → (n, r − n, ε̃1, ε̃2)

r < 2n : (n, r, ε1, ε2) → (2n− r, n, ε̂1, ε̂2).

As an example, consider, for r > 2n, the configuration (n, r, 1,−1): Adding the top n rows
to the bottom n rows gives a matrix in which the first n rows carry so-called leading 1’s and
this part can then be ignored. The remaining (r − n) × (r − n) matrix then evidently has
signs ε1 = 1 = ε2.

In case 2n = r we are done in one step, and here we obtain the lower part of the diagonal
consisting of s places with the value 1 − ε1ε2. In case ε1ε2 = 1 the original matrix is thus
singular. Observe that all matrices can be viewed as being built up of s × s blocks of ±Is
which means that we may as well set s = 1 in the reduction process, returning it to its
original value only in the end. We are considering the case where the matrix is regular, and
since x, y are relatively prime, and have opposite parities, the situation y = 2x implies x = 1.
As before, if we are in this situation, we are done in one step. If we are not in this case we
will eventually get there according to the above strategy.
In summary, we have then obtained

Proposition 4.4. Let f denote the number of times a block

(
0 4
−4 0

)
appears in the block

diagonal of HS when the latter is regular. Then

f = bs− 1

2
c.
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4.1. Concerning the block diagonal form of a non-regular H. To deal with the non-
regular cases, we make the following observations.

Suppose that there exist an integer matrix G of determinant 1 such that GHGt = D:(
g1 g2

g3 g4

)(
h1 h2

−ht2 h3

)(
gt1 gt3
gt2 gt4

)
= D =

(
D 0
0 0

)
, (4.1)

where we have split the matrices in blocks (of suitable dimensions) and D is a non-degenerate
block diagonal matrix. This implies(

(g1h1 − g2h
t
2)gt1 + (g1h2 + g2h3)gt2 (g1h1 − g2h

t
2)gt3 + (g1h2 + g2h3)gt4

(g3h1 − g4h
t
2)gt1 + (g3h2 + g4h3)gt2 (g3h1 − g4h

t
2)gt3 + (g3h2 + g4h3)gt4

)
=

(
D 0
0 0

)
.

(4.2)
Notice that we are not assuming that the blocks are of the same size. In applications

below, this is far from being the case.
Suppose furthermore that there exist a matrix Z, similarly decomposed into blocks, such

that

Z

(
h1 h2

−ht2 h3

)
=

(
z1 z2

z3 z4

)(
h1 h2

−ht2 h3

)
=

(
z1h1 − z2h

t
2 z1h2 + z2h3

z3h1 − z4h
t
2 z3h2 + z4h3

)
=

(
L t1
0 t2

)
.

(4.3)
At the moment we just assume that L is a general matrix. Assume furthermore that

t2 = 0 and that z4 is invertible. Set x = z−1
4 z3. It follows that ht2 = xh1, h2 = −h1x

t, and
h3 = xh1x

t. Then the upper left hand corner of (4.2) gives:

(g1 − g2x)h1(g1 − g2x)t = D. (4.4)

Similarly, we get from (4.3) that

(z1 − z2x)h1 = L (4.5)

More generally, we get(
(g1 − g2x)h1(g1 − g2x)t (g1 − g2x)h1(g3 − g4x)t

−(g3 − g4x)h1(g1 − g2x)t (g3 − g4x)h1(g3 − g4x)t

)
=

(
D 0
0 0

)
. (4.6)

Since (g1 − g2x) and h1 are invertible it follows that

g3 − g4x = 0. (4.7)

Now observe:

Lemma 4.5. If x is an integer matrix, then D is a block diagonal form of h1.

Proof. Notice that in this case,

(
ε1I 0
ε2x ε3I

)
, for suitable choices of signs ε1, ε2, and ε3, is

an integer matrix of determinant 1 for which(
ε1I 0
ε2x ε3I

)(
h1 0
0 0

)(
ε1I 0
ε2x ε3I

)t
=

(
h1 h2

−ht2 h3

)
. (4.8)

Inserting this into (4.1) gives that

(
D 0
0 0

)
is a block diagonal form of

(
h1 0
0 0

)
. �
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Observe that (
z1 z2

z3 z4

)
=

(
z1 − z2x z2

0 z4

)(
I 0

z−1
4 z3 I

)
(4.9)

so that, if detZ = 1, then det(z1 − z2x) det z4 = 1. From Lemma 4.5 and equations (4.5),
(4.9) we then conclude

Proposition 4.6. If x is an integer matrix and if detZ = 1, then

detD = detL det z4.

4.1.1. The block diagonal form of a non-regular HS. Consider the singular case for FRT. As
in §3.2.2, let r = ys, where s = g.c.d.(n, r). Let

GS =



I 0 0 0 . . . 0 0
0 I 0 0 . . . 0 0
0 0 I 0 . . . 0 0
0 0 0 I . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . I 0
I −I I −I . . . −I I


be an y × y block matrix where each block is an s× s matrix so that I = Is. Similarly, let

ĜS =



I 0 0 0 . . . 0 0
0 I 0 0 . . . 0 0
0 0 I 0 . . . 0 0
0 0 0 I . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . I 0
0 0 0 0 . . . 0 GS


be an n × n block matrix of r × r blocks. We are interested in stydying the effect of a

multiplication from the left on the two sides of (3.10) (case of H = HS) by ĜS.

We first investigate ĜSH3. This will be the right hand side of (4.3). It may be seen
that GS(I + Sn) is a matrix whose bottom s rows are zeros. A similar statement holds for

GS(I+Sn)(I−S)−1. Let L̂ denote the (r−s)×(r−s) matrix obtained from (I+Sn)(I−S)−1

by removing the last s columns and last s rows. In the terminology of (4.3) we then have

L =



A−N 0 0 . . . 0 0
0 A−N 0 . . . 0 0
0 0 A−N . . . 0 0
...

...
...

...
...

...
0 0 0 . . . A−N 0

0 0 0 . . . 0 L̂

 . (4.10)

The blocks A − N , of which there are n − 1, are of size r × r. It may be seen that L̂ is an
integer matrix of determinant 1. Since this computation is very analogous, indeed almost
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identical, to a case for the Dipper-Donkin algebra treated below, we omit the details. This
was the only unknown piece of detL.

Now to ĜSK: This will be the matrix Z of the previous considerations. Specifically, the
matrix z3 will be an s×(nr−s) matrix which, together with z4 make up the bottom s rows of
Z. The effect of the multiplication is, basically, that we multiply the bottom (block) row of
K (3.9) by GS, leaving everything else unchanged. We have that I+NXn−2AN = 1

2
(I+Sn−1).

In this matrix, we are in particular interested in the bottom row of s × s blocks and thus
write

1

2
GS(I + Sn−1) =

1

2
GS(I− S−1) +

1

2
GS(I + Sn)S−1. (4.11)

Notice that the matrices T and S can be defined in any positive dimension d ∈ N. Specif-
ically, T =

∑d−1
b=1 Eb,b+1 and S = T − Ed,1. We will denote these matrix by Td and Sd to

clarify the notation in what comes. The last term in (4.11) may be ignored for our present
purposes. We have that Ir − S−1

r = Ir − T tr +E1,r. We write this in terms of s× s blocks as
follows:

Ir − S−1
r =



Is − T ts 0 0 0 . . . 0 E1,s

−E1,s Is − T ts 0 0 . . . 0 0
0 −E1,s Is − T ts 0 . . . 0 0
0 0 −E1,s Is − T ts . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . Is − T ts 0
0 −0 0 0 . . . −E1,s Is − T ts


. (4.12)

We then easily obtain: Set Rs = 1
2
(I − S−1

s ). This is an s × s matrix, and the last

row of 1
2
GS(I + Sn−1) is given as (reading from left to right, separated by vertical lines

|): (Rs| − Rs|Rs| . . . | − Rs|Rs). To connect with the previous, observe that z4 here is
represented by Rs. Thus, det z4 = 21−s. It follows, provided x is an integer matrix, that
detD = 2nr−n−r+2−s.

We then focus on the other terms 1
2
GS(I − S)Si. These may be attacked in a similar

fashion, keeping Si outside the deliberations as a factor from the right. This gives us z3.
To obtain x, we multiply with z−1

4 from the left and it is then obvious that x is an integer
matrix.

In the singular case, d0 = 1
2
(n+r−2) since n+r = (x+y)s is even and then Proposition 4.3

gives that detD = 2nr−n−r+2−s+2f .

Proposition 4.7. No block

(
0 4
−4 0

)
appears in the block diagonal of HS when the latter

is singular.

4.1.2. The block diagonal form of a non-regular HD. Let us consider the Dipper-Donkin
singular case:
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Let n− 1 = x · s and r + 1 = y · s. Let

GD =



Is−1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
0 0 Is−1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 0
Is−1 0 Is−1 0 . . . 0 Is−1


.

This is a matrix whose diagonal is made up of y blocks of the (s − 1) × (s − 1) identity
matrix separated by (y − 1) blocks of 1’s (1 × 1 identity matrix) as indicated. The 0’s
represent either (s− 1)× (s− 1), 1× (s− 1), or (s− 1)× 1 blocks of zeros.

We proceed in analogy with the FRT case and introduce ĜD as the analogue of ĜS, and

we then multiply the two sides of (3.10) (case of H = HD) by ĜD from the left.
It follows easily that in the present case, GD(I − Xn−1) is a matrix whose bottom (s − 1)
rows are zero, and hence GDANF is a matrix whose bottom (s− 1) rows are zero. We will

later prove that if L̂ denotes the the top left (r − (s− 1))× (r − (s− 1) matrix in GDANF

then det L̂ = 1. Again, this gives the only unknown piece of detL.
We must now examine the effect of multiplying the bottom block row in K2 by GD. It is

clear that this will result in an integer matrix, and thus we need only concern ourselves with
GD(I − (I − Xn−1)(I − X)−1)(−N)−1. In particular, the bottom s − 1 rows coincide with
those of GD(−N−1), and if z4 denotes the rightmost (s− 1)× (s− 1) block of that row, then
det z4 = 1 follows easily.

Let us then turn to L̂, which easily is seen to equal the result of removing the bottom
s − 1 rows and rightmost s − 1 columns from X + X2 + · · · + Xn−1. We do the following
elementary column operations: Let ci denote the ith column. Subtract c2 from c1, then c3

from c2, etc until cn is subtracted from cn−1. The resulting matrix has the following form:

Ir−s+1 −
n−s−1∑
α=1

Er−n+2+α,α −
r−n−s+2∑
β=1

Eβ,β+n−1 −
s∑

γ=2

Er−n−s+1+γ,r−s+1.

Let us say that this matrix is determined by the data (x, y). In case 2x > y we can
immediately remove the 1’s below the diagonal and obtain an upper triangular matrix with
1’s on the diagonal. The case 2x = y is of course not possible. Let us then consider the
case 2x < y. Here we again add top rows to remove the elements corresponding to the term
−
∑n−s−1

α=1 Er−n+2+α,α. After that, we can ignore the first rows and columns and are in a case
corresponding to the data (x, y − x). If 3x > y we are done, and otherwise we reduce again
in the place of the y. After a finite number of steps we are done.

Corollary 4.8. In all cases, regular as well as singular, any non-trivial block of the block

diagonal form of any HD is of the form

(
0 1
−1 0

)
.

Remark 4.9. This corrects in particular a part of the proof of Theorem 3.1 in [11].

Similarly we get
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Corollary 4.10. Any non-trivial block of the block diagonal form of any HcI or HcII is of

the form

(
0 1
−1 0

)
.

4.2. The degree of the extended algebra Pq. Consider a skew symmetric block matrix
HP given by

HP =



0 Mb Mb Mb · · · Mb I Ê1

Nb 0 Mb Mb · · · Mb I Ê2

Nb Nb 0 Mb . . . Mb I Ê3

Nb Nb Nb 0 · · · Mb I Ê4
...

...
...

... · · · ...
...

...

Nb Nb Nb Nb · · · 0 I Ên
−I −I −I −I . . . −I 0 0

−Êt
1 −Êt

2 −Êt
3 −Êt

4 . . . −Êt
n 0 0


,

where for the time being Mb = b · Mr is an arbitrary integer multiple of the previously
introduced matrix Mr (see p. 12). Furthermore, I denotes the identity matrix of order r and

Êα are the r×n matrices defined by Êα =
∑r

s=1Es,α for α = 1, . . . , n. Here we consider the
matrix units Es,i as r × n (!) matrices with (as usual) a single non-zero entry at position
(s, i).

We subtract Mb times the (block) column with the I’s from the columns 2, . . . , n and
likewise add Nb times the row with the −I’s from the rows 2, . . . , n. We further subtract
Ê1 times the I-column from the last column which results in (0, Ê2 − Ê1, Ê3 − Ê2, . . . , Ên −
Ên−1, 0, 0)t. We can then make additional column operations inside this last block column

so that the effect on the blocks Ê2, Ê3, . . . , Ên are annihilated (specifically we add to the
first column the sum of all the other r − 1 columns). Finally, at this stage, we make the
analogous row operations. The net effect is then a matrix

H
(1)
P = QHPQ

t =



0 0 0 0 · · · 0 I 0

0 Ab −Nb −Nb · · · −Nb I Ê2

0 −Mb Ab −Nb . . . −Nb I Ê3

0 −Mb −Mb Ab · · · −Nb I Ê4
...

...
...

... · · · ...
...

...

0 −Mb −Mb −Mb · · · Ab I Êm
−I −I −I −I . . . −I 0 0

0 −Êt
2 −Êt

3 −Êt
4 . . . −Êt

m 0 0


,

where Ab = −Nb −Mb.
We can now subtract the first block row from the other rows and analogously for the first

block column. In this way a total of r blocks of the form

(
0 1
−1 0

)
splits off. We then use

the Êi’s to subtract the last columns and last rows in the Ab,−Mb,−Nb terms. Begin by
using Ê2, Ê

t
2, then use Ê3, Ê

t
3, ect. In this way, n− 1 blocks of the same form as before split

off. Finally, owing to the removal of Ê1, in the cloumn with number (n + 1)r − 1 there are
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only 0’s, and analogously, in the row (n+ 1)r + 1, and in this way, one trivial 2× 2 matrix
splits off. What remains is to consider a matrix of the form

H
(2)
P =



A −b ·Nr−1 −b ·Nr−1 −b ·Nr−1 · · · −b ·Nr−1

−b ·Mr−1 A −b ·Nr−1 −b ·Nr−1 · · · −b ·Nr−1

−b ·Mr−1 −b ·Mr−1 A −b ·Nr−1 . . . −b ·Nr−1

−b ·Mr−1 −b ·Mr−1 −b ·Mr−1 A · · · −b ·Nr−1
...

...
...

... · · · ...
−b ·Mr−1 −b ·Mr−1 −b ·Mr−1 −b ·Mr−1 · · · A

 , (4.13)

where A = −b ·Mr−1 − b ·Nr−1. This matrix is an (n− 1)× (n− 1) block matrix in which
the blocks are of size (r − 1)× (r − 1).

We now assume that HP is the defining matrix of the extended algebra Pq introduced in
§2. This is possible if we use a Dipper-Donkin basis (see Definition 2.5). Equivalently, we

set M = 2Mr. Then H
(2)
P in (4.13) is of the form

H
(2)
P = −2HcII ,

where HcII is the matrix introduced at page 12.
Let r = ys and x = xs with x, y relatively prime. Then the corank corank(HcII ) of

HcII based on a (r − 1) × (n − 1) configuration has been determined by Proposition 3.6 as
corank(HcII ) = s− 1.

Then we have obtained

Proposition 4.11. The non-trivial blocks of the matrix HP of an n× r quantized extended

algebra Pq are: (n+r−1) blocks of the form

(
0 1
−1 0

)
together with 1

2
((n−1)(r−1)−s+1)

blocks of the form

(
0 2
−2 0

)
.

Corollary 4.12. If n = r, the non-trivial blocks of the matrix HP of the quantized extended

algebra Pq are: (2n− 1) blocks of the form

(
0 1
−1 0

)
together with 1

2
(n− 1)(n− 2) blocks

of the form

(
0 2
−2 0

)
.

Remark 4.13. Notice that when n = r, the total number of blocks is 1
2
n(n + 1). Corol-

lary 4.12 corrects the distribution of the two kinds of blocks as given in [12, Theorem 11.2]

5. The quasi-commutation matrix Λ and its inverse

In this section we analyze the matrix Λ, introduced in Proposition 2.9, which encodes the
commutation relations among the quantum minors χαj. As in (2.17):

Λ = TtHT,
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where the matrix T was defined in (2.18) and can be written as a matrix made of n × n
blocks of order r in the following form:

T =


I T T 2 · · · T n−1

0 I T · · · T n−2

0 0 I · · · ...
...

... · · · . . . T
0 0 · · · 0 I

 . (5.1)

Here, T is the r × r matrix introduced previously in (3.19). It is evident that det(T) = 1
and the inverse matrix is given by

T−1 =


I −T 0 · · · 0
0 I −T · · · 0

0 0 I · · · ...
...

... · · · . . . −T
0 0 · · · 0 I

 (5.2)

As an example we write here the case of n = r = 3:

T =



1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, T−1 =



1 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 −1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

In the full rank case, the invertibility of the matrix H (3.3) implies that of Λ:

Λ−1 = (T−1)H−1(T−1)t,

or in block (r × r matrices) components

Λ−1
αβ = H−1

αβ −H
−1
α,β+1T

t − TH−1
α+1,β + TH−1

α+1,β+1T
t, α, β = 1, . . . , n, (5.3)

where the second term H−1
α,β+1T appears only when β < n, and with analogous properties

for the other terms. With the aim of determining compatible pairs (ΛM, B̃M) as in (2.21),
we study below the explicit form of the matrix Λ−1 in the two particular cases H = HD and
H = HS:

5.1. The inverse matrix Λ−1.
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5.1.1. Dipper-Donkin general full rank case. Let us consider the case of H = HD, for
g.c.d.(n− 1, r+ 1) = 1. In what follows, we avoid writing the subscripts D and r to matrices
to lighten the notation.

We collect first some useful formulas immediately derivable from the very definitions of the
matrices X,T :

(i) F−1N = I−X
X−Xn ;

(ii) for r = 2m, (I +X)−1 = −
∑m

i=1X
2i−1 (cf. (3.18)). Indeed

−(I +X)
m∑
i=1

X2i−1 = −
r∑
i=1

X i = −
r∑
i=0

X i + I = I ;

(iii) (I− T )T t = X−1(I− T ) + Err = T t − I + Err, and X−1(I− T ) = −I + T t ;
(iv) TX−1 = I− Err and X−1N−1 −N−1T t = Err.

Then we compute the different blocks of the inverse matrix Λ−1:

• If n > α > β + 1 then all terms in Λ−1 appear. Using in this range

H−1
αβ = Xn−α+β−1(I−X)(X −Xn)−1N−1

and H−1
α+1,β = X−1H−1

α,β one easily gets

Λ−1
α,β = Err

(
Xn+β−α(I−X)

X −Xn

)
Err =

(
Xn+β−α(I−X)

X −Xn

)
rr

Err. (5.4)

Indeed from (5.3),

Λ−1
αβ = (I− TX−1)H−1

α,β − (I− TX−1)H−1
α,β+1T

t = Err(H
−1
α,β −H

−1
α,β+1T

t)

= ErrX
n−α+β(I−X)(X −Xn)−1[X−1N−1 −N−1T t]

= ErrX
n−α+β(I−X)(X −Xn)−1Err ,

from which (5.4) follows.

• We define Pn := −
(
Xn−1(I−X)
X−Xn

)
. Then

H−1
α,α = (Pn + I)(I− T ) ; H−1

α,α−1 = −PnX−1N−1,

so in particular we observe that H−1
α,α and H−1

α,α−1 do not depend on the block index
α. Furthermore, notice that (Pn)rr = −1. Indeed, from (3.18) we have that Pn =
−X−1[Xn−1 +X2(n−1) + · · ·+Xa(n−1)]. Next, for each a′ < a, Xa′(n−1) 6= X, since by
our assumptions, a is the smallest positive integer such that a(n−1) ≡ 1 mod(r+1).
Similar reasoning shows that for all a′ < a, Xa′(n−1) 6= Xr because otherwise we
would have (a− a′)(n− 1) ≡ 1 mod(r + 1). Hence, from (3.20), the only term in Pn
which has a non-zero r, r component is −X−1Xa(n−1) = −I.
Then, for α ≤ n− 1, we compute

Λ−1
α,α−1 = I− T t. (5.5)

Indeed, by using Err(I + Pn)Err = 0 and

H−1
α+1,α = X−1H−1

α,α −X−1(I− T ) = X−1H−1
α,α + I− T t
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we have

Λ−1
α,α−1 = (I− TX−1)H−1

α,α−1 − (I− TX−1)H−1
α,αT

t + TX−1N−1T t

= ErrH
−1
α,α−1 − ErrH−1

α,αT
t + (I− Err)(Err +X−1N−1)

= −ErrPnX−1N−1 − Err(Pn + 1)(T t − I + Err) +X−1N−1 − ErrX−1N−1

= −ErrPnM−1 + ErrPnM
−1 + ErrM

−1 +M−1 − ErrM−1 = I− T t.
• We observe that H−1

α,α is skew symmetric. We use

H−1
α,α+1 = H−1

α,α(X−1)t + (I− T t)(X−1)t = H−1
α,α(X−1)t − I + T

and compute Λ−1
α,α for α ≤ n− 1:

Λ−1
αα = H−1

α,α −H−1
α,α(X−1)tT t + T t − TT t − TX−1H−1

α,α − T + TT t + TH−1
α,αT

t

= H−1
α,αErr + T t + ErrH

−1
α,α −H−1

α,α − T + TH−1
α,αT

t.

Next,

H−1
α,αErr + (Err − I)H−1

α,α + TH−1
α,αT

t = H−1
α,αErr − TX−1(Pn + I)(I− T )

+T (Pn + I)(X−1(I− T ) + Err)

=
(
H−1
α,α + T (Pn + I)

)
Err,

(where we used that Pn and X−1 commute), and therefore we conclude that for
α ≤ n− 1:

Λ−1
α,α = T t − T + (Pn + I− PnT + TPn)Err .

Define the matrix Q by T = X+Q, i.e. Q =
∑r

i=1 Eri. Then, clearly, (Pn+I−PnT +
TPn)Err = (P + I−PQ+QP )Err. We observe that ErrX = −Q and QErr = Err, so
that (Pn+I−PnQ+QPn)Err = Err+QPnErr. Furthermore QPnErr = −ErrXPnErr,
with (XPn)rr = 1. We conclude that (Pn + I− PnT + TPn)Err = 0 and

Λ−1
α,α = T t − T , ∀α ≤ n− 1 .

• Evidently, Λ−1
n,n = H−1

n,n = (Pn + I)(I− T ).

• For β < n− 1, Λ−1
nβ = H−1

nβ −H
−1
n,β+1T

t = −Xβ (I−X)
X−XnErr.

• Λ−1
n,n−1 = −Xn−1 (I−X)

X−XnErr − T t + I− Err = PnErr − T t + I− Err.

Summarizing, we have the following:

Λ−1
αβ =



(
Xn+β−α(I−X)

X−Xn

)
rr
Err if n > α > β + 1

I− T t if α 6= n, β = α− 1

T t − T if α = β 6= n

(Pn + I)(I− T ) if α = β = n

−Xβ (1−X)
X−XnErr if α = n, β < n− 1

PnErr − T t + I− Err if α = n, β = n− 1

−(Λ−1
βα)t if α < β

.

31



Dipper-Donkin, case n = r even. In the particular case in which n = r = 2m, the expression
of Λ−1 just determined can be simplified further, thanks to the fact that here Xn = X−1

and (I +X)−1 = −X −X3 · · · −Xr−1.

• For n > α > β + 1, we have Λ−1
αβ = (Xβ−α(X + X3 + . . . Xr−1))rrErr . Recalling the

expression of X l from equation (3.20), we see that (X l)rr is non zero only for the
values l = 0, 1, r + 1. Thus,

Λ−1
αβ =

{
−Err if α− β even
+Err if α− β odd

.

Indeed, if α− β is even, the sum X−(α−β)(X +X3 + . . . Xr−1) contains the term X,
while if odd, it contains I.
• The term Pn here is simply the sum of the even powers of X :

Pn = I +X2 + . . . Xr−2. (5.6)

• For α = n, β < n− 1, we need to analyse the term

−Xβ I−X
X −Xr

= Xβ(X2 +X4 + . . . Xr−2 +Xr) =: L .

If β is even, then

L = Xβ+2 +Xβ+4 + . . . Xr︸ ︷︷ ︸
even

+X +X3 + . . . Xβ−1︸ ︷︷ ︸
odd

while if β is odd,

L = Xβ+2 +Xβ+4 + . . . I︸ ︷︷ ︸
odd

+X2 +X4 + . . . Xβ−1︸ ︷︷ ︸
even

.

Now let us consider the last column of L. Accordingly to (3.20), we have (X l)ir =
δi,r−l − δi,r−l+1 (the first term disappearing for i = r), so that

Lir =

{
(−1, 1,−1, 1, . . . , 0, . . . 1,−1, 1,−1, 1,−1)t if β even

(1,−1, 1,−1, . . . , 0, · · · − 1, 1,−1, 1,−1, 1)t if β odd
, (5.7)

i.e. Lir is a column of alternating 1,−1 starting and finishing with −1 if β is even,
with 1 if β is odd, and with a single 0 at the position of the row r − β. Hence we
conclude that the only non zero column of Λ−1

n,β, β < n− 1 is

(Λ−1
n,β)ir =

{
(−1, 1,−1, 1, . . . , 0, . . . 1,−1, 1,−1, 1,−1)t if β even

(1,−1, 1,−1, . . . , 0, · · · − 1, 1,−1, 1,−1, 1)t if β odd
.

• From (5.6) above, we have that Λ−1
n,n−1 = (I− T t) + (PnErr −Err), where the matrix

PnErr − Err has the last (and only non-zero) column given by

(0, 1,−1, 1,−1 . . . 1,−1, 0)t

by a reasoning analogous to the one used for (5.7).
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As an example, we write the matrices H,Λ and their inverses for the case n = r = 4. The
matrix HD is given by (3.3), with

A = 0 , N =


−1 −1 −1 −1
0 −1 −1 −1
0 0 −1 −1
0 0 0 −1

 and M =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 .

Its inverse is

H−1 =



0 0 −1 1 −1 1 0 −1 1 −1 1 0 −1 1 −1 1
0 0 0 −1 1 −1 1 0 −1 1 −1 1 0 −1 1 −1
1 0 0 0 −1 1 −1 1 0 −1 1 −1 1 0 −1 1
−1 1 0 0 0 −1 1 −1 1 0 −1 1 −1 1 0 −1
1 −1 1 0 0 0 −1 1 −1 1 0 −1 1 −1 1 0
−1 1 −1 1 0 0 0 −1 1 −1 1 0 −1 1 −1 1
0 −1 1 −1 1 0 0 0 −1 1 −1 1 0 −1 1 −1
1 0 −1 1 −1 1 0 0 0 −1 1 −1 1 0 −1 1
−1 1 0 −1 1 −1 1 0 0 0 −1 1 −1 1 0 −1
1 −1 1 0 −1 1 −1 1 0 0 0 −1 1 −1 1 0
−1 1 −1 1 0 −1 1 −1 1 0 0 0 −1 1 −1 1
0 −1 1 −1 1 0 −1 1 −1 1 0 0 0 −1 1 −1
1 0 −1 1 −1 1 0 −1 1 −1 1 0 0 0 −1 1
−1 1 0 −1 1 −1 1 0 −1 1 −1 1 0 0 0 −1
1 −1 1 0 −1 1 −1 1 0 −1 1 −1 1 0 0 0
−1 1 −1 1 0 −1 1 −1 1 0 −1 1 −1 1 0 0



.

(5.8)
The matrix Λ = TtHT is given by

Λ =



0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
0 0 0 0 1 1 0 0 1 2 1 0 1 2 2 1
0 0 0 0 1 1 1 0 1 2 2 1 1 2 3 2
0 0 0 0 1 1 1 1 1 2 2 2 1 2 3 3
−1 −1 −1 −1 0 −1 −1 −1 1 0 −1 −1 1 1 0 −1
0 −1 −1 −1 1 0 −1 −1 2 2 0 −1 2 3 2 0
0 0 −1 −1 1 1 0 −1 2 3 2 0 2 4 4 2
0 0 0 −1 1 1 1 0 2 3 3 2 2 4 5 4
−1 −1 −1 −1 −1 −2 −2 −2 0 −1 −2 −2 1 0 −1 −2
−1 −2 −2 −2 0 −2 −3 −3 1 0 −2 −3 2 2 0 −2
0 −1 −2 −2 1 0 −2 −3 2 2 0 −2 3 4 3 0
0 0 −1 −2 1 1 0 −2 2 3 2 0 3 5 5 3
−1 −1 −1 −1 −1 −2 −2 −2 −1 −2 −3 −3 0 −1 −2 −3
−1 −2 −2 −2 −1 −3 −4 −4 0 −2 −4 −5 1 0 −2 −4
−1 −2 −3 −3 0 −2 −4 −5 1 0 −3 −5 2 2 0 −3
0 −1 −2 −3 1 0 −2 −4 2 2 0 −3 3 4 3 0


It is of full rank, with inverse given by
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Λ−1 =



0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 1 −1 1 0 −1
1 0 0 0 0 −1 0 0 −1 1 0 0 0 0 0 0
−1 1 0 0 1 0 −1 0 0 −1 1 0 0 0 0 0
0 −1 1 0 0 1 0 −1 0 0 −1 1 0 0 0 0
0 0 −1 1 0 0 1 0 0 0 0 −1 1 0 −1 1
0 0 0 0 1 0 0 0 0 −1 0 0 −1 1 0 0
0 0 0 0 −1 1 0 0 1 0 −1 0 0 −1 1 0
0 0 0 0 0 −1 1 0 0 1 0 −1 0 0 −1 1
0 0 0 −1 0 0 −1 1 0 0 1 0 0 −1 1 −1
0 0 0 1 0 0 0 −1 1 0 0 0 0 0 −1 1
0 0 0 −1 0 0 0 0 −1 1 0 1 0 0 0 −1
0 0 0 0 0 0 0 1 0 −1 1 −1 1 0 0 0
0 0 0 1 0 0 0 −1 0 0 −1 1 −1 1 0 0



.

5.1.2. The FRT case. We compute the matrix Λ−1 in (5.3) when H = HS is of full rank.
We omit the subscripts S and r.

Recall that Sr = −I, S−1 = St, F = I+Sn
I−S , N = −1 and (A−N)−1 = 1

2
(I− S). Moreover

recall the form of H−1 from (3.16) and that H−1
α,α is skew symmetric for each α = 1, . . . , n.

We will use that T = S + Er1 and hence T t = S−1 + E1r.

• If n > α > β + 1 then H−1
α,β+1 = SH−1

α,β = H−1
α,β S and H−1

α+1,β = S−1H−1
αβ , so that

Λ−1
αβ = H−1

αβ (I− ST t)− TH−1
α+1,β(I− ST t) = (I− TS−1)H−1

αβ (−SE1r) = Er1H
−1
αβE1r ,

that is
Λ−1
αβ =

(
H−1
αβ

)
11
Err. (5.9)

• For α ≤ n− 1 we find

Λ−1
αα =

1

2
(T t − T ). (5.10)

Indeed, using the expression of T and T t in terms of S, with some algebra we get

2Λ−1
αα =

(I− S)

(I + Sn)
(S−1 + Sn + I + Sn−1) +

(I− S)

(I + Sn)
(I + Sn)E1r +

+ Er1
(I− S)

(I + Sn)
(Sn−1 + S−1 + (I + Sn−1)E1r)

= (I− S)(I + S−1) + (I− S)E1,r + Er1(S−1 − I) +

+Er1
(I− S)(I + Sn−1)

(I + Sn)
E1r .

The last summand vanishes because it coincides with Er1H
−1
ααE1r = (H−1

αα)11Err which
is zero because of the antisymmetry of H−1

αα . The remaining part is promptly verified
to coincide with T t − T .
• As in the Dipper-Donkin case, Λ−1

rr = H−1
rr .
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• For α ≤ n− 1:

Λ−1
α,α−1 =

(
H−1
α,α−1

)
11
Err −

1

2
(T t − I + Err). (5.11)

This formula is derived from the explicit expression of H−1 in terms of S, similarly
to the computations done just above. In the particular case of n = r + 1, equation
(5.11) reduces to

Λ−1
α,α−1 =

1

2
(I− T t).

• For β < n− 1:

Λ−1
nβ = H−1

nβ −H
−1
n,β+1T

t = H−1
nβ (I− ST t) = H−1

nβ (I− S(S−1 + E1r)) =

= −H−1
n,βSE1r

so that

Λ−1
nβ = −1

2

Sβ(I− S)2

(I + Sn)
E1r. (5.12)

• We compute

Λ−1
n,n−1 = H−1

n,n−1 −H−1
n,n(S−1 + E1r)

=
1

2

(I− S)

(I + Sn)
[Sn−2(1− S)− (I + Sn−1)(S−1 + E1r)]

=
1

2
(I− S−1)− 1

2

(I + Sn−1)

(I + Sn)
(I− S)E1r

hence concluding, by using TE1r = 0 and so SE1r = −Err, that

Λ−1
n,n−1 = −(I + Sn−1)

2(I + Sn)
(E1r + Err)−

1

2
(S−1 − I). (5.13)

5.2. The case of non-invertibility.
Let H be as in (3.3). Let a = (an, . . . , a2, a1)t be a (column) vector in Cnr, i.e. such that
∀i = 1, . . . , n : ai ∈ Cr. Suppose that Ha = 0. It follows easily from (3.11) that a, up to a
constant multiple, is determined by

∀c = 2, . . . , n : ac = Xc−1a1, ; ANFa1 = 0

By the assumptions in §3, a is thus completely determined by solutions to the equation
Fa1 = 0.
If b = (bn, . . . , b2, b1) is a vector defined in analogy to a, and if Λb = 0, then, up to a constant
multiple,

b = T−1a,

and hence, by (5.2),

∀c = 2, . . . , n, bc = (X − T )Xc−2a1, and b1 = a1. (5.14)

For the FRT case as well as the Dipper-Donkin case it holds (also for n, r arbitrary) that

(X − T ) ∈ Span{Er1, Er2, . . . , Err}.
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It follows that, in the above notation,

Proposition 5.1. In the FRT, as well as the Dipper-Donkin case, there are integers zc,
c = 2, . . . , n such that

∀c = 2, . . . , n : bc = zcer,

where er is the rth basis vector in the standard basis of Cr.

¿From the above considerations we conclude the following results about the centers of the
quasi-polynomial algebra generated by the quantum minors χαj ∈Mq (see Definition 2.8) for
Mq being either the Dipper-Donkin algebra Dq2(M(n, r)) or the FRT algebra Oq(M(n, r)).
(For clarity we introduce a comma χαj = χα,j).

5.2.1. Dipper-Donkin; special case.

Proposition 5.2. For r = n = odd, the center of the quasi-Laurent polynomial algebra
generated by the n2 elements χα,j ∈ Dq2(M(r, r)) is generated by

Z :=
n∏
γ=1

χ(−1)γ

γ,n

n−1∏
k=1

χ
(−1)k

n,k , (5.15)

and its inverse.

Proof. The equation Fa1 = 0 becomes Xa1 = −a1. If follows easily that up to a constant
multiple, a1 = (1,−1, 1, . . . ,−1, 1). Furthermore,

(X − T ) = −Er1 − · · · − Err and (5.16)

(X − T )Xc−2 = (I− TX−1)Xc−1 = ErrX
c−1 = Er,c−2 for c > 2. (5.17)

Then, in Proposition 5.1, z2 = −1 and, for c > 2, zc = (−1)c−1.

Then, a generic monomial Z =
∏

αj χ
bαj
α,j , for bαj ∈ Z belong to the center, i.e. it commutes

with all minors χβ,i, if and only if
∑

αj Λβi,αjbαj = 0, ∀β, i. From the discussion above, this
is the case if and only if

b = (bαj) ∝ (0, . . . 0, 1|0, . . . 0,−1|0, . . . 0, 1| . . . |0, . . . 0,−1|1,−1, . . . ,−1, 1) .

The result follows directly from this. �

5.2.2. Dipper-Donkin; general case. Set n − 1 = xs, r + 1 = (x + z)s, and u + 1 = zs. We
assume that n < r and that s > 1 is the greatest common divisor of n − 1 and r + 1. We
have (set Ei,j = 0 if i = 0 or j = 0)

Xn−1 = −
r∑

k=1

Eu+1,k +
s−1∑
j=0

x−1∑
`=0

Ezs+j+`s,j+`s +
s−1∑
j=0

z−1∑
`=0

Ej+`s,xs+j+`s.

We are looking for solutions to the equation Fv = 0, or, equivalently, Xn−1v = v. We write
v =

∑r
j=1 vjej. Set

vi =
x+z−1∑
k=0

ei+ks −
x+z−1∑
k=1

eks, ; i = 1, . . . , s− 1.
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Due to the very explicit form of Xn−1 it follows that

∀i = 1, . . . , s− 1 : Xn−1vi = vi.

Furthermore, we clearly have a maximal, linearly independent set of solutions.
Notice that the case n = r odd corresponds to s = 2. Hence we recover the previous result.

As before, each solution vector v =
∑r

j=1 vjej results in a vector b = (bn, . . . , b2, b1), where

b1 = v such that Λb = 0. It then follows from (5.16) and (5.17) that

b2 = −(
r∑
j=1

vj)er and

bc =
∑
j

vjδc−2,j er = vc−2 er for c ≥ 2.

Similarly to Proposition 5.2, we can now conclude that

Proposition 5.3. For n ≤ r, and s > 1 being the greatest common divisor of r + 1 and
n − 1, the center of the quasi-Laurent polynomial algebra generated by the n × r elements
χα,j ∈ Dq2(M(n, r)) is generated by the following s− 1 elements:

Zi =
x−1∏
k=0

(χn−1−ks,r)
−1

x−1∏
k=0

χn−1−i−ks,r

x+z−1∏
j=1

(χn,js)
−1

x+z−1∏
l=0

χn,i+ls ; i = 1, . . . , s− 1.

This result recovers the previous one when r = n is odd.

5.2.3. FRT case. We sketch the similar result for the FRT algebra Oq(M(n, r)). Here we
denote the minors χα,j by ξα,j in accordance with the notation in (2.11).
Assume n = xs and r = ys with x and y both odd, and s the greatest common divisor of
n, r. Let n ≤ r (and thus x ≤ y).

We again consider (3.11). First we must determine the kernel of the operator F = FS.
Equivalently, the −1 eigenspace of Sn. We easily have

Sn = −
n∑
i=1

Er−n+i,i +
r−n∑
j=1

Ej,n+j.

We define

vi =

y−1∑
`=0

(−1)`ei+`s ; i = 1, . . . , s (5.18)

Using that r − n = (y − x)s with y − x even, one verifies

Lemma 5.4. The vectors v1, . . . , vs form a basis of the −1 eigenspace of Sn.

In analogy with the Dipper-Donkin case we must next consider the vectors bi = (bin, . . . , b
i
2, b

i
1)

where, ∀c = 2, . . . , n : bic = (X − T )Xc−2vi, and bi1 = vi. In the present situation,
X 7→ S = Sr, and we easily get that (X − T )Xc−2 = −Er,c−1 for all c = 2, . . . , n.

This results in s elements of the kernel of Λ:
37



Proposition 5.5. For n ≤ r, the center of the quasi-Laurent polynomial algebra generated
by the n× r elements ξα,j ∈ Oq(M(n, r)) of the FRT algebra is generated by the following s
elements (set ξr,0 = 1):

y−1∏
`=0

(ξi+`s,n)(−1)`
x−1∏
k=0

(ξr,n−i−ks)
(−1)k+1

; i = 1, . . . , s.

It is easy to see that we recover the result [9, Lemma 4.1].

6. Compatible pairs

Suppose H is an nr×nr matrix as in (3.3). Suppose there exist a matrix K of order nr such

that KH =

(
Inr−s Y

0 0s

)
, where Y is an (nr− s)× s matrix for some non-negative integer

s = rank(H) and the 0 in the left corner denotes the s × (nr − s) zero matrix. Consider
Λa,b,d = Tta,b,dHTa,b,d with Ta,b,d an invertible and upper triangular matrix. Specifically,

suppose Ta,b,d =

(
a b
0 d

)
. Then (Ta,b,d)−1 =

(
a−1 −a−1bd−1

0 d−1

)
. Hence,

T−1
a,b,dK(Tta,b,d)−1Λa,b,d = T−1

a,b,dKHTa,b,d =

(
1 a−1b+ a−1Y d
0 0

)
.

Set
B̃a,b,d = 2 ·

(
T−1
a,b,dK(Tta,b,d)−1

)t
(6.1)

and let Ba,b,d be the nr×(nr−s) matrix obtained from B̃a,b,d by removing the last s columns.
We then obtain

Proposition 6.1. Suppose b = −Y d. Then (Λa,b,d, Ba,b,d) is a compatible pair which satisfies
(2.21).

Remark 6.2. This pair is of maximal rank and the non-mutable variables generate the
center of the algebra. In many situations it is natural to let more variables be non-mutable.
The most common choice is to let the n + r − 1 covariant minors χn1, . . . , χnr, . . . , χ1r be
non-mutable. A compatible pair for the latter situation is of course easily obtained from the
above by truncation.

It is obvious that we can write any Ta,b,d in terms of the already introduced matrix T (5.1)
as

Ta,b,d = T ·
(

1 ca,b,d
0 1s

)
(6.2)

for some easily computed (nr − s) × s matrix ca,b,d. This then gives the change-of-basis
needed to obtain the cluster variables V+

a,b,d for the compatible pair (Λa,b,d, Ba,b,d) in terms of

the variables V+
M.
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