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1. INTRODUCTION

The class of ¢g-deformations of the coordinate algebras of simple matrix Lie groups derived
from so-called FRT bialgebras is of great importance in quantum group theory. These
bialgebras arise as suitable extensions and quotients of the coordinate algebra O, (M (n)) of
the quantum matrix space and have been a topic of interest ever since they were introduced
by L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtadzhyan in 1990 [4]. We will refer
to O,(M(n)) as the FRT algebra. Other quantizations of the coordinate algebras of matrix
groups have been proposed and studied, not the least the quantum deformation A,(n)(d"")
of general linear groups introduced by R. Dipper and S. Donkin in [3] as the localization of a
quantum version A,(n) of the coordinate algebra of n x n matrices at a non-central element
d, the g-determinant. The FRT and Dipper-Donkin quantum algebras share some common
properties, for instance the same classical limit as the parameter of deformation ¢ goes to
1. They are also related in another way, as we will explain in Section [2 In other aspects,
however, e.g. P.I. degrees, they are different (see [12]).

In 2001, S. Fomin and A. Zelevinsky introduced a new class of commutative rings under
the name of cluster algebras [5]. A cluster algebra is generated by a set of generators called
the cluster variables; clusters are not given at first but are obtained from an initial one via a
process of mutations. One of their main motivations for introducing this new class of algebras
was to provide an algebraic framework for studying total positivity in semisimple groups
and canonical bases for quantum groups. Later, in [I], A. Berenstein and A. Zelevinsky
introduced quantum deformations of cluster algebras pertaining to a notion of canonical
basis in cluster algebras.

The theory of cluster algebras has developed vastly in recent years. In particular with
the advent of quantum cluster algebras it became a challenge to relate the above mentioned
coordinate algebras of matrix groups to that theory, notably to write down so-called quantum
seeds for these, thus describing their possible cluster algebra structure. Right from the
beginning some general and strong results were obtained [I]. Later, a method has been
developed by H. P. Jakobsen and H. Zhang [14] targeting directly the FRT algebras. The
approach in [I] has recently been extended in [7].
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In this paper we construct quantum seeds associated to quantum matrix algebras M,
belonging to a certain family, which includes in particular the FRT algebra O,(M (n,r)) and
the Dipper-Donkin algebra A,(n,r). (These algebras were originally defined as coordinate
algebras of n x n matrices, but we will here extend the defining relations to arbitrary n x r
matrices while maintaining the notation.) For other deformations of the matrix algebras,
see [13], and references cited therein. For the purposes of the present article, one can view
these algebras as being defined over C, with g being a so-called ‘dummy’ parameter, leaving
open even the possibility of ¢ being a root of unity, though the latter case will not be
pursued much here. Each quantum matrix algebra M, has an associated quasi-polynomial
algebra M, whose generators have commutation relations given in terms of an integer skew-
symmetric matrix Hy, (see Definition which will play a central role in the determination
of the initial clusters.

The complicated nature of the classification already on the level of cluster algebras ([5 [6])
has been intimidating for explicit constructions of large scale examples of, say, initial seeds
(cf. below). Indeed, only very few low dimensional examples were computed ([§], [7]). In
this sense it is a surprise that elementary operations can be used to obtain far reaching and
very explicit conclusions. In particular, to construct an initial seed for Oy (M (n,r)) both in
the guise of the FRT as for the Dipper-Donkin algebra. Indeed, the method of Gauss Elimi-
nation on the level of the matrix blocks of H 4 leads to both results pertaining to the case of
q a root of unity, viz. the degree of algebras, and to explicit compatible pairs (A, Bay) for
a family of quantized matrix algebras. Some detailed information about the ¢ commutation
relations between quantized minors in the quantized matrix algebra and how they can be
computed by considering the ¢ commutation relations between the diagonals of these minors,
but now computed in the associated quasi-polynomial algebras, are needed too. To wit, this
connection allows us to perform a simple change-of-basis operation on H 4 whereby A, is
obtained. Later, some elementary algebra is needed too. In the end, the results themselves
are not only very explicit but also very striking. The structural ‘defining matrices’ A, are
integer nr X nr matrices and as their sizes increase, there are no bounds on the integers that
may occur. Nevertheless, in case they are invertible (at least in the cases considered), their
inverses have entries from {—1,0,1} or {—2,0, 2}.

As a consequence of our approach it turns out that we can, with a little extra effort, deter-
mine the centers of the underlying quantized matrix algebras. Further results relate to block
diagonal forms. This leads further to a complete determination of the degrees of specialized
versions of the algebras when ¢ is an arbitrary root of unity.

More precisely, the structure of the paper is the following. In Section [2| we present the
algebras M, as certain subalgebras of the algebra P, = P,(n,r). This latter was originally
introduced and studied in [12]: it is a semidirect product

Pq(n7r> = Oq<M(nJT> X L[Rb' . '7Rn7017' . '707“] C Z/[q(gnJrT)a

where L[Ry, ..., R,,C1,...,C,] denotes the algebra of Laurent polynomials in n ‘row opera-
tors’ R, and r ‘column operators’ C; that come directly from a quantized Cartan subalgebra
in Uy (gn+r). One fundamental assumption is that

O,(M(n,r)) xs LIRy,..., Ry, C1,...,C.]l = My xs LIRy, ..., Ry, Cy,...,Cl,
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but other more technical assumptions are also imposed to ensure that quantized minors
can be defined in M,. Indeed, we introduce a family Vi, of nr minors x,; € M, which
are quasi-commuting, i.e. Xa;Xst = ¢**%*XgtXaj. The quasi-commutation matriz Ay which
encodes their commutation relations is related to the matrix H, via

Ay = T H T,

where T is an explicitly given matrix. (See Proposition [2.11})
We finish Section [2| by introducing our object of interest: quantum seeds and compatible
pairs (A, Buy) associated to a family of minors V§,.

In Section |3 the Gauss Elimination is carried out in block form for some matrices H 4,
including the ones associated to the FRT and the Dipper-Donkin algebras, as well as for
P,(n,r). The resulting upper triangular block matrix is sufficiently well determined that
one can read off the determinant, the rank, and in case of invertibility, the blocks of the
inverse. Many results of [9] and [12] are extended, while others are given elementary proofs.
This Section also carries the first version of the very striking form of the entries of the inverse
matrix HX,II.

The results of Section [3] are put to further use in Section [4 where block diagonal forms as
well as degrees of the various algebras are determined.

Section [5| deals with the quasi-commutation matrices An, for some relevant quantum
matrix algebras of our family. Again we can very explicitly give the inverse matrices A]j
(when they exist) and observe the striking forms they take. In case of positive co-rank, the
kernels can also be determined very explicitly. This furthermore carries immediate results
for the centers, both generically, as well as in the case where ¢ is a primitive root of unity.

Finally, in Section [6] it is explained how the results of Section [] carry all relevant infor-
mation for the determination of compatible pairs.

Notation. All algebras we will consider are over the field C. We will use the notation I for
the identity matrix of any order. When needed, we will indicate with a subscript its rank. If
not specified differently, indices in lower case Greek letters a, 3,... run from 1,...n, while
lower-case Latin letters i, j, ... indicate indices running from 1 to r. Here r, n are two fixed
positive integers.

2. THE GENERAL SET-UP

Let ¢ be a fixed non-zero complex number. The coordinate algebra O,(M(n,r)) of the
quantum n X r matrix space is the associative algebra generated by elements Z,;,a =
1,2,---,n,5=1,2,--- ,r, subject to the following defining relations:

Zajlok = QlarZej, J <Kk,

ZojZp; = 4ZpjZaj, a <P,

Zojlp = Zgilaj, a>f,]<lI,

ZoiZor = ZpZaj+(a—a " )ZuZs, a<pBj<l. (2.1)
The quantized matrix algebras O, (M (n,r)) were introduced (in the case n = r) by Faddeev,

Reshetikhin and Takhtadzhyan in [4]. We will refer to the general algebra O (M (n,r)) as
the FRT algebra.



Following [2, p. 58] we consider the associated quasi-polynomial algebra O (M (n,r)) of
O,4(M(n,r)). This is the associative algebra generated by elements z,j,a = 1,2,--- ,n,
j=1,2,--- r, subject to the following defining relations:

ZajRak = (Zakcaj .]< k7
Z0j28; = (%BjZaj, <P,
Z0j28l = Zpl%aj, Otherwise. (2.2)
Asin [12] we introduce a new quantum algebra P, = P,(n, r) containing O (M (n,r)) while
having additional, mutually commuting, generators R,, R,', a =1,...,n, and C}, Cr L
j=1,...,r with the following additional relations
R Zgi = ¢ ZsiRy' O Zoi = ¢*00 2G5,
R.R' =1, C;Cl=1 (2.3)
forall , B =1,...,nand i,j = 1,...,r. (As shown in [I12], this is related to a quantization

of a parabolic subalgebra of su(n,r).) We let P denote the subalgebra of P, generated by
the generators Z,; of O,(M(n,r)) together with the elements R,,a =1,...,n and C},j =
1,...,r.

The algebra P, contains a central element Z = [[, Ra[] ;O !, This redundancy is pre-
served for convenience.

Recall that in O (M (n,r)) one can define a ‘bar’ involution p — p as the unique C-linear
algebra anti-automorphism such that:

1

q=q " and Z,; = Z,; for all a, j.

The bar anti-automorphism is used in the definition of the (dual) canonical basis. See e.g.
[13].

Definition 2.1. We extend the bar operation to a linear anti-automorphism of P, by the
extra stipulation:

Va: R, = R, ande:Fj:C’j.

2.1. The general family. We wish to introduce and study a class of quantized matrix
algebras from the above.

For each f = 1,...,n and each i = 1,--- |r, fix Mg, to be a monomial in the generators
{REL C’fl}azlmn,jzl,mr (we occasionally suppress the range of the indices when it is clear).

Once such monomials Mpg; have been fixed, there exist integers (DQ; uniquely determined by

(2.3) as

Ma;Zsi = 4" Zg: M. (24)
We assume that Vao=1,--- ,n,Vj=1,--- r:
Mo Mo in jik = Mo jik Mot ; for all admissible v, k € N. (2.5)
This implies that Vae=1,--- ,n,Vj=1,--- ,r:
oY+ @Y =00 4+ for all admissible v,k € N. (2.6)

Oé,j-‘rk:
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We will also need some relations between the symbols <1>§3 that allow us to do specific
computations and at the same time implies the following identity

DL+ OO = 901 4 24 for all admissible v,k € N, (2.7)
valid Voo = 1,--- ,n,Vj = 1,--- ,r. Actually, the equations (2.6) and (2.7 together are

equivalent to

Vo, B4, 5 B = af + V] +c, +di,

for some appropriate integer-valued functions a,b,c, and d. This, on the other hand, is
clearly equivalent to the assumption which we now impose:

Assumption : Va,j: My = RoaR;CuCy, (2.8)

where R, and C, denote momomials in the row, respectively column, operators.
All together, these conditions easily imply

Lemma 2.2. Let aq,...,a5 € {1,...n} be pairwise different and let jy,...,js € {1,...r}
be pairwise different. The integer ¥ in

o _ —1
q Zahja(l)Zaz,jo(z) U Zas,ja(s) - MﬂtZal,jau)Zaz,jg(z) U Zasyjo'(s) Mﬁt )
while in general depending on B,t,aq, J1,. .., 0, Js, does not depend on o € S,. Likewise,
the integer ® in
~1
N —
q Zﬁt - (Malvjo(l)Ma27jd(2) T MasJa(5>> Zﬁt <Ma1,jg(1>M0¢27ja(2) T MaSvjo'(s)) )
while in general depending on [,t, a1, J1, ..., Qs, Js, does not depend on o € S,.

We finally add the following condition to our list of assumptions:

Va,j: ®%7 = 0. (2.9)

[

(This could also be deduced from the stronger assumption that for no x does R, contain
R,, with a similar assumption for the monomials C,. However, we shall not pursue these
matter further here.)

Definition 2.3. The quantum algebra M, is the subalgebra of P, generated by the elements
Wi = ZajMuj, a=1,....,n,7=1,...,r.

The first condition ((2.5) guarantees that the relations of M, are similar to those of the
FRT quantized matrix algebra. The use of the second condition (2.7)) is through Lemmal[2.2]
while we observe that the third condition (2.9) implies

V(@,j) = (1, 1), ety (n, T) . ZajMozj = MajZozj-
The following then is clear:

Lemma 2.4. For all o, j : Wy, = W,,;.



2.1.1. The Dipper-Donkin quantized matrixz algebra. Let 6 : Z +— {0, 1} be the discrete Heavi-
side function defined as usual by 6(z) =1 < z > 0. Let us set M, := Roy1 - .- Ran_+11 LT

so that @ﬁ; =0(6 — «) — 0(i — 7). The resulting quantized matrix algebra has relations

WajWBk = q2WﬁkWaj ﬁ >, k< .]
WoiWarr = WaWp; Ya, V7, k
WajW[gk = ngWaj + (q2 - 1)W@jWak B>a, k>j. (2.10)

Definition 2.5. The quadratic algebra generated by elements W,; with relations (2.10)) is
called the Dipper-Donkin quantized matriz algebra and will be denoted by Dp(M(n,r)).

This algebra was introduced and studied in [3], in case n = r. It is traditionally defined
using ¢ instead of ¢* in (2.10)) (It was originally denoted by A,(n)).

2.2. Quantum minors. Let m < min{n,r}. Given two sets a = {a1,s,...,a,n} C
{1,...,n} such that a; < g < -+ < ay, and j = {j1,Jo2,---,Jm} C {1,...,7} such that
71 < Ja < -+ < Jm, one can define

5.]a(Z> = éj‘x = Eaesm<_q)€(U)Zalng(l) Za2>ja(2) e Zamzjcr(m)
= ETGSm(_q)Z(T) ZO‘T(I)’jl ZO‘T(Q)JQ T Zo‘ﬂ'(r)?-jm' (211>

The elements £ € O,(M(n, 7)) are called the quantum m-minors.

In the above expression - now seen in P, - we can replace each Z,; by W,;M, ;jl and then
collect all the M,; factors to the (say) right. By means of the first assumption, we get an
expression

& = x5 (M, M, 00" (2.12)

Since &% = &2 it follows that X3 = (Ma,j, =+ - Moy, ) X (Mayj, -+ -+ May,j,,) " This
implies that we may write x{* = ¢“x;* for some integer a in such a way that x{* is invariant
under the bar operator.

N RARE

Definition 2.6. We call the element x§* € M, the quantum minor (for the configuration
a = {a,as,...,an} C{l,...,n}, with oy < ag < -+ < ap, and j = {j1,J2,- -, Jm} C
{1,...,r} with j1 < jo < -+ < jm). We may clearly write, for some functions 55\1/2,65\2,? :
S > ZL:

X.ljl(W> - X‘ljl - EUGSm(_q)eM @ Wal:ja(l)Wa27ja(2) T Wawwja(m)

= Sres(—g) 0 WarayiWaroyie  War iy im
X5 o=
& = ¢VXF (Mayj, -+ Mayj)
NG = (Mayj, - Mayj) 7 XS (Mo, -+ - Ma,,j,,) (2.13)

The last equations, which follow easily from the above, are inserted for the sake of §2.5.



2.3. ¢-Laurent polynomial algebras. Let M, be a quantum matrix algebra as above
and let ﬂq be the associated quasi-polynomial algebra. Let us for simplicity denote the
generators of M, by W,; and the generators of Mq by w,;, where in both cases 1 < a <n
and 1 <j <.

We first introduce the nr x nr matrix Hy = (Ha; 1) defined by

WeaWak = qH“j*ﬁkwﬁkwaj ) (2.14)

We are using the basis {wi1,..., w1, waq, ..., Way, ..., Wp1,-.., Wy, } and represent H as
an n x n block matrix consisting of r x r blocks H,z (also see (3.2))).

Definition 2.7. Let L = Eﬂq be the q-Laurent algebra generated by /Vq. We call Hpq the
defining matriz of L.

More generally, we may consider a generic algebra with generators w,; and relations given
( g Y, y g g g j g
as in (2.14))).

The matrices H will be examined in in many interesting cases. However, for many
issues involving cluster algebras, it is much more useful to consider the family of g-commuting
elements (quantum minors) x.; € M, which we are now going to introduce.

Toeach 1 <a <nand1<j <r let xo; be the quantum minor xj* of biggest order m
in M, fulfilling the following conditions: if v is a row number of x{*, i.e. 7 € a, then v < «
and if ¢ € j is a column number, then ¢ < j. Specifically,

(1) for a > j, xaj 1= X057 eI+,

1,2,...,«

= X}J'L;z+71,i'*a+2,--qj}'
With reference to [I4] §6], this family of quantum minors corresponds to the broken line
L*. The extreme opposite construction to the above, where the conditions on the row and
column numbers are changed to v > « and ¢ > j corresponds to the broken line L~. Indeed
one may define a family for each broken line as defined in [14], but we will not pursue this
here. Notice, however, §2.5.

(2) for oo < 7, Xay

Definition 2.8. We denote the family of minors x; € Mg given as above by V.

The family contains nr elements. The following result follows from [I4] - where it was
proved to hold for the FRT algebra O(M,(n,)) - in combination with Section[2.1] See [14,
Proposition 6.5] for details.

Proposition 2.9. Any two members Xo; and X of Vi, q-commute. Thus a skew-symmetric
integer matriz A = Ay may be defined by
XaiXpk = 0" X g Xaj- (2.15)
As for the g-commutations between such minors, each minor x,; may be represented by
its “diagonal” Xf;l(j in Mq. This is given by
{ X&lj = Wa,jWa-1,j-1" " Wa—jy1,1 if >

d . . .
Xaj = Wa,jWa-1j-1"" " Wij-ar1 I a<j
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Proposition 2.10. Let A = Ay be as above. The following holds in Mq:
XX = ¢ 7P XX (2.16)

Proof. 1t is easy to see that there is a PBW type basis in an algebra M, as above. We
may choose this so that the monomials appearing in the minors are elements of this basis.
Furthermore, we may order the monomials according to a lexicographical ordering. The di-
agonal in any minor is biggest among the monomials appearing as summands in it. Products
of monomials may be expressed in the PBW basis using the relations of the algebra. When
this is done for the product of two minors, the highest order term will be a rewriting of the
product of the two diagonals, and here we may ignore auxhilary terms of lower order and
rewrite according to £. Thus, holds on the level of the diagonals modulo lower order
terms. To obtain the ¢ exponent A,; g it thus suffices to consider these diagonals in £. [

Proposition 2.11. The matriz Ay defined in (2.15)) is given by
Ay = TP HpT, (2.17)
where T = (Tpk,aj) is the upper-diagonal matriz whose entries are either 1 or 0:

1 if3ze€{0,1,... min{a,j} — 1} s.t. (B, k) =(a—z,j —x),
Tap o = 2.18
Phal { 0 otherwise (2.18)

Proof. On the one hand we can write Ty 05 = Z;l:i%{a’j}_l 08,0—20k, j—z, SO that
min{8,k}—1
(T'HuTajoe = Y ThyiHaipsks = > Hoyjyp-ak—a
=0 2=0,...,min{8,k}—1

y:()v"wmin{amj}il

= Z Ha—j-l—aa,,B—k—i—bb- (219)

b=k,..., k—min{8,k}+1
a:j7"'7]_min{a7j}+1

On the other hand, following Proposition [2.10, we can compute the entries of the matrix
A from the commutation relations of the minors Xij' Let us start by considering the case
az=>g, =k

J k
d .d _  Aeigred - d
XajXgE = HwafjJra,a Hw/gflwrb,b = q """ X3k Xaj>
a=1 b=1

where Aojge = Y a=1.; Hia—jta)a(5—k+op- This coincides with (T*HaT)q; s as from (2.19)
=1k

fora>j, 5> k.
The other cases are proved in analogous way, writing for § < k:

B k
d
Xk = Hwb,k—6+b = H Wh—k+ec -
b=1 c=k—B+1

geoey



2.4. Quantum seeds. Quantum seeds were introduced and first studied by Berenstein
and Zelevinsky in [I]. We will study a sub-class of quantum seeds:

{(Vi6 A, B} (2.20)

(See [1]) for terminology).

The elements x,; - forming the initial cluster V3, (see Definition - satisfy the quasi-
commutation relations that depend on the anti-symmetric matrix Ays. According to
the general theory, the adjacent clusters are obtained from the initial one via a process of
mutations done in terms of the integer matrix By. The quasi-commutation matrix A, and
the exchange matrix By, are required to satisfy a compatibility condition that ensures that
the resulting clusters are still quasi-commuting.

In our case, the matrix By is a nr X ¢ matrix, ¢ < nr, fulfilling the requirement that

Ay By = (_OQHC ) : (2.21)
dxc
where d = nr — c¢. This equation implies that the pair (A, B M) 1s compatible in the sense
of [1, Definition 3.1]. Indeed, it is a special instance of the compatibility condition, where
generic diagonal matrices are allowed in the place of —2I.. A natural, almost classical, choice
consists in requiring that By is an nr x (nr — (n 47— 1)) matrix corresponding to declaring
the n + 7 — 1 covariant minors Xni ..., Xnr, .-, X1r as precisely the non-mutable elements.
However, we want to maintain the freedom to choose a larger set of minors as mutable, hence

we solve (2.21)) for ¢ = rk(An). (See also §6])

2.5. Relations related to the determination of the B matrix.

Let us consider as above aset a = {ay, g, ..., } C{l,...,n}withay < s < -+ < ay,.
Along with this, we introduce three subsets ap, ag, and a, of a: ap = {as, ... @y}, ar =
{ag,...,a, 1}, and @, = {ag,...,a,_1}. We assume m > 2. Then at most «, may be

empty. We define analogous subsets for j = {j1,72,...,Jm} C {1,...,7}, with j; < js <

Definition 2.12. In the above notation set

Xt = X?Lv Xb = X‘?R7 XO = Xj00107
at o i, (2.22)
D = xf, Yo=x;" Yr=Xj,-

If a, = 0 we set X, = 1.

Proposition 2.13. The elements in Definition[2.13q-commute. Moreover, there are integers

as*, ¢ such that

X, Xy = ¢ XD+ ¢T Y. Y. (2.23)
The elements in the q-Laurent algebra given by
¢ XoD(X,) ™! and ¢ YLYR(X,) ™! (2.24)

are tnvariant under the bar operation.

Proof. This result holds in O,(M(n,r)) ([14, Corollary 6.14 and Theorem 6.17]), and the

result follows easily from that. 0J
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In the mentioned case in Oy(M(n,7)), af =0, and ¢§* = 1.
The following is obvious:

Proposition 2.14. The element
X, 'D7'Yvg
commutes with all elements Rg, Cy,.

Proposition 2.15. Introduce the integer d = d§* such that ¢ X 1DYY YR is bar invariant.
When we consider this as an element in P, constructed from Mg, different choices of M,
will yield the same element in P,.

Proof. The element in O (M (n,r)) constructed according to this recipe has d = 0. When we
insert the elements Wy, M Ekl in the positions of the elements Zg;, and move all Mgy, elements
to the, say, right, we get an element of the mentioned form for M, possibly multiplied with
a monomial in the elements Rg, C). However, it follows easily from the assumptions on the
Mgy’s that this monomial is a constant equal to 1. O

Corollary 2.16. The constructions of a quantum seed for any broken line as given in [14]
can be used for any quantum algebra M, as above.

Proof. One can observe that the element X 'D~'Y; Yy in general satisfies the same kind of
g-commutation relations as the specific element considered in [10]. Specifically, it commutes
with all elements of the relevant set of variables with the exception of one (with which
it g-commutes with a non-zero g exponent). With the crucial results Proposition and
Proposition at hand, the result now follows by leafing through the arguments in [10] and
observing that they only rely on the formulas given in the mentioned propositions together
with the ¢g-commutation property satisfied by the mentioned element. 0

3. THE INVERSE OF THE MATRIX H OF THE ASSOCIATED QUASI-POLYNOMIAL ALGEBRAS

Consider a quantized matrix algebra with nr generators w,; for « = 1,...,n and j =
1,...,r. Suppose we are given two integer r x r matrices A = (a;;) and M = (m;;) with
A" = — A and that the relations among the generators w,; are given as follows

WajWak = qajkwakwaj ) VOé, v] < kv
Wajwgr = ¢"Fwgrwe; , Ya < B, Vi k; (3.1)
The above relations can be rewritten (in accordance with (2.14))) as
WajWae = ¢ wapwe; , o, f=1,...,n; j,k=1,...,7; (3.2)

where the integers H,; g, are the components of the matrix A made up of n x n blocks
(Hap)a,p=1...n defined in terms of the r x r matrices A, M, and N = —M" as

A M M M M
N A M M M
N N A M M
H=1 N N N 4 M (3.3)
N N N N A



We will use both the notations (Hug);, and H,; g, to indicate the component (j, k) in the
block H,g of the matrix H. By construction, H is skew symmetric: Hog = —(Hga)" (where
here the transposition * indicates the transposition inside the block).

Our standing assumption will be that A — N is invertible. We set

X = (A— N)"{(A - M). (3.4)

Notice that hence X itself is invertible since A — M = —(A — N)'. Finally, we assume that
I — X is invertible, or, equivalently, that M — N is invertible.

3.1. First reductions. We are interested in studying the invertibility of the matrix H.
With this aim, we will now perform Gauss elimination on the blocks of H. Subtracting
(block) row 2 from 1, 3 from 2, etc. in H results in the matrix

A-N M-A 0 0 0

0 A-N M-A 0 0

0 0 A-N M—-A ... 0

Hy = : . : : : :
0 0 0 A-N M-A

N N N N A

Thanks to our original assumptions, by using the first row we can remove the leftmost N
in the last row. Then we can use row 2 to remove the next N in the last row, and so on
until an upper diagonal block matrix H, results:

A—N M-A 0 0 0
0 A-N M-A 0 0
0 0 A-N M-A ... 0
H2 — . . . . . b

0 0 0 A-N M-A

0 0 0 0 F
where

F=(A-N)+NI+X+---4+ X",
Using our assumptions, we easily find that

F=(M-NX")I-X)" (3.5)

If we furthermore assume that M is invertible, we see that
Lemma 3.1. The null space of F' is equal to the +1 eigenspace of (M1 N)X™.

We now make further changes to the matrix Hy: we add (A — M)(A — N)~! times row
n—atorown—a—1fora=12,...,n—2 (we multiply the blocks from the left). The

resulting matrix is
11



OO e

(M — A) X3
(M — A) X
A-N M-A
0 F

In the following we will be interested in the following r x r matrices:

~1 -1 -1 -1 ~1
0 -1 -1 -1 ~1
0 0 -1 -1 ~1
Nr: . . . . . M'r’__ny
0 0 -1 -1
0 0 0o -1
0 10 0 0 o 1 0 0
0 01 0 0 o 0 1 0
0 00 1 0 o0 0 0 1
s,=| . . ox = .
000 0 1 0o 0 0 ..
-1 0 O 0O O 1 -1 -1 -1
It is easy to see that the matrix N, is invertible, with inverse
-1 1 0 0 0
0O -1 1 0 0
o o0 -1 1 ... 0
Nt= . : ; oL =—(M)
o o 0 ... : 1
o o o o --- -1

and that X, = N 'M,. Furthermore, observe that X7 ™! =T (also see (3.20)), S~

St =gt

—I, and

We shall take special interest in the following cases corresponding to different choices for
the matrices A and M which are building blocks of the matrix H, introduced in (3.3). To
distinguish among the different cases, we introduce a subscript for the relevant matrices.

e ‘Dipper-Donkin": Ap = 0, Mp = M,. Here Np = N,, X becomes Xp = X, and F
becomes Fp = NpXp(I — X5 1)1 — Xp)~L.
e ‘FRT: Ags = —(M, + N,), Mg = 1. Here Ng = —I, X becomes Xg = S, and F
becomes Fg = (I4 S")(I — S,)~!. Notice that Ag =S, +S*+---+ 5" tand A— N
becomes Ag+1 = 2(I—5,)" . (We use the subscript g to refer to the FRT ‘standard’
quantum deformation of matrix algebras.)

12



e ‘Combined I’ : Ac, = M, + N,, M¢, = M,. Here N., = N, and X and F' become
respectively Xe, = Xp' and Fe, = M, (I — X2)(I— X¢,) ™"

e ‘Combined II' : A¢,, = M, + N,, M,, = N,. Here N¢,, = M,, X becomes X.,, =
Xp =X, and Fg,, = N,(I - X" (I - X,)".

With the above first two choices of matrices, the resulting matrices Hp and Hg describe
the commutation relations of the generators of the quasi-polynomial algebra associated re-
spectively to the Dipper-Donkin (Definition and FRT quantum matrix algebras.
The last two choices are a ‘combination’ of the previous ones (also see §4.2).

Thanks to (3.6), det(H) = det(F)(det(A — N))"~!, thus we easily obtain:

Corollary 3.2. In the above cases, the determinant of the matrix H reduces to the following:
o det Hp = det I'p;
o det Hg = 20=D(=1 det Fy;
o det H., =det F,;
e det Hep, = (=1 Vdet F,,.

3.2. The rank of H. We determine the rank of the matrix H in each of the cases listed
above.

3.2.1. Dipper-Donkin case. The characteristic polynomial pp(z) of Xp is easily computed
to be

T

po(z) =det(zl— Xp)=2"+ 2"+ +z+1=]](z—5), (3.7)
p=1
where g, 1= 2™P/(tD) p = 1,2 ... r are the r distinct solutions to "1 = 1,¢ # 1.

It follows that the corank cp of Hp, which is equal to the corank of Fp and so equal to
the corank of (I — X75™!) can be determined as follows. From (B-7). it follows that cp is the
number of integers p = 1,...,r for which ’% € Z. We assume that n > 1 and, with no
loss of generality, we may assume that n > r. Let s be the greatest common divisor of r + 1
and n — 1:

n—1=uxs and r + 1 = ys with z, y relatively prime.
Proposition 3.3. Let s = g.c.d.(n — 1,7 + 1), then the corank of Hp is
cp = corank(Hp) = s — 1.

Proof. We keep using the notation introduced above. A solution p must satisfy pxr = qy
for some integer q. Hence since x and y are relatively prime, it has to be p = p’y for some
positive integer p’ and p < r+1=ys. Thusp' =1,---,s—1 will yield the solutions, where
the solutions (p, q) are of the form (jy, jx) for j=1,...,s — 1. O
Corollary 3.4. If r = n then

0 if n =1 is even,

corank(Hp) = { 1ifn=ris odd.

Proof. 1t is clear that n — 1 and n+ 1 are relatively prime if n is even. If n is odd then n —1
and n + 1 of course are even and have a common factor of 2. [l

13



3.2.2. FRT case. The matrix Xg has characteristic polynomial 2" + 1 and hence its eigen-
values are the r rth roots of —1. One easily recovers the result from [9]:

Corollary 3.5. (cf. [9, Prop. 4.5.]) Let s = g.c.d.(n,r). Specifically, let n = xs and r = ys.
Then Hg is non-invertible if and only if both x and y are odd. In this case,

Cpr 1= corank(Hg) = s. (3.8)

3.2.3. ‘Combined’ cases. Since X, = X' and the r-th roots of unity are invariant under
taking inverses, the characteristic polynomials for X%l are easily seen to be identical. Here,
due to the factor (I — X"!) in F,, we let s denote the greatest common factor of r + 1 and
n+ 1:

n+1=uas and r + 1 = ys with z,y relatively prime.

The case He,, is completely analogous.
Proposition 3.6. The coranks are given by
corank(He,) = s — 1 = corank(H¢,,).
Corollary 3.7. If r = n, then corank(H,) = r = corank(H,,).

3.3. The inverse matrix H~!. In this section we compute explicitly the inverse matrix
of H (when it exists). We set Y := (A — M)(A — N)~'. Notice that Y = (X*)~!. For
typesetting reasons, set Ay := (A—N)"'and X, 5 := (I+ X + X?+---+ X" %), Consider
the n x n block matrix K made of r x r matrices given by

I Y —1 Y2-Y y3—y?2 ... yn2_yn3 —yn—2

0 I Y —1 Y2-y ... yrn3_ynHt —yn=3

0 0 I Y —1 ce. Yyn4_yn-b —yn—4

K — 0 0 0 I e YnTS _yn6 —yn-?

0 0 0 0 e I I
—NAy —NXAy —NX2Ay —NX3Ay -+ —NX"24y 14+ NX, 2An
(3.9)
Then

Hy=KH (3.10)

(see (3.6])), as one can verify with some algebra by using immediate equalities like Y (M —A) =
(M —A)X and X = Ay(A— M).

Since clearly Y* = (A — N)X*(A — N)~!, we have K = (A — N)K,, where

I X -1 X2_-X X3-x2 ... xn2_xn3 —Xxn—2
0 I X -1 X2-x ... Xxn3_xnt —Xn3
0 0 I X -1 ce. Xnm4_ xnh —Xxn—4
n—>s n—6 n—>5
Ky = 0 0 0 I e XY X -X (An).
0 0 0 0 I —I
—AyN —-ANNX —ANNX2 —ANNX3 —ANNXn_2 I+ ANNX, o

14



Finally let

roo o -.. —xnt
0oI0 0 --- —Xn2
oor1n o .. —Xn3
Hy = o ) : (3.11)
000 --- I -X
000 --- 0 ANF

A direct computation shows that Ko H = Hy.

Lemma 3.8. The matrix Hy is invertible if and only if F' is, and in this case the inverse
matrix 15

X" 11 (A—-N)
X" 2F~1(A—N)
Hi= | ; . (3.12)
000 I XF~Y(A-N)
000 0 F~1(A—-N)
Proof. By direct check one verifies that HyH; ' =1 = H; ' H,. U

Proposition 3.9. If H is invertible the blocks of its inverse are given as follows:
(I—- X" oFINX*D)(A-N)"! ifa=p
Hy=¢ (FX"*FI'NXP N A-N)" ifa>p | (3.13)
—(Hga)' ifa<p
where t denotes the transposition inside the block.
In particular, for H= Hp,n = r the inverse matriz has blocks

—(I+XMI+X,) )N ifa=p
(HpYas = =XM1+ X,)"'N,! ifa>p (3.14)
=X I+ X)) TN = = ((Hp sa)' i< B
while for H= Hg,n=1r+1

0 ifa=p0
(Hg"ap = { 3(S77°F1 =577 ifa>p (3.15)
387 =S = —((Hg")ga)'  ifa<f

Proof. When H is invertible, then H—' = H;'K,. Thus, for a # n we compute
Hy = (K2)aa + (Hy Dan(Ka)pa = (1= X" *F'NX* 1) (A= N)™*

When o = n one computes H,,} = F7'(A— N)(I+ (A— N)"'NX, 2)(A— N)~!, which is
proved to coincide with (I — F7!NX""1)(A — N)~! with some simple algebra. For a > f3,
we easily compute H_j = — X" *FINX?~1(A — N)~! in both cases a # n and a = n.
In the Dipper-Donkin case H = Hp (see page(12), n = r, equation (3.13)) reduces to (3.14]).
Indeed it is enough to observe that we here have
Va: FIINXY = XTI+ X))~
15



Finally, let us consider H = Hg (full rank case). Recall that in this case, X = S,, N = —I,
(A=N)"t=3(I-S5,),and F = (I+S")(I—S,)~*. Equation (3.13) becomes

%(]I—S)(]I—l—S” D@+ St ifa=p

(Hg")ap = { LSmto=e-3(T— S)2(T+ 87" ifa>p . (3.16)
—5SP T I = ST+ 57) 7 = ((Hgga)' i< p

For n =r 41 we get , using S;' = —5,. 0]

Remark 3.10. ;From (3 we observe that in the case n = r, the diagonal blocks (Hp")aa
are independent of o and the oﬁ diagonal blocks (Hp, )ag depend only on the difference 5 —«,
so that the block entries of HD are constant along diagonals and are completely determined
by the blocks in the, say, first block row. The same observation is valid for the matrix HST1

(r,n full rank case) as can be seen from ({3.16)).

3.3.1. Dipper-Donkin, full rank case. We compute explicitly the inverse matrix Hl;l in the
case n =T even.

Let us initially assume that we are in the full rank case (but r,n not necessarily equal).

We need to focus on the term Fp: we need the (integer) matrix

5 I— Xn—l

Fp=—""L2 T4+ Xp+ - +X72
to be invertible. Notice first that Xp is diagonalizable with a diagonal D consisting of the r
distinct points in R, = C\ {1} for which e/*! = 1. It follows from the discussion before (see
page that for a pair r,n correspondlng to full rank, the map e; — €'~ ' is a bijection of
R, onto itself. Thus Fp is similar to the diagonal matrix (I— D" !)(I— D) of determinant
1, and we obtain

Lemma 3.11. Fp is an integer matrixz. If it is invertible, then it has determinant 1.

Lemma 3.12. The following special cases hold:

o [f(r,n)=(r,r+1) then Fp = —Np.
e If (r,n) = (r,r) and r is even, then Fp = —NpX,'(I+ Xp). Furthermore,

T+ Xp) A+ X3+ Xp+--+X7)=1. (3.17)
Proof. Small computations easily yield most of the above; the last identity follows since
I+Xp+ X3+ +X,=0. O
Furthermore, notice that the interesting term in Fj L HE;,SCI. In the full rank case i.e.

for g.c.d.(n-1,r+1)=1, choose a,b € Z such that a(n — 1) + b(r + 1) = 1. Without lost of

generality we can assume that a > 0 and that a is the smallest positive integer which satisfies

the above equality. Then
I-X.

Xl =T+ X2 oo XD, (3.18)
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For instance, when n = r = 2p, then a = p, b = 1 — p and the above is simply the sum
P Xj(r—l)
j=1r

Let E;; denote the matrix unit of position ¢, j with 4, j = 1,...,r. (We will for convenience
set E;; = 0 when at least one between i and j are not in {1,2,...,r}.) Define an r x r matrix
T = (tzj> by T = Z:;ll Ei,i+1> 1e

by = { 0 otherwise. (3.19)

Lemma 3.13. For eachi=0,1,...,r,

XZD — T?, + (Tt>7‘—i+1 o Z E’r—z’—i—l,s-

s=1

Proof. This follows easily by (finite) induction. O

For future use, also notice that the explicit form of X% i <r, is

0
0 Hr—i
0
Xp=1 -1 —1|-1]-1 —1 | ¢<rowr—i+1 (3.20)
0
I; 4 : 0
0
and that we, furthermore, by direct computation, have
Lemma 3.14. For:=0,1,...,r,
XZD(]I . T) — Ti - Ti—i—l + (Tt)r—i—I—l . (Tt)r—i (3‘21)
and
Xpi(I—T) = — (X1 -T))" . (3.22)

We can now compute explicitly the entries of the matrix HBl (also see (5.8) below for a
specific example: n =r = 4):

Proposition 3.15. Let n = r even. The components (Hgl)ab, a,b=1,...,7r% of the inverse

matriz of Hp are constant along the diagonals, i.e. (Hp")ap = (Hp )ayepre for all admissible
c € Z, and they are given as follows: (Hp')aa =0 and for b > a

0 [b—al =[1]
(Hp o = —(Hpea =13 1 [b—a] =3],[5],....[r+1] (3.23)
—1 [b_a]:[2]7[4]77[r]
where [-] denotes the class of an integer in Z/(r + 1)Z = {[1],[2],. .., [r + 1]}.

17



Proof. Starting with Remark [3.10, in order to determine the matrix H,' it is enough to
determine the first row of blocks: (Hp')15, 8 =1,...,n = 1. Next

(H5V)ws = (HoYa-pi11 = —((HpD1api1)t a>p
D JaB (H51)1,ﬂ_a+1 a < B.

First we examine the diagonal block. From (3.14), (Hp )1, = (I+ X5H(I+ Xp) ) —T).
By making use of equations (3.17) and (3.21]) we get

/2 r/2

(H51)11 B A Z (T2i71 . T2i) 7+ Z ((Tt)rf2i+2 _ (Tt>r72i+1) 7

i=1 i=1

where the second term is the transposed of the first one. Since T = Z;:l E; j+i, we have
that the block (Hp')1; is completely determined by its (say) first row and (also using 7" = 0)

that this is given by ((Hgl)n)lj =(0,0,—-1,1,-1,1,...,—1,1) ie.
0 j=1,2
((H,;l)n)lj ={ 1 j>1odd (3.24)

—1 j5>2even.

An analogous argument shows that the off-diagonal blocks (Hp')14, 8 # 1, consist of a sum
of powers of T and T*. Specifically
(H51)16 — T — T2 + T3 R Tﬁ—l o Tﬂ—‘rl + Tﬁ+2 N TT’—Q - Tr—l o (Tt)r—l +
(T2 = (T1) 3 e (T2 = (TP (TP e T
for 3 even and
(H51)15 :]I—T+T2++T’B_1 —T’B+1+T’B+2+"' _TT—Q_I_TT—1+
_{_(Tt)rfl - (Tt)r72 4ot (Tt)rfﬁ+2 . (Tt)rfﬁ + (Tt)rfﬁfl I (Tt)Q _Tt
for 8 odd. Notice that contrary to the diagonal blocks, the block (Hp')15, 8 # 1, is not
antisymmetric, (Hp')15 # —((Hp')15), but still its entries are constant along the diagonals

(due to the specific form of T'), so that it is determined by its first row and first column.
From the above expressions we have

0 j=p+ 0  i=rp2

1 j = B, B2, B—A4,... 1 i =r—8, r—f—2,...
((Hl;l)m)lj =< —1 j=p8-1, 5-3,. : ((Hgl)w)“ =< —1 i=r—p+1,r—p-1,.. (3.25)

—1 j = B+2, B+4,... 1 i = r—B+3, r—B+5,...

1 j = pB+3, B+5,.. —1 i=r—B+4, r—B+6,..

for both 8 odd or even (8 #1),4,j=1,...,r.

We can now prove that the components (HBl)ab, a,b=1,...,r% are constant along the
diagonals. It remains to prove it when passing from a block to a nearby one, for instance

we need to prove that ((H,;l)l,g)ir = ((H51)17ﬁ+1)7;+17]_ for all ¢ # r, 5 # 1. To do that it is
18



enough to compare the expressions of ((Hp")15)ir = (Hp')1)1,—iv1 and (Hp')1p41)ix11
resulting from (3.25)). Similarly we can prove the result for all other cases:
(Hp 2w = (HpY)a2)1it > (Hp i = (Hpi2)irra
(HpYag)ri = (Hpasrp)rist, a+1<B, i#7r.

Summarizing, we conclude that Hp' is determined by its first row. From the previous
computations,

(HoYw=(.. |...,1,-1,1,-1,1,0,—-1,1,—=1,1,...| ...)

-

T ,

block (Hp)is

where the 0’s in block 8 occurs in position b = (5 — 1)(r + 1) + 2, the U'sfor b= ..., (8 —
Dr+1)-L,B-Dr+)+1,B8-1)r+1)+4,(8—1)(r+1)+6,..., and the —1’s in

the remaining positions. ;From this, together with the equation (H;")e = (Hp')atepie, We
deduce formula (|3.23]). U

3.3.2. Dipper-Donkin case r = n odd. In this last part of the section we return to the result
of Corollary[3.4 For r = n odd the matrix Hp is not invertible, nevertheless we can construct
a ‘partial left inverse’ as follows. (See also §6])

Let us introduce the invertible matrix U,, = I + Z1<2¢ t1<n En2ir1. We further introduce
the matrix P := Y ,_, E,; which has all entries zero, but for the last row of 1’s. Thus we
can rewrite the matrices X, and T as X, = N;' +1— P and T = X, + P. The following is
elementary:

[T+ (X, +P)=2+N-' forneven
Un(H+Xr)— { ]I+(XT+P)_En,n for n odd.

Further, we have easily that the term Ay F in the matrix (3.11) here is given as AyF =
I+ X,1).

Thus the invertible integer matrix V,, := (I + T)~'U,X, of determinant 1 is such that
Vol+X ) =Tifnisevenand V,(I+ X ) =1—-FE,,+ E, 1n—FEy on+---—FEi,ifn
is odd. For n odd, we introduce the notation

En = En,n — Enfl’n + En,Q’n + -+ El,n . (326)
Counsider the matrix
I 0 0 ... 0 X"ly,
O I 0 0 X" 2V,
0O 0 I 0

Xn—3 Vn
0O 0 0 0 I XV,
O 0 0 0 0 Vi

Then by using the matrix H; = Ky H in (3.11)), we have Z, Ko H = 1,, when n is even and
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I 0 0 ... 0 —X"lF
—Xn2f

— X3
ZnKoH=| . . (3.27)

o o
o =
= o
o o

OOOOI[—XP;“,L

0O 0 0 0 O I-£E,
when n is odd, in agreement with Corollary . (For n =7 even, Z, = H; ', see (3.12)).)

3.3.3. The Dipper-Donkin case for n = r+ 1. We finally analyse the inverse matrix Hp' for
n =r + 1. In this case (3.13) simplifies considerably because in this case F' = —N. Then
I+XYNI-T) ifa=p
(HpYap = XPoY1-T) ifa>p (3.28)
_<<H51)6a)t fa<p,
so that Hp' is constant along (block) diagonals as it was for n = r.
Next, from (3.21)) it is immediate to see that
r—1
(HpYaa =T"' =T =" (Biy1;— Eiit1)
i=1
We need only to compute the blocks (Hp')s for (say) a =1, 8 > 2. First, for 1 < a < S,
from (3.22)) together with (3.21]) we get
H;ﬂl _ —(Hg;)t — Tﬁ—a . Tﬁ—a+1 + (Tt>r—ﬂ+a+1 . (Tt)r—ﬂ+a :
so that
Lemma 3.16. For each 5 = 2,...r it holds that

(H51)16 — Tﬁ—l o Tﬁ + (Tt)r—ﬂ—‘rQ o (Tt)r—ﬂ—‘rl
r—f+1 r—B B2 51
= Z Eiirp—1— Z Eiirp+ Z Er_pyitoi— Z Er giiv1;  (3.29)
i—1 i—1 i—1 i—1

Moreover, a little algebra shows that:

Lemma 3.17. Forn = r+1, the entries of the matrix HBl are constant along the diagonals.
Specifically, for each a,b=1,...,7(r +1): (Hp e = (Hp asepre for all admissible c € Z.

3.3.4. The FRT case forn =r+1. Let us now address the FRT case as given on page (12|

Lemma 3.18. The following special cases hold:
o If(r,n) = (r,r +1) then Fg =1.
e If (r,n) = (r,r — 1) then Fg = —S!
e If (r,n) = (r,2r) then Fs =2(I—S,)~".

We analyse from (3.15]) the inverse matrix Hg' for n = r + 1. As observed in Remark

3.10} it is enough to compute the blocks (Hg'),s for (say) a =1, 8 > 2.
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Proposition 3.19. For each g =2, ...r it holds that

r—p+1 -1 r—p+2 B—2
2(Hg")1p = Z Eiivp—1 — Z Er_griv1i — Z Eiivp—2 + Z Er_pyivo; (3.30)
i—1 i=1 i=1 i=1

Proof. By induction one can prove that for each ¢ < r,

r—{ L
S'=> "Eiie— Y Erppig=T —(T")", (3.31)
i=1 i=1
and the formula (3.30)) then follows immediately from (3.15)). O

Notice that the matrix Hg ! does not have constant values along the diagonals, contrary
to what happens for the Dipper-Donkin cases n = r (see Prop. [3.15) and n = r+ 1 (Lemma
3.17)). For example, for n = r 4+ 1 = 6 one has

-1 1 0 o0 O0}0 -1 1 0 0
1 o -1 1 0 0,0 0 -1 1 0
o o0 o0 -1 1|-1 0 0 0 -1

4. BLOCK DIAGONALS. DEGREES

Recall that a skew symmetric N x N integer matrix J of corank(J) = ¢, when viewed as
a quadratic form, can be transformed to a block diagonal form by an integer matrix L of
determinant 1. Specifically,

L'JL = Diag(Dy, Ds, ..., Dy,0,0,...,0)

where k = %(N —c¢) and each D;, i =1,...,k is a non-trivial skew symmetric 2 x 2 integer
matrix.

Remark 4.1. By the work of De Concini and Procesi [2] the block diagonal form yields the
degree of the quantized matriz algebra in case q is a primitive mth root of unity.

We can apply this result to J = Hp (see page . First, let us assume that Hp is
invertible.

Corollary 4.2. Suppose Hp is invertible. Then a block diagonal form of Hp consists of %rn
blocks of the form ( _01 (1) >

Proof. Tt follows, by combining Lemma with Corollary [3.2] that det Hp = 1 in this
case. U

As for the situation for FRT, we have the following result adapted to the current termi-
nology. Let dy = | 22— .
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Proposition 4.3. [9, Proposition 4.11] The non-trivial blocks in a block diagonal form of

the defining matriz Hg are: dy matrices of the form _01 é and max{0, “"" — do}
: 0 2 0 4
matrices of the form 9o ol Z4 o) where ¢, = corank(Hg).

Recall: n = xs and 7 = ys. According to Corollary .5, ¢,, = s, but only in case both z
and y are odd. We assume throughout that » > n > 1. In case of a regular matrix x, y must
have opposite parities. According to Corollary the determinant of D is given by

det D = 20=D0=D det, Fg

where Fg = % In this case it is easy to see that %nr —dy > 0. If f denotes the number

of blocks with 4’s then it is easy to see that Proposition [4.3] yields

2nr7n7r+1+2f if s is odd
det HS = { 2nr—7’b—7‘+2+2f if s is even.

The number f was only determined in a few special cases in [9]. We can now use Corollary
to determine it. Specifically, one may use some elementary Gauss Elimination moves on
1+ 5" or F, to conclude that det(1 + S™) = 2%, or equivalently, det ' = 2571, We give a
short sketch of this result. Let us introduce a more general configuration 14e;T"+eo(T")" ",
where €1,e9 are £1. It may be assumed that they are never —1 at the same time. 7' is the
r X r matrix of . We are interested in £y = —e9 = 1, but will encounter more general
configurations in the reduction process. It is indeed easy to see that we can reduce the
dimensions by splitting off diagonals of 1’s as follows:

r>2n:(n,re;,e) — (n,r—mnéy,é)
r<2n:(n,re;,e) — (2n—r,n,éEs).

As an example, consider, for r > 2n, the configuration (n,r,1,—1): Adding the top n rows
to the bottom n rows gives a matrix in which the first n rows carry so-called leading 1’s and
this part can then be ignored. The remaining (r — n) X (r — n) matrix then evidently has
signs €1 = 1 = &9.

In case 2n = r we are done in one step, and here we obtain the lower part of the diagonal
consisting of s places with the value 1 — £165. In case ;65 = 1 the original matrix is thus
singular. Observe that all matrices can be viewed as being built up of s x s blocks of +I
which means that we may as well set s = 1 in the reduction process, returning it to its
original value only in the end. We are considering the case where the matrix is regular, and
since x, y are relatively prime, and have opposite parities, the situation y = 2x implies x = 1.
As before, if we are in this situation, we are done in one step. If we are not in this case we
will eventually get there according to the above strategy.

In summary, we have then obtained

Proposition 4.4. Let f denote the number of times a block ( _04 g ) appears in the block

diagonal of Hg when the latter is reqular. Then

=12
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4.1. Concerning the block diagonal form of a non-regular H. To deal with the non-
regular cases, we make the following observations.

Suppose that there exist an integer matrix G of determinant 1 such that GHG! = D:

g1 G2 hy  ho g1 9s D 0
=D = 4.1
(93 94)(—h§ hg)(gz gt 00 ) (4.1)

where we have split the matrices in blocks (of suitable dimensions) and D is a non-degenerate
block diagonal matrix. This implies

(9101 — g2h3) gy + (g1he + g2hs)gs  (giha — g2h)gs + (g1he + g2hs)gy \ _ (D 0
(gshn — gah3) gy + (gsha + gahs)gs  (g9sha — gah3)gs + (gsha + gahs) g, 0 0/
(4.2)
Notice that we are not assuming that the blocks are of the same size. In applications
below, this is far from being the case.
Suppose furthermore that there exist a matrix Z, similarly decomposed into blocks, such
that

7 hl hQ _ VAR hl hg _ Zlhl—Zth Zlh2—|—22h3 _ L tl
—hg h3 Z3 Z4 —hg h3 23h1—24hg 23h2+24h3 0 to ’

(4.3)
At the moment we just assume that L is a general matrix. Assume furthermore that
ty = 0 and that z, is invertible. Set x = z;'2z3. It follows that h = xhy, ho = —h;2t, and
hs = xhyz'. Then the upper left hand corner of (4.2)) gives:
(91 — go)ha (g1 — ga)' = D. (4.4)
Similarly, we get from (4.3)) that
(21 — Zg.ﬁﬂ)hl =L (45)
More generally, we get
(91 = gom)la(g1 = go7)" (91 — gox)Pu(gs — gazx)' \ _ ( D 0 (4.6)
—(93 — a)hi(g1 — go)" (g3 — gaw)ha(gs — gaz)’ 0 0/ '
Since (g; — gox) and hy are invertible it follows that
g3 — gaxr = 0. (4.7)

Now observe:

Lemma 4.5. If x is an integer matriz, then D is a block diagonal form of hy.

€ 1]1 0
g9 €3l
an integer matrix of determinant 1 for which

61]1 0 hl 0 51]1 0 t_ hl h2 (48)
E9T 53]1 0 0 E9 €3H o —hé h3 . .

Inserting this into (4.1f) gives that < 18 8 ) is a block diagonal form of < %1 8 ) 0

Proof. Notice that in this case, ( ), for suitable choices of signs €1, 5, and €3, is



Observe that

Z1 2
23 24

(

Z1 — X Z9
0 Z4

I
24_123

)

(4.9)

so that, if det Z = 1, then det(z; — z92) det zy = 1. From Lemma and equations (4.5),

(4.9) we then conclude

Proposition 4.6. If x is an integer matriz and if det Z =1, then

det D = det L det z4.

4.1.1. The block diagonal form of a non-reqular Hg. Consider the singular case for FRT. As
in §3.2.2 let r = ys, where s = g.c.d.(n,r). Let

Gs =

I

0
0
0

0
I

be an y x y block matrix where each block is an s X s matrix so that I = I,. Similarly, let

Gs =

0 0 0 0 0
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
11 -1 1 1
I 000 0 0
01 00 0 0
0010 0 0
0001 0 0
0000 I 0
0000 0 Gg

be an n x n block matrix of r x r blocks. We are interested in stydying the effect of a

multiplication from the left on the two sides of 1’ (case of H = Hg) by Gs.

We first investigate C/J\SHg. This will be the right hand side of 1} It may be seen
that Gg(I + S™) is a matrix whose bottom s rows are zeros. A similar statement holds for

Gs(I+S™)(I—S)~. Let L denote the (r—s) x (r — s) matrix obtained from (I+S")(I—5)~*
by removing the last s columns and last s rows. In the terminology of (4.3)) we then have

A-—N
0
0

0
0

0

0
0
0
0

~

L

(4.10)

The blocks A — N, of which there are n — 1, are of size r x r. It may be seen that L is an
integer matrix of determinant 1. Since this computation is very analogous, indeed almost
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identical, to a case for the Dipper-Donkin algebra treated below, we omit the details. This
was the onl/y\unknown piece of det L.

Now to GgK: This will be the matrix Z of the previous considerations. Specifically, the
matrix zz will be an s X (nr — s) matrix which, together with z; make up the bottom s rows of
Z. The effect of the multiplication is, basically, that we multiply the bottom (block) row of
K by G, leaving everything else unchanged. We have that [+ N X,, s Ay = %(]I—i— Sty
In this matrix, we are in particular interested in the bottom row of s x s blocks and thus
write

PGS+ 5" = LG5 57) + Cs(T+ 575 (4.11)

Notice that the matrices 7" and S can be defined in any positive dimension d € N. Specif-
ically, T = ZZ: Eypyr and S =T — E;;. We will denote these matrix by 7y and S; to
clarify the notation in what comes. The last term in (4.11)) may be ignored for our present
purposes. We have that I, — S;! =1, — T! + E; .. We write this in terms of s X s blocks as
follows:

I,—T! 0 0 0 0 By,
By, I,—T! 0 0 0 0
0 —By, L,—T' 0 0 0
I, — St = 0 0 -Ey, I,-T! 0 0 (4.12)
0 0 0 0 ... L,—T¢ 0
0 —0 0 0 ... —E, I,-T!

We then easily obtain: Set R, = (I — S;!). This is an s x s matrix, and the last
row of %GS(H + S™71) is given as (reading from left to right, separated by vertical lines
): (Rs| — Rs|Rs|...| — Rs|Rs). To connect with the previous, observe that z; here is
represented by R,. Thus, det z, = 27, It follows, provided x is an integer matrix, that
det D = 2n7‘—n—7"+2—5_

We then focus on the other terms 1Gg(I — S)S%. These may be attacked in a similar
fashion, keeping S° outside the deliberations as a factor from the right. This gives us 2.
To obtain z, we multiply with z; ' from the left and it is then obvious that x is an integer
matrix.

In the singular case, dy = (n+r—2) since n+r = (z+y)s is even and then Proposition

2
gives that det D = 2nr—n—r+2=s+2f

Proposition 4.7. No block ( _04 é ) appears in the block diagonal of Hs when the latter

18 singular.

4.1.2. The block diagonal form of a non-reqular Hp. Let us consider the Dipper-Donkin
singular case:
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Letn—1=z-sandr+1=y-s. Let

I, 0 0 0 0 0
0 1 0 0 0 0
0 0 I, 0 0 0
Go—=| 0 0 0 1 0 0
0 0 0 0 ... 1 0
I,, 0 I, 0 ... 0 I,

This is a matrix whose diagonal is made up of y blocks of the (s — 1) x (s — 1) identity
matrix separated by (y — 1) blocks of 1’s (1 x 1 identity matrix) as indicated. The 0’s
represent either (s — 1) x (s — 1), 1 x (s — 1), or (s — 1) x 1 blocks of zeros.

We proceed in analogy with the FRT case and introduce G p as the analogue of @5, and
we then multiply the two sides of (case of H = Hp) by Gp from the left.

It follows easily that in the present case, Gp(I — X" !) is a matrix whose bottom (s — 1)
rows are zero, and hence Gp Ay F is a matrix whose bottom (s — 1) rows are zero. We will
later prove that if L denotes the the top left (r — (s — 1)) x (r — (s — 1) matrix in GpAyF

then det L = 1. Again, this gives the only unknown piece of det L.

We must now examine the effect of multiplying the bottom block row in Ky by Gp. It is
clear that this will result in an integer matrix, and thus we need only concern ourselves with
Gp(I— (I — X")(I— X)) (—=N)"!. In particular, the bottom s — 1 rows coincide with
those of Gp(—N'), and if z4 denotes the rightmost (s —1) x (s — 1) block of that row, then
det z4 = 1 follows easily.

Let us then turn to Z, which easily is seen to equal the result of removing the bottom
s — 1 rows and rightmost s — 1 columns from X + X2 + --- + X"~ !, We do the following
elementary column operations: Let ¢; denote the ith column. Subtract ¢y from ¢y, then c3
from co, etc until ¢, is subtracted from ¢,,_;. The resulting matrix has the following form:

n—s—1 r—n—s+2 s
]Ir—s—i—l - E Er—n+2+a7a - E E,B,,B—i—n—l - E Er—n—s+1+'y,7"—s+1-
a=1 /=1 y=2

Let us say that this matrix is determined by the data (z,y). In case 2z > y we can
immediately remove the 1’s below the diagonal and obtain an upper triangular matrix with
1’s on the diagonal. The case 2x = y is of course not possible. Let us then consider the
case 2x < y. Here we again add top rows to remove the elements corresponding to the term
— Zz;ifl B, piotaq- After that, we can ignore the first rows and columns and are in a case
corresponding to the data (z,y — x). If 3z > y we are done, and otherwise we reduce again
in the place of the y. After a finite number of steps we are done.

Corollary 4.8. In all cases, reqular as well as singular, any non-trivial block of the block

diagonal form of any Hp s of the form ( _01 (1) )

Remark 4.9. This corrects in particular a part of the proof of Theorem 3.1 in [11].

Similarly we get
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Corollary 4.10. Any non-trivial block of the block diagonal form of any H, or H,, is of
the | 0 1
eform | o )

4.2. The degree of the extended algebra P,. Consider a skew symmetric block matrix
Hp given by

0o M, M, M, --- M, 1 E
N, O M, M, --- M, I E,
N, N, 0 M, ... M, I FEj
N N, N, 0 - M 1 E
Hp = . . . . . . . )
N N, N, N, --- 0 1 E,
-1 -1 -1 -1 ... -1 0 0
—Et —EY —E! —FE' ... —E' 0 0

where for the time being M, = b - M, is an arbitrary integer multiple of the previously
introduced matrix M, (see p. . Furthermore, I denotes the identity matrix of order r and
E,, are the r x n matrices defined by E, = > Esqfora=1,...,n. Here we consider the
matrix units E;; as r X n (!) matrices with (as usual) a single non-zero entry at position

(s,1).

We subtract M, times the (block) column with the I's from the columns 2,...,n and
liAkewise add N, times the row with the —I's from the rows 2,. ..,n. We furt}}er subtAract
E; times the I-column from the last column which results in (0, Fy — Fy, B3 — Es, ..., E, —

A

E, 1,0,0)". We can then make additional column operations inside this last block column
so that the effect on the blocks Eg, Eg, e E,, are annihilated (specifically we add to the
first column the sum of all the other » — 1 columns). Finally, at this stage, we make the
analogous row operations. The net effect is then a matrix

0 0 0 0 0 I 0O
0 A, —-N, —N, --- =N, 1 Ey
0 —Mb Ab —Nb _Nb I ES
0 —M, —M, A, --- —N, 1 E,
HS)ZQHPQt: : : : : : : : ’
0 —M, —M, —M, A 1 E,
I I —I I ... -I 0 O
0 —E. —E —E' ... —E. 0 0

where Ab = —Nb — Mb.
We can now subtract the first block row from the other rows and analogously for the first

_01 (1) ) splits off. We then use
the Ei’s to subtract the last columns and last rows in the Ay, —M,, —N, terms. Begin by
using Es, %, then use Ejs, B, ect. In this way, n — 1 blocks of the same form as before split

off. Finally, owing to the removal of £y, in the cloumn with number (n 4 1)r — 1 there are
27
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only 0’s, and analogously, in the row (n + 1)r + 1, and in this way, one trivial 2 x 2 matrix
splits off. What remains is to consider a matrix of the form

A “b-Noy —b-Noy —b-Noy --- —b-N,_,
—b-M,_, A “b-N.y —b-Noy - —b-N,_,

o “b-M,_, —b-M,_, A “b-N._y ... —b-N,_,

Hy'=| _p.M._, —b-M,_, —b-M._, A ;oo —b-N,, |, (413)
b-M,_, —b-M_, —b-M._, —b-M._, - A

where A = —b- M,y —b- N,_y. This matrix is an (n — 1) x (n — 1) block matrix in which
the blocks are of size (r — 1) x (r —1).

We now assume that Hp is the defining matrix of the extended algebra P, introduced in
. This is possible if we use a Dipper-Donkin basis (see Definition . Equivalently, we

set M = 2M,. Then Hg) in (4.13]) is of the form

H7(?2) = _QHCII J

where H,, is the matrix introduced at page

Let r = ys and © = xs with z,y relatively prime. Then the corank corank(H,,,) of
H¢,, based on a (r — 1) x (n — 1) configuration has been determined by Proposition |3.6| as
corank(Hc,,) = s — 1.

Then we have obtained

Proposition 4.11. The non-trivial blocks of the matriz Hp of an n X r quantized extended

algebra P, are: (n+r—1) blocks of the form ( _01 (1) > together with 3((n—1)(r—1)—s+1)

0 2
blocks of the form ( 9 0 )

Corollary 4.12. If n = r, the non-trivial blocks of the matriz Hp of the quantized extended
algebra P, are: (2n — 1) blocks of the form ( _01 (1) ) together with §(n — 1)(n — 2) blocks

of the form ( _02 g )

Remark 4.13. Notice that when n = r, the total number of blocks is %n(n +1). Corol-

lary corrects the distribution of the two kinds of blocks as given in [12, Theorem 11.2]

5. THE QUASI-COMMUTATION MATRIX A AND ITS INVERSE

In this section we analyze the matrix A, introduced in Proposition [2.9] which encodes the
commutation relations among the quantum minors x,;. As in (2.17):

A=T'HT,
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where the matrix T was defined in (2.18) and can be written as a matrix made of n x n
blocks of order r in the following form:

I 7 7% ... T}
o1 T - 7Tn2
T=]0 0 I : (5.1)
: : PR * . T
00 -~ 0 I

Here, T is the 7 x r matrix introduced previously in (3.19). It is evident that det(T) = 1
and the inverse matrix is given by

r -r o --- 0
o I -7 -~ 0
T'=]0 0 I --- (5.2)
L SO
0 0 0 I
As an example we write here the case of n =r = 3:
1 0 0(0 1 00 0 1 1 0 0/{0 -1 0|0 O 0
01 0{0 0 1{0 0 O 01 0j0 0 —-1]0 0O O
0 0 1{0 0 0[O0 O O 0 0 10 O 010 O 0
0 001 0 0[O0 1O 0001 0 0|0 -1 0
T:000010001,T71:00001000—1
0 0 0|0 O 1|0 0 O 0 00j0 0 1|0 0 O
0 0 0|0 O O|1 O O 0 0 0j0 O 0|1 0 0
0 0 0|0 O O[O0 1 O 0 0 0j0 O 0|0 1 0
0 0 0j{0 O O]O0 O 1 0 0 0j0 O 00 O 1
In the full rank case, the invertibility of the matrix H (3.3)) implies that of A:
A—l — (T_l)H_l(T_l)t,
or in block (r x r matrices) components
-1 -1 _ _ _
As=H,;—H g T'—TH} s+ TH_}, ,,T", o,f=1,....n, (5.3)

where the second term H_ }3 1T appears only when 3 < n, and with analogous properties

for the other terms. With the aim of determining compatible pairs (A, By) as in ([2.21)),
we study below the explicit form of the matrix A~! in the two particular cases H = Hp and
H=H S

5.1. The inverse matrix A~!.
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5.1.1. Dipper-Donkin general full rank case. Let us consider the case of H = Hp, for
g.cd.(n—1,r+1)=1. In what follows, we avoid writing the subscripts p and , to matrices
to lighten the notation.

We collect first some useful formulas immediately derivable from the very definitions of the
matrices X, T :

(i) F7IN = =5

(ii) for r =2m, I+ X))t = =37 X% (cf. (3.18)). Indeed

m

—(]1+X)ZX2H:—ixiz—i)@'w:ﬂ;
=1 i=0

=1

i) I-TTt=X*T0-T)+E, =T~ 1+ E,,,and X (I ~T) = -1+ T*;
(iv) TX ' =1-FE, and X"'N~' = N~'T" = E,,.

Then we compute the different blocks of the inverse matrix A~!:
e If n > a > 41 then all terms in A~! appear. Using in this range

H—l Xn—a-i—,@—l(]l . X)(X . Xn)—lN—l

af =
and H(;ilﬁ = Xle;’lﬁ one easily gets
X”+B—0‘(H _ X) Xn—i—/i—a(l[ _ X)
AL =F E, = E,,. 4
o ”"( X — X ) " ( X — X )M rr (5.4)

Indeed from (j5.3),

A;g = (I- TX—l)H;; —(I— TX—l)H;}mTt = ETT(H;E — H;gHTt)

= E, X" I -X)(X - X"'XINT - NI
= B, X" "1 -X)(X-X""'E,,
from which (/5.4]) follows.

e We define P, := — (w) Then

Hyt=(Po+DI-=T) ; Hypy=-BX'NT,

a,a—1

so in particular we observe that H_; and H ! |, do not depend on the block index
a. Furthermore, notice that (P,),, = —1. Indeed, from we have that P, =
— XX X2 o XD Next, for each af < a, XYY £ X since by
our assumptions, a is the smallest positive integer such that a(n—1) = 1 mod(r+1).

Similar reasoning shows that for all ¢’ < a, X%®™~D £ X" because otherwise we

would have (a — a’)(n — 1) = 1 mod(r 4 1). Hence, from (3.20)), the only term in P,

which has a non-zero r, component is —X ' X*"1) = _T,
Then, for « < n — 1, we compute
Aoy =1-T" (5.5)

Indeed, by using E,..(I+ P,)E,, = 0 and

Hl o=X'H - X' I-T)=X""H  +1-T"
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we have

AL =0-TX HH! I—-TX "YH  T'+TX 'N'T'

a,a-1 aa—1 "
=E.H,\ —E H T+ (1—E.)(E., + X N7
e B P X N — B (Py+ )(T' =1+ Eu) + X 'N"' — E, X" 'N !
=-E,PM '+ E,PM "' +E,M "' +M "'~ E,M "' =1-T"
e We observe that H, ! 'is skew symmetric. We use

Hyon = Hoo( X7+ (I =T)X ) = Hy o (X)) =147

and compute A7, for oo <n — 1:
Ay = HOL,—H (X Y)T'+T' —TT' —TX'H, |, - T+TT"+TH, T
= H \E,+T'+ E.H,\, — H,\ —T+TH,\T"
Next,
HooBry + (Brp =DHy o + TH T = HooBry = TX T (B + DI = T)
+T (P, +D)(X'(1-T)+ E,,)
= (HEL +T(P, + H)) E,r,
(where we used that P, and X! commute), and therefore we conclude that for
a<n—1:
Ao =T'-T+(P,+1-PT+TP,)E,, .

Define the matrix Q by T' = X +@Q, i.e. Q =Y., E,;. Then, clearly, (P,+1—P,T+
TP,)E,, = (P+1—-PQ+QP)E,.. We observe that F,.X = —Q and QF,, = E,,, so
that (P, +1—P,Q+QP,)E,, = E..+QP,E,,. Furthermore QP,E,, = —E,. X P, FE,,,
with (X P,),. = 1. We conclude that (P, +1— P,7 +TP,)E,, =0 and
A;L:Tt—T, Va<n-—1.
e Evidently, A, |, = H, | = (P, + )T - T).
eForf<n—1,A =H} —H,,, T"=-xCXp

nB — " Tnp n,B+1 X_xn e
° A;’}l_l = —anlg:;{le —~T'+1—E, =P,E, —Tt+1—FE,,.

Summarizing, we have the following:

( n —
<%)M~EM if n>a>p+1
I-Tt if a#n, f=a-1
Tt —T if a=p#n

Agy=¢ (Pa+DI-T) if a=p=n

—Xﬂg:)@Eﬁ if a=n, f<n—1
PE,—T'+1—E, if a=n B=n—1
—(Ag)! if a<p

\
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Dipper-Donkin, case n = r even. In the particular case in which n = r = 2m, the expression
of A7t just determined can be simplified further, thanks to the fact that here X = X!
and ([+X) ' = —X — X3... — X",

e Forn>a > fB+1, we have A} = (XX + X3+ ... X" 1)), E,.. Recalling the

expression of X! from equation (3.20)), we see that (X!),, is non zero only for the
values [ = 0,1, 4+ 1. Thus,

AL —FE,.. if «a—[even
af ) +E, if a—fodd

Indeed, if a — 3 is even, the sum X% (X + X3 4 ... X"!) contains the term X,
while if odd, it contains I.
e The term P, here is simply the sum of the even powers of X :

P=1+X2+.. X2 (5.6)

e For a« =n, B <n —1, we need to analyse the term

I—X
= X(X?4+ X'+, X" 4+ X") = L.
X xr (X°+ X"+ + X7)

If 5 is even, then

_Xﬁ

L=X2 4 Xy X"+ X+ X+ X!

even odd

while if 5 is odd,
L=X4 X0 I+ X2+ X ... XL

vV
odd even

Now let us consider the last column of L. Accordingly to (8.20)), we have (X!);, =
Oir—t — 0ir—i41 (the first term disappearing for ¢ = r), so that

~1,1,-1,1,...,0,...1,—-1,1,—1,1,—1)t  if 3 even

1,-1,1,-1,...,0,---—1,1,—1,1,—1,1)* if B odd
(

i.e. L; is a column of alternating 1, —1 starting and finishing with —1 if § is even,
with 1 if § is odd, and with a single 0 at the position of the row r — 5. Hence we
conclude that the only non zero column of A;}B, f<n—1Iis

(A

) { (-1,1,-1,1,...,0,...1,-1,1,—1,1,~1)" if 8 even
n,B)ir —

(1,-1,1,-1,...,0,---—1,1,-1,1,—1,1)* if B odd

e From ([5.6) above, we have that A} (I—-T%") + (P.E, — E,.), where the matrix

n,n—1 -
P,E,.. — E,, has the last (and only non-zero) column given by

(0,1,-1,1,—1...1,—1,0)"

by a reasoning analogous to the one used for (5.7)).
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As an example, we write the matrices H, A and their inverses for the case n = r = 4. The

matrix Hp is given by (3.3]), with

SO O

SO —

O o

™ o

=

-1
—1
—1
—1

-1

-1

-1
0

-1
-1
0
0

-1
0
0
0

|

Its inverse is

(5.8)

T!HT is given by

The matrix A

-2

—1

1
2

-2 =3
—4

—1

1

1

-1 -2 -2
-2

0
1

-3 =310
—4

-2
-2

—1

0
1

-5

-1 -1 -1

0
1

-2
-3
-3

-2
-3
—2

-2
-2

—1

0
1

-2
—4
)

—2
—4
—4

-2
-3
-2

—1
—1

0
1

-1
-1

-1 -1
-1

—1

-1

0

-1
-2
-2
—2
-1
—2
-3
-3

-1
-2
-2
-1
-1
—2
-3
—2

—1
—2
—1

—1
—1

0

-1
-2
-2
-1

-1
-1
-1

0

It is of full rank, with inverse given by
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o -1 0 0f-1.1..0 O0O}0 O O OO0 O O O
1 o0 -1 0}0 -1 1 0,0 O O OO0 O O O
o 1 0 -1y0 O -1 1,0 O O OO0 O O O
o o0 1 o,0 O O —-1j0 O O 1|-1 1 0 -1
1 o o o0}0 -1 0 O0|-1 1 0 OO0 0 0 O
-1 1 o o0}j1 0 -1 0}0 -1 1 0|0 0 0 O
o -1r 1 o0,0 1 O -1}0 O -1 1,0 0 0 O
AL o 0 -r 1,0 o0 1 O0O}j0 O O -1}1 0 -1 1
o o o o011 0 o0 0,0 -1 0 Of-1 1 0 O
o o0 o0 o0f(-1 1 o0 O}1 O -1 0|0 -1 1 O
o o0 o0 o0,0 -1 1 O0O}j0 1 O -1,0 0 -1 1
o o0 0 -1y0 O -1 10 0 1 0|0 -1 1 -1
o o0 o 1,0 O O -1}j1 0 O OO0 0 -1 1
o o0 0 -1y,0 O O O}-1 1 0 1,0 0 0 -1
o o0 o o0,0 o0 o0 1}0 -1 1 -1y1 0 0 O
o o0 o 1,0 o0 O -1}0 0 -1 1 |-1 1 0 O

5.1.2. The FRT case. We compute the matrix A~ in (5.3) when H = Hg is of full rank.
We omit the subscripts ¢ and ,.

Recall that S" = —I, 57! = 5", F =™ N = —1 and (A — N)™' = (I - 5). Moreover

recall the form of H~! from (3.16) and that H_! is skew symmetric for each a = 1,...,n.

a,a

We will use that 7' = S + E,; and hence 7% = S~! + F,,.
elfn>a>pF+1then H L = = SHOZE = H;E S and H ! Sflﬂojﬁl, so that

a,B+1 a+1,8 =
A;BI = H;ﬁl (I—ST") — TH;LB(H — ST" = (I — TSfl)Hgﬁl(—SElr) = EHH;ﬁlEl,, ,
that is
Aos = (Hyz),, Err (5.9)
e For « <n —1 we find
1
Al = §(Tt -T). (5.10)
Indeed, using the expression of T and T in terms of S, with some algebra we get
- [ _ (I-29)
Mlz-L——SlHWH+W1+———HHWEﬁ
aa (]I—i— Sn)( ) (H—i— Sn)( ) 1
(I-25) -1 -1 —1
+ Eqa——=(S" "+ S +I+S5")E,
et (145" E)

= I-S)T+SH+{T—-S)E, +E.(S™—1)+
(I—-8)(T+ S

I+ 5m)
The last summand vanishes because it coincides with B, H_ ! Ey, = (H_!)11 E,, which
is zero because of the antisymmetry of H,!. The remaining part is promptly verified
to coincide with T* — T,

e As in the Dipper-Donkin case, A} = H 1.
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e fora<n-—1:

AL (Hoo1), B —l(Tt—I[JrEW). (5.11)

-1 = -1 rr
o, a,o 11 2

This formula is derived from the explicit expression of H~! in terms of S, similarly
to the computations done just above. In the particular case of n = r + 1, equation

(5.11)) reduces to
1
A 5(1[ —Th.

a,a—1

e For f <n—1:
Ay = Hyg—H g\ T'=H ;(I-ST") = H 4(I-S5(5"+ Ey,)) =

n,B+1
= —H, ,SE,
so that .
1 _
A= 5 g rgn B 12
nB ) (H—i—Sn) 1r (5 )
e We compute
Aonoy = Hopoy = Hoo(S70+ By)
1 (I—=25) onos I
= ——2[5" (1 -5) - (I+ 5" S E,
s =S - I+ ST+ Byl
1 1(I+.5"1)
= — I[ — -1 _ ]I o E ;
2( 57) 2 (I+Sm) (I-S)Ex
hence concluding, by using T'E;, = 0 and so SE;, = —E,,, that
[+ 5™ 1) 1
A_l :_(—ET Err_— _1—]1. Nl

5.2. The case of non-invertibility.

Let H be as in (3.3). Let a = (a,,,...,ay,a;)" be a (column) vector in C™, i.e. such that
Vi=1,...,n:a;, € C". Suppose that Ha = 0. It follows easily from that a, up to a
constant multiple, is determined by

Ve = 2,...,n:gc:Xc_1g1, ; AvFa, =0
By the assumptions in §3| a is thus completely determined by solutions to the equation
Fgl — O.
Ifo=(b,,...,by, b)) is a vector defined in analogy to a, and if Ab = 0, then, up to a constant

multiple,
b="T""a,

and hence, by (5.2,
Ve=2,...,n, b, =(X-T)X“%a, andb, =a,. (5.14)

For the FRT case as well as the Dipper-Donkin case it holds (also for n,r arbitrary) that

(X — T) € Span{Erl, ETZ c. 7E7"7'}-
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It follows that, in the above notation,

Proposition 5.1. In the FRT, as well as the Dipper-Donkin case, there are integers z.,
c=2,...,n such that
Ve=2,...,n:b, = ze,,

where e, is the rth basis vector in the standard basis of C".

LFrom the above considerations we conclude the following results about the centers of the
quasi-polynomial algebra generated by the quantum minors x,; € M, (see Definition for
M, being either the Dipper-Donkin algebra D2 (M (n,7)) or the FRT algebra O, (M (n,1)).
(For clarity we introduce a comma Xq; = Xa,;)-

5.2.1. Dipper-Donkin; special case.

Proposition 5.2. For r = n = odd, the center of the quasi-Laurent polynomial algebra
generated by the n* elements Xo; € D2 (M(r,r)) is generated by

n n—1
Z =[x TG (5.15)
y=1 k=1
and its inverse.
Proof. The equation Fa,; = 0 becomes Xa; = —a,. If follows easily that up to a constant
multiple, a; = (1,—1,1,...,—1,1). Furthermore,
(X-T7T) = —-E4—---—E, and (5.16)
(X-TX?=1-TX HX" = E,.X“'=E, . forc>2. (5.17)

Then, in Proposition , 7y = —1 and, for ¢ > 2, 2z, = (—1)*"L.

Then, a generic monomial Z =[], y XZO‘J’, for b,; € Z belong to the center, i.e. it commutes
with all minors x4, if and only if > i MNgiajbaj = 0, Vf3,4. From the discussion above, this
is the case if and only if

b= (byj) x (0,...0,1/0,...0,-1]0,...0,1|...]|0,...0,—1|1,—1,...,—1,1).
The result follows directly from this. 0J

5.2.2. Dipper-Donkin; general case. Set n — 1 =xs, 7+ 1= (z+ z)s, and u+ 1 = zs. We
assume that n < r and that s > 1 is the greatest common divisor of n — 1 and » + 1. We
have (set £;; =0ifi =0 or j =0)

T s—1 z—1 s—1 z—1
n—1
X = - Eu—i—l,k + Ezs+j+€s,j+€s + E Ej+€s,a}s+j+€s~
k=1 =0 =0 =0 ¢=0

We are looking for solutions to the equation F'v = 0, or, equivalently, X" v = v. We write
v=7>"_ v;e; Set
z4+2z—1 z4+z—1

v, = E Ciths — E €s, ; t=1,...,s =1
k=0 k=1
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Due to the very explicit form of X"~! it follows that
Vi=1,...,58—1: X"y, =,

i

Furthermore, we clearly have a maximal, linearly independent set of solutions.
Notice that the case n = r odd corresponds to s = 2. Hence we recover the previous result.

As before, each solution vector v = Z; v]e] results in a vector b = (b,,, ..., by, b;), where

b, = v such that Ab = 0. It then follows from and (5.17) that

by = _(Z vj)e, and
=1
b = Zvj‘;c—?,j e, = U9 €, for ¢ > 2.
J
Similarly to Proposition 5.2, we can now conclude that

Proposition 5.3. For n < r, and s > 1 being the greatest common divisor of r + 1 and
n — 1, the center of the quasi-Laurent polynomial algebra generated by the n x r elements
Xa,j € Dpe(M(n,r)) is generated by the following s — 1 elements:

r+z—1 :tJrz 1

z—1
ZZZHXn 1— ksr HXn 1—i—ks,r H Xn,]s H Xn,i+ls 5 i:]_,,,_75—1.
k=0 iy

This result recovers the previous one when r =n is odd.

5.2.3. FRT case. We sketch the similar result for the FRT algebra O,(M(n,r)). Here we
denote the minors x, ; by &,,; in accordance with the notation in ([2.11]).
Assume n = xs and r = ys with z and y both odd, and s the greatest common divisor of
n,r. Let n <r (and thus z < y).

We again consider . First we must determine the kernel of the operator F = Fj.
Equivalently, the —1 eigenspace of S™. We easily have

n r—n
— E Er nyii + E Ejnyj.
i=1 j=1

We define

5
L

v; =Y (—1)'ejppsii=1,...,s (5.18)

—1

~
Il
o

Using that r —n = (y — x)s with y — = even, one verifies
Lemma 5.4. The vectors vy, ...,vs form a basis of the —1 eigenspace of S™.

In analogy with the Dipper-Donkin case we must next consider the vectors &’ = (b’ , ..., b5, b')
where, Ve = 2,...,n : b, = (X — T)X“ %y, and b = v,. In the present situation,
X — S =5, and we easily get that (X —T)X“?=—F,, forallc=2,...,n

This results in s elements of the kernel of A:
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Proposition 5.5. For n < r, the center of the quasi-Laurent polynomial algebra generated
by the n x 1 elements &, ; € Oy (M (n,r)) of the FRT algebra is generated by the following s
elements (set &0 =1):

y—1 z—1

H(gi'f‘e&n)(_l)e H(gT,n—i—ks)(_l)k+1; Z = ]-7 <oy S

/=0 k=0

It is easy to see that we recover the result [9, Lemma 4.1].

6. COMPATIBLE PAIRS
Suppose H is an nrxnr matrix as in (3.3)). Suppose there exist a matrix K of order nr such
_f Ly Y
that KH = 0 o,
s = rank(H) and the 0 in the left corner denotes the s x (nr — s) zero matrix. Consider
Napa = T, pqHTapa with Topg an invertible and upper triangular matrix. Specifically,

S
suppose Ty pq = ( 8 g ) Then (T, pq)"" = ( aO ad_ﬁd > Hence,

, where Y is an (nr — s) X s matrix for some non-negative integer

i i . 1 a b+ a'Yd
Ta,ll),dK(TZ,b,d) 1Aa,b,d = TaJlLdKHTa,b,d = ( 0 ¢ +0a ) :

Set 3 .

Bopa=2- (T;ll;,dK(sz,b,d)_l) (6.1)
and let B, 4 be the nr x (nr—s) matrix obtained from Ba,b,d by removing the last s columns.
We then obtain

Proposition 6.1. Suppose b = —=Y'd. Then (Agpa, Bapa) is a compatible pair which satisfies
@.21)).

Remark 6.2. This pair is of maximal rank and the non-mutable variables generate the
center of the algebra. In many situations it is natural to let more variables be non-mutable.
The most common choice is to let the n + r — 1 covariant minors Xni,---, Xnry - -+ X1r D€
non-mutable. A compatible pair for the latter situation is of course easily obtained from the
above by truncation.

It is obvious that we can write any T, ;4 in terms of the already introduced matrix T (/5.1))
as

1 ¢,
Topa=T- ( 0 izd ) (6.2)

for some easily computed (nr — s) x s matrix c,54. This then gives the change-of-basis
needed to obtain the cluster variables V(j p.q for the compatible pair (Agp4, Bap,a) in terms of

the variables Vj(/l.
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