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0. INTRODUCTION 

In [7] we introduced a new class of unitarizable representations. More 
than that, we gave in fact enough details to solve completely the 
classification problem. However, we were rather sketchy on several points, 
and the list of unitary representations we gave had, in retrospect, an 
appalling shortcoming; it was not complete under tensor products. Another 
question, that of the integrability of the exceptional representations, was 
solved so late in the development that we were only able to mention the 
affirmative answer in a one line postscript. Finally, the approach in some of 
the chapters was so that more general algebras R than C[z, z-l] were 
allowed. However, in the applications they had to be commutative. But the 
question remained: Does some of this make sense for non-commutative 
algebras, and if so, does it lead to unitarity? 

In the present article we return to these issues. Since the writing of our 
first article, we have learned that F. A. Berezin [ 11 has treated the 
representations that we call exceptional, and in particular has obtained the 
integrated version. In return, our articles answer some questions asked 
there. 

The present article is organized as follows: Section 1 contains the 
rigorous details for the classification problem. In Section 2 we reprove the 
unitarity of our exceptional representation. We do it in such a way that it 
becomes possible to deduce unitarity for some non-commutative *-algebras 
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R. As examples we consider R to be the algebraic part of the irrational 
rotation algebra. The algebra R, of finite rank operators is also considered. 
Section 3 is devoted to tensor products, and, finally, Section 4 treats 
integrability. Again, emphasis is placed on non-commutativity. 

We wish to thank A. Pressley for pointing out a gap in [7] (cf. [14]) 
and for many helpful discussions on the questions in Section 1. Also, we 
thank E. Christensen, T. B. Johansen, and T. Natsume for friendly 
discussions. 

1. THE CLASSIFICATION PROBLEM 

We begin by reviewing the pertinent results and definitions from [7]. 
For basic definitions and facts from the theory of Kac-Moody algebras we 
refer to the book [8]. 

Let g = g’(A) be a Kac-Moody algebra associated to the generalized 
Cartan matrix A. Let ei, f, (i = 0, 1, . . . . I) denote its Chevalley generators 
and let A be the set of roots of g. 

DEFINITION 1.1. A subset A + of A is called a set ofpositioe roots if the 
following three properties hold: 

(i) If a,/?EA+ and a+/?~d then a+P~d+. 

(ii) If a E A then either c1 or - CI belongs to A + . 
(iii) IfcrEA, then -a$A+. 

Given a set A+ of positive roots one associates to it the Bore1 subalgebra 

e= Q 9,. (1.2) 
2Ed+UjO) 

Denote by g++ g, the projection of g on & along +z= Bztd+ g-,. 
A subalgebra fi of g containing a Bore1 subalgebra is called a parabolic 

subalgebra. 

EXAMPLE. Let ,“= (or,, c(i) . . . . ai> be the set of roots (ordered as in 
[S]) corresponding to the generators e,, e,, . . . . e, of g. We call Z7” the 
standard set of simple roots. Let A: = {C kia, 1 ki = 0, 1,2, . . . and ai E r’}. 
This is the standard set of posihe roots and the corresponding Bore1 
subalgebra is denoted by es’. 

Let W denote the Weyl group of the Kac-Moody algebra g. Put 

ri= {cc,, . ..) cc,} and A= 
i 

u~Alu= f: k/q . (1.3) 
i=l 

j =inAS’. + + (1.4) 
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Then j is the root system of the underlying finite-dimensional simple Lie 
algebra 4. Let 6 denote the unique indivisible imaginary root from A: and 
let X be a subset of Z?. We associate to X a subset of positive roots AX, of A 
as follows. In the nontwisted case, 

A< = {~1+n~5Icrd+\Z4’, n~7) 

u~+u{ci+n6~a~(~nZX)u{O},n>0). 

In the twisted case we put 

A~=(A+u~A+)nA 

with A+ as in (1.5). 

(1.5) 

(1.6) 

PROPOSITION 1.2 [7]. Zf A is an uffine root system then every set of 
positive roots is Wx { k 1 >-conjugate to one of the sets A;. 

An antilinear anti-involution w  of g is called consistent if for all a E A, 
o.g,=g-.. It is clear that replacing ei by some lej andf, by I- ir, one can 
bring w  to the form 

m-e,= *f, (i = 0, ..,, 1). (1.7) 

An important example is the compact antilinear anti-involution o,, 

f2,.ei=fi (i = 0, . . . . 1). (1.8) 

We extend a given o to the enveloping algebra a!(g) in the obvious way. 
Let o be a consistent antilinear anti-involution and let 17 be a represen- 

tation of g on a vector space V. A hermitian form H on V is called 
contrauariant (w.r.t. 17 and w) if 

VU,UEV, VxEg:H(a(x)u,Y)=H(u,n(w~X)u). (l-9) 

In case H is positive (semi-)definite, n is said to be unitarizable (w.r.t. CO). 
Let ,? be a l-dimensional representation of a Bore1 subalgebra 8 and 

assume that I satisfies the reality condition 

Let 

4g+)=4(o.g)+) for all g E g. (1.10) 

e”= {xeelA.(X)=O} (1.11) 

and let w  be a consistent antilinear anti-involution. Then, on the module 

WA) = ~‘(Lwwd 6” (1.12) 
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there is a unique contraviariant hermitian form H [7]. Let Z(A) denote the 
kernel of H on M(A) and put 

L(A) = M(/Z)/Z(i). (1.13) 

We shall occasionally denote L(A) by L,,,(i). The corresponding highest 
weight representation will be denoted by 17, or by Zlj..n,cU. 

Remark. One may more generally construct highest weight represen- 
tations starting from l-dimensional representations of parabolic sub- 
algebras. Even though this does not lead to any more unitarizable 
representations than what is obtained starting from Bore1 subalgebres [7], 
we shall often find it more convenient to work with this situation. We 
denote the representation obtained in analogy with the above by ZZi;fi,w 
and the corresponding space by L,,,(A). 

We now present all the unitarizable highest weight modules: Let 
A: 8” + @ be a l-dimensional representation defined by 

E.(ei) = 0 and L(ct:)=mjEE+ (i=O, . . . . I). (1.14) 

Then the representation Z7j..,,c is unitarizable [S, Chap. 11). These 
representations are called integrable highest weight representations. In par- 
ticular, if g is finite-dimensional, these are precisely the finite-dimensional 
representations. 

It is well known that if g is a finite-dimensional simple Lie algebra, then 
an infinite-dimensional highest weight representation Ul,w is unitarizable 
only if o is a consistent antilinear anti-involution which corresponds to a 
hermitian symmetric space. Those A’s that lead to unitarity were deter- 
mined by Jakobsen [S] (see also [2]). 

There is the following “elementary” way to construct a unitarizable 
highest weight representation Z7, of an afline Lie algebra g: First we put 
n,(c) = 0 so that n, can be viewed as a representation of the Lie algebra 
@Cz, z -‘I 0, tj in the n on wisted t case or of its subalgebra in the twisted 
case. Now fix N non-zero complex numbers z,, . . . . zN of modules one, and 
denote by vi: C[z, z-l] @cd + Q the evaluation map at zi, i.e., 

cpi(Zk @ x) = zfx. (1.15) 

Fix a Bore1 subalgebra 8 of fi and a consistent antilinear anti-involution ci, 
of Q, Let n, be a unitarizable highest weight representation of 4 on 
L(Ai) = Li,Jli) (i = 1, . . . . N). Evidently then, n,o ‘pi is a unitarizable 
highest weight representation of g. Let fi = C[z, z-‘I@&, define a 
representation ;/E + @ by 

Il(zk 0 b) = c z;&(b) (1.16) 
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and define an antilinear anti-involution o of g by 

w.(zkQX)=Z-kQCi).X. 

Then. 

L,,,(4 = L(4) 0 . . . 0 L(A,) 
n /.,;h,o=uQ-m3 ... Qm,,ovN). 

73 

(1.17) 

(1.18) 

Thus the representation l71,j of g on L,,,(A) is unitarizable. We call these 
representations elementary. 

Finally, let g = s1,+ ,(@[z, z -‘I) (i.e., we assume again that the center 
@ . c acts trivially). Let 

and let 

#z= {(a,(z))eglaii=O if i>j>, (1.19) 

0. (UJZ)) = (EqTq(z-I)), (1.20) 

where Q= 1 if i# 1 or j#l or i=j= 1, and Q= -1 otherwise. (If 
a(z) = C a$ E @[z, z-‘1 we write G(z) = C ?!& zi). 

Let m be a finite positive measure on the unit circle S’ c C. Define a 
linear functional qrn: C[z, z-‘1 -+ @ by 

cp,(a(z)) = Js, 40 Me), (1.21) 

and define a representation A,,,: #. + @ by 

L((4J4)) = - cp,(Qll(Z)). (1.22) 

Then the representation Z7, of sl,, 1(@[z, z-l]) is called exceptional. We 
will show, as a part of a more general result, that they are unitarizable. 

We can now state our first main result. 

THEOREM 1.3 (cf. [7]). Let g be an ujj’“ine Lie algebra, let o be a con- 
sistent antilinear anti-involution of g, and let C? be a Bore1 subalgebra. Let 
I: d + @ be a l-dimensional representation of 8. Then the representation 
n i., 6, w of g on the space Le,W(A) is unitarizuble if and only if it is equivalent 
to either an integrable representation, an elementary representation, an 
exceptional representation, or to the highest component of a Q-product of 
an elementary with an exceptional representation. 

We now begin to give the details of selected points of the proof of this 
theorem. We follow the general plan as outlined for the corresponding 
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proof in [S]. Indeed, using the first elementary considerations of that 
proof, we are immediately reduced to studying the following situation: 

is a simple finite-dimensional Lie algebra corresponding to a hermitian 
symmetric space, and g = C[z, z -‘I @,9. Moreover, 

o.(z”@k,f)=z-“Ok,-, i>l, IZEZ 

w.(z”@p:)= -z-“@p,, 
(1.24) 

where pl+, k: , . . . . k,? are those Chevalley generators that were previously 
denoted by et, . . . . e,. Here k:, . . . . k: belong to t, and p: belongs to the 
root space inside p + corresponding to the unique simple non-compact 
root. The elements p;, k, , . . . of course are defined analogously. 

The representations in question are highest weight representations 
obtained from l-dimensional representations of the parabolic subalgebra 

f4 = C[z, z -‘lo, (l9#‘@rj’). (1.25) 

Let h, = [p:, p;] and hi= [k:, k,:]; i=2, . . . . 1. Then #.'~C[Z,Z-'1 

0, (f’ @$+) and 

A(z” 0 hi) = E, $,, eino d,ui(tl) (1.26) 

for finite positive (possibly zero) measures pI, . . . . pr on St. To have 
unitarity the analysis in [7] gives that s2 = ... = E[= 1 and that the 
measures p2, . . . . p, all are finitely supported with integral mass in each 
point of the support. Moreover, just to have unitarity on 4, we must have 
E, = - 1. 

The following proposition takes care of a major part of the proof: 

PROPOSITION 1.4. Let 1= dim, b and let p,, . . . . p, be as above. Assume 
that I> 1 and that p, is not jnitely supported. Then if ,uLz = . . . = p, = 0, the 
corresponding highest weight representation is not unitarizable. 

Proof: Denote the contravariant form H by ( .,. ). We need to show 
that this form is not positive semi-definite. The crucial observation is the 
following, in which I, = -jSl dp,, A,+ denote those positive roots whose 
root vectors lie in + + , root vectors in $ - are denoted by e ~ o. ; c1 E A,+ , and 
U; denotes the highest weight vector: 
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LEMMA 1.5. If I> 1 there is at least one 2nd order polynomial q in 

@(rj - 1, 

4= C a,,,+,e-, (aor,+,=aE,+,) 
a#,a,E d: 

(1.27) 

such that (q, q) =&(&,-cl) f or some strictly negative real number cl. 

(For a proof of this lemma see, e.g., Wallach [ 121 or Rossi and Vergne 
c91. (Cf. C31)). 

In the above statement we have used the important fact that the 
hermitian form H, when restricted to &i(B) . v1 coincides with the hermitian 
form of the highest weight representation of 4 defined by I(h, ) = 
A,= -js, dp,. 

We now use the assumption on the support of ~1~ to guarantee the 
existence of an orthogonal family {g,};= r of real functions in L2(S1, dpl), 
where each g,, N = 1, . . . . is the restriction of a Laurent polynomial to S’. 
Define 

(1.28) 

obtained from q as in (1.27) and where we from now on suppress the 
Q -sign. We also suppress vl. 

Now compute 

+CCaa,,pL, 
i,j s,r 

’ ((gNgMe-a,y e-a,)(gNgMe-a,p e-as) 
+ <gNgMe-,, epor, )(gNgMe-,, e-J). (1.29) 

If we compare this to the analogous computation for (q, q) and keep 
track of how the explicit dependence of this on 1, originates, it follows 
easily that 
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.f;=gf+ “. +gf, i= 1, 2, . . . 

Now consider 

(1.31) 

(1.32) 

Since sslfN dpl = N andf,,, 2 0, it follows easily from, e.g., Fatou’s Lemma, 
that jsl f', dpl grows more rapidly than any constant multiple of N, as 
N-, co. Since ci < 0 the expression (1.32) will thus eventually become 
negative. 1 

Remark. One might consider, in place of C[z, z- ‘1 some other 
*-algebra R (with or without unit) and, instead of p,, some self-adjoint 
trace cp on R. Highest weight representations can then clearly be defined for 
R 0 Q. However, if we assume that R is commutative and that cp is faithful 
then unitarity, through a GNS construction based on cp leads us back to 
measure on some (locally) compact space. But, clearly, a similar non- 
unitarity result holds on any measure space as soon as the rank 1 of 4 is 
greater than one. 

COROLLARY 1.6. Let dim 6 = I> 1 and assume that ,u2, . . . . p, are finitely 
supported measures on S’ and that each point in the support of each measure 
has a mass equal to a positive integer. Then, if pL1 is not finitely supported, 
the corresponding highest weight representation is not unitarizable. 

Proof: It suffices to consider the case in which all the measures are sup- 
ported (at most) in one and the same point a E S’. The representation of 
@[z, z- ‘10 f then corresponds to evaluation inside a single unitary 
representation T of I. Let r’ denote the contragradient representation. Thus, 
r 0 z’ contains the identity representation. 

Now consider an elementary representation of @ [z, z -. ‘10 4 
corresponding to evaluation at a inside a unitary representation of 4 
obtained through holomorphic induction from 5’. The tensor product of 
this representation with the one unitary representation we assume given is 
then again unitary. The decomposition of this tensor product into 
irreducibles (cf. Section 3) then yields unitary representations. In particular, 
the top term (which is obtained by “restriction to the diagonal” 
analogously to [6]) gives one piece which is trivial on C[z, z-i] @I. But 
then Proposition 1.4 is contradicted, since this representation clearly is not 
finitely supported. 1 
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What remains now is to prove the following 

PROPOSITION 1.7. Any unitary highest weight representation of 
C[z, z-l] @su(n, 1) based on the non-compact involution (1.20) is the 
highest component of the tensor product of an exceptional representation with 
an elementary representation. 

Remark. The unitarity of the exceptional representations is described in 
Section 2. 

Proof. The essentials of the argument are already present for n = 2, so 
we restrict ourselves to that case. Let k = k;, f = p;, and e = p: in the 
notation of (1.24). Further, let k” = (k@ ... Ok) (m copies). Let us 
now assume given a unitarizable highest weight representation. Then, 
suppressing as usual the highest weight vector, inside this representation, 
we have; 

X e’(‘+“)’ dp,(O) - jS, eiCr-‘)’ dp*(O)), (1.33) 

where m = js, dpJ0) E N, as required by I. Furthermore, it is easy to see 
that the support of dp2 is finite (cf. [7]). 

It follows that dp, b dpZ. In particular, dp, has positive mass in each of 
the points in the support of d,u2. Of course, we need to assert more than 
that, namely that the masses of dp, at the points of the support of dpZ are 
so big that the finitely supported representation of C[z, zP’1 0 ~(2, 1) 
defined by dpZ and by the restriction of dp, to the support of dpZ, 
is unitarizable. (This will define the elementary representation.) However, 
this follows easily from the assumed unitarity of the originally given 
representation. We know, namely, that inner products are positive 
between elements of the form (g@x,) . .. (g@x,) (k arbitrary) with 
x,, . . . . X,ESU(~, 1) and gE@[z, z-‘1 an approximation in L’(S’, dp,)- 
norm of a box-shaped function which is 1 near one of points in the support 
of dpZ and which is zero outside an s-neighbourhood of that point. In other 
words, we can “localize” our representation at the support of dp2. Hence 
the assertion follows. What remains is the complement of the support of 
dp,. We can also localize here, and the assumed unitarity of the given 
representation then yields an exceptional representation supported by 
that set. 1 

With this, we have completed the proof of Theorem 1.3. 
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2. UNITARIZABLE MODULES 

The fact that the exceptional representations of @[z, Z- ‘3 @ su(n, 1) are 
unitarizable was already in [7] seen as a consequence of a specific com- 
putation inside a more general framework. Since we wish to give some 
more applications, we shall now repeat this computation, correcting at the 
same time a few misprints. 

Let R denote a (non-commutative) associative algebra over @ and let cp 
be a trace on R, i.e., a linear map of R into @ which satisfies 

dab) = cp(ba) for all a, b E R. 

We define the Lie algebra 

(2.1) 

sZ,(R, q)= a’ a2 
i( )I 

u;ER, i=l,2,3,4and cp(a,+a,)=O , 
a3 a4 

(2.2 

and we consider the Verma module M(q) defined by the property tha 
there exists a non-zero vector o, such that 

aI a2 
( > 0 a4 0, = cp(al). 0,. (2.3) 

Let in N. We say that y = (y,, . . . . 7,)~ N” is an s-partition of i if 

i=y,+y,+ ‘.. +y,, and y1 By*> ... zy,>o. (2.4) 

We let Par,(i) denote the set of all such s-tuples. 
Let y E Par,(N). Utilizing the fact that cp is a trace, we will say that 

II: x 27: E S, x S, is equivalent to i7, x II2 E S, x S,, where S, denotes the 
group’of permutations of N letters, if for all z,, . . . . zi, w,, . . . . WOE R, 

cp(Z n;~l)W7T:~l) “‘Z+l)Wn:(id ).-dzn;(y,+ ... +y$-,+l)Wn:(y,+ ...+y$-,+l) ...I 

(2.5) 

can be obtained from the analogous expression for 17, x l7, by a 
permutation of the s factors cp( . . . ) and/or by cyclic permutation of the 
variables (e.q., cp(z,w,z, w1z2w2) = &z2w2z3w3zI w,)). 

The set of equivalence classes is denoted by (S, x S,)(y). 

LEMMA 2.1. Let z,, . . . . zN, wl, . . . . w,ER. Then in M(q), 

,-l)$ ;j--(g y)(Ipl ;)...(w9, ;>.uv 
=i c c C-1) 

s = 1 YE Par,(N) Cw x x21 E (Slv x SNNY) 

XdZn,(l)Wnz(l) ...Z*,(Y,)Wn~y,))...(-l) 

(2.6) 
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Proof: We proceed by induction. N= 1 is trivial, so assume (2.6) is true 
up to N. We have, by (2.3) 

+(-l)N+’ 
;;(i :) ... (i io*)(Mol i) 

... (i2) ... ( -VizN+:wjzN+,wi i) ‘.. (w:+l i).V@, 

(2.7) 

This, then, can be evaluated using (2.6) and as a result one will get an 
expression analogous to this. To treat the constants rigorously it is, by 
symmetry, enough to examine terms of the form 

(-l).cp(z,w, . ..z.,w,,)...(-l).cp(z(,,+ ...+r~~,+,)...~,+I~,+l). (2.8) 

Assuming y, > 1 (yS = 1 is trivial), the only way in which such a term can 
emerge is clearly by replacing wN by - wNzN+ 1 wN+ 1 in the analogous 
expression 

(-l)dz,w, ...Z,,W,,)...(--l)(P(ZY,+ . ..+)+.+l ~~~ZNWN) 

in (2.6). 

COROLLARY 2.2 [7]. The exceptional representations of C[z, z-l] Q 
su(n, 1) are unitarizable. 

Proof Let R above be the algebra of polynomial functions from S ’ into 
gl(n + 1, C). Let tr denote the usual trace on gl(n + 1, C) and define 

cp,(P) = - II,, tr(p(e’“)) 44@ (2.9) 

for some positive Radon measure dp on S ‘. Take the z’s in (2.6) to be of 
the form of polynomial functions S ’ + gl(n + 1, C) whose only non-zero 



80 JAKOBSEN AND KAC 

entries are in the first row, and let the u”s be of the form z* with z as 
before. Then (2.6) is easily seen to express the hermitian form on 
M(J) = M(cp,) as the sum of tensor products of positive definite hermitian 
forms, and thus as something positive. i 

Let us put M(R, cp) = M(q) to stress the dependence of M(q) on R. 
Assume that there is an antilinear anti-involution a + a* of R such that 

da*) = v(a). 

Define an antilinear anti-involution w  of sl,(R, cp) by 

(2.10) 

-(‘f ;)=(-;r: -;Z). (2.11) 

COROLLARY 2.3. Suppose that R is commutative. Then M(cp, R) is 
unitarizable if and only if the form 

(a, b) = -q(b*a) (2.12) 

is positive definite. 

Proof In this case the expressions in (2.6) simplify considerably, and it 
is easy to see that the form is a sum of tensor products of positive definite 
forms when (2.12) defines a positive definite form. The converse is trivially 
satisfied. 1 

Remark. Usually, it is a part of the definition of a trace that cp should 
be positive on positive elements. Thus (2.12) says that -cp must satisfy this 
requirement to ensure unitarity. 

For our next example we take R to be the algebraic part of the irrational 
rotation algebra. Specifically, R is generated by two unitary operators U 
and V (and their adjoints) satisfying 

V.U=e2”‘PU. V (2.13) 

for some irrational number p. We write 

1 

U. ... .U (n copies) if n>O 

U”= 1 if n=O (2.14) 
(U*)...(U*) (n copies) if n-c0 

and similarly for V”. 
This algebra has got a distinguished one-parameter family of traces 

(cp~)(u”v~)=~.6,,,.6,,,, (2.15) 
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and qn clearly satisfies (2.10) if and only if A is real. Let the antilinear anti- 
automorphism * on R be the map of an element into its adjoint and let a 
be as in (2.11). 

COROLLARY 2.4. For the algebraic part R of the irrational algebra, 
M( R, cp j.) is unitarizable if and only if Iv < 0. 

Proof. Consider the expression (2.6). Let zi = U”lP and wj = V-Y,-” 
for i, j= 1, . . . . N. Each factor in each summand is then of the form 
( - cpi(Zi, w,, . . . zi, w,,)). By means of (2.13) and (2.15), each of these factors 
can be explicitly determined. To see the general pattern, it suffices to 
consider the following example: 

-cpA(zlw, . ..zrw.) 

n,+ ~.‘+n,,r,+ ... fl, .li m,+ ... +m,,s,+ ... +s,y (2.16) 

where CI= [(n2- t,)(m, --s,)+(n,- tz)(m, +m,-((s, +sz))+ ...I. Con- 
sider the linear transformation T+ of R determined by 

Ta,b( uclv“~~2T/d2.. . vrvdq 

= Ucl+avdl+bUcz~avd2fb... Uc,+ovd,+b (2.17) 

(a, b E Z). Extend this operator to a linear operator TOo,b on M(R, cpn) by 

(2.18) 

for r *, . . . . r,E R. It then follows from the computation in (2.16) that Fm,b 
preserves the canonical inner product on M(R, cpl). 

Let us agree to say that elements of the form 

(2.19) 

belong to level s in M(R, cpl). We need to prove positivity at all levels. We 
begin by making two obvious observations: (i) Inner products between 
different levels are zero and (ii) the leading term in 1 of the inner product 
of an s-level element qs with itself is (-A)“. c for some constant c > 0. 
(Observe that each summand in qs is a scalar multiple of an expression of 
the form (2.19) with each ri being of the form VI/m,.) 
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Let us for a moment assume that some q,r, for some fixed A, has got a 
negative inner product with itself. Since pU h preserves inner products we 
may then assume that each summand in q,\ only involves elements VP of 
R with n, 30 and m, > 0. This means that if we already have proved 
positivity on the later kind of elements, then positivity follows globally. 
Specifically, let 

x 0,; 
all exponents are > 0, 

. n, + ... +n,=N, and m,+ ... +m,=M 
(2.20) 

Then it is enough to prove positivity of the form restricted to each of these 
finite-dimensional subspaces. 

By the previous remarks, the hermitian form restricted to L,C(N, M) is 
positive definite for A sufficiently negative. Let us again assume that the 
form is not positive definite for some (possibly all) 1~0. Let s0 be the 
lowest level at which there is non-unitarity. Clearly, s,> 1 (cf. 
Corollary 2.3). Let 1, be the first place (going from -cc towards 0) at 
which the form changes sign on some L,y:(N, M). Since the form varies 
smoothly with 1, at A0 the kernel must be non-trivial. Thus, 

$7 E L; W, NJ, Vq E L; (M, N): 

(42 q)io = 0. (2.21) 

Now let qso ~ , be an arbitrary element of LGp r( N, M) and let c E C. Then, 

(2.22) 

since the form is contravariant. Hence, due to the minimality assumption 
on so, 

VCEC: 
0 c 

( > 
o o q=o. 

Let ri and fi denote the smallest coefficients of U and V, respectively, that 
occur in 4. By, perhaps, replacing 4 by T’,, -*4, which is in the kernel of 
the form om L,+ (N - 5, M - fi), we may assume that fi = fi = 0. Thus 

(2.24) 
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where xi=q:i (“F, g) and each ui, j is of the form u”v” for some non- 
negative integers n and m (depending on i and j) satisfying n + m > 0. Let i,-, 
be the smallest value for which aio = 0 in (2.24). Then i0 > 1. We now com- 
pute (2.23) inside M(R, cp j.). We see that we get exactly one term 

(2.25) 

containing (7 z) to the power i,. The constant a can easily be determined, 

j3 = (iO + l)(% - 2s + i, + 2). (2.26) 

In particular, since i, <s, s > 1, and ;i < 0 it follows that /I # 0. Since we 
must have (2.23) satisfied, this is a contradiction with the minimality 
assumption on s = sO. 1 

We conclude this section with an example which does not utilize (2.6) 
directly, but still leads to unitarizable modules. 

Let RF be the algebra of all finite-rank operators on a separable Hilbert 
space, and let q;. = A. tr, where tr denotes the usual trace. 

PROPOSITION 2.5. M(R,, cpl) is unitarizable if and only if 
i= -1, -2, . . . . -n (or A=O). 

Proof. Any computation using (2.6) can be chosen to take place inside 
some su(N, N) for N sufficiently big. The result then follows from the 
known unitarity for these algebras [12,9]. 1 

Remark. This seems to be the infinitesimal version of the model 
constructed in [ 133 (see also [ 111). However, we stress that generically, 
namely for given R, as soon as the ranks involved are greater than -5 the 
representations involved are singular. 

3. TENSOR PRODUCTS 

We now return to the situation described in (1.23)-(1.26). Let 1,, . . . . ,I, 
be highest weights of unitarizable highest weight modules of 6, let 
e 81 

3 . . . . eieN be points in S’, and let p be an infinitely supported positive 
finite measure on S’. Let ,I be the l-dimensional representation of p 
determined by 

a (Zn@ ($, ‘ihi)) 

-4 erne dp(@) + i 2 aiei”‘JLj(h,), (3.1) 
S’ i=l/=l 
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and let ZZ(p, 2, , 8,) . . . . AN, Q,,,) denote the corresponding representation ZZj,. 
We extend this notation to also cover the cases in which either ,B = 0 or the 
2,‘s are zero, simply by leaving them out in the appropriate cases. Since, for 
4 =su(f, 1) the above representation obviously occurs inside the tensor 
product of two (or, rather, N+ 1) unitarizable representations, we clearly 
have 

PROPOSITION 3.1. For 4 = su(f, I), L7(p, I?*, 8,, . . . . %N, 8,) is uni- 
tarizable. 

We proved in [7] that ZZ(p) is irreducible. The representation 
WA, 9 8, 9 . . . . A,,,) clearly is also irreducible since by localizing in C[z, ZC’] 
around the points eiel, . . . . eiBN, we can view this representation as a represen- 
tation of rj x . . x 4 (N copies). Finally, again by localizing to open sets, we 
obtain the general result: 

PROPOSITION 3.2. Z7(p, A,, 01, . . . . AN, 0,) is irreducible. 

Let us now consider ZZ(p’)@ZZ(p2). To decompose this representation 
into irreducibles, we follow the ideas of [S]. Let u, and v2 denote the 
highest weight vectors for ZZ@‘) and ZZ($), respectively. We shall write 
elements of pP as f, and elements of + + as e. Elements z”@x in 
@cz,z-‘1ocB are written as z”. x. Now observe that 

(z”f@1)=f(z”f@1-1@w”f)+~(z”f@1+1~w”f) (3.2) 

and similarly for 10 w”f It follows that any element in the tensor product 
can be written as a sum of terms of the form 

Let us for simplicity denote an element of the form (3.3) by S,D,. Then, 

(z”e@1+1@w”e)S,D,=S,~,D,+S,+,D,~2. (3.4) 

Let 

I, = span(S,D,l N< M}. (3.5) 

Then we have a filtration 

I, c I, c -. . E I, c . . . (3.6) 
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of the tensor product, which is invariant under C[z, z I]@, 6. Further- 
more, since iff; has got weight ai, 

(z% @ 1 + 10 w”h)(z”ff @ 1 - 10 w”fi)(r+ @ u2) 

=cYi(h)(z”~+“fi- 10 w”‘“f,)(u,@u,) 

+ Is, ( .?qdp’(fq + d/2(8)) 
> 

(Z”lfi@ 1 - 1 @ w”tf,)(u, 0 u,), (3.7) 

z”h @ 1 + 10 w”h acts through a mixture of p1 + ,a* and a shift operator. 
Depending on the sign of n, we get either a shift forward or a shift 
backwards. Hence, these shift operators generate a self-adjoint abelian 
algebra. 

Finally, let k denote an element of i. Then 

(z”k@ 1+ 10 w”k)(z”tf,@ 1 - 10 w”lf.)(u, 00~) 

= (z “Z+n[k, f;] 0 1 - lo wni+n[k, j-J)(ul @u2) 

+ (z”%@ 1 - 1 0 w”lfi)(z”k@ 1 + 10 w”k)(u, 0 u2). (3.8) 

Assume from now on, that 3 = su(l, 1). Let ZI( - ai) be the representation of 
b of highest weight -a,, where a r, as before, denotes the unique simple 
non-compact root. Then n( -a,) is unitarizable [4], and the above 
analysis gives that 

PROPOSITION 3.3. For g = su(f, l), 

m’)om’) 

= f js, ... jst c J& N=O us__ neSp$ . 
N 

XW’ +P’, -al, 8,(,), . . . . -al, eocNj)dO1 ...dO,. (3.9) 

Remark 1. We have, naturally, that all of the summands in the sum 
over the symmetric group S, are equivalent. The formula is, of course, an 
abbreviation of a more complicated expression which takes into account 
what happens when some of the 0’s coincide. Specifically, assume that out 
of 81, . . . . 8,; o,= ..- = ei = 8, i < N. Then the results of [6] together with 
the explicit decomposition of a’($ -) as determined in [lo] (for fi =&I, l), 
cf. [3]), gives that n(pl+p*, --al, 8, . . . . --a,, 0, -aI, Bi+l, . . . . -aI, 0,) 
should be replaced by 17(p’+,u2, -icr,, 8, -aI, oi+,, . . . . -a,, 0,). 

Remark 2. In the above, we decompose the representation. We shall 
not attempt to decompose the Hilbert space explicitly. 
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Finally, let I. be the highest weight of a unitarizable highest weight 
representation I7(;L) of 4 = su(l, l), and consider II(,U) 0 Z7(A, 0). 

To describe the decomposition of this tensor product we need some 
notation. 

Let U,,(E) denote the highest weight module of su(l, 1) corresponding to 
the highest weight (“SC” stands for “scalar”), 

&(h;) = 6,, & (3.10) 

for E < 0. Then ZZ,,(.s) is unitarizable, and n,,(c) @ Z7(A) decomposes into a 
countable sum of irreducible unitary representations as described in [6], 

n,,(E) 0 n(i) = f z7(i, E, A). (3.11) 
i=O 

It is easy to see that each Z7(i, E, A) has got a limit as c + 0; we let 

ZZ(Ai) = lim Z7(i, E, A) i=o, 1, (3.12) 
E’O 

We now proceed as in (3.7) and (3.8), but we disregard all elements of 
the form 

g(z) j-63 1 - 10 g(w) L (3.13) 

in which g(z) E C[z, z ‘1 satisfies that g(e”) = 0. Thus 

PROPOSITION 3.4. For Q =su(l, l), 

4. INTEGRABILITY 

Even through the results of [l] give the integrated versions of our excep- 
tional representations, we will here present the details of how one can 
integrate our infinitesimal representations to the group. We do this because 
we feel that our computations have independent interest and because they 
reach out beyond the realm of commutativity. 

Let us then consider a *-algebra R and let cp: R -+ @ be a linear map 
which satisfies (2.1), (2.10), and the condition 

rp(aa*) > 0 for all a E R. (4.1) 
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We assume further that there is a Banach *-algebra norm ([.I( on R such 
that 

cp(aa*) i ll~~*ll. 

This norm may, or may not, be induced by cp. Finally, we put 

(4.2) 

cpl=A.v, for IER. (4.3) 

Let us now assume that we have a unitarizable representation of 
sl,(R, qA) on M(R, cpA). We will assume that the hermitian form has got no 
kernel and that R has got a unit. Both assumptions exclude the case 
R = R, of Section 2. However, with rather obvious modifications, the 
following arguments can be made to cover also this case. Put 

WO=jg=(; “d)l a, b, c, d E R, and g invertible (4.4) 

Let 

SU(1, l)“= {gEGI(R)I&(g)=g-‘}, (4.5) 

where ~33 denotes the anti-involution on CL(R) which corresponds to the w  
on 31,(R). This is then also given by (2.11). 

Remark. At this point it seems an unnecessary complication to work 
with a &dependence of the groups. This, then, compels us to replace 
sl,(R con) by h(R). 

We identify elements (: z ) of s&(R) with YE R; more generally we let 
9(R) denote the space of polynomials in %!(sZ,(R)) generated by these. Let 
8, denote the Hilbert space completion of M(R, cpA). 

LEMMA 4.1. Let 8,= {pe”.o,,IpE9(R), SER, and llsll < 11. Then, v’i 
is contained in Zn. 

Proof. If we have proved that e’v,, belongs to & then an easy power 
series argument applied to ezr + ws u,,(z, w  E C) proves the general claim. 
Thus we must examine 

(4.6) 

where ( .,. )i denotes the Hermitian form on M(R, ql), and where we from 
now on suppress u,;. To do this, we return to (2.6) and observe that each 
factor in each summand of ( sN, s”)). is of the form 

-1. cp((ss*)‘) (4.7) 
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for some i. By the assumptions (4.1) and (4.2) on cp, and since evidently 
1 G 0, it follows that 

(sN, S”>i 5 (I/s/IN, lI~ll”>,~ (4.8) 

where in the right hand side, IJsJJ denotes the corresponding lower diagonal 
element in S/~(C), and where the inner product is computed in the highest 
weight representation of that algebra, of weight 1. 

This is quite easily done, and the result is 

(IlsllN, IlsllN)~= Jlslj2NN.(N+ l-A).(N-A). ... .l .(2-A). (4.9) 

Since the ratio between successive terms in the series (4.6) is given by 

(s N+l 7 sNt1)i.l((SN7 sN),.(N+ 1)2)= llsl12 (Iv+ 1 -1)/(N+ I), (4.10) 

the claim follows. fi 

Remark. The condition on the norm may seem unnatural and restric- 
tive. However, if we compare with the situation in SU( 1, 1) itself, we do 
have that if g E SU( 1, 1) is written as 

(4.11) 

(which is always possible), then w  = co/a0 and since, by (4.5) 
a& - c,c$ = 1, it follows that ww* < 1. 

By utilizing the essential uniqueness of a highest weight representation of 
a given highest weight, the following proposition then leads directly to a 
projective unitary representation of SU( 1, 1)“. 

Let 17 denote the action of sZ,(R) on p. For g E GL(R) and a E sl,( R) we 
Put 

n,(u) = riT(gag-‘). (4.12) 

PROPOSITION 4.2. Let ge SU(1, l)R. There exists a vector vg E v, unique 
up to multiplication by scalars of modulus 1, such that 

6) (v,, vg>l= 1 

.u, = vi(r) . v,, and (4.13) 

for all r and s in R. 
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Proof: It suflices to prove an analogous claim for each of the three 
factors in a decomposition of g as in (4.11), but here based on R, and with 
llwll < 1. 

To begin with, the terms (; .!!l) and (A ;) are easily disposed of; as the 
vector uR we can just use the original highest weight vector uVi. Let us then 
consider 

WER and llwll < 1. 

It is easy to see that the vector 

vB = e"' . v,~ 

satisfies (ii) and (iii). Suppose then, that an element 

17~ = peS2 . v,,, 

(4.14) 

(4.15) 

(4.16) 

where p E 9(R), also meets the requirements. Then, since 

(i X6 “)(J, Y)=(,,:,, “J (4.17) 

it follows easily that p must be the constant polynomial since otherwise 
there can be no bound on its degree. Furthermore, since 

inside 4(&(R)), it follows that 

(w--*)-s= -s(w-s*) (4.19) 

for all s E R. Hence, w  = s2. 
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