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The interrelation between certain quadratic algebras occurring in quantized en-

veloping algebras on the one hand side, and Poisson structures and deformation

quantization on the other, is discussed. It is shown that there are two different

methods of constructing ⋆-products available. Further implications in the direction

of quantized wave- and Dirac-operators are investigated.

1 Content

The purpose of this article is to make precise some of the results we have
reported in talks in Bedlevo (Sep. 2000) and Krakow (July 2001). We have
pointed out there that for any algebra having a PBW-type basis, it is possible
to construct a ⋆-product. At the conference this has also been made perti-
nent by J. Wess in his talk and R. Twarock also uses Bergman’s Diamond
Lemma 1. On the other hand, in our article 7 we have shown, in a work that
falls naturally in the line of investigations of Procesi and de Concini 2, and
also of the Diamond Lemma, that it is possible to construct (apparently) an-
other ⋆-product for a class of quadratic algebras. In this connection we wish
to stress, in view of Kontsevich’s result 10, the importance of determining
the gauge group. For all of the known cases, these algebras are generated
by certain elements of the quantized enveloping algebra corresponding to a
hermitian symmetric space, and actually, a close inspection - and fine tuning
- of the construction reveals that the results extend to both the quantized
Borel subalgebra as well as the full quantized enveloping algebra. Here, the
result of Levendorskii 12 ,13 is also needed. Even an arbitrary (classical) Lie
algebra falls under this and we rediscover here the Kontsevich ⋆-product 10.
The ⋆-products have direct implications for the quantized Dirac-operator -
an operator we want to act on “classical” functions on a “classical” (indeed,
linearly flat) space.
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2 The first ⋆-products; Algebras with PBW-type bases

Let A be an iterated twisted Ore extension, or, more generally, an algebra
over a field F with a PBW-type basis xα = xα1

1 xα2

2 . . . xαn
n . Let

xα · xβ =
∑

γ

aγ
α,βx

γ

be the expansion in the basis xα of the product of xα and xβ in A. Then

zα ⋆1 z
β =

∑

γ

aγ
α,βz

γ

defines an associative product which we may interpret as a product in
F[z1, z2, . . . , zn].

3 ⋆-products arising from a certain class of algebras

Consider an algebra A generated by (linearly independent) elements
X1, . . . , XN . For each i = 1, . . . , N let Ai denote the algebra generated by
X1, . . . , Xi. We assume that the defining relations are of the form:

(Rel) If i > j then XiXj = bijXjXi + pij

with pij of “lower order”.

Let V denote the N -dimensional complex vector space spanned by the
elements X1, . . . , XN , let T = T (V ) denote the tensor algebra over V , and let
IR denote the ideal in T generated by elements XiXj − (bijXjXi +pij). Then

A := T/IR. (1)

Remark 3.1 The last condition could e.g. be of the form pij ∈ Ai−1 The
algebra is quadratic if each pij is quadratic. Originally, this was the most
interesting case and it should be noted that there are extremely many examples
of this situation in contemporary mathematical physics. To each quantized
hermitian symmetric space there is such an algebra. The quantized enveloping
algebra is, by Levendorskii’s result 12,13, another example. We think of the
relation as XiXj = bijXjXi with “an error term pij” and the decisive feature
of pij is that it should be of lower order in some appropriate sense. With this in
mind it may be seen that even a classical Lie algebra with XY = Y X+[X,Y ]
fits into the framework and is covered by the results to come.

We may at first think of (Rel) as a reduction system with the reductions

(XiXj , bijXjXi + pij) ( for all i > j). (2)
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The essential assumption (EA) below is needed to avoid situations where, due
to some special cancellations, a sum of elements in IR might add up to an
element which strictly precedes all the summands in the order. Specifically,
assume for any element u ∈ IR

(EA): u ∈ Span{a · (XiXj − bijXjXi − pij) · b |

a, b ∈ T and a · (XiXj) · b ≤l u}.

It can be seen that the requirements for the Diamond Lemma 1 to be appli-
cable to our situation indeed are satisfied. Thus,

Proposition 3.2 All elements of T are reduction unique. Moreover, the set
{X i1

1 · · ·X iN

N | 11, . . . , in ∈ N0} is a basis for A and A is a domain and
is in fact an iterated twisted polynomial (Ore) algebra. In particular, the
assumptions of Procesi and de Concini 2 are satisfied. Conversely, one can
recover our situation from theirs.

Remark 3.3 It would be interesting to classify all quadratic algebras that
satisfy this reduction assumption (EA). It is clearly a quite strong assumption,
on the order of complication of e.g. the Jacobi Identity in the enveloping
algebra.

4 Projections and quantized symmetries.

The ⋆-product of Section 2 only assumed the existence of a PBW-type basis.
In this section we indicate briefly how an algebra A as in Section 3 gives rise
to yet another kind of ⋆-product:

Definition 4.1 We define a linear map Σ : V ⊗ V −→ V ⊗ V by

Σ(Xi ⊗Xj) = bijXjXi + pij if i > j, (3)

Σ(Xj ⊗Xi) = (bij)
−1(XiXj − pij) if i > j, and (4)

Σ(Xi ⊗Xi) = Xi ⊗Xi for all i = 1, . . . , N. (5)

Observe that pij may be a higher – or lower – order tensor. From now on,
we assume that ∀i, j : bij = qαij where q is a non-zero complex number which
is not a root of unity. Recall that the associated quasi-polynomial algebra
is the quadratic algebra A, generated by elements x1, . . . , xN with relations
xixj = qαijxjxi.

Definition 4.2 For i ∈ N, σi denotes the linear map T −→ T given by

σi(v1 ⊗ . . .⊗ vi−1 ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn) = (6)

v1 ⊗ . . .⊗ vi−1 ⊗ Σ(vi ⊗ vi+1) ⊗ · · · ⊗ vn and (7)

σi(v1 ⊗ . . .⊗ vr) = v1 ⊗ . . .⊗ vr if r ≤ i. (8)
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Finally, we define operators σi, T −→ T , analogously, but based on maps Σ
in which all pij are zero.

Lemma 4.3 For each i ∈ N, σi σi+1 σi = σi+1 σi σi+1, and hence
σ1, . . . , σn−1 define a representation, called quasi-permutation, of the sym-
metric group Sn on T n.

Lemma 4.4 For each i ∈ N, σi = σi modulo lower order.

Lemma 4.5 The following hold: 1) For each i ∈ N, σi preserves IR. 2) For
each i ∈ N, if for u ∈ T : σi(u) = u, then σi(u) = u. 3) σiσi+1σi = σi+1σiσi+1

modulo IR or modulo lower order terms.

We wish to introduce an analogue of the usual symmetrization map on
T . Let us first consider the representation of Sn described in Lemma 4.3. For
any σ ∈ Sn we denote the resulting operator on T n as σ and we set

Pquasi-sym =
1

n!

∑

σ∈Sn

σ ( quasi-symmetrization). (9)

Lemma 4.6

∀i : σi · Pquasi-sym = Pquasi-sym · σi = Pquasi-sym.

We set Squasi-sym = Pquasi-sym(T ). As a vector space, this is clearly

equivalent to A.
We next want to define a similar operator on T n with respect to the

σi’s. The problem is, of course, that we do not have a bona fide represen-
tation. In spite of this we proceed by defining for each σ ∈ Sn an operator
σ̂ = σi1σi2 · · ·σir

if σ = si1si2 · · · sir
, where sj , j = 1, . . . , n−1, denotes the el-

ementary transpositions in Sn and we set, for each such set of decompositions
of elements,

P (n) =
1

n!

∑

σ∈Sn

σ̂. (10)

Definition/Proposition 4.7 Set

Pq-sym = lim
N−→∞

( lim
n−→∞

P (n))N . (11)

Then Pq-sym is a well-defined projection satisfying Pq-sym(IR) = 0. The
image of Pq-sym is equal to the image of Pquasi-sym, i.e. A. Moreover,

∀i : Pq-sym ◦ σi = Pq-sym.

Proposition 4.8

(⋆) ∀r, s : (Ir ⊗ P
q-sym
k ⊗ Is)P

q-sym = Pq-sym,

(⋆⋆) ∀r, s : Pq-sym(Ir ⊗ P
q-sym
k ⊗ Is) = Pq-sym.
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If u, v ∈ Squasi-sym (construed as a subset of T ) we define

u ⋆2 v = Pq-sym(u⊗ v). (12)

Remark 4.9 For a classical Lie algebra it follows, using 11 and 15, that ⋆2

is the star product one gets from Kontsevich’s general construction 10.

Remark 4.10 For the purely quadratic algebras, the Poisson structure is also
quadratic. It will be interesting to relate the general ⋆2-product to that of
Kontsevich. Furthermore, Shklyarov 14 has related the algebraic structures
more directly to the co-product △ and it remains to be seen if there is a direct
way of relating ⋆2 to that.

Let B+
q denote the Borel part of Uq and let B−

q be defined analogously.
Let χλ be a 1-dimensional representation of B+

q corresponding to the weight

λ. Let H0(χλ) = {f : Uq 7→ C | f(ub+) = χ−1
λ (b+)f(u) and f ∈ FIN(Uq(k)}

with the action (x · f)(u) = f(S(x)u), S being the antipode. The condition
FIN denotes the usual finiteness condition. This is the quantized analogue of
a holomorphically induced representation. Covariant (quantized) differential
operators 3,4,5,6 arise in this context. Indeed, any element u0 ∈ Uq may in
some sense be viewed as an intertwiner through the map f 7→ fu0

fu0
(u) =

f(u ·u0), but to be an intertwiner, there are severe restrictions on u0 (and χ).

4.1 Translation into ordinary functions; quadratic algebras

We now specialize to the quantized hermitian symmetric spaces - in particular
to the one corresponding to the conformal algebra.

Here, B−
q = N−

q ⊗ C[K±1
1 , . . . ,K±1

r ] and N−
q = A−

q Uq(k
−
q ). It is a very

interesting question to decide between which of these spaces (which all fit
into the general framework) should be used, but for now we choose A−

q : For
suq(2, 2) it is generated by w1, w2, w3, w4 with the usual relations (see also 4):

w1w2 = qw2w1, w1w3 = qw3w1, w3w4 = qw4w3,

w2w4 = qw4w2, w2w3 = w3w3,

w1w4 − w4w1 = (q − q−1)w2w3.

The elements of H0(χλ) may be viewed as (vector valued) functions on
A−

q , so let us just work with polynomials on the classical space p−0 (identifiable

with p+
0 . For the conformal algebra this is simply polynomials on C4. Let

zγ = zγ1zγ2zγ3zγ4, let wγ in A−
q ⊆ U−

q be defined analogously, and let B
denote the map

zγ 7→
zγ

[γ]!q
wγ .
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We shall not argue here for inserting the factor [γ]!q “for good measure” but
proceed to define a linear map S as the composite S = Pquasi-sym ◦Sclassical

where Sclassical is the classical symmetrization map.
We now basically have two maps B,S from polynomials on C4 into U−

q .
If ◦ denotes the product in U−

q , then the two ⋆-products are given as follows:

x1 ⋆1 x2 = (x1, x2)B := B−1 ((Bx1) ◦ (Bx2))

x1 ⋆2 x2 = (x1, x2)S := S−1 ((Sx1) ◦ (Sx2))

If R := B−1S then (x1, x2)S = R−1 ((Rx1, Rx2)B) - but this map is pre-
sumably not “geometrical” (a gauge-equivalence). Both maps B,S take first
order expressions into first order expressions. We may then translate left
multiplication in U−

q into first order differential operators:

(
∂B

x p
)
(y) := p(y ⋆1 x). Likewise,

(
∂S

x p
)
(y) := p(y ⋆2 x)

=
(
∂B

x (p(R−1(·))
)
(Ry)

Of course, any ⋆-product with these properties might be used. Even a rescaling
of the basis will in some sense (c.f. below) yield another. For now, we end
the article by showing how the map B may be used to define the differential
operators occurring in the quantized Dirac operator and we discuss possible
interpretations of these, thereby continuing the investigation in 9.

The natural first order differential operators.

Consider operators of the form ((wR
0 )† ·f)(wγ) = f(wγw0). Presently, w0 will

be either w1, w2, w3, w4, or w1w4 − qw2w3. Transformed into operators on
functions on C4 via (4.1) these become q-differential operators expressible in
terms of, among other things, the usual q-differential operators on C

1 as well
as scaling operators, that is

(

[
∂

∂x

]

q

ψ)(x) =
f(xq) − f(xq−1)

x(q − q−1)
, and

Ki(z
α1

1 zα2

2 zα3

3 zα4

4 ) = q−αizα1

1 zα2

2 zα3

3 zα4

4 i = 1, 2, 3, 4.

In terms of un-quantized operators, if q = e~ then Ki = e−~Si =
∑∞

n=0
(−~Si)

n

n! , where Si = zi
∂

∂zi
. Also observe that Ki =

[
∂

∂zi

]

q
zi −
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qzi

[
∂

∂zi

]

q
. We obtain:

(wR
4 )† =

[
∂

∂z4

]

q

, (wR
2 )† = K4

[
∂

∂z2

]

q

, (wR
3 )† = K4

[
∂

∂z3

]

q

, and

(wR
1 )† = K2K3K

2
4

[
∂

∂z1

]

q

+ z4(1 − q−2)K4�q, where

�q
Def.
=

(
(w1w4 − qw2w3)

R
)†

= K2K3

[
∂

∂z1

]

q

[
∂

∂z4

]

q

−

[
∂

∂z2

]

q

[
∂

∂z3

]

q

.

The last defined operator is of course nothing else but the quantized wave
operator (see also 3).

If, instead, we use the classical γ! we get quite similar formulas but with
ordinary differentiations - except for the �q. In this connection observe that

the map Γ : zγ 7→ [γ]q!
γ! intertwines ∂

∂z
and

[
∂
∂z

]
q
!

We may rewrite the equation w1w4 −w4w1 = (q− q−1)w2w3 as qw4w1 −
q−1w1w4 = (q − q−1) detq where detq = w1w4 − qw2w3 generates the center
of A−

q . Here, this becomes

q(wR
4 )†(wR

1 )† − q−1(wR
1 )†(wR

4 )† = (q − q−1)�q. (13)

Since �q = c · I, with c ∈ C is any irreducible representation, this has the
flavor of a quantized Heisenberg algebra.

Along a similar vein,

(wR
1 )† 7→ K2K3K

2
4

[
∂

∂z1

]

q

+ c · z4(1 − q−2)K4.

which points towards a covariant derivative; an interpretation which may be
further supported since the Ki’s may be removed by a change of generators.

Another way of seeing the same phenomenon is by letting

G(f) =
(
f, �qf, �

2
qf ,�

3
qf , . . .

)

and B the matrix whose i, (i+1) entry is z4(1−q
−2)K4 and zeros everywhere

else.
Then we have

(K2K3K
2
4

[
∂

∂z1

]

q

+B)G(f) = G

((
K2K3K

2
4

[
∂

∂z1

]

q

+ z4(1 − q−2)K4�q

)
f

)
.

This version is also well behaved with respect to the other generators.
Observe:

[
∂
∂z

]
q
(zK)− q−2(zK)

[
∂
∂z

]
q

= I, i.e.
[

∂
∂z

]
q

and zK are “quan-

tized conjugate operators”.
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