

The Last Possible Place of Unitarity for Certain Highest Weight Modules

Hans Plesner Jakobsen*

Mathematics Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen ϕ , Denmark

Introduction

The modules in question are those corresponding to holomorphically induced representations on Hermitian symmetric spaces of the non-compact type. Specifically let $\mathfrak g$ be a simple Lie algebra over $\mathbb R$ and let $\mathfrak g=\mathfrak k+\mathfrak p$ be a Cartan decomposition. By assumption $\mathfrak k$ has a non-trivial center $\mathfrak q=\mathbb R\cdot h_0$ and $\mathfrak k=\mathfrak k_1\oplus\mathbb R\cdot h_0$ where $\mathfrak k_1=[\mathfrak k,\mathfrak k]$. The modules W_Λ considered are determined by a pair (Λ_0,λ) where Λ_0 is $\mathfrak k_1$ -dominant and integral and $\lambda\in\mathbb R$. That is, $\Lambda=(\Lambda_0,\lambda)$ determines a finite-dimensional $\mathscr U(\mathfrak k^0)$ -module V_Λ and W_Λ is the irreducible

quotient of
$$\mathscr{U}(\mathfrak{g}^{\mathfrak{C}}) \bigotimes_{\mathscr{U}(\mathfrak{l}^{\mathfrak{C}}+\mathfrak{p}^+)} V_{A}$$
, where $\mathfrak{p}^+ = \{z \in \mathfrak{p}^{\mathfrak{C}} | [h_0, z] = iz\}.$

 W_A may be represented as a space of V_A -valued polynomials on \mathfrak{p}^+ and the ginvariant Hermitian form on W_A , restricted to the space of first order polynomials, depends linearly on λ . For λ sufficiently negative W_A is unitarizable and thus, for Λ_0 fixed, the smallest λ such that W_A does not contain all first order polynomials determines the last possible place at which W_A can be unitarizable.

This philosophy was used in [5] to prove a conjecture of Kashiwara and Vergne, in the case of SU(p,q), by means of geometrical methods.

In this article our methods are algebraic. Specifically, the main tool is Bernstein-Gelfand-Gelfand [1, Th. 7.6.23] applied in a manner similar to, and motivated by, Shapovalov's in [8]. The technical side of this article, in fact, consists of adapting a theorem of Shapovalov to our situation.

As a corollary we prove the Kashiwara-Vergne conjecture for $Mp(n, \mathbb{R})$.

Finally we mention that after we had realized that [8] could be applied, but before having completed the proof, a preprint of an article by Enright and Parthasarathy [2] was channelled to us. In their article a criterion for unitarizability is developed and applied to give a proof of the same conjecture. Though their criterion leads to the same result, the philosophy behind it, and in particular the proof of it, is quite different from ours.

^{*} This research was partly supported by a grant from the NSF

1. Notation

Let g be a simple Lie algebra over \mathbb{R} and $g = \mathfrak{k} + \mathfrak{p}$ a Cartan decomposition of g. We assume that \mathfrak{k} has a nonempty center η ; in this case $\eta = \mathbb{R} \cdot h_0$ for an $h_0 \in \eta$ whose eigenvalues under the adjoint action on $\mathfrak{p}^{\mathbb{C}}$ are $\pm i$. Let

$$\mathfrak{p}^+ = \{ z \in \mathfrak{p}^{\mathbb{C}} | [h_0, z] = iz \},$$

and

$$\mathfrak{p}^- = \{ z \in \mathfrak{p}^{\mathbb{C}} | \lceil h_0, z \rceil = -iz \}.$$

Let $\mathfrak{k}_1 = [\mathfrak{k}, \mathfrak{k}]$ and let \mathfrak{h} be a maximal abelian subalgebra of \mathfrak{k} . Then $\mathfrak{k} = \mathfrak{k}_1 \oplus \mathbb{R} \cdot h_0$, $\mathfrak{h} = (\mathfrak{h} \cap \mathfrak{k}_1) \oplus \mathbb{R} \cdot h_0$, $(\mathfrak{h} \cap \mathfrak{k}_1)^{\mathbb{C}}$ is a Cartan subalgebra of $\mathfrak{k}^{\mathbb{C}}$, and $\mathfrak{h}^{\mathbb{C}}$ is a Cartan subalgebra of $\mathfrak{g}^{\mathbb{C}}$. We let σ denote the conjugation in $\mathfrak{g}^{\mathbb{C}}$ relative to the real form \mathfrak{g} of $\mathfrak{g}^{\mathbb{C}}$. The sets of compact and non-compact roots of $\mathfrak{g}^{\mathbb{C}}$ relative to $\mathfrak{h}^{\mathbb{C}}$ are denoted Δ_c and Δ_n , respectively. $\Delta = \Delta_c \cup \Delta_n$. We choose an ordering of Δ such that

$$\mathfrak{p}^+ = \sum_{\alpha \in A_n^+} \mathfrak{g}^{\alpha},$$

and set

$$g^+ = \sum_{\alpha \in \Delta^+} g^{\alpha},$$

$$g^- = \sum_{\alpha \in A^-} g^{\alpha}$$
,

and

$$\varrho = \frac{1}{2} \sum_{\alpha \in A^+} \alpha$$
.

Throughout β denotes the unique simple non-compact root. For $\gamma \in \Delta$ let H_{γ} be the unique element of $ih \cap [(g^{\mathbb{C}})^{\gamma}, (g^{\mathbb{C}})^{-\gamma}]$ for which $\gamma(H_{\gamma}) = 2$. Then for all γ_1 in Δ

$$\langle \gamma_1, \gamma \rangle = \frac{2(\gamma_1, \gamma)}{(\gamma, \gamma)} = \gamma_1(H_{\gamma}),$$
 (1.1)

where (\cdot,\cdot) is the bilinear form on $(\mathfrak{h}^{\mathbb{C}})^*$ obtained from the Killing form of $\mathfrak{g}^{\mathbb{C}}$. For $\alpha \in \Delta_n^+$ choose $x_\alpha \in (\mathfrak{g}^{\mathbb{C}})^\alpha$ such that

$$[x_{\sigma}, x_{\sigma}^{\sigma}] = H_{\sigma}. \tag{1.2}$$

Following the notation of [7] we let γ_r denote the highest root. Then $\gamma_r \in \Delta_n^+$, and $H_{\gamma_r} \notin [\mathfrak{h} \cap \mathfrak{t}_1]^{\mathbb{C}}$.

Finally we let $u \to u^*$ be the antilinear antiautomorphism of $\mathcal{U}(g^{\mathbb{C}})$ that extends the map $x \to -x^{\sigma}$ of $g^{\mathbb{C}}$.

2. Modules

Corresponding to the decomposition

$$\mathscr{U}(\mathfrak{g}^{\mathbb{C}}) \!=\! (\mathscr{U}(\mathfrak{g}^{\mathbb{C}})\mathfrak{g}^{+} \!\oplus\! \mathfrak{g}^{-} \mathscr{U}(\mathfrak{g}^{\mathbb{C}})) \!\oplus\! \mathscr{U}(\mathfrak{h}^{\mathbb{C}})$$

we let, for $u \in \mathcal{U}(\mathfrak{g}^{\mathbb{C}})$, $\gamma(u)$ denote the unique element of $\mathcal{U}(\mathfrak{h}^{\mathbb{C}})$ for which $u - \gamma(u)$ is in $\mathcal{U}(\mathfrak{g}^{\mathbb{C}})\mathfrak{g}^+ \oplus \mathfrak{g}^- \mathcal{U}(\mathfrak{g}^{\mathbb{C}})$.

Let $\chi \in (\mathfrak{h}^{\mathbb{C}})^*$. The Verma module M_{χ} of highest weight $\chi - \varrho$ is defined to be $M_{\chi} = \mathscr{U}(\mathfrak{g}^{\mathbb{C}})/I_{\chi-\varrho}$, where $I_{\chi-\varrho}$ is the left ideal generated by the elements $(H-\chi(H)+\varrho(H)), H \in \mathfrak{h}^{\mathbb{C}}$, and \mathfrak{g}^+ . We denote the image of 1 in M_{χ} by $1_{\chi-\varrho}$.

If Λ_0 is a dominant integral weight of \mathfrak{t}_1 and if $\lambda \in \mathbb{R}$ we denote by $\hat{\Lambda} = (\Lambda_0, \lambda)$ the linear functional on $\mathfrak{h}^{\mathbb{C}}$ given by

$$\Lambda|_{(\mathfrak{h} \cap \mathfrak{l}_1)^{\mathfrak{C}}} = \Lambda_0, \quad \Lambda(H_{\gamma_r}) = \lambda.$$

Further we let V_A denote the irreducible finite-dimensional $\mathcal{U}(\mathfrak{f}^{\mathbb{C}})$ -module of highest weight Λ . As $\mathcal{U}(\mathfrak{f}_1^{\mathbb{C}})$ -modules, clearly $V_A = V_{A_0}$.

The sesquilinear form B_A on $\mathcal{U}(\mathfrak{g}^{\mathbb{C}})$,

$$B_{\Lambda}(u,v) = \Lambda(\gamma(v^*u)) \tag{2.2}$$

is g-invariant. We let N_A denote the kernel of B_A ;

$$N_A = \{ u \in \mathcal{U}(\mathfrak{g}^{\mathbb{C}}) | \forall v \in \mathcal{U}(\mathfrak{g}^{\mathbb{C}}) : A(\gamma(v^*u)) = 0 \},$$
 (2.3)

and set

$$N_{A}(\mathfrak{f}) = N_{A} \cap \mathcal{U}(\mathfrak{f}^{\mathfrak{C}}). \tag{2.4}$$

Let $J_A = I_A + \mathcal{U}(\mathfrak{g}^{\mathbb{C}})N_A(\mathfrak{f})$. Since

$$\mathscr{U}(\mathfrak{g}^{\mathfrak{C}}) = \mathscr{U}(\mathfrak{p}^{-})\mathscr{U}(\mathfrak{f}^{\mathfrak{C}})\mathscr{U}(\mathfrak{p}^{+}),$$

and

$$M_{\Lambda+\varrho} = \mathscr{U}(\mathfrak{p}^-)\mathscr{U}(\mathfrak{f}^{\mathbb{C}})1_{\Lambda}$$

we have

Lemma 2.1.
$$\mathscr{U}(\mathfrak{g}^{\mathbb{C}}) \bigotimes_{\mathscr{U}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{p}^+)} V_{\Lambda} = \mathscr{U}(\mathfrak{g}^{\mathbb{C}})/J_{\Lambda}.$$

Definition 2.2. Let $u \in M_{\chi}$. Corresponding to the decomposition $M_{\chi} = \mathcal{U}(\mathfrak{p}^-)\mathcal{U}(\mathfrak{f}^{\mathfrak{C}})1_{\chi-\varrho}$ we define $P^-(u)$ to be the projection of u onto $\mathcal{U}(\mathfrak{p}^-)1_{\chi-\varrho}$.

The unique irreducible quotient W_A of $\mathscr{U}(\mathfrak{g}^{\mathbb{C}}) \bigotimes_{\mathscr{U}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{p}^+)} V_A$ is given as

$$W_{\Lambda} = \mathcal{U}(\mathfrak{g}^{\mathbb{C}})/N_{\Lambda}. \tag{2.5}$$

Any g-invariant Hermitian form on W_A is proportional to B_A .

For further background information we refer to [7; Sect. 1] and [4; Sect. 2].

The situations in which $J_A \neq N_A$ are quite interesting. In point of fact, by looking at a special case where these two ideals are different, we can describe a simple condition that must be fulfilled in order to have B_A define a positive-definite inner product on W_A . For Λ_0 fixed this will be a description of the biggest λ for which W_A possibly can be unitarizable:

Let Λ_0 be fixed. The module $\mathscr{U}(\mathfrak{g}^{\mathfrak{c}}) \underset{\mathscr{U}(\mathfrak{t}^{\mathfrak{c}} \oplus \mathfrak{p}^+)}{\bigotimes} V_{\Lambda}$ may be thought of as a space of V_{Λ} -valued polynomials on \mathfrak{p}^+ . Consider in particular the space \mathscr{P}_1 of first order polynomials. Under the action of $\mathscr{U}(\mathfrak{f}^{\mathfrak{c}})$, \mathscr{P}_1 breaks into a finite sum of irreducible

subspaces; $\mathscr{P}_1 = \bigoplus_{i=1}^n S_i$. For each i, B_A determines a Hermitian f-invariant form on S_b, and it is clear that this form is proportional to a fixed non-trivial such by a polynomial $(a_i\lambda + b_i)$ where $a_i \neq 0$. Let $\lambda_0 = \min_{i=1,\ldots,n} \left(-\frac{b_i}{a_i}\right)$. Then: W_A unitarizable $\Rightarrow \lambda \leq \lambda_0$.

We shall describe λ_0 more precisely:

3. Bernstein, Gelfand and Gelfand

The celebrated theorem of Bernstein, Gelfand and Gelfand [1, Th. 7.6.23] describes the situations in which one Verma module can be imbedded into another. A special case is the following: If χ in $(\mathfrak{h}^{\mathfrak{C}})^*$ satisfies $\chi(H_{\alpha}) = 1$ for $\alpha \in \Delta^+$, then $M_{x-a} \in M_x$. As was shown, among other things, by Shapovalov in [8], this leads to the following.

Proposition 3.1 ([8]). i) Let $\alpha \in \Delta^+$, $\chi \in (\mathfrak{h}^{\mathbb{C}})^*$, and assume $\chi(H_{\sigma}) = 1$. Then there exists an element $\Theta_{\alpha}(\chi) \in \mathcal{U}(\mathfrak{g}^-)^{-\alpha}$ such that

$$\forall \gamma \in \Delta^+ : [(\mathfrak{g}^{\mathbb{C}})^{\gamma}, \Theta_{\alpha}(\chi)] \in I_{\gamma - \rho}.$$

- ii) If $\alpha \in \Delta^+$ is simple, $\Theta_{\alpha}(\chi) = x_{-\alpha}$, where $x_{-\alpha} = x_{\alpha}^{\sigma}$. iii) If $\alpha \in \Delta^+$ has $\varrho(H_{\alpha}) > 1$ let $\varepsilon \in \Delta^+$ be a simple root such that $\alpha_1 = s_{\varepsilon}(\alpha) \in \Delta^+$ has $\varrho(H_{\alpha_1}) < \varrho(H_{\alpha})$. If χ is integral and $\chi(H_{\varepsilon}) < 0$, $\Theta_{\alpha}(\chi)$ is determined by the equation

$$\Theta_{\alpha}(\chi) x_{-\varepsilon}^{q} = x_{-\varepsilon}^{q+p} \Theta_{\alpha_{1}}(\psi) \tag{3.1}$$

where $\psi = s_{\varepsilon}(\chi)$, $q = -\chi(H_{\varepsilon})$, and $p = \alpha(H_{\varepsilon})$.

iv) In any basis of $\mathcal{U}(\mathfrak{g}^-)$ the coefficients of $\Theta_{\alpha}(\chi)$ depend polynomially on χ . It follows that (3.1) determines $\Theta_{\alpha}(\chi)$ for any $\chi \in (\mathfrak{h}^{\mathbb{C}})^*$ with $\chi(\alpha) = 1$.

Proposition 3.1 can be applied to the present situation. However, to do so needs some preparation.

4. Concerning $\mathfrak{p}^- \otimes V_{\Lambda_0}$

Proposition 4.1. Let $\mathbb{C} \cdot v_0$ be the subspace of highest weight in V_{A_0} . Any non-zero $\mathscr{U}(\mathfrak{k}_1^{\mathfrak{C}})$ -invariant subspace of $\mathfrak{p}^- \otimes V_{A_0}$ contains elements with non-zero coefficients in $\mathfrak{p}^- \otimes \mathbb{C} \cdot v_0$.

Proof. Let M be an invariant subspace and assume M is perpendicular to $\mathfrak{p}^- \otimes \mathbb{C} \cdot v_0$. Then M is perpendicular to $\mathscr{U}(\mathfrak{f}_1^{\mathbb{C}}) \cdot (\mathfrak{p}^- \otimes \mathbb{C} \cdot v_0) = \mathfrak{p}^- \otimes V_{40}$.

Corollary 4.2. A highest weight of $\mathfrak{p}^- \otimes V_{\Lambda_0}$ is of the form $\Lambda_0 - \alpha$ for some $\alpha \in \Delta_n^+$. For $\alpha \in \Delta_n^+$ we write $z_{-\alpha}$ for the element x_{α}^{σ} defined by (1.2).

Corollary 4.3. If a highest weight $\Lambda_0 - \alpha$ occurs in $\mathfrak{p}^- \otimes V_{\Lambda_0}$, there are elements $q_{-\mu}$ of $\mathcal{U}(\mathbf{f}_1^{\bullet})^{-\mu}$, $\mu \in \Delta_c^+$, such that the corresponding highest weight vector is given as

$$z_{-\alpha} \otimes v_0 + \sum_{\mu \in \mathcal{A}_c^+} z_{-\alpha + \mu} \otimes q_{-\mu} v_0.$$

Corollary 4.4. There are no multiplicities.

5. A Special Case in g = so(2n-1, 2)

As we shall see below there are two cases that demand special treatment. One of these is a particular non-compact positive root in the root system for q = so(2n-1, 2):

Following the notation of [2] let $e_1, ..., e_n$ be the standard orthonormal basis of \mathbb{R}^n . The sets of positive roots are

$$\Delta_c^+ = \{e_i \pm e_j | 2 \le i < j \le n\} \cup \{e_i | 2 \le i \le n\},\,$$

and

$$\Delta_n^+ = \{e_1 \pm e_j | 2 \le j \le n\} \cup \{e_1\}.$$

If $\Lambda = (\lambda_1, ..., \lambda_n)$, Λ is \mathfrak{t}_1 -integral if and only if $\{\lambda_2, ..., \lambda_n\} \subseteq \mathbb{Z}$ or $\mathbb{Z} + \frac{1}{2}$. $\varrho = (2n - 1/2, 2n - 3/2, ..., \frac{1}{2})$ and Λ is Λ_c^+ dominant if and only if $\lambda_2 \ge ... \ge \lambda_n \ge 0$. Observe that $\forall \mu \in \Lambda_c^+$: $s_{\mu}(e_1) = e_1$, i.e. e_1 is Λ_c^+ isolated from the rest of Λ_n^+ .

We want to compute $P^{-}(\Theta_{e_1}(\chi))$ and observe that

$$e_1 = s_{e_1 - e_2} s_{e_2 - e_3} \dots s_{e_{n-1} - e_n} (e_n).$$

By using one of the standard forms of so(2n-1,2) it is easy to see that there are non-zero elements k_i , m_s , and z_i of g° such that

$$k_{ij} \in \mathfrak{g}^{e_j - e_i}; \quad 2 \leq i < j \leq n,$$

$$m_s \in \mathfrak{g}^{-e_s}; \quad 2 \leq s \leq n,$$

$$z_i \in \mathfrak{g}^{-e_1 + e_i}; \quad 2 \leq t \leq n,$$

and

$$z_1 \in \mathfrak{g}^{-e_1}$$

and that they can be normalized is a manner, insignificant for the result, such that

$$[k_{ij}, k_{jr}] = k_{ir}; \quad [k_{ij}, m_n] = m_i$$
$$[z_i, k_{ij}] = \delta_{ij} z_i; \quad [z_i, m_s] = -\delta_{s,i} z_1.$$

It is then straightforward to compute $P^-(\Theta_{e_1}(\chi))$ (or $\Theta_{e_1}(\chi)$ for that matter). In fact, one needs only pay attention to the terms m_s in the various expressions. We omit the details and give the result:

Proposition 5.1. Let $\chi_1 = \frac{1}{2}$. Up to a non-zero constant

$$P^{-}(\Theta_{e_1}(\chi)) = \left(\prod_{i=2}^{n} (\chi_i - \chi_1)\right) z_1.$$

Proposition 5.2. Let $\chi = \Lambda + \varrho$ and assume $\chi_1 = \frac{1}{2}$. Then $P^-(\Theta_{e_1}(\chi)) \neq 0$ if and only if $\Lambda_0 - e_1$ is a highest weight for the $\mathcal{U}(\mathfrak{t}_1^c)$ -module $\mathfrak{p}^- \otimes V_{\Lambda_0}$.

Proof. If $P^-(\Theta_{e_1}(\chi)) \neq 0$ it is clear that $\Lambda_0 - e_1$ is a highest weight. Suppose $P^-(\Theta_{e_1}(\chi)) = 0$. Since $\lambda_1 = 1 - n$ this implies that $\lambda_n = 0$. But $e_1 = (e_1 - e_n) + e_n$ and e_n is simple, so if $\lambda_n = 0$, $\Lambda_0 - e_1$ cannot be a highest weight (cf. Corollary 4.3 and the proof of Proposition 7.3 below). \square

6. Concerning the Root System

Since \mathfrak{p}^- is a $\mathscr{U}(\mathfrak{f}_1^{\mathbb{C}})$ -module with highest weight $-\beta$, the following is obvious.

Lemma 6.1. Let $\alpha \in \Delta$. The coefficient to β in α is 1, 0, or -1.

Proposition 6.2. Root strings are of length at most 3.

Proof. It is clear that strings through roots of equal length are of length at most 2. Equally obvious is the fact that a string $\beta + i\alpha$, $\beta + (i+1)\alpha$, ..., trough β will have either i=1 and $\alpha \in \Delta_c^+$, or $\alpha \in \Delta_n^+$ and $i \in \{-1, -2\}$. In the last case, by Lemma 6.1, the string has length at most 3. Let 1 and s abbreviate long and short. A hypothetical string of length 4 will then either be of the form slls or lssl. Since roots of equal length are conjugate under the Weyl group the first case, however, is ruled out because β is long. The only case to be examined, then, is the string β , $\beta + \alpha$, $\beta + 2\alpha$, $\beta + 3\alpha$ with $\alpha \in \Delta_c^+$. In this case $\langle \beta, \alpha \rangle = -3$ and thus $\langle \alpha, \beta \rangle = -1$. Hence $s_{\beta}(\beta + 3\alpha) = 2\beta + 3\alpha$. Contradiction. \square

Proposition 6.3. Let $\varepsilon_1, ..., \varepsilon_t$ denote the set of positive simple roots in Δ_c^+ , let $\alpha \in \Delta_n^+$, and assume $\varrho(H_\alpha) > 1$. If $\forall i : \alpha(H_{\varepsilon_i}) \leq 0$ then either $g = \operatorname{so}(2n-1,2)$ and $\forall i : \varepsilon_i(H_\alpha) = 0$ or $g = \operatorname{sp}(n, \mathbb{R})$ and $\alpha = \beta + \varepsilon_i$ for a unique ε_i .

Proof. The assumptions on α imply that $\langle \alpha, \beta \rangle > 0$. Then, by Lemma 6.1, $\langle \alpha, \beta \rangle > =1$. Write $\alpha = \alpha_1 + \beta$ with $\alpha_1 \in \Delta_c^+$ and assume $-q = \langle \alpha, \alpha_1 \rangle < 0$. Then $s_{\alpha_1}(\alpha) = \alpha + q\alpha_1 \in \Delta_n^+$ and we have got a string β , $\beta + \alpha_1$, $\beta + (q+1)\alpha_1$. By Proposition 6.2 q=1 and thus $\beta + \alpha_1$ and $\beta + 2\alpha_1$ are of equal length. However, this implies that $\beta + 3\alpha_1$ should be a root and thus $\langle \alpha, \alpha_1 \rangle = 0$. This fact combined with $\langle \alpha, \beta \rangle = 1$ easily implies that $(\alpha, \alpha) = \frac{1}{2}(\beta, \beta)$. In other words, we are in a Hermitian symmetric space with two root lengths, that is, g = so(2n-1, 2) or $g = sp(n, \mathbb{R})$. The rest is then standard.

Finally we shall also need the following elementary fact about general root systems:

Lemma 6.4. Let α_0 be a positive root with $\varrho(H_{\alpha_0}) > 1$. Let $\varepsilon_1, \varepsilon_2, \ldots$ be simple roots and define $\alpha_j = s_{\varepsilon_j}(\alpha_{j-1})$ for $j = 1, 2, \ldots$ If for all $j : \alpha_j \in \Delta^+$ and $\varrho(H_{\alpha_j}) < \varrho(H_{\alpha_{j-1}})$, then $s_{\varepsilon_1} \ldots s_{\varepsilon_{j-1}}(\varepsilon_j) \in \Delta^+$ for $j = 2, \ldots$

Proof. By assumption $\langle \alpha_{j-1}, \varepsilon_j \rangle$ is positive. Thus $\langle s_{\varepsilon_{j-1}}(\alpha_{j-2}), \varepsilon_j \rangle > 0$. Since also $\langle \alpha_{j-2}, \varepsilon_{j-1} \rangle > 0$ it follows that $\varepsilon_{j-1} + \varepsilon_j$. Hence [cf. 3, p. 50] $s_{\varepsilon_{j-1}}(\varepsilon_j) \in \Delta^+$ and $\langle \alpha_{j-2}, s_{\varepsilon_{j-1}}(\varepsilon_j) \rangle > 0$. Now write $\alpha_{j-2} = s_{\varepsilon_{j-2}}(\alpha_{j-3})$ and proceed analogously. \square

7. The General Case

Proposition 7.1. Let α be a positive non-compact root with $\varrho(H_{\alpha}) > 1$ and let $\chi \in (\mathfrak{h}^{\mathbb{C}})^*$ be integral with $\chi(H_{\alpha}) = 1$. Assume the existence of a simple compact root ε such that $\varrho(H_{\alpha_1}) < \varrho(H_{\alpha})$ for $\alpha_1 = s_{\varepsilon}(\alpha)$, and such that $\chi(H_{\varepsilon}) < 0$. Let $p = \alpha(H_{\varepsilon})$, $q = -\chi(H_{\varepsilon})$, and $\psi = s_{\varepsilon}(\chi)$ (cf. Sect. 3). If $d_{\alpha}(\chi)$ is defined by the equation $P^{-}(\Theta_{\alpha}(\chi)) = d_{\alpha}(\chi)z_{-\alpha}$, and $d_{\alpha_{\varepsilon}}(\psi)$ analogously,

$$d_{\alpha}(\chi) = c(\alpha, \alpha_1) \binom{q+p}{p} d_{\alpha_1}(\psi) \tag{7.1}$$

where $c(\alpha, \alpha_1)$ is a non-zero constant.

Proof. $\Theta_{\alpha_1}(\psi)$ is a sum of terms of the form $z_{-\alpha_i}u_{-\mu_i}$ where $u_{-\mu_i} \in \mathcal{U}(\mathfrak{t}_1^{\mathfrak{q}})^{-\mu_i}$ and $\alpha_i + \mu_i = \alpha_1$. Obviously

$$x_{-\varepsilon}^{q+p}(z_{-\alpha_i}u_{-\mu_i}) = \sum_{s=0}^{q+p} \binom{q+p}{s} z_{-\alpha_i-s\varepsilon}u_{-\mu_i-(q+p-s)\varepsilon}$$

for some elements $u_{-\mu_i-(q+p-s)\epsilon}\in \mathscr{U}(\mathfrak{t}_1^{\mathfrak{C}})^{-\mu_i-(q+p-s)\epsilon}$. To obtain a term of the form $z_{-\alpha}u_{-q\cdot\epsilon}$ we need $\mu_i=(s-p)\epsilon$. Thus $s\geq p$. Assume s>p. Since $\alpha=\alpha_i+s\epsilon$ and $\alpha_1=\alpha-p\epsilon=\alpha_i+(s-p)\epsilon$ we have a string from α_i to $\alpha_i+s\epsilon$. Hence, by Proposition 6.2, s=2, p=1. But α_1 and α are of equal length and we reach the contradiction that $\langle \alpha_i, \epsilon \rangle = -3$. Hence s=p, and $\mu_i=0$. Finally, since $-\alpha_1-s\epsilon$ is a root for s=0,1,...,p, $[\mathfrak{g}^{-\alpha_1-s\epsilon},\mathfrak{g}^{-\epsilon}]=\mathfrak{g}^{-\alpha_1-(s+1)\epsilon}$ for s=0,...,p-1, so

$$x_{-\varepsilon}^{q+p} z_{-\alpha_1} = \sum_{s=0}^{p} c_s \binom{q+p}{s} z_{-\alpha_1 - s\varepsilon} x_{-\varepsilon}^{q+p-s}$$

for some non-zero constants c_s , and (7.1) follows. \square Analogously it follows that

Proposition 7.2. If $\alpha = \beta + \varepsilon$ with ε simple and compact, and if $s_{\theta}(\alpha) = \varepsilon$, then

$$P^{-}(\Theta_{\alpha}(\chi)) = c(\alpha)\chi(H_{\beta})z_{-\alpha}$$

where $c(\alpha)$ is a non-zero constant.

Proposition 7.3. Let Λ_0 be \mathfrak{f}_1 -dominant and integral and put $\chi = \Lambda + \varrho$. Let $\alpha \in \Delta_n^+$ and assume $\chi(H_\alpha) = 1$. Then $P^-(\Theta_\alpha(\chi)) \neq 0$ if and only if $\Lambda_0 - \alpha$ is a highest weight in the $\mathfrak{U}(\mathfrak{f}_1^{\mathfrak{c}})$ -module $\mathfrak{p}^- \otimes V_{\Lambda_0}$.

Proof. If $P^-(\Theta_{\alpha}(\chi)) \neq 0$, $\Theta_{\alpha}(\chi)$ does not belong to the ideal generated by $N_A(\mathfrak{f})$ and thus projects onto a non-zero element of $\mathscr{U}(\mathfrak{g}^{\mathfrak{G}})/J_A$. It then follows from Proposition 3.1 i) and Lemma 2.1 that $\Lambda_0 - \alpha$ is a highest weight in $\mathfrak{p}^- \otimes V_{A_0}$.

Now consider the converse, and assume that $\varepsilon_1, ..., \varepsilon_j$ are simple compact roots such that if

$$\alpha_i = s_{\varepsilon_i}(\alpha_{i-1}); \quad \alpha_0 = \alpha, \text{ then } \varrho(H_{\alpha_i}) < \varrho(H_{\alpha_{i-1}})$$

for i=1,...,j. Analogously let $\chi_0=\chi$ and $\chi_i=s_{\varepsilon_i}(\chi_{i-1})$. By (7.1) there exists a non-zero constant $K_i(\alpha)$ such that

$$d_{\alpha}(\chi) = K_{j}(\alpha)d_{\alpha_{j}}(\chi_{j}) \prod_{i=0}^{j-1} {q_{i} + p_{i} \choose p_{i}}$$

where $q_i = -\chi_i(\varepsilon_{i+1})$ and $p_i = \alpha_i(H_{\varepsilon_{i+1}})$. We observe that $\chi_j(\alpha_j) = 1$. (It can also be shown that $p_0 = p_1 = \dots = p_{j-1}$.) From Lemma 6.4, the assumption that $\Lambda_0 - \alpha$ is dominant, and (2.1) we conclude:

$$\begin{split} -q_i &= \chi_i(H_{\varepsilon_{i+1}}) = (s_{\varepsilon_i} \dots s_{\varepsilon_1}(\Lambda + \varrho))(H_{\varepsilon_{i+1}}) \\ &\geq 1 + (s_{\varepsilon_i} \dots s_{\varepsilon_1}(\Lambda_0))(H_{\varepsilon_{i+1}}) \\ &\geq 1 + (s_{\varepsilon_i} \dots s_{\varepsilon_1}(\Lambda_0 - \alpha))(H_{\varepsilon_{i+1}}) + \alpha_i(H_{\varepsilon_{i+1}}) \\ &\geq 1 + p_i \,. \end{split}$$

Thus, for $r = 1, ..., p_i, q_i + r \le (r - 1) - p_i \le -1$. Thus $\binom{q_i + p_i}{p_i} \ne 0$ for i = 0, ..., j - 1.

Suppose that $\alpha_j = \beta + \varepsilon$ for some simple compact root ε and that $s_{\beta}(\alpha_j) = \varepsilon$. Then, by Proposition 7.2, $d_{\alpha_j}(\chi_j) = c\chi_j(H_{\beta})$, with $c \neq 0$. For the first time we now use the assumption that $\Lambda_0 - \alpha$ not only is dominant, but also is a highest weight on $\mathfrak{p}^- \otimes V_{\Lambda_0}$: Suppose $\chi_j(H_{\beta}) = 0$. Since $\beta = \alpha_j - \varepsilon$ and α_j and ε are of equal length, $\chi_j(H_{\varepsilon}) = 1$ ($\chi_j(H_{\alpha_j}) = 1$). Let $\varepsilon_0 = s_{\varepsilon_1} \dots s_{\varepsilon_j}(\varepsilon)$ and $\gamma = s_{\varepsilon_1} \dots s_{\varepsilon_j}(\beta)$. Then $\alpha = \gamma + \varepsilon_0$ and $(\Lambda + \varrho)(H_{\varepsilon_0}) = 1$. Since ε_0 is compact it follows that ε_0 is simple and $\Lambda_0(H_{\varepsilon_0}) = 0$. Let $\mathbb{C} \cdot v_0$ denote the subspace of highest weight in V_{Λ_0} . According to Corollary 4.3, if $\Lambda_0 - \alpha$ is a highest weight the corresponding subspace is given as $\mathbb{C}(z_{-\alpha} \otimes v_0 + \sum_{\mu \in \Lambda_0^+} z_{-\alpha + \mu} \otimes q_{-\mu} v_0)$. But ε_0 is simple and $x_{-\varepsilon_0} v_0 = 0$. Thus, the coefficient in $\mathbb{P}^- \otimes v_0$ of $x_{\varepsilon_0}(z_{-\alpha} \otimes v_0 + \sum_{\mu \in \Lambda_0^+} z_{-\alpha + \mu} \otimes q_{-\mu} v_0)$ is given as $[x_{\varepsilon_0}, z_{-\alpha}] \otimes v_0 = Kz_{-\gamma} \otimes v_0$ with $K \neq 0$. It follows from Proposition 6.3 and Proposition 5.2 that this contradiction completes the proof.

8. A Criterion

If Λ_0 is \mathfrak{t}_1 -dominant and integral and if $\alpha \in \Lambda_n^+$ the equation $(\Lambda + \varrho)(H_\alpha) = 1$, with Λ_0 fixed, has a unique solution in λ . It follows from Proposition 3.1 that for this $\lambda = \lambda_\alpha$, $\Theta_\alpha(\Lambda + \varrho) \in N_A$. Thus, by Proposition 7.3, we arrive at the following criterion:

Proposition 8.1. Let $\Lambda_0 - \alpha_1, ..., \Lambda_0 - \alpha_t$ be the set of highest weights in the $\mathscr{U}(\mathfrak{f}_1^{\mathbb{C}})$ -module $\mathfrak{p}^- \otimes V_{\Lambda_0}$; $\alpha_1, ..., \alpha_t \in \Lambda_n^+$. Let, for $i = 1, ..., t, \lambda_i$ be determined by the equation $((\Lambda_0, \lambda_i) + \varrho)(H_{\alpha_i}) = 1$ and let $\lambda_0 = \min\{\lambda_1, ..., \lambda_t\}$. If $\Lambda = (\Lambda_0, \lambda), \lambda > \lambda_0$, then W_Λ is not unitarizable.

Remark. With the exception of some easily handled cases in so(2n-1,2) and $sp(n, \mathbb{R})$, $\Lambda_0 - \alpha$ is a highest weight in $\mathfrak{p}^- \otimes V_{A_0}$ if and only if $\Lambda_0 - \alpha$ is dominant.

9. $Mp(n, \mathbb{R})$

Let $e_1, ..., e_n$ denote the standard orthonormal basis of \mathbb{R}^n . Then

$$\Delta_c^+ = \{e_i - e_j | 1 \le i < j \le n\},$$

and

$$\Delta_n^+ = \{e_i + e_j | 1 \le i < j \le n\} \cup \{2e_j | 1 \le j \le n\}.$$

 $\Lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ is \mathfrak{t}_1 -integral and dominant if and only if $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ and $\lambda_i - \lambda_j \in \mathbb{Z}$. Moreover, $\varrho = (n, n-1, ..., 1)$. Also observe that $\lambda = \lambda_1$.

Let a,b be non-negative integers with $a \ge b$. Define $A_{a,b} = (0,...,0,1,...,1,2,...,2)$ where the string of non-zero integers has length a and the string of 2's has length b.

Proposition 9.1. Let Λ be \mathfrak{k}_1 -integral and dominant and let a,b be the largest possible integers such that $\Lambda + \Lambda_{a,b}$ is \mathfrak{k}_1 -dominant. Then $\lambda = -\left(\frac{a+b}{2}\right)$ is the last possible place of unitarity.

Proof. First observe that it follows from the proof of Proposition 7.3 that the only case in which an $\alpha \in \Delta_n^+$ can satisfy $\Lambda_0 - \alpha$ dominant but $\Lambda_0 - \alpha$ not a highest weight in $\mathfrak{p}^- \otimes V_{\Lambda_0}$ is when $\alpha = e_i + e_{i+1}$, i = 1, ..., n-1, and $\Lambda_0(H_{e_i - e_{i+1}}) = 0$. It is then straightforward to see that for $\alpha = e_{a+1} + e_{b+1}$, $\Lambda_0 - \alpha$ is a highest weight in $\mathfrak{p}^- \otimes V_{\Lambda_0}$ and that the λ determined by $(\Lambda + \varrho)(H_{\alpha}) = 1$ is the last possible place of unitarity. Finally, $\lambda_{a+1} = \lambda$ and $\lambda_{b+1} = \lambda - 1$. (This proof also covers the case a = b.) \square

By direct comparison with [6; Th. 6.9 and Th. 6.13] we then conclude:

Proposition 9.2. The Kashiwara-Vergne conjecture is true for $Mp(n, \mathbb{R})$.

References

- 1. Dixmier, J.: Algebrès enveloppantes. Paris: Gauthier-Villars 1972
- 2. Enright, T.J., Parthasarathy, R.: A proof of a conjecture of Kashiwara and Vergne. Preprint, 1980
- Humphreys, J.E.: Introduction to Lie algebras and representation theory. Berlin, Heidelberg, New York: Springer 1972
- 4. Jakobsen, H.P., Vergne, M.: Restrictions and expansions of holomorphic representations. J. Functional Analysis 34, 29-53 (1979)
- 5. Jakobsen, H.P.: On singular holomorphic representations. Invent Math. 62, 67-78 (1980)
- Kashiwara, M., Vergne, M.: On the Segal-Shale-Weil representation and harmonic polynomials. Invent. Math. 44, 1-47 (1978)
- Rossi, H., Vergne, M.: Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math. 136, 1-59 (1976)
- 8. Shapovalov, N.N.: On a bilinar form on the universal enveloping algebra of a complex semi-simple Lie algebra. Functional Analysis Appl. 6, 307–312 (1972)

Received December 17, 1980