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Introduction 

The modules in question are those corresponding to ho!omorphically induced 
representations on Hermitian symmetric spaces of the non-compact type. 
Specifically let 9 be a simple Lie algebra over IR and let g = f + P be a Cartan 
decomposition. By assumption f has a non-trivial center q = I R . h  o and 
= fl GIR. h o where fl = [f, f]. The modules W A considered are determined by a pair 
(Ao,2) where A o is fl-dominant and integral and 2~,~ That is, A = ( A o , 2  ) 
determines a finite-dimensional ~(Pr)-module V A and W A is the irreducible 

quotient of~//(g r @ VA, where p+={zepr  z ]=iz} .  
o//(fa'+ p +) 

W a may be represented as a space of VA-valued polynomials on p + and the g- 
invariant Hermitian form on W A, restricted to the space of first order polynomials, 
depends linearly on 2. For 2 sufficiently negative W A is unitarizable and thus, for 
A o fixed, the smallest 2 such that W a does not contain all first order polynomials 
determines the last possible place at which W a can be unitarizable. 

This philosophy was used in [5] to prove a conjecture of Kashiwara and 
Vergne, in the case of SU (p, q), by means of geometrical methods. 

In this article our methods are algebraic. Specifically, the main tool is 
Bernstein-Gelfand-Gelfand [1, Th. 7.6.23] applied in a manner similar to, and 
motivated by, Shapovalov's in [8]. The technical side of this article, in fact, 
consists of adapting a theorem of Shapovalov to our situation. 

As a corollary we prove the Kashiwara-Vergne conjecture for Mp (n, IR). 
Finally we mention that after we had realized that [8] could be applied, but 

before having completed the proof, a preprint of an article by Enright and 
Parthasarathy [2] was channelled to us. In their article a criterion for uni- 
tarizability is developed and applied to give a proof of the same conjecture, 
Though their criterion leads to the same result, the philosophy behind it, and in 
particular the proof of it, is quite different from ours. 

* This research was partly supported by a grant from the NSF 

0025-5831/81/0256/0439/$01.80 
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1. Notation 

Let g be a simple Lie algebra over ~ and g = ~ + p a Cartan decomposition of ~. We 
assume that ~ has a nonempty center q; in this case ~/=IR.h o for an ho~r / whose 
eigenvalues under the adjoint action on pe are • i. Let 

p+ = {z~ pql-h o, z] = iz}, 

and 

p -  = {ze pC I [h0, z] = - iz}. 

Let [~ = [ f , O  and let [ be a maximal abelian subalgebra of L Then {=f~GIR.h0, 
t)=(bn[1)@~,.ho, (bm{1) e is a Caftan subalgebra of ~, and b e is a Caftan 
subalgebra of ge. We let a denote the conjugation in gr relative to the real form g 
of ge. The sets of compact and non-compact roots of gr relative to b e are denoted 
A~ and A,, respectively. A =AtoA,.  We choose an ordering of A such that 

P+ = E g~, aea + 

and set 

g + =  E g a  

ct~d - 

and 

e=�89 E 
GtEZt + 

Throughout fl denotes the unique simple non-compact root. For  7~ A let H~ be the 
unique element of i1)c~[(gr ~, (gz)-~] for which 7(H~)=2. Then for all 71 in d 

<~1, ~)> --  2(~1' ~) = ])I(H~?), (1.1) 

where (. , .)  is the bilinear form on (be) * obtained from the Killing form of ge. For 
aeA + choose x=e(ge) = such that 

[x=, x~] = H=. (1.2) 

Following the notation of [7] we let 7, denote the highest root. Then 7reA +, and 
H~r~[l)c~fl] e. 
Finally we !et u-+u* be the antilinear antiautomorphism of q/(ge) that extends the 
map x--+ - x "  of ge. 

2. Modules 

Corresponding to the decomposition 

~(gr = (~(ge)fl + | g-  ~(flq) @ ~(~)r 
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we let, for ue q/(g*), 7(u) denote the unique element of ~'(b ~') for which u -  ~,(u) is in 

Let Z~(I)*) *. The Verma module M x of highest weight Z - 0  is defined to be 
Mx=~ll(f l*)/Ix_~, where lx_ ~ is the left ideal generated by the elements 
( H - z ( H ) + e ( H ) ) ,  H ~ l f ,  and g+. We denote the image of 1 in M x by lx_ Q. 

If A o is a dominant integral weight of f~ and if ,~  IR we denote by A = (A o, 2) 
the linear functional on b * given by 

A[~m~)~=A o , A(H~. )=2 .  

Further we let V A denote the irreducible finite-dimensional ~(f~')-module of 
highest weight A. As ~(f]')-modules, clearly V A = VAo. 

The sesquilinear form B A o n  ~ ( g ~ ) ,  

B A(U , V) = A(~:(1)*u)) ( 2 . 2 )  

is g-invariant. We let N a denote the kernel of BA; 

N A = {U e ~'(~q~)lVv ~ ~'(g~) : A(~(V*u)) -- 0},  (2.3) 

and set 

NA(f ) = N A c~ q/(fe). (2.4) 

Let J a = In  q- ~k'(g~:)NA(t~) �9 Since 

~ , (~ )  = ~e (p  - ) ~ ' ( ~ ) ~ u ( p  + ) ,  

and 

we have 

M A  + 0 : ~/ / (p - )~y//([C) 1A 

Lemma 2.1. ~(g~) ~ V~=~ll(gc)/JA . 
o/g([ + p + )  

Definition 2.2. Let u ~ M x. Corresponding to the decomposition 
Mx =4/(p-)~//(gV)lx_ 0 we define P - ( u )  to be the projection of u onto ~//(p-)lx_ o. 

The unique irreducible quotient W a of ~(ge) @ V a is given as 
~(i~v+ ~p + ) 

W a = ~l(g~)/Ua . (2.5) 

Any g-invariant Hermitian form on WA is proportional to B A. 
For further background information we refer to [-7 ; Sect. 1] and [-4 ; Sect. 2]. 
The situations in which J a : ~ N A  are quite interesting. In point of fact, by 

looking at a special case where these two ideals are different, we can describe a 
simple condition that must be fulfilled in order to have B a define a positive-definite 
inner product on Wa. For A o fixed this will be a description of the biggest 2 for 
which W a possibly can be unitarizable: 

Let A o be fixed. The module q/(g~) ~ V a may be thought of as a space of 
qtff ~ p + )  

Va-valued polynomials on p +. Consider m particular the space ~1 of first order 
polynomials. Under the action of ~(gr), ~1 breaks into a finite sum of irreducible 
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n 

subspaces ; ~ = @ S~. For each i, B a determines a Hermitian [-invariant form on 
i = 1  

S~, and it is clear that this form is proportional to a fixed non-trivial such by a 

polynomial (a~2 + bi) where a i4=0. Let 2 o = min - ~  . Then: W a unitarizabte 
~ 2 < 2 o .  i:1 ...... 

We shall describe 2 o more precisely: 

3. Bernstein, Gelfand and Gelfand 

The celebrated theorem of Bernstein, Gelfand and Gelfand [1, Th. 7.6.23] 
describes the situations in which one Verma module can be imbedded into 
another. A special case is the following: If Z in (De) * satisfies z(H~)= 1 for ~ d +, 
then Mz_~CM z. As was shown, among other things, by Shapovalov in [8], this 
leads to the following. 

Proposition 3.1 ([8]). i) Let ~ A +, Z~ ([r *, and assume z(H:) = 1. Then there exists 
an element O~(z)sq/(g-) -~ such that 

VT~ A + : [(gr ~ ,O~,(Z)] ~ I z_  o" 

ii) I f  o~EA + is simple, O~(X)=X_~, where x_~-x~.- ~ 
iii) I f  ~ A + has o(H~) > 1 let ee A + be a simple root such that cq = s~(cO6 A + has 

Q(H~I)<Q(H~). I f  Z is integral and z(H~)<0, O,(X) is determined by the equation 

O~(X)xq_~=xq+PO ~J~ (3.1) 

where ~ = s~(z), q = -z(H~), and p = ~(H~). 
iv) In any basis of ~ll(g -) the coefficients of O~(Z) depend polynomially on X. 

It follows that (3.1) determines O~(Z) for any ZE(br * with Z(~)= 1. 
Proposition 3.1 can be applied to the present situation. However, to do so 

needs some preparation. 

4. Concerning p- | VAo 

Proposition 4.1. Let •.v o be the subspace of highest weight in Vao. Any non-zero 
~i(~lr subspace of p - | Vao contains elements with non-zero coefficients in 
p -  |  %. 

Proof. Let M be an invariant subspace and assume M is perpendicular to 
p - |  o. Then M is perpendicular to ~(f lr174 . [] 

Corollary 4.2. A highest weight of p -  | is of the form A o - ~  for some a~A,+) . 
For ~ A  + we write z_~ for the element x~ defined by (1.2). 

Corollary 4.3. I f  a highest weight A o - :t occurs in p -  | VAo, there are elements q_~ of 
ql(flr -u, H~A +, such that the corresponding highest weight vector is given as 

z_~@Vo+ ~ z_~+,| 

Corollary 4.4. There are no multiplicities. 
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5. A Special Case in g = s o ( 2 n -  1, 2) 

As we shall see below there are two cases that  demand special treatment.  One of 
these is a part icular  non-compact  positive root  in the root  system for 
g = s o ( 2 n -  1,2): 

Fol lowing the notat ion of [2] let ea . . . . .  e, be the s tandard or thonormal  basis of  
IR". The sets of positive roots  are 

A~ + = {e~ +_ejl2 < i < j  <n}w{eir2 < i <n} ,  

and 

A, + = {e I +_e~12<j<n}w{el}.  

If A = ( 2 p . . . , 2 , ) ,  A is fv in tegra l  if and only if {22 . . . . .  2,}__c~ or 2~+�89 
0 = ( 2 n - 1 / 2 , 2 n - 3 / 2  . . . .  ,�89 and A is A + dominant  if and only if 2 2 >  . . . > 2 , > 0 .  
Observe that  V#eA~- :su(eO=e > i.e. e I is A + isolated from the rest of A +. 

We want  to compute  P-(Oel(Z)) and observe that 

e 1 : Set - e2Se2 - e3"" "Sen - t -- en (en)" 

By using one of the s tandard forms of s o ( 2 n -  1, 2) it is easy to see that  there are 
non-zero elements k~j, m~, and z, of ga- such that  

klj~ge,-<; 2 < i < j < n ,  

m, eg  , 2<-s<n ,  

zt~g -e~+e,', 2<_t<_n, 

and 

Z I ~  -el 

and that they can be normalized is a manner, insignificant for the result, such that 

[kij , k jr] = ki, ; [kij, m J  = m i 

[z t ,  k i j ]  =(~ i , tZ j ;  [z t ,  m s ] ~ -  --(~s, tZ1 �9 

It is then s traightforward to compute  P-(Oe~(X)) (or Oe~(Z) for that  matter). In 
fact, one needs only pay at tention to the terms m s in the various expressions. We 
omit  the details and give the result: 

Proposition 5.1. Let  X1 =�89 Up to a non-zero constant 

P - ( O e l ( ) ~ ) ) = ( i ~ = 2  0~i -- ~1))Z1 " 

Proposition 5.2. Let  Z = A + 0 and assume Xl = �89 Then P-(Oe,(X)) 4= 0 i f  and only i f  
A o - e  I is a highest weight for the ~l(tc,)-module P - |  VAo. 

Proof. If  P-(Oe, (Z))~O it is clear that A o - e l  is a highest weight. Suppose 
P -  (Oe,(~)) = 0. Since 2, = 1 - n this implies that  2, = 0. But e 1 = (e, - e.) + e, and e, 
is simple, so if 2. = 0, A o - e  1 cannot  be a highest weight (cf. Corol lary 4.3 and the 

p roof  of  Proposi t ion 7.3 below). [ ]  



444 H.P. Jakobsen 

6. Concerning the Root System 

Since p-  is a ~ with highest weight - f l ,  the following is obvious. 

Lemma 6.1. Let  as  A. The coefficient to fl in a is 1,0, or - 1 .  

Proposition 6.2. Root strings are of  length at most 3. 

Proof  It is clear that strings through roots of equal length are of length at most 2. 
Equally obvious is the fact that a string f i+ia, f l+( i+  1)a . . . .  , trough fl will have 
either i= 1 and as  A~ +, or as  A, + and is { -  1, -2} .  In the last case, by Lemma 6.1, 
the string has length at most 3. Let 1 and s abbreviate long and short. A 
hypothetical string of length 4 will then either be of the form slls or lssl. Since roots 
of equal length are conjugate under the Weyl group the first case, however, is ruled 
out because fl is long. The only case to be examined, then, is the string fl, fl + a, 
f l+2a,  f l+3a  with asA +. In this case (fl, a ) = - 3  and thus (a, f l ) = -  1. Hence 
s~(fl + 3a) = 2/3 + 3a. Contradiction. []  

Proposition 6.3. Let gl, ..., q denote the set of  positive simple roots in A +, let ae A +, 
and assume o(H,) > 1. l fV i  : a(H~,) < 0 then either g = so(2n - 1, 2) and Vi :e~(H=) = 0 or 
g = sp(n, 1R) and a = fl + ei for a unique ~i. 

Proof  The assumptions on a imply that (a, f l )>0 .  Then, by Lemma6.1, 
(a, f l ) > = l .  Write a = % + f l  with %sA + and assume - q = ( a ,  a l )<0.  Then 
s=~(a)=a+q%sA + and we have got a string fl, f i+%,  f l+(q+l )cq .  By 
Proposition 6.2 q = 1 and thus fl + % and fl + 2% are of equal length. However, this 
implies that fl + 3cq should be a root and thus (a, a t )  = 0. This fact combined with 
(a , / / )  = 1 easily implies that (a, a)=�89 fl). In other words, we are in a Hermitian 
symmetric space with two root lengths, that is, 9 = so(2n - 1, 2) or g = sp(n, IR). The 
rest is then standard. []  

Finally we shall also need the following elementary fact about general root 
systems : 

Lemma6.4. Let  a o be a positive root with 0(H,o)> 1. Let el,e 2 . . . .  be simple roots 
and define aj = s~j(aj_ 1) for j = 1, 2 , . . . .  I f  for all j : a~ ~ A + and o(H~j) < o(H~j -1), then 
s~ ...s~_ ,(ej)s A + for j = 2 , . . . .  

Proof  By assumption (a  j_ 1,e~) is positive. Thus (s~j_l(aj_ 2),ej)>0. Since also 
( a j _ 2 , e j _ l ) > 0  it follows that ej_a4:e~. Hence [cf. 3, p. 50] s~_l(ej)sA + and 
(aj_2, s~j_l(gj)):>0. Now w r i t e  aj_E=Sej_2(aj_3) and proceed analogously. [] 

7. The General Case 

Proposition 7.1. Let  a be a positive non-compact root with o(H~)> 1 and let zs(D~) * 
be integral with z(H~)= 1. Assume the existence of  a simple compact root e such that 
~(H~) < ~(H~) for a x = st(a), and such that x(H~) < O. Let  p = a(H~), q = - )((H~), and 
~p=s~(z) (cf Sect. 3). I f  d~() 0 is defined by the equation P-(O~(Z))=d~(z)z ~, and 
d~l(~ ) analogously, 

d~OO=c(a,%)(q+pP)d~l(~) (7.l) 

where c(a,%) is a non-zero constant. 
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Proof O~10f) is a sum of terms of the form z ~u ~,, where u_u ,e~( / r  -~' and 
:r + #~ = c~. Obviously  

xq+p(z ~u_~,)= q q z ~,_s~U_,,_~q+p_~) ~ 
s = O \  S 

for some elements u ~/~r To obtain a term of the form - - l q - - ( q + p - - s ) e ~ t I ]  
z~U_q.~ we need #i----(s--p)& Thus s>-_p. Assume s>p. Since ~=~i+se  and 
~ = ~ - p e = ~ + ( s - p ) e  we have a string from ~ to 7~+se,. Hence, by 
Proposi t ion6.2,  s = 2 ,  p =  1. But ~1 and ~ are of equal length and we reach the 
contradict ion that  (~i, e , )= - 3 .  Hence s = p, and #i = 0. Finally, since - 7 1  -s~: is a 
root  for s = 0 , 1 ,  ...,p, [ 9 - ~ - ~ , , q  ~ ] _ g - ~ l - t ~ + ~  for s- -0 ,  . . . , p - l ,  so 

p + 
q+PZ --  q P q+p--s 

s = 0  \ / 

for some non-zero constants c~, and (7.1) follows. []  
Analogously it follows that  

Proposition 7.2. I f  cz=fl + e with ~ simple and compact, and if s~(~)=e., then 

P-(O~(z))=c(~)z(U~)z_~, 
where c(cQ is a non-zero constant. 

Proposition 7.3. Let A o be fl-d~ and integral and put Z = A + ~. Let ~ A + and 
assume z(H~)= 1. Then P-(O~(Z))+0  if and only gf A o - ~  is a highest weight in the 
~(f~)-module p -  | VAo. 
Proof If P-(O,(Z))=t = 0, O~(Z) does not belong to the ideal generated by NA(~ ) and 
thus projects onto  a non-zero element of Yl(.qr �9 It then follows from 
Proposi t ion 3.1 i) and L e m m a  2.1 that  A 0 - :~ is a highest weight in p - |  Vao. 

NOW consider the converse, and assume that  ~1, ..., ~j are simple compact  roots 
such that  if 

c~i=s~,(cq_0; ~0=~,  then o(H~,)<o(H~, l) 

for i =  1 . . . .  ,j. Analogously let ; (o=Z and Z~=s~,(Zi_ 1). By (7.1) there exists a non- 
zero constant  Kj(a) such that  

where q i=  -Zi(ei+ ~) and pi=cq(H . . . .  ). We observe that  )~j(%)= 1. (It can also be 
shown that  po=p~ = . . .=pj_~.)  F rom Lemma6.4 ,  the assumption that  A o - e  is 

dominant ,  and (2.1) we conclude: 

- -  ql  = z i ( H e ,  + ,) =- (s~ . . . s .  ( A  + O ) ) ( H  . . . .  ) 

> l + ( s ~ . . . s ~ ( A o ) ) ( H  . . . .  ) 

> 1 +(s~,.. s~(Ao-~) ) (H . . . .  )+ai(H . . . .  ) 

> l + P i .  

Thus, for r = l ,  -.,Pi, q i + r < ( r -  1) -Pl  < - -  1. Thus (qi+Pi]~=O for i = 0  . . . .  , j -  1. 
- -  - -  \ Pi  / 
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Suppose that c~ = fl + e for some simple compact root e and that sa(aj)= e. Then, 
by Proposition 7.2, d~j(Zj)= cxj(Ha), with c # 0. For  the first time we now use the 
assumption that A o - e  not only is dominant, but also is a highest weight on 
p - |  Vao : Suppose zj(Hp)=0. Since fl = e j - e  and ej and e are of equal length, 
zj(H~)= 1 (z~(H~j)= 1). Let e o =s~...s~j(e) and 7=s~,...s~(fl). Then ct= 7 +e o and 
(A + Q)(H,o ) = 1. Since e 0 is compact it follows that e o is simple and Ao(H~o ) = 0. Let 
�9 .v o denote the subspace of highest weight in Vao. According to Corollary 4.3, if 
A o - ~  is a highest weight the corresponding subspace is given as 
�9 (z_~| ~ z_~+u| But eo is simple and X_~oVo=0. Thus, the 

uezlg 

coefficient in p-| ofx,o(z-~| + ~ z , + ,  | is given as [X~o,Z_,] | o 
ueA + 

= K z _ e |  o with K4=0. It follows from Proposition 6.3 and Proposition 5.2 
that this contradiction completes the proof. []  

8. A Criterion 

If A o is [~-dominant and integral and if ~ A, + the equation (A + p)(H~) = 1, with A o 
fixed, has a unique solution in L It follows from Proposition 3.1 that for this 2--2~, 
O~(A + r N a. Thus, by Proposition 7.3, we arrive at the following criterion: 

Proposition 8.1. Let A o - ~ l ,  . . . ,Ao-ct  t be the set of highest weights in the ~(~)-  
module p - |  Vao; cq ..... ate A +. Let, for i= I,..., t, 2 i be determined by the equation 
((Ao, 2i) + Q)(H~) = 1 and let 20 = rain {21,..., 2~}. I f  A = (Ao, 2), ;t > 20, then W A is not 
unitarizable. 

Remark. With the exception of some easily handled cases in so(2n-1 ,  2) and 
sp(n, lR), A o - e  is a highest weight in p- |  if and only if Ao-c~ is dominant. 

9. Mp(n, IR) 

Let e 1 . . . .  , e, denote the standard orthonormal basis of IR". Then 

A + ={ei -e i [1  < i < j < n } ,  

and 

A+, = {el+e ill < i <j<n}w{2e~[1 <j<n} .  

A=(21,22, ..., 2,) is fl-integral and dominant if and only if 21 >2  z > ... >2 ,  and 
21-2i~Z.  Moreover, o = ( n , n - 1 ,  ..., 1). Also observe that 2=21. 

Let a,b ,be non-negative integers with a>b. Define A,,b=(0, . . . ,0,  1,..., 
1, 2 . . . .  ,2) where the string of non-zero integers has length a and the string of 
2's has length b. 

Proposition 9.1. Let A be fx-integral and dominant and let a, b be the largest possible 
/ . I x  

such that A-4-Aa, b is ~-dominant, ~rhen 2 ~ - ( ~ - I  is the last possible integers 
place of unitarity. 
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Proof. Firs t  observe  tha t  it follows from the p roo f  of P ropos i t i on  7.3 that  the on ly  
case in which  a n  c~c A ff can  satisfy A o -c~ d o m i n a n t  bu t  A o -c~ not  a highest  weight  

in p - |  is when  ~=ei+ei+l, i =  l,  ..., n - - 1 ,  and  Ao(He,_e,.,)=O. It is then  
s t r a igh t fo rward  to see tha t  for e = e , +  1 + e b + l ,  A o - ~  is a highest  weight  in 
p -  | VAo a n d  tha t  the 2 de t e rmined  by (A + Q)(H,) = 1 is the last possible  place of  
uni tar i ty .  F ina l ly ,  2 , + 1 = 2  a n d  2 b + 1 = 2 - 1 .  (This p roof  also covers the case 
a=b.) [] 

By direct  c o m p a r i s o n  with [6 ;  Th. 6.9 a n d  Th. 6.13] we then conc lude :  

Proposition 9.2, The Kashiwara-Vergne conjecture is true for Mp(n, IR). 
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