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Abstra
t. We 
onstru
t highest weight unitary irredu
ible representations of a Lie

algebra for open quantum matrix 
hains akin to quotients of Verma modules for sim-

ple �nite-dimensional Lie algebras. Those representations resembling typi
al unitary

irredu
ible representations of gl(n) turn out to be tensor produ
ts of the de�ning rep-

resentation. They 
an be physi
ally identi�ed as multiple meson states or multiple

open string states. Other representations are intimately related to the Cuntz algebra.

They may be related to novel bound states.

INTRODUCTION

Strong intera
tion and quantum gravity are two fundamental bran
hes of physi
s.

Quantum 
hromodynami
s (QCD) is an experimentally well-established theory for

the former, whereas M(atrix)-theory is the latest 
andidate for an ultimate the-

ory of everything in
orporating the latter. The main tool for doing 
al
ulations in

both theories is perturbative analysis, whi
h does lead to a wealth of de
ent knowl-

edge explaining, say, s
attering phenomena both of high-energy partons indu
ed by

strong intera
tion, and of M-theory obje
ts indu
ed by 
lassi
al supergravity. (Ref.

[1℄, for instan
e, gives a detailed a

ount of perturbative QCD. Listed in Ref. [2℄

are two very re
ent reviews on M-theory and its perturbative analysis. The reader


an �nd lists of further literature from them.) Perturbation theory, however, 
an-

not be used as an all-purpose tool to a

ount for everything. In parti
ular, it is

invalid when we want to study low-energy phenomena of strong intera
tion like

the hadron spe
trum or 
olor 
on�nement, or when we want to understand large

quantum e�e
ts in supergravity. (Again the reader 
an �nd relevant dis
ussions

of this point in Refs. [1℄ and [2℄, and the 
itations therein.) Other te
hniques are

needed to study these important and interesting phenomena.

The study of symmetry is one su
h non-perturbative approa
h. This basi
ally

involves identifying a symmetry of a physi
al system and a set of generators gener-
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ating this symmetry transformation, 
onstru
ting an algebra from these generators

and a representation theory for the algebra, and �nally applying the representa-

tion theory to 
ompute interesting physi
al quantities like the mass spe
trum or


orrelation fun
tions. Sometimes, the symmetry of a system puts su
h a powerful


onstraint on its behavior that it 
ompletely determines its physi
s. As an elemen-

tary but non-trivial example, the so(4) symmetry of the hydrogeni
 atom di
tates


ompletely its energy spe
trum [3℄.

Other examples abound. The Virasoro algebra is a famous one. This is the Lie

algebra des
ribing 
onformal symmetry [4℄. Through its representation theory, we

have learnt a lot about 
onformal �eld theory. For instan
e, 
onsider a 
onformal

�eld theory on a torus. Let � be the ratio of the 
omplex periods along two

independent orientations of the torus. As the Hamiltonian and momentum 
an

be written in terms of the Virasoro generators L

0

and

~

L

0

of the holomorphi
 and

anti-holomorphi
 parts of a 
onformal �eld theory, its partition fun
tion is

Tr q

L

0

�
=24

�q

~

L

0

�~
=24

;

where q = exp(2�i�), �q is the 
omplex 
onjugate of q, 
 is the 
onformal 
harge of

the holomorphi
 part, and ~
 is the 
onformal 
harge of the anti-holomorphi
 part

of the theory. The task of 
al
ulating this partition fun
tion then boils down to


omputing the Virasoro 
hara
ters from a knowledge of its representation theory.

Indeed, the result is

q

h+(1�
)=24

�q

~

h+(1�~
)=24

�(�)�(��)

:

In this formula, h and

~

h are positive real numbers 
alled the highest weights, the

values of whi
h depend on the model we are studying, and

�(�) � q

1=24

1

Y

n=1

(1� q

n

)

is the Dedekind fun
tion. As another example, redu
ible representations of the

Virasoro algebra provide us with a set of null ve
tors, whi
h, in the language

of 
onformal �eld theory, 
an be translated into a set of di�erential 
onstraints

on the 
orrelation fun
tions, whi
h 
an then be expli
itly 
omputed. Therefore,

studying the representation theory of the Virasoro algebra goes a long way towards

understanding 
onformal �eld theory. Can we adopt a similar approa
h to QCD

and M-theory?

A remarkable 
ommon feature between QCD and M-theory is that both are ma-

trix models. In the 
ase of QCD, this originates from the fa
t that the gluon �elds

are in the adjoint representation of the gauge group SU(N), whi
h is e�e
tively the

same as U(N) in the large{N limit [5,6℄; in the 
ase of M-theory, this stems from

a 
onje
ture that in a light-front 
oordinate system, M-theory 
an be des
ribed by

a supersymmetri
 matrix quantum me
hani
s in the large{N limit [7℄. Abstra
tly

speaking, we 
an paraphrase a 
orollary to M-theory 
alled matrix string theory



[8℄ and large{N QCD in terms of quantum matrix os
illators [9,10℄, whi
h, as an

additional bonus, 
an be used to formulate quantum spin 
hains, too [11℄. Physi
al

states built out of these os
illators 
an be 
lassi�ed into two broad families | open

matrix 
hains and 
losed matrix 
hains. The former 
an be interpreted as mesons,

dis
retized open strings or open spin 
hains, and the latter as glueballs, dis
retized


losed strings or 
losed spin 
hains.

Thus, what we need to do is to identify symmetry algebras for open and 
losed

matrix 
hains, and develop representation theories for them.

Rajeev and the se
ond author of this arti
le have reported on the existen
e of

two Lie (super)-algebras for open and 
losed matrix 
hains. (See Ref. [10℄ and the


itations therein.) They are 
alled the open string (super)-algebra and the 
losed

string (super)-algebra, respe
tively. Sin
e the former looks simpler, our study of

the representation theories starts with the open string algebra �rst. Owing to the

la
k of spa
e, we will only brie
y re
apitulate the operators that span the open

string algebra. The reader is referred to Refs. [12℄, [9℄ and [13℄ for more 
omplete

dis
ussions. Also, the reader 
an �nd an a

ount of some basi
 notions of the

representation theory of Lie algebras to be used below in Ref. [14℄.

BASIC FORMALISM

An open matrix 
hain is a matrix produ
t of an N -dimensional row ve
tor, a

(possibly empty) series of N � N square matri
es and an N -dimensional 
olumn

ve
tor. It 
an be abstra
tly written as

�

�

�

1


 s

_

K


 �

�

2

;

where �

1

is a positive integer,

_

K a �nite integer sequen
e and �

2

another positive

integer (Fig.1(a)). They label the quantum states (other than the 
olor quantum

number) of the row ve
tor, the series of square matri
es and the 
olumn ve
tor,

respe
tively.

In the large{N limit, there are four families of operators a
ting on open matrix


hains. They 
an be abstra
tly written as �nite linear 
ombinations of

1.

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

,

2.

�

�

�

1

�

2


 l

_

I

_

J


 1,

3. 1
 r

_

I

_

J


 �

�

1

�

2

and

4. 1
 �

I

J


 1.

(See Figs.1(b) to (e) for illustrations.) Roughly speaking, the �rst family of oper-

ators repla
es a whole open matrix 
hain with another one (Fig.1(f)); the se
ond

family repla
es the row ve
tor and perhaps a few square matri
es adja
ent to the

row ve
tor with another row ve
tor and perhaps other square matri
es (Fig.1(g));



K2

K1

K2

I J*
.. I J*

..
I J*
. .

J*I

K1 K1

K2

K3 K3

. .
J = K(f)

K1

K2

K1

(h) 2
. .
J = K

.
K

.
K(a)

I J* I
. . .

J*I

I

1

. .

.

.

.

.

. .
J = K

(b) (c) (d) (e)

(g)

I

2

J*

.

.

.

.

I

(i) J = K

J*I

I

. .

.

.

.

.

FIGURE 1. Figure (a) shows the part s

_

K

of an open matrix 
hain. We ignore

�

�

�

1

and �

�

2

in

this diagram. Figures (b), (
), (d) and (e) show the parts f

_

I

_

J

, l

_

I

_

J

, r

_

I

_

J

and �

I

J

of operators of the

�rst, se
ond, third and fourth kind, respe
tively. Figures (f), (g), (h) and (i) show the a
tions

of these operators on an open matrix 
hain. (If a 
apital letter 
arries an asterisk, then the


orresponding integer sequen
e is put in reverse.)



the third family works pretty mu
h like the se
ond family ex
ept that it a
ts on the


olumn-ve
tor end (Fig.1(h)); the last family repla
es a produ
t of square matri
es

in the middle of the open matrix 
hain with another produ
t (Fig.1(i)). Ref. [9℄


ontains diagrams illustrating these a
tion. A typi
al physi
al observable like the

momentum or the Hamiltonian 
an be written as a linear 
ombination of these

operators.

Note that these operators are not linearly independent; some �nite linear 
om-

binations a
t identi
ally on any open matrix 
hain. This results in a number of

relations among the operators. Important examples are

�

F

X

�=1

�

�

�

�


 l

I

J

= �

I

J

�

�

X

i=1

�

iI

iJ

;

�

F

X

�=1

r

I

J


 �

�

�

= �

I

J

�

�

X

j=1

�

Ij

Jj

;

�

F

X

�

1

;�

2

=1

�

�

�

1

�

1


 f

I

J


 �

�

2

�

2

= �

I

J

�

�

X

i=1

�

iI

iJ

�

�

X

j=1

�

Ij

Jj

+

�

X

i;j=1

�

iIj

iJj

;

�

F

X

�

3

=1

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

3

=

�

�

�

1

�

2


 l

_

I

_

J

�

�

X

j=1

�

�

�

1

�

2


 l

_

Ij

_

Jj

and

�

F

X

�

1

=1

�

�

�

1

�

1


 f

_

I

_

J


 �

�

2

�

3

= r

_

I

_

J


 �

�

2

�

3

�

�

X

i=1

r

i

_

I

i

_

J


 �

�

2

�

3

: (1)

A notable feature from the symmetry viewpoint is that these operators form a Lie

algebra, the open string algebra, with the spa
e spanned by open matrix 
hains as

the de�ning representation. The reader 
an �nd all the Lie bra
kets in Ref. [13℄.

VERMA-LIKE MODULES

In the 
ase of the 
lassi
al Lie algebras and the Virasoro algebra, the Weyl

de
omposition is a valuable tool for 
onstru
ting highest weight unitary irredu
ible

representations as quotients of Verma modules. We would like to adopt the same

approa
h here. However, be
ause the Cartan subalgebra together with all the root

ve
tors do not span the open string algebra [13℄, we 
annot 
onstru
t a Verma

module in the traditional sense. Nevertheless, there is still a useful de
omposition

out of whi
h we 
an 
onstru
t Verma-like modules. Let us des
ribe them now.

Let G

00

be the subalgebra of the open string algebra

^

G

�;�

F

spanned by all oper-

ators of the form

1.

�

�

�

1

�

1


 f

_

I

_

I


 �

�

2

�

2

,

2.

�

�

�

�


 l

_

I

_

I


 1,

3. 1
 r

_

I

_

I


 �

�

�

and



4. 1
 �

I

I


 1.

G

00

turns out to be a Cartan subalgebra [13℄. Let G

+

be the subalgebra of the

open string algebra spanned by

1.

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that

_

I�

1

�

3

>

_

J�

2

�

4

(see Ref. [9℄ or [13℄ for the de�nition

of a lexi
ographi
al ordering of integer sequen
es);

2.

�

�

�

1

�

2


 l

_

I

_

J


 1 su
h that

_

I�

1

>

_

J�

2

;

3. 1
 r

_

I

_

J


 �

�

1

�

2

su
h that

_

I�

1

>

_

J�

2

; and

4. 1
 �

I

J


 1 su
h that I > J .

Finally, let G

�

be the subalgebra de�ned similar to G

+

ex
ept that ea
h > in the

above de�nition is 
hanged to <. Then

^

G

�;�

F

= G

�

�G

00

�G

+

:

Moreover,

[G

00

; G

00

℄ = 0 and

[G

00

; G

�

℄ � G

�

:

Thus here G

00

�G

+

plays a role analogous to what the Borel subalgebra does for

a simple Lie algebra.

Let v be a basis ve
tor of a one-dimensional representation CI

h

of G

00

� G

+

satisfying

G

+

(v) = 0;

�

�

�

1

�

1


 f

_

I

_

I


 �

�

2

�

2

(v) = h

I

(�

1

;

_

I;�

2

)v;

�

�

�

�


 l

_

I

_

I


 1(v) = h

II

(�;

_

I)v;

1
 r

_

I

_

I


 �

�

�

(v) = h

III

(

_

I;�)v and

1
 �

I

I


 1(v) = h

IV

(I)v;

where h

I

, h

II

, h

III

and h

IV

are fun
tionals on integer sequen
es. We will 
all them

weight fun
tions. Sin
e the four kinds of operators are not linearly independent, the

weight fun
tions are not independent either. The pre
eding equations show that

CI

h

is a left G

00

� G

+

module. Let U(

^

G

�;�

F

) and U(G

00

� G

+

) be the universal

enveloping algebras of the open string algebra and G

00

�G

+

, respe
tively. Note that

U(

^

G

�;�

F

) is a right G

00

� G

+

module. We 
all the highest weight representation

de�ned by the quotient of

U(

^

G

�;�

F

)
 CI

h

by the subspa
e of this dire
t produ
t generated by all

m

1

b
m

2

�m

1


 bm

2

;

where m

1

2 U(

^

G

�;�

F

), m

2

2 CI

h

and b 2 U(G

00

�G

+

), a Verma-like module.



REPRESENTATION THEORY

In general, a Verma-like module is neither irredu
ible nor unitary. We need to

quotient out the maximal proper subrepresentation, and 
hoose the weight fun
-

tions judi
iously to obtain a unitary irredu
ible highest weight representation.

The de�ning representation 
an be obtained from a Verma-like module as stated

in

Theorem 1 The quotient of the Verma-like module with

h

I

(�

1

;

_

I;�

2

) = Æ

�

1

1

Æ

_

I

;

Æ

�

2

1

;

h

II

(�;

_

I) = Æ

�

1

Æ

_

I

;

;

h

III

(

_

I;�) = Æ

_

I

;

Æ

�

1

and

h

IV

(I) = 0

by the kernel of the Hermitian form of the module is the de�ning representation of

the open string algebra.

A proof 
an be found in Ref. [13℄.

We 
an get many representations from the de�ning representation by taking its

tensor produ
ts. The following theorem des
ribes interesting properties of these

representations. To state this theorem, we need the notion of an approximately

�nite Verma-like module. This is a Verma-like module in whi
h

1. h

I

(�

1

;

_

I;�

2

)�h

I

(�

3

;

_

J;�

4

) should be a non-negative integer whenever

_

J�

3

�

4

>

_

I�

1

�

2

;

2. h

II

(�;

_

I) =

P

_

I

1

;�

1

h

I

(�;

_

I

_

I

1

;�

1

);

3. h

III

(

_

I;�) =

P

�

1

;

_

I

1

h

I

(�

1

;

_

I

1

_

I;�); and

4. h

IV

(I) =

P

�

1

;

_

I

1

;

_

I

2

;�

2

h

I

(�

1

;

_

I

1

I

_

I

2

;�

2

).

(Only a �nite number of summands should be non-zero in the last three equations.)

Theorem 2 The following statements pertaining to a unitary irredu
ible represen-

tation are equivalent:

1. The representation is a tensor produ
t of the de�ning representation.

2. The representation is the quotient of an approximately �nite Verma-like mod-

ule by its maximal subrepresentation.

3. The representation is the quotient of a Verma-like module in whi
h h

I

, h

II

,

h

III

and h

IV

are all non-zero only on a �nite number of arguments by its

maximal subrepresentation.



4. The representation is the quotient of a Verma-like module in whi
h h

IV

is non-

zero only on a �nite number of arguments by its maximal subrepresentation.

That 1. implies 2., 2. implies 3. and 3. implies 4. should be obvious. Let us

brie
y explain how 4. leads to 1.. As we have unders
ored previously, the weight

fun
tions are not linearly independent. Indeed, it follows from Eqs.(1) that

�

F

X

�=1

h
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(�; I) = h
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h
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; ;;�
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; ;)�
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�
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; ;;�
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) = h
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(;;�

2

)�

�

X
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h

III

(i;�

2

): (2)

Then 4. and Eqs.(2) together imply 3.. 3. and Eqs.(2) together, in turn, imply that

all of h

II

, h

III

and h

IV


an be 
ompletely determined from h

I

by bootstrapping.

h

I

is the weight fun
tions of the Cartan subalgebra of a proper ideal isomorphi


to gl(1). The 
laim now follows from the fa
t that all unitary irredu
ible highest

weight representations of gl(n) are tensor produ
ts of its de�ning representation.

See Ref. [13℄ for a more detailed rigorous proof.

Theorem 3 Any unitary irredu
ible highest weight representation of the open

string algebra is a tensor produ
t of a tensor produ
t of the de�ning representa-

tion, and a representation of the quotient of the open string algebra by gl(1).

This basi
ally results from the de
ompositions
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: (3)

These de
ompositions are well-de�ned be
ause the in�nite sums on the right hand

sides of Eqs.(3) are well-de�ned operators when a
ting on a highest weight module.



�

�

�

1

�

2




~

l

_

I

_

J

, ~r

_

I

_

J


�

�

1

�

2

and ~�

I

J

all 
ommute with any f

_

I

_

J

. They span the quotient of the

open string algebra by gl(1). The in�nite sums in the above three equations to-

gether with all f

_

I

_

J

are represented by a tensor produ
t of the de�ning representation.

Again see Ref. [13℄ for a fuller proof.

PHYSICAL INTERPRETATIONS AND OUTLOOK

What are the physi
al interpretations of these results? It is obvious that the

tensor produ
ts of the de�ning representation in Theorem 2 des
ribe multiple dis-


retized open string states, or multiple meson states. As irredu
ible representations,

they re
e
t on
e again the long-established fa
t that in the large{N limit, we 
an-

not break an open string into many, or join several open strings into one [15℄. The

quotient representations of Theorem 3, if they exist, yield novel bound states. Sin
e

we know that the quotient is 
losely related to the Cuntz algebra [16,12℄, perhaps

the representation theory of the Cuntz algebra will lead to novel physi
s.
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