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We outline a construction of topological quantum field theories based on g lised 6j-symbols iated with

the representation theory of algebras satisfying certain properties and argue that deformations of the enveloping

algebras of classical simple Lie algebras satisfy these properties when the value of the deformation parameter equals

a primitive root of ~1.

1. Introduction

We shall in this contribution describe a con-
struction of a class of three-dimensional topo-
logical quantum field theories starting from: data
given by the representation theory of certain al-
gebraic structures. This work is inspired by the
discrete approach to three-dimensional quantum
gravity followed by Ponzano and Regge [1] (see
also {2)) using angular momentum theory, and
by the recent work by Turaev and Viro (3], who
carried out a construction of topological quan-
tum field theories based on the representation
theory of s/(2)4, with ¢ a simple root of unity.
Subsequently, Ocneanu [4] carried out a similar
construction based on data from the theory of
embeddings of sul.factors of von Neumann alge-
bras.

Our purpose wili be to provide a rather gen-
eral framework for constructing euclidean three-
dimensional topological quantum field theories
from so-called generalized 6j-symbols associated
with the representation theory of a certain class
of associative algebras. In particular we argue
that quantum groups corresponding to the clas-
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sical simple Lie algebras belong to this class. The
construction is implemented by exact discretiza-
tions of the appropriate functional integrals, in
the sense that the manifolds are being trian-
gulated but the resulting quariities are showa
to be independent of the triangulations. Since
a triangulation of a manifold can be viewed as
equipping it with a discrete Riemannian struc-
ture ([5-7]), this may be rephrased by saying
that the functional integrals do not depend on
the Riemannian metric, which is a characteristic
of the topological nature of a quartum field the-
ory {8]. Thus the additional complication of inte-
grating over metrics, which is inhei=nt in theories
of quantum gravity, is avoided in these models,
making them more tractable for exact treatment.

2. ‘lepological quantum field theories

Beiore embarking on the construction let us
briefly recall the key properties of a three-di-
mensional topologicai gantum field theory [8,9].

In the following thrce-manifolds as well as sur-
faces will be assumed to be smooth oriented
and compact. With any three-manifold M with
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boundary components £y, ..., E, is associated a
finite dimensional complex Hilbert space

Vem =Vg, ®---® Vg, 1)

where M denotes the oriented boundary of M,
and Vg denotes a finite dimensional complex
Hilbert space with inner product (-, }g associ-
ated with any connected surface £, such that

Ve = Vg, (2)

where £* denotes the surface T with opposite
orientation and V3! denotes the dual space to V.

Moreover, if ¥ and ¥’ are surfaces, an isomor-
phism

U(I)IVY——»VQI (3)

is acrociated to any orientation preserving diffeo-
morphism f : ¥ — ¥, in such a way that

Ulfio f2) = UMU(S2) 4;

for any pair of such diffeomorphisms f, : £ — £’
and fiL : X&' - 2",
Finally, M determines a vector

Z(M) € Vau , 5)
such that the following conditions hold:

i) If F: M — M’ is an orientation preserving
diffeomorphism between manifclds M and M’
and we set f = Flap, then

Z(M")=U(Nz(M). (6)
ii) For any manifold M we have
2(M*) = Z(M), (M

where M* denotes M with opposite orientation
and where v — v* denotes the canonical conju-
gate linear isomorphism between Vaas and V3.

iii) If M, and M, denote two manifolds such
that there is a (not necessarily connected) sur-
face ¥ sach that My = £, U ¥ and 6M; =

¥, U X* and if M, Uy M, denotes the manifold
obtained by gluing M; to M; along X, then

Z(My Ug Mz) = (Z(M1),Z(M:))e, (8)
where the right hand side denotes the vector in

Vg, ® Vg, obtained by contracting Z(M,;) and
Z(Ms) with respect to Vg, i.e. if

Z2(My) = Zf.-'@y.— 9)
. Z(My) =Y flog, (i0)
i

where f} € Vg, , ff € Vg,, 9i € Vg and g €
Ve then

(Z2(M1), Z(M2))g =Y (90:93)5 Sl © FF,
W {11)
where (-, -)g denotes the bilinear form yielding
the duality between Vg and V..

iv) If ¥ is a surface, then
Z(Ex[0,1)) =1y . (12)

as an element in Vg @ Vg = End(Vg), « =d, fur-
thermore,

Vy=C. (13)

For further discussion of these axioms and
some variations thereof as well as some conse-
quences we refer to [9,10]. In the next section,
we shall describe a rather general framework in
which they may be implemented.

3. Intertwiner spaces and 6j-symbols

The building blocks of our construction will
be the so-called 6j-symbols associated with the
representation theory of certain associative #*-
algebras, wlich we now introduce.

Let A be an associative algebra over the com-
plex numbers with an antilinear involution a —
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a* and assume we are given a finite set [ of irre-
ducible #-representations of 2 on Hilbert spaces
H;, i € I, as well as a notion of tensor prod-
uct of representations, whic: we denote by i®j,
and which is a *-representation of 2 on a Hilbert
space Hig; satisfying the following properties:
1) Associativity: For i.j k € I : (i®j)@k =
iQ(igk);

2) Reducibility: For i, j € I there cxists a fi-
nite decomposition

n,;

i®j = Pi, (14
=1
and correspondingly
Hig; = Vi He, (15)
kel

where V.f can be identified with the space of
intertwiners between i®j ard k, i.e. mappings
o : Hig; — Hy such that ao(i®j)(a) = k(a)oa
for all a € 2. In particular the multip:icity of &
in i®j is

NE = dimVE. (16)

Note that V,-f is a Hilbert space with inner prod-
uct {a, B) given by

{(a,f) gy =aoff” (17)

which makes sense, since k is irreducible, and
aof" is an operator in H; commuting with k(1)
and hence proportional to the identity 1 on Hy.

3) Existence of “trivial” and “dual” re-
presentation: There exists a distinguished rep-
resentation 0 € I such that

(1) 0@i=ig0=iforig[;

{ii) For each i € I there exists a unique i¥ € I,
cailed the dual of i, suck that N3 = 1, and
Ng =0for j#iY;

(i) (V)Y =i, ie. N¥; = 1 and N%; = 0 for

J#i

Remark 3.1 The standard tensor product 7®p
of two representations © and p of an associative
algebra QU yields a representation of A®% and not
of A. If A is a bialgebra with co-multiplication
A %Y — AR N one may define a tensor product
representation of A by

TQp = (AQp)o A, (18)

and it is this type of tensor product one should
have in mind in the following. Moreover, in inter-
esting cascs, as eg. for quantum groups at roots
of unity discussed in section 5, the space Higp;
does not equal H; ®M;, but rather a quotient—:)!
it.
For the following we also have to assume that
tensor products of intertwiners u and v between
representations of 2 make sense as intertwiners:
4): Given representations x, x', p, p’ of ¥,
which are decomposable into representations in
I and intertwiners u : Hy — He v Hy — Hy,
there is a canonicai intertwiner u@v : Hxg, —
Hori,p between 7@p and x'@p’ depending bilin-
\;arl; on u and v and fulfilling:

(W'ar’)(u@v) = (v'u)e(v'v) (19)
1,91, = 11@,; (20)
(ngrjew = ud(vaw) (21)
(u@r)* = u'@v (22)

for any intertwiners u,», ¥, v’, w betwecn appro-
priat. representations.

Remark 3.2 In the following we shall fix, once

and for all, intertwiners

wi € Vs and pE€Vy
(23)

e € Vv,

which are partial isometries and unique up to
phases. In fact p; and ;p are unitaries according
to 3 i). And we assume this can be done such
that
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i) 1;®¢; =i p@1;;
i} g o (1o@a)a o (2:@1;);
iii) +p ® (a®lo)a o (1:®j¥)

for alla € V,:

‘The assumptions made so far seem quite natu-
ral conce it is assumed that the representations
in I form a closed system under tensor products.
We shall need two more purely technical assump-
tions, which will be explained below.

Using the intertwiner spaces V,-§ we Inay now
associate a vector space V(5 5) with any surface
. equipped with a triangulation S as follows.

First, consider an oriented triangle whose links
are decorated by arrows and by indices i, j,k € I
in cyclic order. If all three arrows point in posi-
tive direction we associate witii Luis fabeied iri-
angle the vector space

Vi=VE, (24)

whereas if some of the arrows point in negative
direction we replace in this definition the corre-
sponding “abels by their dual ones. Of course this
definition only makes sense if V,-fv, V{: and VJ',:'
czn be canonically identified. There is indeed an
obvious linear mapping a — & from V,fv to ijl-v
given by

v o (Li@a) = djv o (@QY;)  (29)

as intertwiners from Higig; to Ho, which is sus-
ily shown to be an isomorphism. However, in or-
der to use this isomorphism to identify the three
spaces it is necessary (and sufficient) that

Riee

=a (26)

for any o € Vifv. This identity does not follow
from the assumptions above alone, so we shall
in the following assume that it holds. It is possi-
ble to rephrase this assumption in terms of the

equality of certain compositions of intertwiners
(see [11]) but we shall not do so here.

Having defined the spaces V; associated with
labeled triangles ¢, we now decorate each link in
S by an arrow in an arbitrary way. By labeling
each link £ in S by a label iy € I, the triangles
in S become labeled and we may define

Viss) = @ Qv (27

(iedes t€8

where the direct sum is over all labelings (i¢)ces
of the links in S (but the configuration of arrows
is fixed) and the tensor product is over all trian-
gles in S. Note that according to the definiton of
Vi the space Yz s) is independent of the chosen
fixed configuration of arrows.

Next, consider the triangulated surface (X*,
8*), ie. (X,8) with opposite orientation, and
with the same decoration of arrows. For each
oriented triangle ¢ in § the oppoxitely oriented
triangle ¢* occurs in S*, and for each labeling
(it)ees it is easily seen that if

Vi= V,-fv (28)
then
Vie = Vi (29)
The bilinear form { | )f,-v : V,fv x Vi = C
given by

(@, B)81; = Bo(Liv@a) o (Y1 B1;5) 0 ¢}
(30)

can be shown to be non-degenerate and symmet-
ric, in the sense that (a,ﬂ)fjv = (8,a)v,v, 28 2
consequence of our assumptions, and this yields
a duality between V" and V.. Moreover, it
can be shown that this duality is consistent with
the isomorphisms o — &. This yields a duality
between V; and V;.. The corresponding bilinear
form will be denoted by (-, +),.
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Thus, as a consequence of the definition of
Vig,s) the identification

Viz.s) = Vizes) (£3))

follows from the duality implied by the non-
degenerate, symmetric bilinear form (-, -)z.5)
Vis,s) X Viz»,s+) — C given by

(® a, & /),.)(2'5) =

teSs tes (32)
(II F.-:‘) [I(ee.8e)s,
res tes

where a¢ € Vi, By € V;o for any labeling (ie)ees
of the links in S, and where the non-zero factor
[Tees Fi. has been inserted for later convenience.
The numbers F;, i € I, will be defined below.

Next we introduce the 6j-symbols. For each set
of six indices 1,4, k,£,p,q € I the cortesponding
6j-symbol is the linear map

. |7k i i
F?q[i l]:V;,,@V&—» q‘l®vjqk (33)

defined by

<FM[§ :;]0®ﬂv7®5>1i (34)

= a0 (1,@A)(6° @) 01",

which makes sense since the right-hand side is
an operator in H; commuting with i(%), and is
linear in a € Vi, B € V}, and conjugate linear
inyeVy,, éeVi.

We thus have

it
= Vo Vie (V) e(vh)
= ,;( [ V]'g ® V]&‘ ® Vklvp _C_: V(S’,&Tg)

" . '
Fpq [’ ] € Hom (Vi, @ VL, Vi@ VL) (35)

where V(sz a1,) 15 the vector space associated
with the triangulated boundary (S2,3Tp) of the

Fig. 1.

labeled tetrahedron Ty indicated in Fig. 1, and
52 denotes the two-sphere.

Since the symi..etry group of the oriented
tetrahedron contains twelve elements we may in
this way construct twelve vectors in V(ss a7,)-
However, it turns out that zfter suitable normal-
ization they are in fact equal, as formulated in
the following theorem.

Theorem 3.1 If, fori € I, we set
i v
F;=( Foo i P @ tiv, ¢ ® ¥y ) (36)

and assume that F; is non-zero and real, then
the vector

ik
W(Th) = F, Fy, [f l]ev(sa_m,, (37

is invariant under the action of the tetrahedral
symmetry group and hence defines a unique vec-
tor in V(sz_o’ro).

In order to prove this theorem one has to
show that any vector that can be obtained from

j k -
FpFpq ]z ¢ by a replacemsnt of indices corre-

sponding to applying a tetrahedral symmetry to

To (with the configuration of arrows fixed and

still using the convention that reversing an ar-

row is equivalent to replacing the correspond-
k

ing label i by i¥) is related to FyFyq f z] €
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Vi ovievie
act of the isomorphisms @ — & and their in-
verses.

Since the tetrahedral symmetry group is gen-
ereted by two of its elements it is seen to be
sufficient to prove that

j k £
FpFypq [i t]=Fp"Fﬂ"¢" [kv j] (38)

- v i
FoFpq [: t] = FiFav [ql ;] (39)

up to compositions with isomorphisms a — @,
which can be read off from the 1ormulae by con-
sidering the inital and final spaces of the left
hand sides as compared to the right hand sides.

The first of these identities can be obtained by
applying twice the identily

(Bl 2] com 7®6> =
<5® &, Fopv [;: Z] 7®6>‘

which on the other hand is obtained by a rather
straightforward calculation using the definitions

’vp by a suitable tensor prod-

(40)

j &
of Fp, 1 ¢ and the isomorphism a — & (see

ref. [11]).

The second identity is obtained (see [11]) as
a special case of the so-called pentagon identity,
which reads

Z FE [" J] FUD [" 'l] F@ [J "]
'3 u ¢

_ wy |m k| panin §
as operators from V% @ VJ', VL to ViV, ®

V3, where the upper pair of indices in paranthe-
sis indicate on which factors in the tensor prod-

uct the 6j-symbol acts and Py3 denotes permuta-
tion of the second and third factor. This identity
is a well-known consequence of associati=ity of
the tensor product ® (see eg. [11,12]).

Finally, we remark that the condition

F: <R\ {0} (a1)

stated in the theorem is the second and last tech-
nical assumption mentioned above. It is equiva-
lent to assuming that

Fi#0 and Fv=F; for iecl. (42)

4. The construction

We have now defined the basic building blocks,
and may now describe the actual construction of
topological QFT’s based on these.

Let M be a smooth orientable compact mani-
jold with boundary components 4, ...,Z, and
let 7 be a triangulation of M. The induced trian-
gulations of Ty,..., X, are denoted Si,...,S,.
With the triangulated manifold (M, T') we asso-
ciate the Hilbert space

n
Viesm,or) = ® Viz,s0 - (43)

i=1
In order to define an appropriate vector Z(M,
T) € Viaar,o7) we distribute in an arbitrary way
arrows on the links in 7 and attach to each link
i € T alable iy € I. Thus each tetrahedron

T € T becomes labeled. Setting

F= E (44)

iel '
we may thus define

Z(M,T)= F-UTI=41e71)
II & (® WtT)) (45)
(ie):er LET\OT TeT nt T

€ Viom,a1)
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where |T| and |87 denote thc number of ver-
tices in 7 and 7 respectively, the summation
is over all possible labelings of links in 7, with
the configuration of arrows fixed, and the tensor
product is over all tetrahedra T in 7 and (-)iner
indicates that the tensor (®r¢rW(T)) is con-
tracted with respect to all interior triangles in
T using the bilinear form (-, -); for each labeled
triangle ¢.

Let us note that if (M;,T;) and (M, T;) are
two triangulated three-manifolds such that

(OM,,0T)) =

(51,8 U (5%,87) )

and
(OM32,0h) = (£2,82) U (E,8) (47)

and if (M g Ma, Th lls T2) denotes the tri-
angulated manifold obtained ty gluing (M,,T))
ard (M,,T;) along (£, S), then

Z(My Uy My, T s To) =

(48)
(Z(M1,T1), Z(M2, T2)Xz.5)

where (-, -jiz,s) as usual denotes contraction
with respect to the bilinear form (-, )z sy de-
fined by (3.5). Note that the factors of F and of
Fi, in the definition of Z(M, 7 ; and of the bilin-
car form (- ,-)(z,s) bave been arranged such that
(48) holds.

Our purpose now will be to show that Z(M,T)
is independent of 7 (clearly it is independent of
the chosen configuration of arrows). This can be
done in two steps. First we show that Z(M,T)
does not depend on the interior of 7 and sec-
ond we show that it is possible to replace the
spaces Viam,a1) by certain subspaces which can
be canonically identified for different choices of
9T defining a space Vapr and such that the vec-
tors Z(M, dT) are identified, thus defining a vec-
tor Z(M) € Vam.

\\ \\\//

Fig. 2. Replacervent of *!iree tetrahedra glued along three
triangles by two tetrat.cdra glued along one triangle,

Fig. 3. Collaps of two tetrahedra glued along two triangles
to two triangles.

In order to accomplish the first step we note
that any triangulation of M can be obtained
from any other triangulation which is identical to
the first one on M by application of a sequence
of deformations of the three types indicated on
Fig. 2—4 and their inverses (see {3}).

Thus it is sufficient to prove that Z(M,T) is
invariant under these deformations.

The invariance under the first type of defor-
mation is an easy consequence of the pentagon
identity (41), whereas the two others follow from
eqi40) combined with the identity

]
z Fom [i l] Fom [i [:l = bpq IV,‘,@V.': '
mel {49)

which in turn is an easy consequence of the
complete reducibility assumption 2) in section
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Fig. 4. Collaps of two tetrahedra glued along three trian-
gles to one triangle.

3 (see [11]). Ia fact, invariance under the second
type of deformation follows easily by noting that
the composition of the two operators in (49) is
equivalent to contracting the corresponding 6;-
symbols with respect to two intertwiner spaces
corresponding to two triangles, whereas invari-
ance under the third type is obtained by setting
2 = ¢ acd contracting with respect to an addi-
tional triangle, and using vhau

5 ,N{,

F= FiF,

kel

(50)

for any p € I as shown in [11] (see also [3]). For
detailed arguments we refer the reader to {11].

The independence of Z(M,T) on the interior
of 7 may now be used to accomplish the second
step as follows. Let L be an arbitrary triangu-
lated surface; let S; and S, be two triangulations
of X, and let

Mz =% x[0,1], (51)
such that
Mg=2"UZ, (52)

where £° is identified with £ x {0} and T is
identified with ¥ x {1}. It is then easy to see,
using the two-dimensional analogues of the de-
formations described above, that it is possible
to devise a triangulation 7 of Mg such that it

et al. / Topoiogical Q

agrees with S§ on £° and with S; on X. Then
Z(Ms, T) € Vs, ®Viss)  (53)

is independent of the choice of 7, as already
shown, and may be considered as an operator

hs?.sl(z) : V(}:-sl) - V(E,sz) s (54)

since

Vs s, ® Viz.sp) = Hom (Vig 5y Viz.sm) -
(55)

Moreover, if S is a third triangulation of £
we lave

hs,5.(E) o hs, 5,(Z) = hs,5,(Z).  (56)

This equation follows easily from (48) and the
independence of Z(M,T) on the interior of 7.
In particular, it follows from (56) that

(hs s(2)” = ks s(T), (57)

Ps(X) = hs s(X) vA8)
is a projection. Setting
Ves)=FsVizs) (59)

it is now casy to see that the restriction of
hs,s5,(E) to Vg 5, maps Vi ¢ ) isomorphically
onto V(’E,s,) and that these maps allow a con-
sistent identification of the spaces V(’E_s) for dif-
ferent triangulations S, thus defining the desired
space Vg. Moreover, it folows that

Z(M.T) € Vo or (60)

and that the vectors Z(M,T) are mapped into
each other by the maps hsr, a7,(0M), thus
defining the desired vector

Z(M)€ Voum . (61)
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It is also easy to see that the restriction cf the
bilinear forms (-, )z .5 to V('E’s) X V(I):~,s-) de-
fine a unique non-degenerate, symmetric bilinear
form on Vg x Vg., by which we may identify Vy.
with Vg.

In addition, the inner products on V(3 s) de-
fine a unique inner product (-, -)g on Vz. This
follows from the fact that

Z(M*,T*) = Z(M,T)" (62)

which is a consequence of (40). In fact (40) is eas-
ily scen to be equivalent to (62) when (M,7) is
a single teirahedron. The general case can then
be derived by induction on the size of 7 (see ref.
[11]). Applying (62) to (M,T) = (Mg, T) im-
plies that the restiiction of hg, 5,(X) to V('s,s.)
is an isornetry.

Thus Vy is a Hilbert space with inner product
(-, -}z, and (62) implies that

Z(M*) = Z(M)" . (63)

Finally, given an orientation prescrving diffeo-
morphism f : £, — ¥, between surfaces and a
trianguiation S of L, we define an isomorphism
U(f) : Vg, — Vg, as follows. Given a triangu-
lation S of £, and a configuration of arrows as
well as a labeling of the links in S we obtain in
an obvious way a triangulation f(S) of X2 and
a cortesponding configuration of arrows and la-
beling of the links in f(S). We set

tes e f(S)

for arbitrary a, € V; for t € S. Obvionsly the op-
erators Us(f) are unitary tr any triangulation
S and it is easy to see that they define a unique
unitary operator

U(J): Ve, = Vg, (65)

fulfilling property 1) in section 2.

We have thus indicated the proof of the fol-
lowing main result (see ref. {11}).

Theorem 4.1 The Hilbert spaces Vg, the vec-
tors Z( M) and isomorphisms U(f) constructed
above fulfill all the properties i)-iv) in section 2.

5. The quantum group case

In this section we argue that deformations of
the enveloping algebras of the classical finite di-
mensional Lie algebras satisfy our conditions for
suitable values of the deformation parameter 3.

For completeness let us write down the d-fin-
ing relations for these algebras in terms of gener-
ators, which we shall denote by E;, F;, K;, Kl-'l,
where 1 € i € m. Denoting by (ai)1<i,jgm the
Cartan matrix, which we for simplicity assume to
be symmetric, for a classical simple Lie aigebra G
the relations for the deformed algebra 4 = UG
are

KiKj = K;K;
K{R7'=K'K;i =1

l\','Ejl\',-_“ = q""le,-

(66)
RiFK7Y = ¢ o025
. K,?--l\',-‘2
(B, By = & —— =
Ry 1-a;;
pRICIE [ n ‘J] BTV Y =
n=0 q
0, i#j
iy 1 —a;;
>y [ n ] Fime g pp 87
n=0 q
0, i#j
where

| _ frl,!
[s], “E-a
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and
T —g
["]q! = q- q" (69)
i=1

for ¢ complex and # 1. In the limit ¢ — 1

one recovers the relations defining G with K; =
q”.h.

A has a Hopf algebra structure with comulti-
plication A : U — A ® A given by
AK;))=Ki®K;
AE)=Ki®E+E®K™" (10
A(F)=Ki®Fi+ F,® K[
and with an antipode S :— % — 2 given by
S(K;)= K;!
S(Ei) = —qE; (71)
S(F)= —q"*F.
The counit ¢ : % — C is given by
e(K) =1
(K3) ’ (12)
(E) =e(R)=0.

We also note that for Jg} = 1 ¥ is an associa-
tive +-algebra with the conjugate linear involu-
tion ¢ -~ a* given by

cx gl
K{ = Kj (i3
Ei=F
and we have
A(a)* = A'(a®) (74)

for @ € 9, where A’ denotes the opposite co-
muitiplication obtained from A by composing it
with the flip P on % ® % given by

Pla@b)=bt®a. (75)

There exists an invertible element R € A Q@2
such that

Ri(a)= A'(a)R for a€®.  (76)

Explicit formulae for R have been obtained in
[13]. We note the following properties of R:

(A®1)R = R\3R2
(1@A)R = RiaRaea (77)
RizRiaRo3 = RysRiaR.,

as elements in A® AR A with standard notation.
Moreover,

R = PR_I, (78)

where the * operator on A® A acts as (a®b)* =
a* @b

We shall also need the fact that there exists
(see [14,15]) a unitary central element ¢ < 9 such
that

Ra1 Ry2 A(C) =c®c (79)

in A G %, where Ry, = R and Ry = P(R).

If ¢ is not a root of unity the representation
theory for 2 is essentially the same as for G in the
sense that the finite dimensional highest weight
representations of A may be obtained as defor-
mations of those of G (see [16,17]). If ¢ is a root
of unity the situation is different. and it is conve-
nient to distinguish representations according to
whether their ¢-dimension vanishes or not. The
g-dimension of a finite dimensicral representa-
tion 7 of A is defined as

dimg 7 = trw(Ka,), (80)

where p is half the sum of positive roots and

m
Kp=T] k>, (81)
i=1
if 8= /1, mo, is an element in the root lat-
tice.
Now let g = ¢/*/¢, where the integer € is bigger
than the Coxeter number for G and let Jy be the

set of dominant weights A for G fulfilling

{(A+p,a¥) < € for all positive roots a.
(82)
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The cotresponding irreducible highest weight re-
presentations of G may then be deformed into
corresponding irreducible inequivalent highest
weight representations x5 of 2 with non-zero ¢-
dimension. In fact, they constitute a maximal sct
of representations with these properties.

It follows from Shapovalov’s determinant for-
mula that these representations are -represen-
tations with respect to a positive definite inner
product, which is unique up to a positive factor
(see [18]). For this to hold the restriction on the
values of ¢ is important. For sl(2), it is easy to
verify directly.

Defining the dual 7V to a representation # of
A on H by

= (a) = 7(S(a))*, (83)

where the index ¢ indicates the ordinary dual op-
erator on the dual space H*, it is possible to
verify that =} is equivalent Lo a represcntation
mav where also AV satisfies (82), and that x, and
{7Y)¥ arc equivalent. The latter follows from the
existence of an clement w € 9 such that

S5%a) = uau™! forall a€. (84)

We now let I denote a set of representatives
for the equivalence classes of the rzpresentations
7, une for each class, such that if i € I then
there is a representation i¥ € I defined either by
(83) or by the inverse of that relation, provided
i and iV are not equivalent. This also defines the
involution i — iV on I. Moreover, we choose the
antipode ¢ to represent 79 and denote it by 0 € /.

The tensor product 7®p of two finite dimen-
sional representations T and p on H, and H,
respectively, is defined by

=“@p(a) = 7 @ p(A{a)),

as operators on H, ® H,. If we attemt to use this
tensor product together with I, we encounter two
difficulties in establishing properties i)-iv) and

ac, (85)

the additional technical assumptions in section

3:

i) H.® H, is not decomposable into modules in

1.

ii) Due to (5.1), i®j is generally no. a *-re-
presentation with respect to the standard innetr
product on H, G H,.

As to the first point, it has for some time been
known for sl(2), (sec eg. ref. [19]) that /I; ® H;
has a decomposition

HioH;=2; & Hig;, (86)

where Zj; is a direct sum of indecomposable
modules with vanishing g-dimension and MHig;
is a direet sum of modules in I, and, further-
more, such that associativity of the tensor prod-
uct Hg; is maintained. It is a non-trivial prob-
lem to gencralize these results to an arbitrary
classical simple Lie algebra G, but results to the
effect that they are valid have tceently been ob-
tained, sce refs. {15,20,21].

As concerns the second point we first note
that, as a consequence uqus-i'il!) and (78), it fol-
lows that i@j, for i,j € I, is a *-representation
on H; @ H; with respect to the non-degenerate
sesquilinear form

(t. 9} = {2, i0j(R)Y), =z,yellio®H;,
(87)

where (-,-) on the right-hand side denotes the
staudard inner product on H;@Hj inherited from
the inner products on H; and H;. Hence, on each
irre-iucible component Hy in H; ® Hj the restric-
tion of {-,-}x is proportional to the inner product
on /. However, (-, -}p is not symmetric because
of eq(78), so the constant of proportionality cfj
is generally not real. In order to fix it we may
exploit eq. (79} as follows. Restricting {-,-}r to
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H C H,'@Hj we have
cfj(z,i® j(R)y) = (2, © i(R")W))) .
(88)

Assuming, that {-,-)p is non-degenerate (i.e.
non-vanishing) on H; we conclude that

i@ j(R) =7t i®j(R") (89)
or, using (78),
&
i®j(RuRia) = ‘cr’ (90)

ij
Observing that the unitary central element ¢ acts
as multiplication by a phase ¢; on H;, i € I, it
now follows from (79) and (99) that
=k

<5 €iCj
hLE A7 B 1
2= (o1)
and hence we can choose
.
R ©

where the square-roots have to be chosen such
that c,-kj {, 7 is positive definiie on each Hy. Using
that {, ) equals {,) in the limit ¢ — 1 the
square-roots can be selected by continuity.
Clearly the inner products
¢oy=ciIn
50 defined on each irreducible component yield
a well defined inner product on Higj, provided
(-»-)r is non-vanishing on each irreducible com-
ponent in H;g;. We shall not discuss this latter
assumption further here. Suffice to say that for a
given k corresponding to a fixed dominant weight
of G, it holds for sufficiently large £ by continuity.
It is important to notice that the so defined
inner product on H.-Q,- is compatible with asso-
ciativity, i.e. it yields a unique inner product on
Higjek, 1,4,k € I, as is easily seen from egs.
(77—77) and the form (92) of the factors of pro-
portionality.

{92)

Field Theory from 6j-symbols

Now conditions iii) and iv) may be verified
if the tensor product a®p of two intertwiners
a:idy — Hy B : Hy — H, denotes the re-
striction of the ordinary tensor product a® g3 to
Hegp C Hy ® H,. Furthermore, the additional
technical assumptions in section 3 may be veri-
fied if ;¢, ¢; and 9; are chosen to be the canonical
-atertwiners (see ref. [11] for details).

This concludes our discussion of the quantum
group case.

Let us finaily mention that another interesting
class of algzhras that are likely to satisfy our as-
sumptions is furnished by the chiral algebras of
unitary rational conformal field theories in two
dimensions (see eg. [12,22]), but it requires addi-
tional work to cair: out the detailed arguments.
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