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We outline a construction of topological quantum field theories b&~ed on generalised 6j-symbols associated with 
the representation theory of Mgfbras satisfying certain properties ~atd argue that deformations of the enveloping 
~tgehras of classical simple Lie a~gebras satisfy these properties when the val.e of the deformation parameter equals 
a primitive root of - I. 

1. Introduction 

We shall in this contribution describe a con- 

structiou of a class of three-dimensional topo- 

logical quantum field theories s tar t ing from da t a  

given by the representation theory of certain al- 

gebraic structures.  This work is inspired by the 

discrete approach to three-dimensional quantum 

gravity followed by Ponzano and Regge [1] (see 

also [2]) using angular  momentum theory, and 

by the recent work by Turaev and Viro [3], who 

carried out  a construction of topological quan- 

tum field theories based on the representation 

theory of sl(2)q, with q a simple root of unity. 

Subsequently, Ocneanu [4] carried out  a similar 

construction based o ,  da ta  from the theory of 

embeddings of suLfactors of yon Neumanu alge- 

bras. 

Our  purpose will be to provide a rather  gen- 

eral framework for constructing euclidean three- 

dimensional topological quantum field theories 

from so-called generalized 6j-symbols associated 

with the representation theory of a certain class 

of associative algebras. In part icular  we argue 

tha t  quantum groups corresponding to the clas- 

* Talk given by B. Durhuus 

sical simple Lie algebras belong to this class. The 

constroction is implemented by exact discretiza- 

tions of the appropriate  functional integrals, in 

the sense tha t  the rnar, ifolds are being trian- 

gulated but  the resulting quanLities are shown 

to be independent of the triangulations. Shire 
a tr iangulation of a manifold can be viewed as 

equipping it with a discrete Riemannian struc- 

ture ([5-.7]), this may be rephrased by saying 

tha t  the functional integrals do not depend on 

the Riemannian metric, which is a characteristic 

of the topological nature of a quay.turn field the- 

ory [8]. Thus the additional complication of inte- 

grat ing over metrics, which is inhe~ ~nt in theories 

of quantum gravity, is avoided in these models, 

making them more tractable for exact t reatment .  

2. 'l'c.pological quantum field theories 

Before embarking on the construction let us 

briefly recall the key properties of a three-di- 

mensional topologica~ q . a n t u m  field theory [8,9]. 

In the following three-manifolds as well as sur- 

faces will be assume,~ to be smooth oriented 

and compact.  With any three-manifold M with 
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boundary components ~ t , . . . ,  E .  is associated a 

finite dimensional complex Hi!bert space 

VoM =Vz, ® ' " ®  V~., (I) 

where 8M denotes the oriented boundary of M, 

and V~ denotes a finite dimensional complex 

Hilbert space with inner product  {., .}~. associ- 

ated with any connected surface E, such tha t  

V~. = V~, (2) 

where ~* denotes the surface ~ with opposite 

orientation and V~ denotes the dual space to ½. 

Moreover, if ~ and E' are surfaces, an isomor- 

phism 

u(1): v~ - ½, (3)  

is a,:~ciated to any orientation preserving diffeo- 

morphism f : ~ ~ ~ ,  in such a way tha t  

U(f, o 12) = V(lt)U(12) (4) 

for any pair of such diffeomorphisms f~ : ~ --* ~ '  

and f l  : X7 ~ E".  
Finally, M determines a vector 

Z(M) e VOM , (5) 

such that  the following conditions hold: 

i) If F : M ~ M ~ is an orientation preserving 

diffeomorphism between manifolds M and M ~ 

and we set f = F[OM, then 

Z(M') = U(.f)Z(M). (6) 

ii) For any manifold M we have 

Z(M')  = Z(M) ' ,  (7) 

where M" denotes M with opposite orientation 

and where v --* t,* denotes the canonical conju- 

gate linear isomorphism between VoM and V~M. 

ili) i f  MI and M:t denote two manifolds such 

that  there is a (not necessarily connected) sur- 

face Z sach tha t  OMt -- El O X; and OM2 = 

E2 O ~" and if MI IIi: M2 denotes the manifold 

obtained by gluing MI to M2 along ~,  then 

Z(MI I1~ M2) = (Z(MI),Z(M~))~, (8) 

where tbe right hand side denote~; the vector in 

V% ® Vr~ obtained by contractir.~g Z(Mt) and 

Z(M2) with respect to V~, i.e. if 

Z(M,) = ~I~ ®g, (9) 
i 

, Z(M~) = ~£o~;, (~0) 
J 

where f• E Vth,  j'2 ~ VZ~, gl 6 V:~ and g~ e 

V~. then 

(ZIM,), ZfM~))~ = ~ 0-#;)~ I: 0 .q, 
~,~ (10 

where (., .)~ denotes the biliaear form yielding 

the duality between V~. and I,~.. 

iv) If E is a surface, then 

Z ( ~  x [0, {1)= l y e ,  (12) 

as an element in VZ ® V~ = End(Vt:), : ::d, fur- 
thermore, 

V, =C. (13) 

For further  discussion of these axioms and 

some variations thereof as well as some conse- 

queuces we refer to [9,10]. In the next section, 

we shall describe a rather  general framework in 

which they may be implemented. 

3. lutertwiner spaces and 6j-symbols 

Tile building blocks of our construction will 

be the so-called 6j-symbols associated with the 

representation theory of certain associative *- 

algebras, which we now introduce. 

l,et • be an associative algebra over the com- 

plex numbers with an antilinear involution a 
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a* and assume we are given a finite set I of irre- 
ducible *-representations of 2 on llilbert spaces 

Hi,  i E I, as well as a notion of tensor prod- 
uct of representations, whic?, we denote by i ~ ,  
and which is a *-representation of 2 on a Ililbert 

space Hi,fi satisfying the following properties: 

1) A s s o e i a t i v i t y :  For i , j , k  E I : ( i~)@lc = 

i~_(j~_t); 

2) R e d u c i b i l i t y :  For i , j  E I there e:dsts a fi- 

nite decomposition 
njj 

i ~  = ~ i ,  (14) 

and correspondingly 

kill 

where V/~ can he identified with the space of 

intertwiners between i ~  al,d k, i.e. mappings 

a : Hi~_i ~ Ht  such that  a o ( i ~ ) ( a )  = k ( a ) o a  
for all a ~ 2.  In particular the multip:icity of k 

in i ~  is 

N~ = dim V/~. (16) 

Note that  V/J is a Itilbert space wigh inner prod- 
uct (a ,~)  given by 

(~ , /~) l~  = ~ o,:~* ( l~ )  

which makes sense, since k is irreducible, and 

ao/3* is an operator in H& commuting with k(2) 

and hence proportional to the identity l& on H&. 

3) E x i s t e n c e  of  " t r i v i a l "  a n d  "dua l "  re-  
p r e s e n t a t i o n :  There exists a distinguished rep- 

resentation 0 E I such that  

(i) O ® i = i ® 0 = i f o r i ~ l ;  
(ii) For each i ~ I there exists a unique i v ~ I, 
called the dual of i, suck that No~ = 1, and 
N ° = 0 for j :~ iv; 

(iii) (iv) v = i, i.e. N~v i = 1 and N°~i = O for 

j ~ i .  

R e m a r k  3.1 The standard tensor product 7®p 
of  two representations lr ~,nd p of  an associative 
algebra 2 yields a representation o f  2 ® 2  and not 

o f  2 .  I f  2 is a bialgebra with co-multiplication 
A : ~1 ~ ~1®2  one may define a tensor product 
representation o f  ~l by 

~_p = ( ~ p )  o A, (18) 

and it is this type of tensor product one should 
have in mind in the following. Moreover, in ;nter- 
estiug cases, as eg. for quantum groups at roots 

of unity discussed in section 5, the space 7fifi.~ 
does not equal 7fl ®Tlj, but rather a quotient of 

it. 

For the following we also have to assume that  
tensor products of intertwiners u and v between 
representations of 2 make sense as intertwiners: 

4): Given representations 7r, x' ,  p, p'  of  2 ,  

which are decomposable into representations in 

I and intertwiners u : H~ ~ H,v, v : Hp ~ Hp,, 
there is a canonicai intertwiner u~n : ?f~_p 
"/f,,~p, between x~_.p and ~r'~fl' depending bilin- 

,:arly on u and v and fulfilling: 

(u'Ov')(ufOv) = (u'u)@(n'v) (19) 

l.O_l. = 1,~p (2o) 

(,,o~)o_~ = u ~ ( ~ )  (21) 

(u~v)" = u'Ov" (22) 

for any interiwiners u, v, n ~, v e, w between appro- 

priat~ representations. 

R e m a r k  3.2 in the following we shall fix, once 

and for all, intertwiners 

~/'t E V~k~, , ~i C V~i and i~  E V/~ 
(23) 

which are partial isometries and unique up to 
phases. In fact ~i and i~  are unitaries according 

to 3 i). And we assume this can be done such 

that 
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ill) kv ® (a~_lo)c,  o ( h ~ ¢ )  

The assumptions made so far seem quite natu- 
ral once it is assumed that  the representations 
in ! form a closed system under tensor products. 
We shall need two more purely technical assump- 

tions, which will be explained below. 
Using the intertwiner spaces ~ I  we may now 

associate a vector space V(s~,s) with any surface 
~; equipped with a triangulation ~q as follows. 

First, consider an oriented triangle whose links 

are decorated by arrows and by indices i , j ,  k E I 
in cyclic order. If all three arrows point in posi- 
tive direction we associate wit;, titis labeled tri- 
angle the vector space 

v,  = v,~ ~ , (24) 

whereas if some of the arrows point in negative 

direction we replace in this definition the corre- 
sponding ~bels by their dual ones. Of course this 
definition only makes sense if Vi~ ~ , V:i v and V]k v 

can be canonically identified. There is indeed an 
obvio:Js linear mapping cr - -  ~ from V/I v to Vi/v 

given by 

¢~ o ( ~ )  = q~v ~ ( ~ l i )  (25)  

as intertwiners from tI~_L~ to Er0, which is ~hs- 

ily shown to be an isomorphism, tlowever, in or- 
der to use this isomorphism to identify the three 
spaces it is necessary (and sul~.-ient) that 

a = a (26) 

for any a ~ V/~ v. This identity does not follow 
from the assumptions above alone, so we shall 
in the following assume that  it holds. It is possi- 

ble to rephrase this assumption in terms of the 

equality of certain compositions of intertwiners 

(see [ l l  D but we shall not do so here. 
Having defined the spaces Vt associated with 

labeled triangles t, we now decorate each link in 
,S by an arrow in an arbitrary way. By labeling 

each link ~' in 5 by a label it E I, the triangles 
in 5 become labeled and we may define 

(it)t~s rE8 

where tbe direct sum is over all labelings (it)tEs 
of tile links in ,S (but the configuration of arrows 
is fixed) and the tensor product is over all trian- 
gles in ,S. Note that  according to the definit,,-, of 

Vt tile space V(~,s) is independent of the chosen 
fixed configuration of arrows. 

Next. consider the triangulated surface (E ' ,  
,q'), i.e. (E,~q) with opposite orientation, and 
with tile same decoration of arrows. For each 
oriented triangle t in S the oppositely oriented 

triangle t" occurs in ,S*, and for each labeling 
(it)tES it is easily seen that  if 

~ = v ~  v (28)  

then 

V,. = ~ , v .  (29) 

The bili:~ear form ( . )i~;: V/I v x Vi~kv - -  C 

given by 

kv 
(a ,~h i  l i  = ~o  (h~_~)  o (¢':~ "-~b) ° ~ 

(301 

can be shown to he non-degenerate and symmet- 
ric, in tile sense that  (a,/~)i~ v -- J - (~ ,  ~) i~k~,  as a 

consequence of our assumptions, and this yields 

a duality between V/~ ~ and V/Jvkv. Moreover, it 

can be shown that  this duality is consistent with 
the isomorphisms a - -  K. This yields a duality 
between V~ and Vz.. The corresponding bilinear 

form will be denoted by (. ,  ')t. 
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Thus, as a consequence of the definition of 
~ , s )  the identification 

v ( ~ , s )  = v ( ~ . , s )  (31 )  

follows from the duality implied by the non- 
degenerate, symmetric bilinear form (., ")(~,8) : 
V(v.,s) x V(~.,.~.) --~ C given by 

: 

,~s ,~s / ( ~ , s )  (32) 

where ott ~ N ,  f/t. E ~ .  for any labeling (it)tes 
of the links in 8, and where the non-zero factor 
~ t c s  Fi, has been inserted for later convenience. 
The numbers Fi, i ~ 1, will be defined below. 

Next we introduce the 6j-symbols. For each set 
of six indi¢c~ i, j, k, (,p, q ~ I the corresponding 
6j-symbol is the linear map 

kt] : V~ ® V~t "-" i q V~t ® V~k (33) 

defined by 

= ~ o ( I ~ _ ~ ) ( 6 " o _ ] , )  o ~*, 

which makes sense since the right-hand side is 
an operator in 7fi commuting with i(~t), and is 
linear in a E t~/~, ~ E V~t and conjugate linear 

in 7 E Vq/t, /~ E Vj~. 
We thus have 

[ile] GHom(V/p®V[t V~t®Vj~) (35) Fpq it 

= v;~ ® ~ -  ® (~'~)" ® (v~,)" 

where V(SLOTo) is the vector space associated 
with the triangulated boundary ($2, fifo) of the 

q 

Fig. 1. 

labeled tetrahedron To indicated in Fig. 1, and 
S 2 denotes the two-sphere. 

Since the syml..etry group of the oriented 
tetrahedron contains twelve elements we may in 
this way construct twelve vectors in V(s~,oTo). 
llowever, it turns out tha~ vfter suitable normab 
ization they are in fact equal, as formulated in 
the following theorem. 

Theorem 3.1 If, for i E 1, we set 

a,d assume that F. is non-zero and real then 
the vector 

W(To)=F, Fp,[~ : ]  EV(s~.oTo). (37) 

is invariant under the action of the tetrahedral 
symmetry group and hence de•nes a unique vec- 
tor in V(sa aTo). 

in order to prove this theorem one has to 
show that any vector that can be obtained from 

FpFpqI~ ~] by a replacement of indices eorre- 

spondipg to applying a tetrahedral symmetry to 
To (with the configuration of arrows fixed and 
still using the convention that reversing an ar- 
row is equivalent to replacing the correspond- 
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V:t ® Vj~ ® gfv i ® V~.., by a suitable tensor prod- 
uc¢ of the isomorphisms ~ ~ K and their in- 
v e r g e s .  

Since the tetrahedral symmetry group is gen- 
erated by two of its elements it is seen to be 
sufficient to prove that 

FpFp, [~ :] =FpvFf.,v [/v i;] (38) 

and 

up to compositions with isomorphisms c~ ~ ~.. 
which can be read off from the mrmulae by con- 
sidering the inital and final spaces of the left 
hand sides as compared to the right hand sides. 

The first of these identities can be obtained by 
applying twice the identity 

which on the other hand is obtained by a rather 
straightforward calculation using the definitions 

ofFpq [~ k] a n d t h e i s e m o r p h i s m ~ ( s e e  

rer. [11]). 
The second identity is obtained (see [ll D as 

a special case of the so-called pentagon identity, 
which reads 

¢~/F(~a) [ n -Pv 

.. ,. :1,.:[: :] 
:]-.'-"[: :] 

as operators from V~i ~ Vj~ Q V~t to V~ ® Vmrt ® 
V~'~, where the upper pair of indices in paranthe- 
sis indicate on which factors in the tensor prod- 

uct tim 6j-symbol acts and P2a denotes permuta- 
tion of tile second and third factor. This identity 
is a well-known consequence of associa6:'ity of 
the tensor product ~ (see eg. [11,12]). 

Finally, we remark that the condition 

F, ~ \ { 0 }  (41) 

stated in the theorem is the second and last tech- 
nical assumption mentioned above. It is equiva- 
lent to assuming that 

FifO and / ' i v = F i  for i ~ l .  (42) 

4. Tile construction 

We have now defined the basic building blocks, 
and may now describe the actual construction of 
topological QFT's based on these. 

Let M be a smooth orientable compact mani- 
fold with boundary components Y~t,..., Ln and 
let 7" bca  triangulation of M. The induced trian- 
gulations of ~3, ... ,~n are denoted e l , . . .  ,'qn. 
With tile lriangulated manifold (M, T) we asso- 
ciate the Ililbert space 

n 

viola,or ) = ~ )  ~ , ,~ . ) .  (43) 
i=1  

Ill order to define an appropriate vector Z(M, 
7") E VfoM,oT) we distribute in an arbitrary way 
arrows on tile links in 7" and attach to each link 
f E 7" a lable it E I. Thus each tetrahedron 
7' E "]- becomes labeled. Setting 

F = ~ ' - ~  1 
,et ~ > 0 (44) 

we may thus define 

Z(M,7") = F-fWI-½1 ~TI) • 

Z H F,~' W(T)) (45) 
(it).'ET tET\OT / in t  T 
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where IT I and ]cgT[ denote the number of ver- 

tices in 7" and ~ respectively, the summation 
is over all possible labelings of links in T, with 
the configuration of arrows fixed, and the tensor 

product is over all tetrahedra T in 7" and (')int'/" 
indicates that  the tensor (®T6TW(T)) is con- 

tracted with respect to all interior triangles in 
T using the bilinear form (.,  ")t for each labeled 
triangle t .  

Let us note that  if (Mx,7-1) and (Mz,T:~) are 

two triangulated three-manifolds such that  

(OM~, 0~)  = 
(46) 

(x;,,&) 0 (x:',3") 

and 

(0M2,0~)=(~2,82) u (:C,S) (4t) 

and i f (Mr l l~  M2,TI Us T2) denotes the tri- 

angulated manifold obtained by gluing (Mr, 7"t ) 
arvl (M2,7"~) along (~,S) ,  then 

Z(MI ilr~ M~,T1 I15 7f2)= 
(48) 

(z(m~, ~), z(m2, ~))<~.sj 

where (-, .)(~,$) as usual denotes contraction 
with respect to the bilinear form (-, ")(~,s) de- 

fined by (3.5). Note that the factors of F and of 

Fit in the definition of Z(M, T} and of the bifin- 
ear form (-,-)(~,,¢) have been arranged such that 
(48) holds. 

Our purpose now will be to show that Z(M,T)  
is independent of T (clearly it is independent of 
the chosen configuration of arrows). This can be 
done in two steps, First we show that  Z(M,T)  
does not depend on the interior of 7" and sec- 
ond we show that  it is possible to replace the 

spaces V(0M, O~- ) by certain subspaces which can 
be canonically identified for different choices of 

0T defining a space VaM and such that  the vec- 

tors Z(M, 8~') are identified, thus defining a vec- 
tor Z(M) E VOM. 

\ / 

Fig. 2. Replacen-ent of ::~*e tetrahe~ra glued Mon K three 
trlr.ngles by two tetr~Lcdr& glued along one trlaJagle. 

Fig. 3. Collaps (d" two tel rahedra glued Mong two triangles 
to two triangles. 

In order to accomplish the first step we note 

that  any triangulation of M can be obtained 
from ally other triangulation which is identical to 

tlle first one on a M  by application of a sequence 

of deformations of the three types indicated on 

Fig. 2--4 and their inverses (see [3]). 

Thus ~t is sufficient to prove that Z(M, 7") is 

invariant under these deformations. 
Tile invarianee under the first type of defor- 

mation is an easy consequence of the pentagon 

identity (41), whereas the two others follow from 
eqi40 ) combined with the identity 

(49) 

which ill turn is an easy consequence of the 
complete reducibility a~umption 2) in section 
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Fig. 4. CCJalm of two tetrahedra glued along three trian- 
gles to one triangle. 

3 (see [11]). la fact, invariance under the second 
type of deformation follows easily by noting that  
the composition of the two operators in (49) is 
equivalent to contracting the corresponding 6j- 

symbols with respect to two intertwiner spaces 
corresponding to two triangles, whereas invari- 

ance under the third type is obtained by setting 
p = q a~d contracting with respect to an addi- 
tional triangle, and using that  

F,.,?~ (50) 
F = E  FkFt 

k,tEI 

for any p E I as shown in [11] (see also [3]). For 
detailed arguments we refer the reader to [11]. 

The independence of Z(M,7.) on the interior 

of T may now be used to accomplish the second 
step as follows. Let ~ be an arbitrary triangu- 

lated surface; let *-ql and ,-q2 be two triangulat;ons 

of E, and let 

MI: = ~ x [0, 1], (51) 

such that  

OMz = E* U E ,  (52) 

where E* is identified with E x {0} and ~ is 

identified with E x {1}. i t  is then easy to see, 

using the two-dimensional analogues of the de- 
formations described above, that  it is possible 

to devise a triangulation 7. of MI: such that  it 

agrees with ,.q~ on E" and with $2 on ~. Then 

Z(ME,7.) E V,,'~,s,) ~ V~,s,) (53) 

is independent of the choice of 7", as already 
shown, and may be considered ~ an operator 

hs2,S,(~) : V(E,S,) --  V(~,s~j , (54) 

since 

V~,s,) ® V~:,s~) "" Hom (V(z:,s,), V~I:,s=)) • 
(55 )  

Moreover, i f  83 is a th i rd t r iangulat ion (,f ]C 
we ]!av~ 

hs~,s=(E) o h s , , s , ( ~ )  = hs , , s , (~ . ) .  (56) 

This equation follows easily from (48) and the 
independence of Z(M,7.) on the interior of 7". 

in particular, it follows from (56) tha t  

(hs.s(~))  2 = hs,8(I:),  (57) 

i.e. 

Ps (E)  = hs , s (S)  ' 58) 

is a projection. Setting 

~'~,s~ = ~'s ~r,s~ (59) 

it is now easy to see that  the restriction of 

hs2,s~ (E) to V(~,s ,) maps V(~,s,) isomorphically 
i onto V(y.,sj ) and that  these maps allow a con- 

sistent identification of the spaces V(~,s ) for dif- 
ferent triangulations 8,  thus defining the desired 

space Vr_ Moreover, it folows that  

Z(M,7.) ~ VbM,Or (60) 

and that  the vectors Z(M,7.) are mapped into 

each other by the maps hoT",,oT',(OM), thus 
defining the desired vector 

Z(M) E You.  (61) 
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It is also easy to see that the restriction of the 

bilinear forms (. ,  .)(~,$) to V(~,.¢) x V(x. $.) de- 
fine a unique non-degenerate, symmetric bilinear 
form on Vt; x V~., by which we may identify V~. 

with V~. 
In addition, the inner products on V(~;,s) de- 

fine a unique inner product ~., -)~ on l-"~. Thi~ 

follows from the fact that  

z ( m ' , 7 " )  = z ( m , 7 ) "  (62) 

which is a consequence of (40). in fact (40) is eas- 
ily seen to be equivalent to (62) when (M,3") is 
a single tegrahedron. The general case can then 

be derived by induction on the size of 7" (see ref. 
[II D. Applying (62) to (M,~r) = (Mz ,T)  im- 

plies that  the restriction of hs~,s,(~) to V('z,.%) 

is an isometry. 
Titus V~ i~ a Ililhert space with iu,er product 

(., .)~, and (62) implies that  

Z ( M  °) = Z (M)  ° . (63) 

Finally, given an orientation preserving diffeo- 

morphism f : El ~ X~2 betw~o- surfaces and a 
~riaagulation £ of 2~, we define an isomorphism 
U(f)  : Vr., ~ V~:~ as follows. Given a triangu- 
lation £ of ~2t, and a configuration of arrows as 

well as a labeling of the links in $ we obtain in 

an obvious way a triangulation f (S )  of E2 and 
a corresponding configuration of arrows and la- 

beling of the links in f (£) .  We set 

L~(f )  ( ® a t ) = :  ( ~  - r E  V(%,/ts),(64) 
\ t E S  I tE.f($) 

for arbitrary at  E Vt for t E $. Obviously the op- 
erators Us( f )  are unitary I'~r any triangulation 
,9 and it is easy to see that  they defiue a unique 

unitary operator 

V( I )  : V~., - -  V~.~ (65) 

fulfilling property i) in section 2. 

We have titus indicated the proof of the fol- 

lowing main result (see ref. [ l l i) .  

Th~.,orcm 4.1 The ltilbert spaces Vt:, the vec- 
tors Z( M) and isomorphisms U(f)  constructed 
above fultin all the properties O-iv) in section 2. 

5. The quantum group case 

In this section we argue that  deformations of 
!he enveloping algebras ot the classical finite di- 

mensional Lie algebras satisfy our conditions for 
suitable values of the deformation parameter q. 

For completeness let us write down the d~fin- 
ing relations for these algebras in terms of gener- 
ators, which we shall denote by El, Fi, Ki, K~ -I, 
where I < i < m. Denotiug by (aij)l<id<m the 
Cartan matrix, which we for simplicity assume to 

be symmetric, for a classical simple Lie aigebra 

the rela/ions for the deformed algebra '21 =/ /qG 

Kd;j = KiK~ 

h'i h'~ ~ = h'71 h'~ = I 

KiEiK"J  = qa"12Ej (66) 

KIF¢KF 1 = q . . . .  IzFj 

, .... [ ]  _ Ui~ g41--d,j--n)b~. /;Tn = 
n n=O q 

0, i # j  

.... [ ' 1  
~ ( -1 ) "  - uij F~I . . . .  -~)FjFg -'-{fi7) 
n = O  1| q 

o, i # j  
where 

r] [rid 
= [~b![~- ~h i 

q 

(68) 
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and 

f i  qi _ q-J  It]q! - - ~ ~ _  ~ ( 6 9 )  
j--l 

for q complex and =~ 4-1. In the limit q - -  1 

one recovers the relations defining ~ with Ki = 
qlld2. 

CA has a Hopf algebra structure with comulti- 

plication A : ~ --, CA ® CA given by 

A ( K i )  = Ki  ® Ki  

A ( E I ) = K I ® E i + E i ® K f  t (70) 

and with an antipode S : ~  CA ~ CA given by 

s(1~'~) = ~-~ 
S(E, )  = - q E i  (71) 

S(Fi)  = - q - l  Fi. 

The codnit e : CA ~ C is given by 

c(Ki) = l 
(72) 

e(Ei) = ¢(F,) = O. 

We also note that  for ]qi = 1 CA is an associa- 

tive *-algebra with the conjugate linear involu- 

tion a ~* a* given by 

h'~ = K~ -~ (',.~) 
E~ = F~ 

and we have 

A(a)" = A'(a')  (74) 

for a E CA, where A'  denotes the opposite co- 

muitiplication obtained from A by composing it 

with the flip P on CA ® CA given by 

P(a®b) = b ® a.  (75) 

There exists an invertible element R E CA ® c~ 
such tha t  

RA(a)  = A'(a)/~ for a E CA. (76) 

Explicit formulae for R have been obtained in 

[13]. We note the following properties of R: 

( A ® I ) R  = RlaR|~ 

( I ® A ) R  = RIaR23 (77) 

Rt~RlaR~a = R~R1aR,.2 

as elements in CA®CA®CA with s t andard  notation. 

Moreover, 

R" = P R  - l ,  (78) 

where the * operator  on cA ® CA acts as (a®b)* = 

a ° ® b ° . 

We shall also need the fact tha t  there exists 

(see [14,15]) a uni tary central element c % CA such 
tha t  

R.~t R12" A ( e )  = c ® c ( 7 9 )  

ill CA ~9~, where Rt2 -- R and R2t = P(R) .  

If q is not a root of unity the representation 

theory for CA is essentially the same as for G in the 

sense tha t  tile finite dimensional highest weight 
representations of CA may be obtained as defor- 

mations of those of ~ (see [16,17]). If q is a root 

of unity the situation is different and it is conve- 

nient to distinguish representations according to 

whether their q-dimension vanishos or not. The 

q-dimension of a finite dimensic~al representa- 

tion r of CA is defined as 

dimq 7r = tr  ~r(K:~e), (80) 

where p is half  the sum of positive roots and 
m 

I,'~ = YI  r Z ' ,  181) 
i=1 

i f 3  = ~"~=l mia l  is an element in the root lat- 
tice. 

Now let q = e i~'/t, where the integer g is bigger 

than the Coxeter number for G and let J0 be ~he 

set of dominant  weights A for ~ fulfilling 

(A + p , a  v) < e for all positive roots a .  

(82) 
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The corresponding irreducible highest weight re- 

preseutations of {7 may then be deformed into 

corresponding irreducible inequivalent highest 

weight representations a'x of ~ with non-zero q- 

dimension. In fact, they constitute a maximal set 

of representations with these properties. 

It follows from Shapovalov's determinant for- 
mula tha t  these representations are *-represen- 

tations with respect to a positive definite inner 
product ,  which is unique up to a positive factor 

(see [18]). For this to hold the restriction on the 

values of q is important .  For sl(2)q it is easy to 

verify directly. 

Defining the dual ~r v to a representation lr of 

9.1 on t l  by 

~rV(a) = ~r(S(a)) t , (83) 

where the index t indicates the ordinary dual op- 

erator on the dual space H*, it is possible to 

verify tha t  x~ is equivalent to a representation 

7rA~ where also A v satisfies (82), and tha t  ~rx and 

(Tr~)V are equivalent. The latter follows from the 

exi~te,~cc ~f an e!eme,lt ,J E 9.1 such ~hat 

S~(a) = uau -!  for all a E ~ .  (84) 

We now let 1 denote a set of representatives 

for the equivalence classes ef  the representations 

7ra, une for each class, such that  if i E I then 

there is a representation i v E I defined either by 

(83) or by the inverse of tha t  relation, provided 

i and i v are not equivalent. This  also defines the 

involution i ~ i v o u  I. Moreover, we choose 1lie 

antipode e to r,:present 7r0 and denote it by 0 E I. 

The tensor product  ~rO_o of two finite dimen- 

sional representations x and p on H .  and Hp 

respectively, is defined by 

;;Op(a) = ~ ® p(A(a) ) ,  a ~ ~t, (85) 

as operators on Ht®H~. If we at temt to use this 

tensor product  together with I, we encounter two 

difficulties in establishing properties i)-iv) and 

the additional technical assumptions in section 

3: 

i) H .  ® Hp is not decomposable into modules in 

1. 

ii) Due to (5.1), i ~  is generally no: a *-r~- 

presentation with respect to the s tandard innd" 

product on I I .  C, l ip. 

As to the first point, it has for some time bee.n 

known for s/(2)¢ (see eg. ref. [19]) tha t  Hi ® ltj 
has a deeomposition 

IIi 6) tlj = Zij (9 H i ~  , (86) 

gbere  Z 0 is a direct sum of indeeomposable 

nmdules with vanishing q-dimension and H i ~  
is a direct sum of modules in I, and, further- 

more, such that  associativity of tile tensor prod- 

net I l i~  is maintained. It is a non-trivial prob- 

lem to generalize these results to an arbi t rary 

classical simple Lie algebra {7, buL results to the 

effect that  l.hey arc valid have leeently been ob- 

taiued, see refs. [15,20,21]. 

As concerns the second poiut we first note 
thaL as a cen~equ."z~c,~ ofvqs(7a.) and (76), it f/~!- 

lows tha t  i ~ ,  for i , j  E I, is a *-representation 

on Hi ® llj with respect to the non-degenerate 

sesquili ,ear form 

(a',b')tf = {x, i Q j ( R ) y ) ,  z:,!IE I l i ~ l l j ,  
(87) 

where (-,.) on the r ight-hand side denotes the 

sta,:dard inner product  on lti®llj inherited from 

th.' inner products on Hi and Itj. llence, on each 

irreducible component Hk in Hi®tf j  the restric- 

tion of (-, ")n is proportional to the inner product  

on Hk. Ilowever, (., .)/~ is not symmetric because 
k of eqi78), so the constant  nf proportionality e# 

is generally not real. In order to fix it we may 

exploit eq. (7<~1 i as follows. Restricting (-, ")R to 
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H t  C Hi ® Hj  we have 

c,k~ (~, i ® j(R)y) = ~ (~, i ® j(R')(y))). 
(ss) 

Assuming, tha t  (., ")R is non-degenerate (i.e. 

non-vanishing) on Hk we conclude tha t  

e ~ i ® j ( R ) = ~  i ® j ( R ' )  (89) 

or, using (78), 

i ® j (R21Rt2 )  = ~'~ (90) c~" 

Observing that  the uni tary central element c acts 

as multiplication by a p h ~ e  cl on Hi,  i E I ,  it 
now follows from (79) and (99) that  

= clcj (91) 
Ckij ek 

and hence we can choose 

(9~) 

where the square-roots have to be chosen such 

that  c~j ( , )  is positi~'e definite ou each Hr .  Using 

that  ( , ) ~  equals ( , )  ia the limit q ~ 1 the 

square-roots can be selected by continuity. 

Clearly the inner products 

( ' ,  " ) =  cfA',  ")R (9~) 

so defined on each irreducible component yield 

a well defined inner product  on Hi~_), provided 

(', ")a is non-vanishing on each irreducible com- 

ponent in Hi~_). We shall not discuss this latter 
assumption further here. Suffice to say tha t  for a 

given k corresponding to a fixed dominant weight 

of{;, it holds for sufficiently large t by continuity. 

It is important  to notice tha t  the so defined 

inner product on H i ~  is compatible with asso- 

ciativity, i.e. it yields a unique inner product  on 

H i ~ _ ~ ,  i , j , k  ~ 1, as is easily seen from eqs. 

(77--77) and the form (92) of the factors of pro- 
portionality. 

Now conditions iii) and iv) may be verified 

if the tensor product  a~ .~  of  two intertwiners 

o : H~ ~ H~, , ~ : Hp ---* Hp, denotes the re- 

striction of the ordinary tensor product  a ® ~ to 

H~oj  C_ H~ ® Hp. Furthermore,  the additional 

technical assumptions in section 3 may be veri- 

fied ifi~b, ~bl and f i  are chosen to be the canonicM 

-atertwiners (see ref. [11] for details). 

This concludes our discussion of the quan tum 

group ease. 

Let us finally mention tha t  another interesting 
class of alg~hras tha t  are likely to satisfy our as- 

sumptious ~s furnished by the chiral algebras of 

uni,*.ary rational conformal field theories in two 

dimensions (see eg. [12,22]), but  it requires addi- 

tional work to ca[ry out  the detailed arguments.  
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