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Tensor products of holomorphic discrete series representations in reproducing 
kernel Hilbert spaces are decomposed by considering power series expansions of 
functions in the direction perpendicular to the diagonal in Z@ x 9. 

INTRODUCTION 

Let 9 be a connected complex domain and let G be a group of holomorphic 
transformations of 9. Let Hi (i = 1,2) be reproducing kernel Hilbert spaces 
of holomorphic functions from 9 to finite dimensional complex vector spaces 
Vi such that each Hi carries a unitary representation Vi of G. Then U1 @ Us 
is unitary in a reproducing kernel Hilbert space of holomorphic functions 
from 5-3 X 9 to Vi @ V, . Since 3 sits naturally in 9 X 5B, one can attempt 
to decompose lJ, @ Us by restricting it to 9. Clearly this will not give the 
complete decomposition, since a function can vanish on B without being 
zero on 9 x 9. One is then lead to consider “derivatives perpendicular to 
the diagonal.” We make this notion precise for G = SU(n, n) and G = 
Sp(n, R), and show that one in fact can get the decomposition this way. 

In Section 1 we give some key relations obtainable from quite general 
properties of reproducing kernels. In Section 2 we use these to find composition 
series for modules of holomorphic functions. Finally, in Section 3, we introduce 
the Hilbert space structures and treat the case of tensor products of holomorphic 
discrete series. This is illustrated by some examples with G = SU(2,2). 

We acknowledge that the results of Michele Vergne [ll] have inspired 
this work. We are also indebted to A. Mayer and I. E. Segal for friendly help 
and conversations. 
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1. THE KERNEL AS INTERTWINING OPERATOR 

Recall from [l, 41 that if 3’j denotes the generalized upper half-plane 

(j = 1,4; 

and 

g3, = {z = x + iy / x and y are real n x n matrices, 

x = 9, y = yt, and y > 0}, 

9a = {z = x + iy 1 x and y are complex n x n matrices, 

x = x*,y =y*, andy > 0}, 

if Gi = Sp(n, R) and G, = A’U(n, n), then for j = 1,2, 

K*,j(gz, gw) = ( gz -2igw* )-’ = (cz + d) K&4 w)(cw + d)* 
(l-1) K,,j(gx,gw) = ( gz ;r* ) = (xc* + d”)-* K&z, W)(WC* + d*)*-1, 

where g = (“, 3 E Gj , z, w E 9, and gz = (uz + b)(c.a + d)-1. For this action, 
g(z*) = (gz)*. In both cases, j = 1 and j = 2, * denotes the complex adjoint 
operator. 

Before continuing, we shall, due to the large similarity between the two 
cases, drop the subscript j. In some of the cases to come, we may have to pass 
to a covering group of G. When it is obvious, we do this without comments. 

The relations (1 .l) have been used as follows: Suppose that 7r+ and T- are 
finite dimensional holomorphic representations of GL(n, C) in complex vector 
spaces V,+ and V,,- satisfying that n+(g)* = rr+(g*), and n-(g)* = n-(g*). 
From the relations (1 .l) it follows that 

has the potential for being a reproducing kernel for a Hilbert space Xr+,,,-,or,8 
of holomorphic functions from 9 to V,, @ V,,- , on which G acts unitarily by 

Here, g-l = (: i), and (cf. [5]) d t( e zc* + d*) = det(cz + d). We define the 
operator valued function Jlr+,n-,a,B(g, z) from G x 9 to Hom(V,,+ @ V,- , 
VW+ 0 Vn-1 by 

(~m+,~-.m,~k)JK4 = Jn+,n-.n,&?-*’ Wf(g-*4. (1.4) 
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That un+,n-,u.~ does define an action follows from the defining properties 
of G (cf. [4]), but in order to have Kn+,n-,a,B define a Hilbert space, we must 
have that 

N 

1 <K?,+,n-,a,,q(~i > Wi) Vi > Vj> 2 0 
i,j=l 

for all wi E 9 and all vi in V,,+ @ V,- (; = 1,2,..., N, N arbitrary). Special 
cases of this have been studied in detail in [I, 4, 81 and some integral formulas 
concerning a more general case, which appears naturally here, have recently 
been announced [2]. The Eqs. (1.1) however contain more information: 

In analogy with the above, we can consider actions of G on spaces of anti- 
holomorphic functions on 9. Iffis a such, with values in I’,+ @ V,,- , we define 

(I *5) 

Finally, we consider the module (Z @ OQ,+**- of functions from 59 x 53 
to (V,+ @ V,,-) @ (V,,+ @ V,,-) that are holomorphic in the first variable (x1) 
and are anti-holomorphic in the second (as). We interpret det(z, - a:)-~ as an 
invertible multiplication operator acting on functions in (3’ @ Q+@,,- , and 
it follows readily from (1 .l) that 

= det(z, - .z:)-(~+‘) U?r+,n-,O,O @ u~,;,~,~. (1.6) 

More generally one can use the kernels K,,,,z,a,s(~l, za) to build up invertible 
multiplication operators which, similarly to the above, will intertwine certain 
representations of G. 

The situation gets different if we consider modules (Z @ %) of holomorphic 
functions on 9 x 53. We need an analogue of (1.1). However such an analogue 
does exist, since (1.1) implies: 

For all a, , z, in 9 and g in G 

(&xl - g+) = (z,c” + d”)-1(x, - x‘J(cx2 + q-1. (1.7) 

The difference between this, and the preceding case is, that the analogues 
of the multiplication operators in (1.6) etc. either are not everywhere defined, 
or are non-invertible. Also, the requirement that the operators should be 
holomorphic gives constraints, e.g. in det(z, - Z&Y, y must be integer. Still, 
one can get some information about tensor products from this. As an example, 
let 

( Un*&)f)(~ 1 , x2) = det(cz, + d)+ det(cz, + d)-“f(g-lx, , g-la,), (1.8) 
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let Ho denote the set of holomorphic functions from 9 x 9 to C, and Hk = 
{f~ H,, ]f = det(z, - z#g, g E Ho>. Then each Hk is invariant under U,,, , 

and U,,,’ s restriction to Hk is equivalent to U,,,,,,,, acting on Ho . Moreover, 
since if (Rf)(z) =f(z, z) denotes the restriction map, sending holomorphic 
functions on 9 x 9 to holomorphic functions on $3, 

RU,,, = W&, (l-9) 

where (W,,(g)h)(x) = det(cz + d)--2n h(g-lz), it follows that for the projected 
action of U,,, on H,IH,,, , W2n+2k appears as composition factor. 

The reason that the above is incomplete is, basically, that the function 
(zr - .zJ -+ det(z, - zs) is of too high homogeneity. In the next section 
we shall use (1.7) to complete the picture. 

2. MODULE DECOMPOSITION OF HOLOMORPHIC TENSOR PRODUCTS 

We let K denote the maximal compact subgroup of G and assume given 
two unitary (not necessarily irreducible) representations rr, and rs in finite 
dimensional complex vector spaces VT1 and VT2 . Let Jr,: G x ZS -+ GL(VnJ 
be functions satisfying ( j = 1,2) 

JTrnj(m2 3 4 = .I&1 7 g24 * J&2 > 4 

.I& 4 = 44 for all R E K 

$,(A 4 = 1, 

and z --f Jn,(g, x) is holomorphic for all g in G. 
Let us consider UnI @ UT, acting on the space (~4’ @ s?)~~@,,~ of holomorphic 

functions from 9 x 9 to V,,, @ Vnz by 

V-J,, 0 v&lf)(% 3 2 z )> = u&-1, %F1 0 $,(g-'7 z2)-9f(g-'% 3 g-'z2>. 

For each point (z, z) on the diagonal of 9 x 9 (which we identify with 9) 
there exists an open neighborhood iV, such that the restriction of any holo- 
morphic function to N, is a holomorphic function of y and x, where, for zr 
and a2 in 9 

Y= 
Xl - "2 

-; 2 
x - xl + x.2 . 

2 (2.2) 

We let D, denote the subspace of functions which in some N, as functions 
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of y are homogeneous of degree r, and define S, = u,“=, D7+5. Since 9 is 
connected, D, is independent of Z, and hence so is S, . Thus, 

and 

LEMMA 2.1. Any element of S, can be written as a Jinite linear combination 
of functions of the form 

Fwj (~1 y 4 -+ (tr yMTf (zl ,4, (2.4) 

where f E (z 0 =@‘)liI~inZ9 and z -+ Mz is a holomorphic function from 9 to 

Mb, C). 

Proof. The space of polynomials in n2 variables of homogeneous degree r 
is isomorphic to 0: 0’; the rth fold symmetrized tensor product of C”“. 
This space is spanned by vectors of the form x @x @ ... @I x (r times), and 
Cn2 = M(n, C). Th e remaining part then follows by Taylor expansion. 

LEMMA 2.2. S, is invariant under the action UT, @ UT, , for any r = 0, 1,2 ,... . 

Proof. We need only check what happens to a function of the form FMZ,f , 
and for this case, we can use (1.7) to see that 

(us, 0 w)) FMz,r = q Y(g)M)Z.( u,10U~2(g))f + (higher order t-4 (2.5) 

where (V(g)M)Z = (cz + d)-l Mg-lz(zc* + d*)-I. i 

We define the representation U~~lOTZ)~,nl,nB on the space of holomorphic 
functions from 9 to (0: C”“) @ VT, @ VT2 by 

= + ((cz + d)-l @ @c* + d*)-l) @ J&l, z)-’ 0 J,,(g-‘, z)-lf(g%). 

Here, g-l = (z i), tA = 6* = transposed matrix of A, (rl(g) f)(z) = 
(CZ + d)-‘f (g-‘z), (Tz(g) f) = t(~~* + d*)-l f (g-Is>, and by convention, 
(T, @ ~a),, denotes the trivial representation. 

Then, since we can identify the complex dual of C” with Cn, we see that 
the representation MS -+ (cz + d)-l M 0 Z ZC* + d*)-1 is equivalent to the -* ( 
representation U(+,~7,),.1,1 acting on functions from 9 to C” @ CF. Moreover, 
it is straightforward that the map 

(T&.&)(Z) = (6 M’) Of@, 4 (2.7) 
s 
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extends to be a well-defined map from S, to the module of functions on 9 
with values in (0: (C” @ CR)) @ VmI @ VVz with kernel S,,, , and thus that the 
action of UVI @ UP, on S,jS,,, is equivalent to U~7107p~,,nl,n2 . 

Another way of phrasing this is: Let, as before, R denote the restriction map 
(Rf)W = fk, 4. L et us use the n2 entries of y; yr , y2 , . . . , ylzz , as the polynomial 
variables, and pick a basis ep of 0: C”“, where p runs through the set of multi- 
indices p = (pr , p2 ,..., pnz) with pr + p2 + ... + pllz = Y. Then we can define 
a map RT, from S, to the space of holomorphic functions from 9 to (0: C”“) @ 
VT1 @ V,,z by defining the component (RT,f), of RT,f in the subspace 
Ce, @ VT, @ VT, to be 

(RTrfM4 = e, 0 (R (G ... &f)) G+ 
112 

Then the kernel of RT, is Sr+r , and the above is equivalent to stating that 

(up to a linear automorphism of (0: C”“) @ Vm, @ Vmz). 
We collect the above to 

THEOREM 2.1. Under the action of U,,, @ UwL , (&’ @ S’)nl+,2 has a chain 

of invariant subspaces, 

w 0 m*10n2 = so3 s,3 ...r) s,3 s,+,3 ‘.., 

ad on WL , UC, 0 un, is equivalent to ~~~~~~~~~~~~~~~ . 
We stress that the representations Ut710+B)I,liI,ViZ in general will be reducible. 

However, they are obtained by holomorphic induction from K, and can 
therefore be broken down by decomposing finite-dimensional representations 
of K. The resulting representations will then most often be irreducible. We 
refer to [4] for the motivation for this. 

3. HILBERT SPACE STRUCTURES 

Assume that the representations Uri are unitary in reproducing kernel 
Hilbert spaces Hi of holomorphic functions from 9 to VVi (i = 1, 2). That is, 
assume that there are functions (a:, w) --+ Ki(z, w) from 9 x 9 to Aut( V,,i , V,J 
such that 

1. For any o E Vnj and any w E 53 the map z ---f Ki(z, w)v belongs to Hi , 

2. For any v  E v,,/ni and any f  E Hi , <v, f  (w)>vri = <K(*, w)v, f  (.)>H, . 

Note in this connection that if 7~~ is an irreducible unitary representation of K 
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and if U,,, is unitary in a Hilbert space H,, C Z, then H,, is unique, and lJn, 
is irreduc;bIe [3]. 

By Morera’s theorem, the Hilbert space completion of HI @ H, , H, is a 
space of holomorphic functions from 9 x 9 to VW1 @ V, for which 

kl > %,Wl, 4 + &(3 9 Wl) 0 a%! , wa) is a reproducing kernG1. Moreover, 
by Weierstrass’s theorem, the modules H, = S, n Hare closed subspaces of H. 
Let us for simplicity assume that H, # H,.,, for all Y = 0, 1, 2,... . The decom- 
position of H then consists of a series of steps, out of which the (Y + 1)st is 
the following: UV, @ UT, is unitary on H, , and H,,, is a closed invariant 
subspace. Thus, we can give HJH,,, a Hilbert space structure such that H, 
is unitarily equivalent to HJH,,, @ H,.,, . Moreover, under this isomorphism 
the restriction of U,,, @ UT, to H, , (U,,, @ Unz),. , decomposes as 

vLl 0 KJr = US?1@2)r’C1*?72 0 vJ5Tl 0 K7Jr+1 . (3-l) 

Here, the s on U;lrl~s2),,,,l,nz signifies that it may happen that only a subspace 

of U(71@)T*)r’?il.~z is being picked up. On this subspace the representation is 
clearly unitary. 

We shall here treat a case, where we in fact pick up the entire U(716T2).,?Tj,aZ . 
We shall only treat the SU(n, n) case. Simple modifications will then yield 
the Sp(n, R) case. Specifically, let 

and assume that there are continuous functions k + M,(k) E GL( V,i), M,(k)* = 
M,(k) > 0, such that 

K(& 4 = j &tr(z-W*)"Mi(k) dm(k) 
c+ 

where dm(k) is Lebesgue measure. This means that Hi is equivalent to the space 
of functions cp: Cf -+ Vri with (q, v) = Jc+ (M-l(k) v(k), y(k)) dm(k), the 
isomorphism being given by 

(F&z) = jcL eitrZ$(k) dm(k) 

on a dense set of vectors. The representations we discuss here include the 
holomorphic discrete series. 

LEMMA 3.1. Let vi be a vector in VT, . Then there exists a function fv .: 9 -+ V, 
such that f,,(z) belongs to the subspace spanned by vi for all z, and suih that ;fi 
is any polynomial in the n2 entries of z E 23, then p(x) fei(z) belongs to Hi . 

Proof. Let vi: Cf + V,, be any P-function whose support is compact 
and contained in the interior of Cf, such that F(K) belongs to the subspace 
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spanned by vi for all K. Then there exist differential operators D,(k) and% 
such that 

PC4 j/ i fr*kcpi(h) dm(k! = jc+ (D,(h) ei trzk) vi(h) dm(h) 

=s eitrzkG vi(h)) dm(h). 
C+ 

This completes the proof since the last function clearly belongs to Hi . 
This lemma now implies, by expanding homogeneous polynomials of degree r 

in (xl - zs) into products of polynomials in zr and za , that in this case, for 
any one-dimensional subspace of (0: C”“) @ VT, @ VT, , there are functions 
in RZ’,(H,) that take their values solely in this subspace. We can therefore state 

THEOREM 3.2. For the above l-IT1 and UT, , 

as unitary representations. 

(3.2) 

As for the limits of holomorphic discrete series, our method is less applicable 
and only for a few cases with G = SU(2,2) has it been extended. However, 
the decomposition of those can be obtained in a straightforward manner from 
[6], whereas it is much harder to extract the tensor products of holomorphic 
discrete series from that. This was pointed out to us by Michele Vergne. Thus 
the two papers are almost orthogonal. 

We illustrate the above with a few examples with G = SU(2,2). This 
group is complicated enough to give an impression of the analysis involved, 
and yet small enough that the combinatorics does not get too messy. Also, 
the results here are of potential relevance to theoretical physics, in particular 
to I. E. Segal’s unified theory [lo]. 

EXAMPLE 1. Let (U,(g)f)(z) = det(cz + d)-“-2f(g-1z), and consider 
U,, @ U, for n, m > 0 (cf. [4]). We can extend these representations to U(2,2) 
and then decompose under this group. This will give the same decomposition 
as for SU(2,2), but U(2,2) is more convenient. We must now decompose 

U(11@‘72)r.“‘” 7 which is the representation equivalent to U, @ U,,, on S,jS,.,, 
(Theorem 2.1), and for this purpose, we can let n, m = -2. We are then 
looking at a representation of the form (U(g)f)(z) = J’(g-1, z)-lf(g-lz), where 

= [(a + ib) M(a - ib)*] @ **a @ [(a + ib) 1M(a - ib)*] (3.3) 
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for K = (t f) E K. K, the maximal subgroup of U(2,2), is isomorphic to 
U(2) x U(2) by (; -;)+(a + ‘b z , a - ib) = (u, , ur) E U(2) x U(2). The equiv- 
alent representation of K on the space Pr of homogeneous polynomials in 
four complex variables y of degree Y is then 

(J%l , u2 ) QPXY> = P(CYUl). (3.4) 

The decomposition of this representation for the general case is known [9]. 
However, for U(2) x U(2) t i can also be found by straightforward arguments: 

Let, for each r E N, P,,r denote the set of homogeneous polynomials of degree Y 

that are orthogonal (in the standard inner product) to the ideal generated 
by the second order polynomial det(y) in PT. Then 

Pzn = Pp @ det YPOZ,-~ @ det Y~P,~‘+~ @ ... @ C det y” 

(3.5) 
Pzn+l = Pp+l @ det yP?-1 @ det yzP;n-3 @ ... @ &t y~~pol. 

This decomposition is invariant under the action of K, since det z$yur = 
det u;l dety det u, . We also observe that the representation u2 -+ (u;‘)t of 
U(2) is unitarily equivalent to the representation u2 -+ (det u,“) u2 . 

Let g -+ T,(g) denote the nth fold symmetrized tensor product of the defining 
representation T = 7, of GL(2, C). Th en it follows from the theory of highest 
weight (see e.g. [12]) that there must be a subspace of PF that transforms 
according to (Tag @ Tzn(u2))/(det uin), and hence that 

72441) 0 72nb42) @ 

det ui 
(~z~-~W 0 ~2n-2(~2)) det u1 o . , . 

det uy-l 

det u a 
@ det u2* - 

1 c pyU1 ) u2 ) i) (3.6) 

(Observe that (ur , u2) E SU(2,2) 0 det ur = det UT’). 
Now the dimension of Pzn is (‘yn), and am @ T+(uJ acts in a space of 

dimension (i + 1)“. Therefore, by counting dimensions, we conclude that the 
above sum of subspaces exhausts P 2n. An entirely similar argument works 
for Pzn+l. Finally, (ur , us) + am @ am is in fact an outer tensor product, 
and hence irreducible, since 7i is irreducible. 

We introduce the following notation: 

(D@, m, @)f>@) = TnKCZ + 4-l) 0 7?n(=* + d*) 
det(cz + d)s f (04 (3.7) 

forf:=@+((O~C2)@(@~C2). Th en, by collecting the various terms from 
the decomposition, we get (letting 7,-, = I) 
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PROPOSITION 3.3. For n, m 3 0 

If we let U,, 0, U,, denote the restriction of U,, @ U, to the space of sym- 
metric functions, we must exclude all terms arising from functions whose 
leading terms in y are homogeneous of an odd degree. Doing this, we get 

COROLLARY 3.4. As representation of SU(2, 2), for n > 0 

U, 0, U,, s 6 6 D(21, 21,21 + 2j + 2n + 4). 
&;O j-0 

Before continuing with a few more examples, we wish to make a remark 
of a general nature, which is easily expressed for U, @ U, . Suppose we extend 
our module of holomorphic functions on B x 9 to include functions that 
are meromorphic, but holomorphic on the subset where det(z, - zs) # 0. 
Then, as we saw in Section 1, det(x, - z&p, p E Z becomes an invertible inter- 
twining operator, and all U, @ Un’s are equivalent. Moreover, if we let 

denote the scale operator in the y-direction (cf. (2.2)) and if D, = (f(zl , z2) = 
f(y, Z) 1 KJ = rf}, then (Un @ U,) D, Z lJr=, Drffs ; also for Y negative. 
Finally, we observe that the restriction of U,, @ U,, to the maximal parabolic 
subgroup P = {(“, $) / ab* = ba*, a E 3X(2, C)} leaves D, invariant. 

EXAMPLE 2. Let f be a holomorphic function from 9 to CY, and let 

The decomposition of T( 1, n) @ T( 1, m), T( 1, n) @ T(2, m), and T(2, n) @ 
T(2, m) follows readily from that of U, @ U, , by noting that as representa- 
tions, for 72 >, 2, 
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and w-9 

in c+&2) @*lo u2 

zz= ~n+l(4 0 7n+l(u2) 0 det wn+h4J 0 ~n--lM 

GJ det u~T,-~(u~) 0 7 n+1(u2) 0 det(w2) dud 0 7n-&2)J 

with similar formulas for TZ = 1. 

PROPOSITION 3.5. For n,m > 0 

T(l,n)@T(2,m)=2&&D(&&I+2j+n+m+6) 
1=1 j=o 

0 6 D(O, 0,2j + n + m + 6) 
3=0 

0 6 &‘D(l, I- 2,/f 2j + n + m + 3) 
z=2 j=o 

0 6 6 D(l- 2, I, I+ 2j + n + m + 5) 
Z=2 j=O 

0 6 D(l, Z, 1 + n + m + 4). 
LO 

PROPOSITION 3.6. For n, m > 0 

~(1, n) @ ~‘(1, m) = 2 6 6 D(l, 4 1 + 2j + n + m f 5) 
L=l j=” 

@ 6 0(2,0,2j + n + m + 4) 
j=o 

0 6 & D(& 1 - Xl+ 2j + n + m -12) 
z-3 j=” 

0 & 6 D(I - 2, I, I+ 2; + n + m + 6) 
k2 j-0 

0 6 W, Q2j + n + m + 5). 
3=0 
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PROPOSITION 3.7. For n,m 3 0 

T(2,n)O T(2, m) = 2 6 6 D(C 4 2 + 2j + n + m + 5) 
24 j=O 

0 g D(O, 2,2j + n + m + 6) 

@ & & D(E - 2,&l+ 2j + n + m -t- 4) 
14 j=o 

@ 6 6 D(Z, I - 2, I+ 2j + n + m f 4) 
L-2 j=n 

0 g D(O, 0,2j + n + m + 5). 

We observe that if s: C2 @ Ca --F C? @ C2 denotes the symmetrization 
map; s(q @ u2) = t(q @ vu2 + v2 @ q), and if (I = 1 - s, then, if f and g 
are holomorphic maps from 53 to C2, s( f (x,) @g(zJ + g(xJ @f(zJ) is a sym- 
metric function of x1 and z2 , whereas (x1 , z2) ---f a( ~(zJ @g(zJ + g(q) @ 
f(z2)) changes sign when z1 and x2 change place. With this in mind, it is easy 
to see that 

COROLLARY 3.8. For n >, 0 

T(1,n)@,T(l,n)=&&D(21,21-2,26+2j+2n+2) 
kl j=o 

0 6 6 D(2E - 2,21,21+ 2j + 2n + 6) 
2=1 j=o 

0 ($ 6 D(h l,l + 2j + 2~2 + 5). 
24 j=o 

COROLLARY 3.9. For m b 0 

T(2, m) OS T(2,m) = 6 & D(21- 2,2&Z + 2j + 2m + 4) 
L-1 j=O 

@ & 6 D(21,21- 2,21-t 2j + 2m + 4) 
z-1 j=o 

0 6 & D(l, 41 + 2j -t 2m + 5). 
14 GO 
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Note added in proof. W. S&mid has kindly informed us that S. Martens has used the 
same technique of differentiation in the direction normal to a complex submanifold in a 

study of the characters of the holomorphic discrete series. (See: S. Martens, Proc. Nat. 
Acad. Sci. USA 72 (1975), 3275-3276, for a summary.) 
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