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Abstract. Let p ⊂ g be a parabolic subalgebra of s simple finite dimensional Lie algebra
over C. To each pair wa ≤ wc of minimal left coset representatives in the quotient space
Wp\W we construct explicitly a quantum seed Qq(a, c). We define Schubert creation and
annihilation mutations and show that our seeds are related by such mutations. We also
introduce more elaborate seeds to accommodate our mutations. The quantized Schubert
Cell decomposition of the quantized generalized flag manifold can be viewed as the result
of such mutations having their origins in the pair (a, c) = (e, p), where the empty string
e corresponds to the neutral element. This makes it possible to give simple proofs by
induction. We exemplify this in three directions: Prime ideals, upper cluster algebras, and
the diagonal of a quantized minor.

1. Introduction

We study a class of quadratic algebras connected to quantum parabolics and
double quantum Schubert cells. We begin by considering a finite-dimensional
simple Lie algebra g over C and a parabolic sub-algebra p ⊂ g. Then we consider
a fixed Levi decomposition

p = l + u, (1)

with u 6= 0 and l the Levi subalgebra.

The main references for this study are the articles by A. Berenstein and A.
Zelevinski [3] and by C. Geiss, B. Leclerc, J. Schröer [15]. We also refer to [22]
for further background.

Let, as usual, W denote the Weyl group. Let Wp = {w ∈ W | w(4−)∩4+ ⊆
4+(l)} and W p, by some called the Hasse Diagram of G\P , denote the usual
set of minimal length coset representatives of Wp\W . Our primary input is a
pair of Weyl group elements wa, wc ∈ W p such that wa ≤ wc. We will often, as
here, label our elements w by “words” a; w = wa, in a fashion similar, though
not completely identical, to that of [3]. Details follow in later sections, but we
do mention here that the element e in W is labeled by e corresponding to the
empty string; e = ωe while the longest elements in W p is labeled by p.
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To each pair wa, wc as above we construct explicitly a quantum seed

Qq(a, c) := (Cq(a, c),Lq(a, c),Bq(a, c)). (2)

The cluster Cq(a, c) generates a quadratic algebra Aq(a, c) in the space of
functions on Uq(n).

After that we define transitions

Qq(a, c)→ Qq(a1, c1). (3)

We call our transitions quantum Schur (creation/annihilation) mutations and
prove that they are indeed just (composites of) quantum mutations in the sense
of Berenstein and Zelevinski. These actually have to be augmented by what we
call creation/annihilation mutations which are necessary since we have to work
inside a larger ambient space. To keep the full generality, we may also have to
restrict our seeds to sub-seeds.

The natural scene turns out to be

Qq(a, b, c) := (Cq(a, b, c),Lq(a, b, c),Bq(a, b, c)), (4)

which analogously is determined by a triple wa, wb, wc ∈ W p such that wa ≤
wb ≤ wc.

Later we extend our construction to even

Qq(r1, . . . , rn−1, rn) and Aq(r1, . . . , rn−1, rn), (5)

though we do not use it here for anything specific.
It is a major point of this study to establish how our seeds and algebras can

be constructed, inside an ambient space, starting from a single variable (indeed:
none). In this sense the quantized generalized flag manifold of (G/P )q as built
from quantized Schubert Cells can be built from a single cell. Furthermore, we
prove that we can pass between our seeds by Schubert creation and annihilation
mutations inside a larger ambient space.

This sets the stage for (simple) inductive arguments which is a major point of
this article, and is what we will pursue here.

We first prove by induction that the two-sided sided ideal I(deta,cs ) in Aq(a, c)
generated by the quantized minor deta,cs is prime.

Then we prove that each upper cluster algebra U(a, c) equals its quadratic
algebra Aq(a, c).

There is a sizable overlap between these result and results previously obtained
by K. Goodearl M. Yakimov ([16],[17]).

We further use our method to study the diagonal of a quantum minor.

The idea of induction in this context was introduced in [20] and applications
were studied in the case of a specific type of parabolic related to type An.
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Further ideas relating to explicit constructions of compatible pairs in special
cases were studied in [21].

2. A little about quantum groups and cluster algebras

2.1. 2.1 Quantum Groups. We consider quantized enveloping algebras U =
Uq(g) in the standard notation given either eg. by Jantzen ([23]) or by Berenstein
and Zelevinsky ([3]), though their assumptions do not coincide completely. To
be completely on the safe side, we state our assumptions and notation, where
it may differ: Our algebra is a Hopf algebra defined in the usual fashion from
a semi-simple finite-dimensional complex Lie algebra g. They are algebras over
Q(q). Φ denotes a given set of roots and throughout, Π = {α1, α2, . . . , αR} a
fixed choice of simple roots. Our generators are then given as

{Eα, Fα, K
α}α∈Π,

but we will allow elements of the form Kη for any integer weight. W denotes
the Weyl group defined by Φ.

Finally we let {Λα | α ∈ Π} denote the set of fundamental weights. We
assume throughout that the diagonalizing elements dα are determined by

∀α ∈ Π : (Λα, α) = dα. (6)

Lemma 2.1 ((2.27) in [14]). Let αi ∈ Φ. Then

(σi + 1)(Λi) +
∑
j 6=i

aji(Λj) = 0.

2.2. Quantum Cluster Algebras. We take over without further ado the
terminology and constructions of ([3]). Results from [15] are also put to good
use.

Definition 2.2. We say that two elements A,B in some algebra over C
q-commute if, for some r ∈ R:

AB = qrBA. (7)

To distinguish between the original mutations and the more elaborate ones we
need here, and to honor the founding fathers A. Berenstein, S. Fomin, and A.
Zelevinski, we use the following terminology:

Definition 2.3. A quantum mutation as in [3] is called a BFZ-mutation.
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2.3. A simple observation. If a = (a1, a2, . . . , am) and f = (f1, f2, . . . , fm)
are vectors then

Lemma 2.4. ([20])

Lq(a)T = (f)T ⇔ ∀i : XiX
a = qfiXaXi. (8)

In particular, if there exists a j such that ∀i : fi = −δi,j then the column
vector a can be the jth column in the matrix B of a compatible pair.

However simple this actually is, it will have a great importance later on.

3. On Parabolics

The origin of the following lies in A. Borel [4], and B. Kostant [30]. Other
main contributors are [2] and [40]. See also [6]. We have also found ([39])
useful.

Definition 3.1. Let w ∈ W . Set

Φω = {α ∈ ∆+ | w−1α ∈ ∆−} = w(∆−) ∩∆+.

We have that `(w) = `(w−1) = |Φω|.
We set Φω = ∆+(w).

From now on, we work with a fixed parabolic p with a Levi decomposition

p = l + u, (9)

where l is the Levi subalgebra, and where we assume u 6= 0,

Let

Definition 3.2.

Wp = {w ∈ W | Φω ⊆ ∆+(l)},
W p = {w ∈ W | Φω ⊆ ∆+(u)}.

W p is a set of distinguished representatives of the right coset space Wp\W .

It is well known (see eg ([39])) that any w ∈ W can be written uniquely as
w = wpw

p with wp ∈ Wp and wp ∈ W p.
One defines, for each w in the Weyl Group W , the Schubert cell Xw. This is a

cell in P(V ), the projective space over a specific finite-dimensional representation
of g. The closure, Xw, is called a Schubert variety. The main classical theorems
are
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Theorem 3.3 (Kostant,[30]).

G/P = tw∈W pXw.

Theorem 3.4 ([40]). Let w,w′ ∈ W p. Then

Xw′ ⊆ Xw

if and only w′ ≤ w in the usual Bruhat ordering.

If ωr = ωmω̃ and ωm = ωnω̂ with ωn, ωm ∈ W P and all Weyl group elements
reduced, we say that ωn <L ωm if ω̂ 6= e. This is the weak left Bruhat order.

4. The quadratic algebras

Let ω = sα1
sα2

. . . sαt be an element of the Weyl group written in reduced
form. Following Lusztig ([35]), we construct roots γi = ωi−1(αi) and elements
Zγi ∈ Uq(nω).

The following result is well known, but notice a change q → q−1 in relation
to ([22]).

Theorem 4.1 ([32],[31]). Suppose that 1 ≤ i < j ≤ t. Then

ZiZj = q−(γi,γj)ZjZi +Rij,

where Rij is of lower order in the sense that it involves only elements Zk
with i < k < j. Furthermore, the elements

Zat
t . . . Z

a2
2 Z

a1
1

with a1, a2, . . . , at ∈ N0 form a basis of Uq(nω).

Our statement follows [23],[24]. Other authors, eg. [32], [15] have used the
other Lusztig braid operators. The result is just a difference between q and q−1.
Proofs of this theorem which are more accessible are available ([8],[24]).

It is known that this algebra is isomorphic to the algebra of functions on
Uq(nω) satisfying the usual finiteness condition. It is analogously equivalent to
the algebra of functions on U−q (nω) satisfying a similar finiteness condition. See
eg ([15]) and ([23]).
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5. basic structure

Let ωp be the maximal element in W p. It is the one which maps all roots in
∆+(u) to ∆−. (Indeed: To ∆−(u).) Let w0 be the longest element in W and
wL the longest in the Weyl group of l, Then

wpwL = w0. (10)

Let ωr = σi1σi2 · · ·σir ∈ W p be written in a fixed reduced form. Then
`(ωr) = r. We assume here that r ≥ 1. We set e = ωe and `(ωe) = 0 where e
denotes the empty set, construed as the empty sequence. We also let r denote
the sequence i1, i2, . . . , ir if r 6= e. If a sequence s corresponds to an analogous
element ωs ∈ W p we define

s ≤ r⇔ ωs ≤L ωr. (11)

Set
∆+(ωr) = {βi1, . . . , βir}. (12)

Definition 5.1. Let b denote the map Π→ {1, 2, . . . , R} defined by b(αi) =
i. Let πr : {1, 2, . . . , r} → Π be given by

πr(j) = αij . (13)

If πr(j) = α we say that α (or σα) occurs at position j in wr, and we say
that π−1

r (α) are the positions at which α occurs in w. Set

πr = b ◦ πr. (14)

πe is construed as a map whose image is the empty set.

Recall from ([22]):

Definition 5.2. Let ωr ∈ W p be given and suppose s ∈ Im(πr). Then
s = πr(n) for some n and we set ωn := σi1σi2 · · ·σin. Suppose ωn =
ω1σinω2 . . . ωtσin and ωi ∈ W \ {e} for i > 1. Further assume that each ωi is
reduced and does not contain any σin. We denote this simply as n↔ (s, t).
We further write βn ↔ βs,t and

ωn ↔ ωs,t (15)

if n, s, t are connected as above. It is convenient to set ωs,0 = e for all
s ∈ {1, 2, . . . , R}.

For a fixed s ∈ {1, 2, . . . , R} we let sr denote the maximal such t. If there
is no such decomposition we set t = 0. So, in particular, se = 0, and sr is
the number of times σs occurs in ωr. Finally we set (cf. ([22]))

U(r) = {(s, t) ∈ N× N0 | 1 ≤ s ≤ R and 0 ≤ t ≤ sr}. (16)
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Notice that if (s, t) ∈ U(r) then we may construct a subset U(s, t) of U by
the above recipe, replacing ωr by ωs,t. In this subset t is maximal. Likewise, if
s ≤ r we have of course U(s) ⊆ U(r) and may set U(r \ s) = U(r) \ U(s).

6. Key structures and background results

6.1. Quantized minors. Following a construction of classical minors by S.
Fomin and A. Zelevinsky [14], the last mentioned and A. Berenstein have intro-
duced a family of quantized minors ∆u·λ,v·λ in [3]. These are elements of the
quantized coordinate ring Oq(G). The results by K. Brown and K. Goodearl
([5]) were important in this process.

The element ∆u·λ,v·λ is determined by u, v ∈ W and a positive weight λ. We
will always assume that u ≤L v.

6.2. Identifications. There is a well-known pairing between U≤ and U≥ ([23])
and there is a unique bilinear form on Uq(n). With this we can identify (U≥)∗

with U≥. One can even define a product in (Uq(n))∗ that makes it isomorphic
to Uq(n) [15]. We can in this way identify the elements ∆u·λ,v·λ with elements
of U≥.

6.3. Key results from [3] and [15]. The quantized minors are by definitions
functions on Uq(g) satisfying certain finiteness conditions. What is needed first
are certain commutation relations that they satisfy. Besides this, they can be
restricted to being functions on Uq(b) and even on Uq(n). Our main references
here are ([3]) and ([15]); the details of the following can be found in the latter.

Lemma 6.1 ([3]). The element 4uλ,vλ indeed depends only on the weights
uλ, vλ, not on the choices of u, v and their reduced words.

Theorem 6.2 (A version of Theorem 10.2 in [3]). For any λ, µ ∈ P+, and
s, s′, t, t′ ∈ W such that

`(s′s) = `(s′) + `(s), `(t′t) = `(t′) + `(t),

the following holds:

4s′sλ,t′λ4s′µ,t′tµ = q(sλ|µ)−(λ|tµ)4s′µ,t′tµ4s′sλ,t′λ.

It is very important for the following that the conditions essentially are on the
Weyl group elements. The requirement on λ, µ is furthermore independent of
those.
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An equally important fact we need is the following q-analogue of [14, Theo-
rem 1.17]:

Theorem 6.3 ([15], Proposition 3.2). Suppose that for u, v ∈ W and i ∈ I
we have l(usi) = l(u) + 1 and l(vsi) = l(v) + 1. Then

∆usi(Λi),vsi(Λi) ∆u(Λi),v(Λi) = (q−di)∆usi(Λi),v(Λi) ∆u(Λi),vsi(Λi) +
∏
j 6=i

∆
−aji
u(Λj),v(Λj)

(17)
holds in Oq(g).

(That a factor q−di must be inserted for the general case is clear.)

One considers in [15], and transformed to our terminology, modified elements

Dξ,η = 4ξ,ηK
−η. (18)

We suppress here the restriction map ρ, and our K−η is denoted as 4?
η,η in [15].

The crucial property is that

K−η4ξ1,η1 = q−(η,ξ1−η1)4ξ1,η1K
−η. (19)

The family Dξ,η satisfies equations analogous to those in Theorem 6.2 subject
to the same restrictions on the relations between the weights.

The following result is important:

Proposition 6.4 ([15]). Up to a power of q, the following holds:

Zc,d = Dωr
c,d−1(Λc),ωr

c,d(Λc)
. (20)

We need a small modification of the elements Dξ,η of [15]:

Definition 6.5.
Eξ,η := q

1
4 (ξ−η,ξ−η)+ 1

2 (ρ,ξ−η)Dξ,η. (21)

It is proved in ([29]), ([38])) that Eξ,η is invariant under the dual bar anti-
homomorphism augmented by q → q−1.

Notice that this change does not affect commutators:

D1D2 = qαD2D1 ⇔ E1E2 = qαE2E1 (22)

if Ei = qxiDi for i = 1, 2.

Definition 6.6. We say that

Eξ,η < Eξ1,η1 (23)

if ξ = s′sλ, η = t′λ, ξ1 = s′µ and η1 = t′tµ and the conditions of Theorem 6.2
are satisfied.
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The crucial equation is

Corollary 6.7.

Eξ,η < Eξ1,η1 ⇒ Eξ,ηEξ1,η1 = q(ξ−η,ξ1+η1)Eξ1,η1Eξ,η. (24)

6.4. Connecting with the toric frames.

Definition 6.8. Suppose that 4i, i = 1, . . . , r is a family of mutually q-
commuting elements. Let n1, . . . , nr ∈ Z. We then set

N(
r∏
i=1

4ni
i ) = qm

r∏
i=1

4ni
i , (25)

where qm is determined by the requirement that

q−m4nr
r . . .4n2

2 4
n1
1 = qm4n1

1 4
n2
2 . . .4nr

r . (26)

It is easy to see that

∀µ ∈ Sr : N(
r∏
i=1

4nµ(i)
µ(i) ) = N(

r∏
i=1

.4ni
i ) (27)

It is known through [3] that eg. the quantum minors are independent of the
choices of the reduced form of ωr

p. Naturally, this carries over to ωr. The qua-
dratic algebras we have encountered are independent of actual choices. In the
coming definition we wish to maintain precisely the right amount of indepen-
dence.

Let us now formulate Theorem 6.3 in our language while using the language
and notation of toric frames from [3]. In the following Theorem we first state a
formula which uses our terminology, and then we reformulate it in the last two
lines in terms of toric frames M . These frames are defined by a cluster made
up by certain elements of the form Eξ,η to be made more precise later.

Theorem 6.9.

EusiΛi,vsiΛi = N
(
EusiΛi,vΛiEuΛi,vsiΛiE

−1
uΛi,vΛi

)
(28)

+ N

(
∏
j 6=i

E
−aji
u(Λj),v(Λj)

)E−1
u(Λi),v(Λi)


= M(Eusi(Λi),v(Λi) + Eu(Λi),vsi(Λi) − Eu(Λi),v(Λi)) (29)

+ M(
∑
j 6=i

−ajiEu(Λj),v(Λj) − Eu(Λi),v(Λi)). (30)
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Proof of Theorem 6.9: We first state a lemma whose proof is omitted as it is
straightforward.

Lemma 6.10. Let ∆ξk be a family of q-commuting elements of weights ξk,
k = 1, . . . , r in the sense that for any weight b:

∀k = 1, . . . , r : Kb∆ξk = q(b,ξk)∆ξkK
b. (31)

Let α be defined by
∆ξr · · ·∆ξ1 = q−2α∆ξ1 · · ·∆ξr (32)

Furthermore, let b1, . . . , br be integer weights. Then

(∆ξ1∆ξ2 · · ·∆ξr)K
b1Kb2 · · ·Kbr = (33)

q
∑
k<`(bk,ξ`)(∆ξ1K

b1)(∆ξ2K
b2) · · · (∆ξrK

br), and,

(∆ξrK
br) · · · (∆ξ1K

b1) =

q−2αq(
∑
k<`−

∑
`<k)(b`,ξk)(∆ξ1K

b1) · · · (∆ξrK
br), so that

(∆ξ1K
b1) · · · (∆ξrK

br) =

qαq−
1
2 (
∑
k<`−

∑
`<k)(b`,ξk)N

(
(∆ξ1K

b1) · · · (∆ξrK
br)
)
.

Finally,

q−α(∆ξ1∆ξ2 · · ·∆ξr)K
b1Kb2 · · ·Kbr = (34)

q−
1
2 (
∑
` 6=k)(b`,ξk)N

(
(∆ξ1K

b1) · · · (∆ξrK
br)
)
.

We apply this lemma first to the case where the elements ξk are taken from the
set {−sign(aki)(uΛk − vΛk) | aki 6= 0} and where each element corresponding
to an aki < 0 is taken −aki times. Then r =

∑
k 6=i |aji| + 1. The terms

considered actually commute so that here, α = 0. The weights bk are chosen in
the same fashion, but here bk = sign(aki)(vΛk). We have that∑

6̀=k

(b`, ξk) =

(∑
`

b`,
∑
k

ξk

)
−
∑
k

(bk, ξk). (35)

It follows from (2.1) that
∑

` b` = −vsiλi and
∑

k ξk = (usiΛi− vsiλi). Now
observe that for all k: −(vΛk, (u− v)Λk) = 1

2(ξk, ξk). Let ξ0 = (usi − vsi)Λi.
The individual summands in

∑
k(bk, ξk) can be treated analogously. Keeping

track of the multiplicities and signs, it follows that

q−α(∆ξ1∆ξ2 . . .∆ξr)K
b1Kb2 . . . Kbr = (36)

q−
1
4 (ξ0,ξ0)+ 1

4

∑
k εk(ξk,ξk)N

(
(∆ξ1K

b1) . . . (∆ξrK
br)
)
.
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Let us turn to the term

q−di∆usiΛi,vΛi∆uΛi,vsiΛi∆
−1
uΛi,vΛi

K−vsiΛi. (37)

We can of course set K−vsiΛi = K−vΛiK−vsiΛiKvΛi. Furthermore, it is known
(and easy to see) that

∆−1
uΛi,vΛi

∆uΛi,vsiΛi∆usiΛi,vΛi = (38)

q−2di∆usiΛi,vΛi∆uΛi,vsiΛi∆
−1
uΛi,vΛi

,

so that α = di here. We easily get again that
∑

` b` = −vsiλi and
∑

k ξk =
(usiΛi − vsiλi).

Let us introduce elements Ẽξ,η = q
1
4 (ξ−η,ξ−η)∆ξ,ηK

−η. It then follows that
(c.f. Theorem 6.3)

ẼusiΛi,vsiλi = N
(
ẼusiΛi,vΛiẼuΛi,vsiΛiẼ

−1
uΛi,vΛi

)
(39)

+ N

(
∏
j 6=i

Ẽ
−aji
u(Λj),v(Λj)

)Ẽ−1
u(Λi),v(Λi)

 .

The elements Eξ,η differ from the elements Ẽξ,η by a factor which is q to an
exponent which is linear in the weight (ξ − η). Hence an equation identical to
the above holds for these elements. �

7. Compatible pairs

We now construct some general families of quantum clusters and quantum
seeds. The first, simplest, and most important, correspond to double Schubert
Cells:

Let e ≤ s < t < v ≤ p.

Set

Ud,t,v := {(a, j) ∈ U(p) | at < j ≤ av},
Ud,t,v
R< := {(a, j) ∈ U(p) | at < j < av},

Uu,s,t := {(a, j) ∈ U(p) | as ≤ j < at},
Uu,s,t
L< := {(a, j) ∈ U(p) | as < j < at}.
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Further, set

Ud,t = Ud,t,p, (40)

Uu,t = Ud,e,t. (41)

It is also convenient to define

Definition 7.1.

Es(i, j) := Eωp
(s,i)Λs,ω

p
(s,j)Λs

(0 ≤ i < j ≤ sp). (42)

For j′ ≥ st we set

Ed
t (s, j′) := Es(st, j

′). (43)

For j′ ≤ st we set
Eu

t (s, j′) := Es(j
′, st). (44)

Finally, we set

Cdq (t, v) = {Ed
t (s, j′) | (s, j′) ∈ Ud,t,v}, (45)

Cuq (s, t) = {Eu
t (s, j′); (s, j′) ∈ Uu,s,t}, (46)

Cdq (t) = Cdq (t, p), and (47)

Cuq (t) = Cuq (s, t). (48)

It is clear that Cdq (t, v) ⊆ Cdq (t) for any v > t and Cuq (s, t) ⊆ Cuq (t) for any
s < t.

Lemma 7.2. The elements in the set Cdq (t) are q-commuting and the ele-
ments in the set Cuq (t) are q-commuting.

The proof is omitted as it is very similar to the proof of Proposition 7.19 which
comes later.

Definition 7.3. Adq(t, v) denotes the C-algebra generated by Cdq (t, v) and

Auq (s, t) denotes the C-algebra generated by Cuq (s, t). Further, Fd
q (t, v) and

Fu
q (s, t) denote the corresponding skew-fields of fractions. Likewise, Ld

q(t, v)
and Lu

q (s, t) denote the respective Laurent quasi-polynomial algebras. Fi-

nally, Ldq(t, v) and Luq (s, t) denote the symplectic forms associated with the

clusters Cdq (t, v), and Cuq (s, t), respectively.
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Definition 7.4. Whenever a < b, we set

∀s ∈ Im(πb) : deta,bs := EωaΛs,ωbΛs. (49)

We conclude in particular that

Proposition 7.5. The elements dett,ps q-commute with all elements in the
algebra Adq(t) and the elements dete,ts q-commute with all elements in the

algebra Adq(t).

Definition 7.6. An element C in a quadratic algebra A that q-commutes
with all the generating elements is said to be covariant.

As a small aside, we mention the following easy generalization of the result in
([22]):

Proposition 7.7. It a < b, then the spaces Auq (a, b) and Adq(a, b) are qua-

dratic algebras. In both cases, the center is given by Ker(ωa + ωb). The
semi-group of covariant elements in generated by {deta,bs | s ∈ Im(πb)}.

We now construct some elements in Ld
q(t) and Lu

q (t) of fundamental impor-

tance. They are indeed monomials in the elements of
[
Cdq (t)

]±1
and

[
Cuq (t)

]±1
,

respectively.

First a technical definition:

Definition 7.8. p(a, j, k) denotes the largest non-negative integer for which

ωp
(k,p(a,j,k))Λk = ωp

(a,j)Λk.

We also allow Ea(j, j) which is defined to be 1.

Here are then the first building blocks:

Definition 7.9.

∀(a, j) ∈ Ud,t :

Hd
t (a, j) := Ea(at, j)Ea(at, j − 1)

∏
aka<0Ek(kt, p(a, j, k))aka (50)

∀(a, j) ∈ Ud,t with j < ap :

Bd
t (a, j) := Hd

t (a, j)(Hd
t (a, j + 1))−1. (51)

The terms E(kt, p(a, j, k)) and Ea(at, j−1) are well-defined but may become
equal to 1. Also notice that, where defined, Hd

t (a, j), Bd
t (a, j) ∈ Ld

q(t).
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Lemma 7.10. If Eξ,η < Hd
t (a, j) in the sense that it is less than or equal to

each factor Eξ1,η1 of Hd
t (a, j) (and < is defined in (23)), then

Eξ,ηH
d
t (a, j) = q(ξ−η,ωt(αa))Hd

t (a, j)Eξ,η. (52)

If Eξ,η ≥ Hd
t (a, j), then

Eξ,ηH
d
t (a, j) = q(−ξ−η,ωt(αa))Hd

t (a, j)Eξ,η. (53)

Proof. This follows from (23) by observing that we have the following pairs
(ξ1, η1) occurring in Hd

t (a, j):

(ωtΛa, ω(a, j)Λa), (ω
tΛa, ω(a, j)σaΛa),

and
(−ωtΛk,−ω(a, j)Λk) with multiplicity (−aka).

Furthermore, as in (2.1), Λa+σaΛa+
∑

k akaΛk = 0 and, equivalently, 2Λa+∑
k akaΛk = αa . �

Proposition 7.11. ∀(a, j), (b, j′) ∈ Ud,t, j < ap the following holds:

Ed
t (b, j′)Bd

t (a, j) = q−2(Λa,αa)δj,j′δa,bBd
t (a, j)Ed

t (b, j′). (54)

Proof. It is clear from the formulas (52-53) that if an element Eξ,η either
is bigger than all factors in Bd

t (s, j) or smaller than all factors, then it
commutes with this element. The important fact now is that the ordering
is independent of the fundamental weights Λi - it depends only on the Weyl
group elements. The factors in any Hd

t are, with a fixed t, of the form
EωtΛi,ωΛi or EωtΛa,ω◦σaΛa for some ω ≥ ωt. The elements Eξ,η = Ed

t (b, j′) we
consider thus satisfy the first or the second case in Lemma 7.11 for either
terms Hd

t (a, j) and Hd
t (a, j+ 1). Clearly, we then need only consider the in-

between case Hd
t (a, j) ≤ Eξ,η ≤ Hd

t (a, j+1), and here there appears a factor

q−2(ξ,ωt(αa)) in the commutator with ξ = ωtΛb. This accounts for the term
−2(Λa, αa)δa,b. Finally, if a = b the previous assumption forces j = j′. �

Let us choose an enumeration

Cdq (t) = {c1, c2, . . . , cN} (55)

so that each (a, j)↔ k and let us use the same enumeration of the elements
Bd

t (a, j). Set, for now Bd
t (a, j) = bk if (a, j)↔ k. Let us also agree that the,
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say n, non-mutable elements dett,ps of Cdq (t) are written last, say numbers
N − n+ 1, N − n+ 2, . . . , N − n. Then, as defined,

∀j = 1, . . . , N − n : bj = qαj
∏
k

c
bkj
k (56)

for some integers bkj and some, here inconsequential, factor qαj . The sym-
plectic form yields a matrix which we, abusing notation slightly, also denote
Ldq(t) such that

∀i, j = 1, . . . , N :
(
Ldq(t)

)
ij

= λij (57)

and
∀i, j = 1, . . . , N : cjcj = qλijcjci. (58)

Similarly, we let Bdq (t) denote the matrix

∀i = 1, . . . , N ∀j = 1, . . . , N − n :
(
Bdq (t)

)
ij

= bij. (59)

Then, where defined,

cibj =
∏
k

qλikbkjbjci, (60)

and Proposition 7.11 may then be restated as

∀i = 1, . . . , N ∀j = 1, . . . , N − n :
∑
k

λikbkj = −2(Λs, αs)δij, (61)

where we assume that i↔ (s, `).

We have then established

Theorem 7.12. The pair (Ldq(t),Bdq (t)) is a compatible pair and hence,

Qd
q(t) := (Cdq (t),Ldq(t),Bdq (t)) (62)

is a quantum seed with the n non-mutable elements dett,ps , (s, sp) ∈ Ud(t).

The entries of the diagonal of the matrix D̃ = (Bdq (t))TLdq(t) are in the set
{2(Λs, αs) | s = 1, . . . , R}.

It v > t, we let (Ldq(t, v),Bdq (t, v)) denote the part of the compatible pair

(Ldq(t),Bdq (t)) that corresponds to the cluster Cdq (t, v) and we let Qd
q(t, v) be

the corresponding triple. It is then obvious by simple restriction, that we in
fact have obtained
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Theorem 7.13. The pair (Ldq(t, v),Bdq (t, v)) is a compatible pair and hence,

Qd
q(t, v) := (Cdq (t, v),Ldq(t, v),Bdq (t, v)) (63)

is a quantum seed with the n non-mutable elements dett,vs , (s, sv) ∈ Ud(t, v).

The case of Cuq (t) is completely analogous: Define

Definition 7.14.

Hu
t (a, j) := Ea(j, at)Ea(j − 1, at)

∏
aka<0

Ek(p(a, j, k), kt)
aka (1 ≤ j < at),

Bu
t (a, j) := Hu

t (a, j + 1)(Hu
t (a, j))−1 (1 ≤ j < at). (64)

The terms E(p(a, j, k), kt) are well-defined but may become equal to 1. Notice
also the exponents on the terms Hu

t .

The terms E(p(a, j, k), kt) are well-defined but may become equal to 1. As
defined, Hu

t (a, j), and Bu
t (a, j) are in Lu

q (t).

Proposition 7.15. ∀(a, j), (b, j′) ∈ Uu,t, 1 ≤ j the following holds:

Eu
t (b, j′)Bu

t (a, j) = q2(Λa,αa)δj,j′δa,bBu
t (a, j)Eu

t (b, j′). (65)

We then get in a similar way

Theorem 7.16. The pair (Luq (t),Buq (t)) is a compatible pair and hence,

Qu
q (t) := (Cuq (t),Luq (t),Buq (t)) (66)

is a quantum seed with the n non-mutable elements dete,ts , (s, st) ∈ Uu(t).

Naturally, we even have

Theorem 7.17. The pair (Luq (s, t),Buq (s, t)) is a compatible pair and hence,

Qu
q (s, t) := (Cuq (s, v),Luq (s, t),Buq (s, t)) (67)

is a quantum seed with the n non-mutable elements dets,ts , (s, ss) ∈ Uu(s, t).

We now wish to consider more elaborate seeds. The first generalization is
the most important:

Let
e ≤ a ≤ b ≤ c ≤ p, but a 6= c. (68)
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Cdq (a, b, c) := {Ed
a(s, j) | (a, j) ∈ (Ud,b \ Ud,c) = Ud,b,c}, (69)

Cuq (a, b, c) := {Eu
c (s, j) | (s, j) ∈ (Uu,b \ Uu,a) = Uu,a,b}. (70)

In (69), a = b is allowed, and in (70), b = c is allowed.

Definition 7.18.

Cq(a, b, c) := Cdq (a, b, c) ∪ Cuq (a, b, b),

Coq (a, b, c) := Cuq (a, b, c) ∪ Cdq (b, b, c).

Proposition 7.19. The elements of Cq(a, b, c) and Coq (a, b, c), respectively,
q-commute.

Proof. The two cases are very similar, so we only prove it for the first case.
We examine 3 cases, while using the following mild version of Theorem 6.2:
4s′sλ,t′λ and 4s′µ,t′tµ q commute for any λ, µ ∈ P+, and s, s′, t, t′ ∈ W for
which `(s′s) = `(s′) + `(s), `(t′t) = `(t′) + `(t).

Case 1: Ed
a(s, t) and Ed

a(s1, t1) for (s, t) ∈ Ud,b,c and (s, t) < (s1, t1): Set
λ = Λs, µ = Λs1, s = 1, s′ = ωa, and t′ = ωc(s, t), t′t = ωc(s1, t1).

Case 2: Eu
b (s, t) and Eu

b (s1, t1) for (s, t) ∈ Uu,a,b and (s, t) > (s1, t1): Set
λ = Λs, µ = Λs1, t = 1, t′ = ωb and s′ = ωp(s1, t1), s

′s = ωr(s, t).
Case 3: Eu

b (s, t) and Ed
a(s1, t1) for (s, t) ∈ Uu,a,b and (s1, t1) ∈ Ud,b,c: Set

λ = Λs, µ = Λs1, s
′ = ωa, s = ωp(s, t), t′ = ωb and t′t = ωp(s1, t1). �

Notice that the ordering in Uu,a,b (Case 2) is the opposite of that of the
two other cases.

We also define, for a < b,

Cuq (a, b) = Cuq (a, b, b), and (71)

Cdq (a, b) = Cdq (a, a, b).

We let Lq(a, b, c) and Loq(a, b, c) denote the corresponding symplectic ma-
trices. We proceed to construct compatible pairs and give the details for
just Cq(a, b, c). We will be completely explicit except in the special cases

Eu
ωaΛs,ωbΛs

= deta,bs where we only give a recipe for Ba,b,c
q (s, sa). Notice, how-

ever, the remark following (77).
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Ba,b,c
q (s, j) :=

 Bd
a(s, j) if (s, j) ∈ Ud,b,c

R<

Bu
b (s, j) if (s, j) ∈ Uu,a,b

L<

. (72)

We easily get from the preceding propositions:

Proposition 7.20. Let E(b, j′) ∈ Cq(a, b, c) and let Ba,b,c
q (s, j) be as in the

previous equation. Then

E(b, j′)Ba,b,c
q (s, j) = q−2(Λs,αs)δj,j′δs,bBa,b,c

q (s, j)E(b, j′), (73)

and Ba,b,c
q (s, j) is in the algebra Aq(a, b, c) generated by the elements of

Cq(a, b, c).

This then leaves the positions (s, sc) ∈ Ud,b,c and (s, sa) ∈ Uu,a,b to be
considered. Here, the first ones are considered as the non-mutable elements.
In the ambient space Aq(a, b, c), the positions in remaining cases define
elements that are, in general, mutable.

The elements in these cases are of the form EωaΛs,ωbΛs for some s. To give
a recipe we define the following elements in Aq(a, b, c):

B̃a,b,c
q (s, sa) := (74)(

Hu
b (s, sa + 1)Hd

a (s, sb + 1)
)−1

Es(sa, sb)
2
∏

aka<0Ek(ka, kb)
aks.

If ω(s, sa +1) = ωaωxσs and ω(s, sb +1) = ωbωyσs, and if we set u = ωaωx,
v = ωbωy this takes the simpler form

B̃a,b,c
q (s, sa) = E−1

uσsΛs,vΛs
E−1
uΛs,vσsΛs

∏
aks<0

E−aksωaΛk,vΛk

∏
aks<0

E−aks
uΛk,ωbΛk

∏
aks<0

Eaks
ωaΛk,ωbΛk

.

(75)

Proposition 7.21.

∀` : EωaΛ`,ωbΛ`B̃
a,b,c
q (s, sa) = q−2δ`.s(λs,αs)B̃a,b,c

q (s, sa)EωaΛ`,ωbΛ`. (76)

Besides this, B̃a,b,c
q (s, sa) commutes with everything in the cluster except pos-

sibly elements of the form

EωaΛ`,ωbω̃yΛ`, and Eωaω̃xΛ`,ωbΛ`,

with 1 < ω̃x < ωx and 1 < ω̃y < ωy.
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The exceptional terms above are covered by Proposition 7.20 which means
that we can in principle make a modification B̃a,b,c

q (s, sa) → Ba,b,c
q (s, sa)

where the latter expression commutes with everything except EωaΛs,ωbΛs

where we get a factor q−2(Λs,αs).

If ωy = 1 we get a further simplification where now u = ωaωx and v = ωb:

B̃a,b,c
q (s, sa) = E−1

uσsΛs,vΛs
E−1
uΛs,vσsΛs

∏
aks<0

E−aksuΛk,vΛk
. (77)

Here we actually have B̃a,b,c
q (s, sa) = Ba,b,c

q (s, sa), and this expression has
the exact form needed for the purposes of the next section.

We let Bq(a, b, c) and Boq(a, b, c) denote the corresponding symplectic ma-
trices and can now finally define our quantum seeds:

Qq(a, b, c) := (Cq(a, b, c),Lq(a, b, c),Bq(a, b, c)). (78)

Definition 7.22.

Qo
q(a, b, c) := (Coq (a, b, c),Loq(a, b, c),Boq(a, b, c)). (79)

According to our analysis above we have established

Theorem 7.23. They are indeed seeds. The non-mutable elements are in
both cases the elements deta,cs ; s ∈ Im(πωc).

Let us finally consider a general situation where we are given a finite
sequence of elements {ωri}ni=1 ∈ W p such that

e ≤ r1 < · · · < rn ≤ p. (80)

Observe that
∀(s, t) ∈ U(rk) : ωrk

(s,t) = ωp
(s,t). (81)

It may of course well happen that for some a, and some ri < rj,

ωriΛa = ωrjΛa. (82)

Definition 7.24. Given (80) we define

Cq(r1, . . . , rn−1, rn) = Cdq (r1, rn−1, rn) ∪ Cuq (r1, r2, rn−1) ∪ . . . (83)

=
⋃

0<2i≤n
Cdq (ri, rn−i, rn−i+1) ∪

⋃
0<2j≤n−1

Cuq (rj, rj+1, rn−j).

It is also convenient to consider
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Coq (r1, . . . , rn−1, rn) = Cuq (r1, r2, rn) ∪ Cdq (r2, rn−1, rn) ∪ . . . (84)

=
⋃

0<2i≤n
Cuq (ri, ri+1, rn−i+1) ∪

⋃
0<2j≤n−1

Cdq (rj+1, rn−j, rn−j+1).

Notice that

Cq(r1, . . . , rn−1, rn) = Cdq (r1, rn−1, rn) ∪ Coq (r1, . . . , rn−2, rn−1) (85)

Coq (r1, . . . , rn−1, rn) = Cuq (r1, r2, rn) ∪ Cq(r2, . . . , rn−1, rn)

For the last equations, notice that Cdq (e, r, r) = ∅ = Cdq (r, r, r).

Proposition 7.25. The spaces

Coq (r1, . . . , rn−1, rn) and Cq(r1, . . . , rn−1, rn) (86)

each consists of q-commuting elements.

Proof. This is proved in the same way as Proposition 7.19. �

Our goal is to construct seeds out of these clusters using (and then gener-
alizing) Proposition 7.23.

With Proposition 7.25 at hand, we are immediately given the correspond-
ing symplectic matrices

Loq(r1, . . . , rn−1, rn) and Lq(r1, . . . , rn−1, rn). (87)

The construction of the accompanying B-matrices

Boq(r1, . . . , rn−1, rn) and Bq(r1, . . . , rn−1, rn) (88)

takes a little more work, though in principle it is straightforward. The idea
is in both cases to consider an element in the cluster as lying in a space

Cdq (ri, rn−i, rn−i+1) ∪ Cuq (ri, ri+1, rn−i) ⊆ Cq(ri, rn−i, rn−i+1) or (89)

Cuq (ri, ri+1, rn−i+1) ∪ Cdq (ri+1, rn−i, rn−i+1) ⊆ Coq (ri, ri+1, rn−i+1) (90)

as appropriate. Then we can use the corresponding matrices Bq(ri, rn−i, rn−i+1)
or Boq(ri, ri+1, rn−i+1) in the sense that one can extend these matrices to the
full rank by inserting rows of zeros. In this way, we can construct columns
even for the troublesome elements of the form E(ari, arj) that may belong
to such spaces. Indeed, we may start by including E(arn+0

2

, arn+2
2

) (n even)

or E(arn−1
2

, arn+1
2

) (n odd) in a such space in which they may be seen as

mutable. Then these spaces have new non-mutable elements which can be
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handled by viewing them in appropriate spaces. The only ones which we
cannot capture are the elements detr1,rns = E(sr1, srn).

Definition 7.26. In both cases, the elements detr1,rns , s ∈ Im(πr1) are the
non-mutable elements. We let Nq(r1, rn) denote the set of these.

Proposition 7.27.

Qq(r1, . . . , rn−1, rn) and Qo
q(r1, . . . , rn−1, rn) (91)

are quantum seeds.

8. Mutations

Here is the fundamental setup: Let ωa, ωb, ωc ∈ W p satisfy

a < c and a ≤ b ≤ c. (92)

Definition 8.1. A root γ ∈ 4+(c) is an increasing-mutation site of
ωb ∈ W p (in reference to (a, b, c)) if there exists a reduced form of ωc as

ωc = ω̂σγω
b. (93)

Let W p 3 ωb′ = σγω
b. It follows that

ωb′ = ωbσαs (94)

for a unique s ∈ Im(πb′). Such a site will henceforth be called an m+ site.
We will further say that γ is a decreasing-mutation site, or m− site

(in reference to (a, b, c)) of ωb ∈ W p in case there exists a rewriting of ωb

as ωb = σγω
b′′ with a ≤ ωb′′ ∈ W p. Here,

ωb = ωb′′σαs (95)

for a unique s ∈ Im(πb). We view such sites as places where replacements
are possible and will use the notation

m+
a,c : (a, b, c)→ (a, b′, c), (96)

and
m−a,c : (a, b, c)→ (a, b′′, c), (97)

respectively, for the replacements while at the same time defining what we
mean by replacements.

Notice that a = b and b′ = c are allowed in the first while b = c and b′′ = a
are allowed in the second.
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Furthermore,
ma,c : (a, b, c)→ (a, b1, c)

denotes the composition of any finite number of such maps m±a,c (in any
order, subject to the limitations at any step stipulated above)

We will further extend the meaning of ma,c also to include the replacements

Cq(a, b, c)→ Cq(a, b1, c),

and even
Qq(a, b, c)→ Qq(a, b1, c).

At the seed level, we will refer to the replacements as Schubert mutations.
Similarly, we can define maps mo,±

a,c , and after that mutations as composites

mo
a,c : Qo

q(a, b, c)→ Qo
q(a, b1, c).

We need to define another kind of replacement: Consider

a < b1 < b < c. (98)

Definition 8.2. We say that (a, b, c) is a d-splitting of (a, c) if

Cq(a, b, c) = Cq(a, c).
In this case we will also say that (a, c) is a d-merger of (a, b, c).

To make this more definitive, one might further assume that b is maximal
amongst those satisfying (98), but we will not need to do this here.

Similarly,

Definition 8.3. We say that (a, b, c) is a u-splitting of (a, c) if

Coq (a, b, c) = Coq (a, c).
Similarly, we will in this case also say that (a, c) is a u-merger of (a, b, c).

Our next definition combines the two preceding:

Definition 8.4. A Schubert creation replacement

a+
a,c : (a, c)→ (a, b1, c)

consists in a d-splitting
(a, c)→ (a, b, c)

followed by a replacement ma,c applied to (a, b, c). A Schubert annihilation
replacement

a−a,c : (a, b1, c)→ (a, c)

is defined as the reverse process.
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Schubert creation/annihilation mutations ao,±a,c are defined analogously;

ao,+a,c : Qo
q(a, c)→ Qo

q(a, b1, c),

and
ao,−a,c : Qo

q(a, b1, c)→ Qo
q(a, c).

We finally extend these Schubert creation/annihilation mutations into (we
could do it more generally, but do not need to do so here)

Qq(r1, . . . , rn−1, rn)→ Qq(r1, . . . , rn−2, . . . , rn±1)

by inserting/removing an rx between rn
2

and rn
2 +1 (n even) or between rn−1

2

and rn+1
2

(n odd). Similar maps are defined for the spaces Qo
q(r1, . . . , rn−1, rn).

In the sequel, we will encounter expressions of the form B̌(u, v, s);

B̌(u, v, s) = E−1
uσsΛs,vΛs

E−1
uΛs,vσsΛs

∏
aks<0

Eaks
uΛk,vΛk

(99)

where

E(uΛs, vΛs)B̌(u, v, s) = q−2(Λs,αs)B̌(u, v, s)E(uΛs, vΛs), (100)

and where B̌(u, v, s) commutes with all other elements in a given cluster.

Definition 8.5. We say that B̌(u, v, s) implies the change

EuΛs,vΛs → EuσsΛs,vσsΛs.

We will only encounter such changes where the set with EuΛs,vΛs removed
from the initial cluster, and EuσsΛs,vσsΛs added, again is a cluster.

We further observe that a (column) vector with −1 at positions corre-
sponding to EuσsΛs,vΛs and EuΛs,vσsΛs and aks at each position corresponding
to a EuΛk,vΛk with aks < 0 has the property that the symplectic form of the
original cluster, when applied to it, returns a vector whose only non-zero
entry is −2(Λs, αs) at the position corresponding to EuΛs,vΛs. Hence, this
can be a column vector of the B of a potential compatible pair.

Even more can be ascertained: It can be seen that the last two lines of
Theorem 6.9 precisely states that with a B matrix like that, the following
holds:

Proposition 8.6. The change EuΛs,vΛs → EuσsΛs,vσsΛs implied by B̌(u, v, s)
is the result of a BFZ mutation.
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Theorem 8.7. The Schubert mutation

Qq(a, b, c)→ Qq(a, b
′, c)

implied by a replacement m+
a,c as in (96) is the result of series of BFZ mu-

tations.

Proof. The number s is given by (94) and remains fixed throughout. We do
the replacement in a number of steps. We set Qq(a, b, c) = Qq(a, b, c)(0) and
perform changes

Qq(a, b, c) = Qq(a, b, c)(0)→ (101)

Qq(a, b, c)(1)→ · · · → Qq(a, b, c)(t0) = Qq(a, b
′, c).

We will below see that t0 = sb − sa − 1. We set

If 0 ≤ t ≤ to : Qq(a, b, c)(t) = (Cq(a, b, c)(t),Lq(a, b, c)(t),Bq(a, b, c)(t)).
(102)

The intermediate seeds Qq(a, b, c)(t) with 0 < t < t0 are not defined by

strings ã ≤ b̃ ≤ c̃. At each t-level, only one column is replaced when passing
from Bq(a, b, c)(t) to Bq(a, b, c)(t + 1), and here (77) is applied. Of course,
the whole B matrix is given by (72) and (75) for a suitable seed.

Specifically, using (77) we introduce a family of expressions B̌ as in (99)

B
a,b(t),c
m+ (s, t) = E−1

ω(sa+t+1)Λs,ωbΛs
E−1
ω(sa+t)Λs,ωb′Λs

∏
E
−ajs
ω(s,sa+t+1)Λj ,ωb′Λj

(103)

= (Eu
b (s, sa + t+ 1)Eu

b′(s, sa + t))−1
∏

Eu
b (j, p(j, s, sa + t+ 1))−ajs,

implying the changes

Eu
b (s, sa + t)→ Eu

b′(s, sa + t+ 1). (104)

If ω(s, sa + t+ 1) = utσs and v = ωb then this corresponds to

((utσsΛs, vΛs)(utΛs, vσsΛs)(uΛj, vΛj)
ajs)−1 (105)

Here are then in details how the changes are performed:
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Step(0) :

Cq(a, b, c) 3 Ed
a(s, sb + 1) → Eu

b′(s, sa) ∈ Cq(a, b(0), c) (renaming),

Ba,b,c
q (s, sa) → B

a,b(0),c
m+ (s, 0) (renaming),

Lq(a, b, c) → Lq(a, b(0), c) (renaming),

Step(1) : (implied by B
a,b(0),c
m+ (s, 0)),

Cq(a, b(0), c) 3 Eu
b (s, sa) → Eu

b′(s, sa + 1) ∈ Cdq (a, b(1), c),

Ba,b,c
q (s, sa + 1) → B

a,b(1),c
m+ (s, 1)(by (77)),

Lq(a, b(0), c) → Lq(a, b(1), c) (implied),

Step(2) : (implied by B
a,b(1),c
m+ (s, 1)),

Cdq (a, b(1), c) 3 Eu
b (s, sa + 1) → Eu

b′(s, sa + 2) ∈ Cdq (a, b(2), c),
...

Step(t+ 1) : (implied by B
a,b(t),c
m+ (s, t)),

Cdq (a, b(t), c) 3 Eu
b (s, sa + t) → Eu

b′(s, sa + t+ 1) ∈ Cdq (a, b(t+ 1), c),

Ba,b,c
q (s, sa + t) → B

a,b(t),c
m+ (s, t)(by (77)),

Lq(a, b(t), c) → Lq(a, b(t+ 1), c) (implied).

The last step is t = sb − sa − 1. b(0) = b, b(sb − sa − 1) = b′.

It is easy to see that all intermediate sets indeed are seeds.

What is missing now is to connect, via a change of basis transformation
of the compatible pair, with the “E,F” matrices of [3]. Here we notice that
both terms

(Eu
b (s, sa + t+ 1)Eu

b′(s, sa + t))−1(Eu
b (s, sa + t))−1 (106)

and ∏
Eu

b (j, p(j, s, sa + t+ 1))−ajs(Eu
b (s, sa + t))−1 (107)

have the same q-commutators as Eu
b′(s, sa + t + 1). The two possibilities

correspond to the two signs in formulas (3.2) and (3.3) in [3].

Indeed, the linear transformation

E(t) : Eu
b (s, sa + t)→ −Eu

b (s, sa + t+1)−Eu
b′(s, sa + t)−Eu

b (s, sa + t) (108)
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results in a change-of-basis on the level of forms:

Lq(a, b(t), c)→ Lq(a, b(t+ 1), c) = ET (t)Lq(a, b(t), c)E(t), (109)

Ba,b(t),c
m+ (s, t)→ Ba,b(t+1),c

m+ (s, t+ 1) = E(t)Ba,b(t),c
m+ (s, t)F (t),

where F (t) is a truncated part of E(t)T (the restriction to the mutable
elements).

With this, the proof is complete. �

Theorem 8.8. Any Qq(r1, . . . , rn−1, rn) can be obtained from Qq(e, p) as a
sub-seed and any Qo

q(r1, . . . , rn−1, rn) can be obtained from Qo
q(e, p) as a sub-

seed through a series of Schubert creation and annihilation mutations. These
mutations are, apart from the trivial actions of renaming, splitting, merging,
or simple restrictions, composites of BFZ-mutations.

Proof. Apart from mergers and splittings (Definition 8.4), the mutations are
composites of mutations of the form Qq(a, b, c)→ Qq(a, b

′, c). �

Corollary 8.9. The algebras Ad,a,cq and Au,a,cq are mutation equivalent and
indeed are equal. We denote henceforth this algebra by Aa,c. This is the
quadratic algebra generated by the elements βc,d with ca < d ≤ cc.

We similarly denote the corresponding skew-field of fractions by Fa,c
q .

9. Prime

Definition 9.1.
deta,cs := EωaΛs,ωcΛs. (110)

Theorem 9.2. The 2 sided ideal I(deta,cs ) in Aq(a, c) generated by the co-
variant and non-mutable element deta,cs is prime for each s.

Proof. Induction. The induction start is trivially satisfied. Let us then divide
the induction step into two cases. First, let Zγ be an annihilation-mutation
site of ωc such that ωc = σγω

c1 = ωc1σαs with ωc1 ∈ W p. We have clearly
Aq(a, c) = Aq(a, c1) ∪ I(deta,cs ). Furthermore, Aq(a, c) \ Aq(a, c1) = I`(Zγ),
where I`(Zγ) denotes the left ideal generated by Zγ. We might as well
consider the right ideal, but not the 2-sided ideal since in general there will
be terms R of lower order, c.f. Theorem 4.1.

It follows that
deta,cs = M1Zγ +M2 (111)
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where M1,M2 ∈ Aq(a, c1) and M1 6= 0. Indeed, M1 is a non-zero multiple
of deta,c1s . (If sc = 1 then M1 = 1 and M2 = 0.) We also record, partly for
later use, that Zγ q-commutes with everything up to correction terms from
Aq(a, c1).

Notice that we use Corollary 8.9.

Now consider an equation

deta,cs p1 = p2p3 (112)

with p1, p2, p3 ∈ Aq(a, c). Use (111) to write for each i = 1, 2, 3

pi =

ni∑
k=0

(deta,cs )kNi,k (113)

where each Ni,k ∈ Lq(a, c1) and assume that Ni,0 6= 0 for i = 2, 3 Then
0 6= N0,2N0,3 ∈ Lq(a, c1). At the same time,

N0,2N0,3 =

ni∑
k=1

(deta,cs )kÑi,k (114)

for certain elements Ñi,k ∈ Lq(a, c1).
Using the linear independence ([3, Proposition 10.8]) we easily get a con-

tradiction by looking at the leading term in deta,cs ).

Now in the general case, the s in deta,cs is given and we may write ωc =
ωc2σsω̃ where σs does not occur in ω̃. Let ωc1 = ωc2σs. It is clear that
deta,cs = deta,c1s and by the previous, deta,c1s is prime in Aq(a, c1). We have
that Aq(a, c1) is an algebra in its own right. Furthermore,

Aq(a, c) = Aq(a, c1)[Zγ1, . . . , Zγn], (115)

where the Lusztig elements Zγ1, . . . , Zγn are bigger than the generators of
Aq(a, c1). In a PBW basis we can put them to the right. They even generate

a quadratic algebra Ãq in their own right! The equation we need to consider
are of the form

p1p2 = deta,c1s p3 (116)

with p1, p2, p3 ∈ Aq(a, c). The claim that at least one of p1, p2 contains a

factor of detr1q,s follows by easy induction on the Ãq degree of p1p2, i.e. the

sum of the Ãq degrees of p1 and p2. �
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10. Upper

Let ωa, ωc ∈ W p and a < c.

Definition 10.1. The cluster algebra Aq(a, c) is the Z[q]-algebra generated
in the space Fq(a, c) by the inverses of the non-mutable elements Nq(a, c)
together with the union of the sets of all variables obtainable from the initial
seed Qq(a, c) by composites of quantum Schubert mutations. (Appropriately
applied)

Observe that we include Nq(a, c) in the set of variables.

Definition 10.2. The upper cluster algebra Uq(a, c) connected with the same
pair ωa, ωc ∈ W p is the Z[q]-algebra in Fq(a, c) given as the intersection of
all the Laurent algebras of the sets of variables obtainable from the initial
seed Qq(a, c) by composites of quantum Schubert mutations. (Appropriately
applied)

Proposition 10.3.

Aq(a, c) ⊆ Aq(a, c) ⊂ Uq(a, c).

Proof. The first inclusion follows from [15], the other is the quantum Laurent
phenomenon. �

Remark 10.4. Our terminology may seem a bit unfortunate since the no-
tions of a cluster algebra and an upper cluster algebra already have been
introduced by Berenstein and Zelevinsky in terms of all mutations. We only
use quantum line mutations which form a proper subset of the set of all
quantum mutations. However, it will be a corollary to what follows that the
two notions in fact coincide, and for this reason we do not introduce some
auxiliary notation.

Theorem 10.5.

Uq(a, c) = Aq(a, c)[(deta,cs )−1; s ∈ Im(πc)].

Proof. This follows by induction on `(ωc) (with start at `(ωa) + 1) in the
same way as in the proof of [20, Theorem 8.5], but for clarity we give the
details: Let the notation and assumptions be as in the proof of Theorem 9.2.
First of all, the induction start is trivial since we there are looking at the
generator of a Laurent quasi-polynomial algebra. Let then u ∈ Uq(a, c). We
will argue by contradiction, and just as in the proof of [20, Theorem 8.5],
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one readily sees that one may assume that u ∈ Aq(a, c1)[(deta,c1s )−1, deta,cs ].
Using (111) we may now write

u =

(
K∑
i=0

Z i
γpi(deta,c1s )ki

)
(deta,c1s )−ρ, (117)

with pi ∈ Aq(a, c1), pi /∈ I(deta,c1s ), and ki ≥ 0. Our assumption is that
ρ > 0. recall that the elements deta,c1s and deta,cs are covariant and define
prime ideals in the appropriate algebras. Using the fact that Uq(a, c) is
an algebra containing Aq(a, c), we can assume that the expression in the
left bracket in (117) is not in I(deta,cs ) and we may further assume that
pi 6= 0 ⇒ ki < ρ. To wit, one can remove the factors of deta,cs , then remove
the terms with ki ≥ ρ, then possibly repeat this process a number of times.

Consider now the cluster Cuq (a, c). We know that u can be written as a
Laurent quasi-polynomial in the elements of Cuq (a, c). By factoring out, we
can then write

u = p
∏

(c,d)∈Uu,a,c
(Eu

c (c, d))−αc,d, (118)

where p ∈ Aq(a, c), and αc,d ≥ 0. We will compare this to (117). For the

sake of this argument set Ũu,a,c) = {(c, d) ∈ Uu,a,c) | αc,d > 0}.
Of course, deta,cs ∈ Cu(e, r).
“Multiplying across”, we get from (117) and (118), absorbing possibly

some terms into p:

(
K∑
i=0

Z ipi(deta,c1s )ki)
∏

(c,d)∈Ũu,a,c
(Eu

c (c, d))αc,d = p(deta,c1s )ρ. (119)

Any factor of deta,cs in p will have to be canceled by a similar factor of
Eu

c (s, 0) in the left-hand side, so we can assume that p does not contain no
factor of deta,cs . After that we can assume that (s, 0) /∈ Ũu,a,c since clearly
deta,c1s /∈ I(deta,cs ). Using that ki < ρ it follows that there must be a factor of
(deta,c1s ) in

∏
(c,d)∈Ũu,a,c(E

u
c (c, d))αc,d. Here, as but noticed, d = 0 is excluded.

The other terms do not contain Zs,1 but (deta,c1s ) does. This is an obvious
contradiction. �
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11. The diagonal of a quantized minor

Definition 11.1. Let a < b. The diagonal, Dωa(Λs),ωb(Λs), of Eωa(Λs),ωb(Λs) is
set to

Dωa(Λs),ωb(Λs) = qαZs,sa+1 · · ·Zs,sb, (120)

where
Zs,sb · · ·Zs,sa+1 = q2αZs,sa+1 · · ·Zs,sb +R (121)

where the terms R are of lower order

Proposition 11.2.

Eωa(Λs),ωb(Λs) = Dωa(Λs),ωb(Λs) +R
The terms in R are of lower order in our ordering induced by ≤L. They can
in theory be determined from the fact that the full polynomial belongs to the
dual canonical basis. ([3],[15]).

Proof. We prove this by induction on the length sb − sa of any s-diagonal.
When this length is 1 we have at most a quasi-polynomial algebra and here
the case is clear. Consider then a creation-mutation site where we go from
length r to r + 1: Obviously, it is only the very last determinant we need
to consider. Here we use the equation in Theorem 6.3 but reformulate it in
terms of the elements Eξ,η, cf. Theorem 6.9.

Set ωb1 = ωbσs and consider Eωa(Λs),ωb1(Λs). Its weight is given as

ωb1(Λs)− ωa(Λs) = βs,sa+1 · · ·+ βs,sb+1.

In the recast version of Theorem 6.3, the terms on the left hand side are
covered by the induction hypothesis. The second term on the right hand
side contains no element of the form Zs,sb1 and it follows that we have an
equation

(Zs,sa+2 · · ·Zs,sb)Eωa(Λs),ωb1(Λs) = (Zs,sa+2 · · ·Zs,sb+1)(Zs,sa+1 · · ·Zs,sb) +R.
(122)

The claim follows easily from that. �
Recall that in the associated quasi-polynomial algebra is the algebra with

relations corresponding to the top terms, i.e., colloquially speaking, setting
the lower order terms R equal to 0. Let

dωr
s,t1

(Λs),ωr
s,t(Λs) = zs,t1+1 · · · zs,t. (123)

The following shows the importance of the diagonals:
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Theorem 11.3.

du·Λi0 ,v·Λi0du1·Λi1 ,v1·Λi1 = qGdu1·Λi1 ,v1·Λi1du·Λi0 ,v·Λi0 ⇔ (124)

Du·Λi0 ,v·Λi0Du1·Λi1 ,v1·Λi1 = qGDu1·Λi1 ,v1·Λi1Du·Λi0 ,v·Λi0 +R (125)

In particular, if the two elements Eu·Λi0 ,v·Λi0Eu1·Λi1 ,v1·Λi1 q-commute:

Eu·Λi0 ,v·Λi0Eu1·Λi1 ,v1·Λi1 = qGEu1·Λi1 ,v1·Λi1Eu·Λi0 ,v·Λi0 (126)

then G can be computed in the associated quasi-polynomial algebra:

du·Λi0 ,v·Λi0du1·Λi1 ,v1·Λi1 = qGDu1·Λi1 ,v1·Λi1du·Λi0 ,v·Λi0 . (127)

Remark 11.4. One can also compute G directly using the formulas in [3].

Remark 11.5. The elements Eξ,η that we consider belong to the dual canoni-
cal basis. As such, they can in principle be determined from the highest order
terms Dξ,η.
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