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Introduction

In this article the full set of irreducible unitary holomorphic representations of
Ul(p, g) is determined.

For a general Hermitian symmetric space G/K of the noncompact type the
set of irreducible unitary representations of G on scalar valued holomorphic
functions has been found by Wallach [14] and by Rossi and Vergne [11]. For
the groups Mp(n,IR) and SU(n,n) unitary irreducible representations on vector
valued holomorphic functions have been obtained by Gross and Kunze [1] from
the decomposition of tensor products of the harmonic (Segal-Shale-Weil) repre-
sentation L. Later the complete description of these tensor products for the
groups Mp(n,R) and U(p, q) was given by Kashiwara and Vergne [8] (see also
[4]), and it was conjectured that any irreducible unitary representation with
highest weight appears in the k-th fold tensor product of L for some k. As we
shall see, for the groups U(p, g) this is indeed so.

The case of G=SU(2,2) has been treated in [9] and [2]. In both cases some
rather technical computations of I'-functions were successfully completed by
means of the detailed knowledge of Clebsch-Gordan and Racah coefficients for
U(2), available through the physics literature. Based on results in [10] a different
proof for SU(2,2) was recently given [15].

For G=8U(n,n) the representations are of the form (U(g)f)(2)
=J(g ', 2" f((az+b)/(c z+d)) where the automorphic factor J(g,z) is a pro-
duct of an automorphic factor J,(g, z), which does not contain det(c z +d) to any
power, and det(c z+d) to an integer power. Let U=U,_, if the power is k. The
key observation we make is: If U, , and U, ,_, are unitary and the Hilbert
space H; , of U, , is annihilated by constant coefficient differential operators,
then U, ,_, is annihilated by constant coefficient differential operators of one
order less. To establish this fact and to make full use of it we need the theory of
tensor products of holomorphic representations as developed in [5] and [6].

*  This research was supported in part by NSF grant MCS 77-07596
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§1. On the Ring 2 =C[z] of Polynomials in the Entries of z

Let S denote the set of irreducible polynomial representations t of Gl(n, C) for
which 1(a*)=1(a)* for all a in Gl(n, C). It is a classical result, due to Schur [13],
that the representation P of Gl(n, C) x Gl(n,C) on the space Z=C[z] of poly-
nomials in the entries of a (generic) n x n complex matrix z given by, for peZ,

(P(a,b)p)(2)=p(b~" za) (1.1)

decomposes into a multiplicity free sum of irreducible representations p of the

form p(a,b)=1(a) ® 7'(h), where €S and 1’ is the contragredient representation.

This result will be needed later. It may be proved quite simply:

Lemmal.1. P=@r®7.
€S

Proof. Let 1=1, ® 1, be an irreducible representation of Gl(n,C) x Gl(n,C) on a

finite dimensional vector space V, and assume that t’s restriction to Uf(n, €C)

x U(n,C) is unitary. Assume moreover that there exists a non-zero linear map
T: V.- 2 such that

VveV, VzeM(n,C),Y(a, b)eGl(n, C) x Gl(n,C):
(To)b~" za)=(T(z,(@ @1, (b)) v)(2). (1.2)

Let Tv=(Tv) (1), where 1 denotes the identity matrix. T is clearly a non-zero
linear functional on V.. It follows from (1.2) that

To=T(, (@) ®7,@) 0 (1.3)

for all aeGlI(n,C). Hence the trivial representation is contained in the repre-
sentation a — 1,(a) ® 7,(a) of Gl(n,C). This happens exactly when 7,=1; and in
this case the trivial representation is contained exactly once. Finally it follows
from (1.2) that

(To))=T(x,()®1)v (1.4)

for all z, where we have extended 7, to M(n,C) by continuity. This implies that
7, must be polynomial. The converse is easily obtained. It is sufficient to
construct T which clearly may be taken to be

To=<v,w) (1.5)

where w0 is the unique (up to scalar multiples) vector for which (t(a) ® v'(a)) w
=w for all a in Gl(n,C).

The above result has been generalized to arbitrary Hermitian symmetric
space of the non-compact type by Schmid [12].

Definition1.2. I,, r=1,...,n, denotes the ideal in % generated by all r-order
minors (=subdeterminants).

It is a well-known result that these ideals are prime. Actually this may be
proved quite simply from the above, but we omit the proof. The variety V(I,) of
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the ideal I, is V(I,)={zeM(n,C)|rank z <r—1}. It follows that P leaves the ideal
I, invariant. We denote by S, the subset of S consisting of all 1

=1(Ny, Ny, ... Ay, ..., n) with n, 2n, 2 ... 2n1,>0. Obviously then
Lemma 1.3. ,
P, =0 t®7.
€8,

§2. Construction of Irreducible Holomorphic Representations of U(n, n)

G=U(n, n):{geGl(Z n,C)|g* [_?.I g I"] g= [_?. I ;’ I]}

n

Let

. a b
As usual we write the elements of G as [ ] where a, b, c and d are elements of
¢

d
M (n, €). The maximal compact subgroup K is taken to be

a—b
K=
{(b a)
We let v=a+1ib and u=a—ib. In what follows the notation etc. will be that of
[8]. It is realy SU(n,n) we are interested in but it is more convenient to work

with K as above and the difference is insignificant.
Let

(a+ib,a—ib)eU(n)x U(n)}.

PD={zeM(n,C)|(z—z*)/2i>0}, and

N
O,={keM@n,C)lk=k* k=0, and rank k<l}, @1)

for [=0,1,...,n—1. @ is the unbounded realization of the Hermitian symmetric
space G/K.

The starting point is the following theorem due to Rossi and Vergne [11,
§§4.5-4.6]:

Theorem 2.1. There is a semi-invariant measure y;, on ¢,(1=0,1,...,n— 1) such that

det(z/i) ™' = [ €M dy, (k). 2.2)
0

An analogous formula was derived for an arbitrary Hermitian symmetric
space of the non-compact type.

We shall be looking at representations of G on vector valued holomorphic
functions on 2 of the form

(U, @ N)=det(cz+d) 1, (zc* +dN)Q1,(cz+d) ' flaz+b/cz+d), (2.3)

where g~ 1= (a Z), 7, and t, are irreducible representations of U(n)(Gl(n, C))
c

on ¥, and V,, respectively, 7, belongs to the set S, and 7, is the contragredient
of an element of S. The representation of K from which this representation is
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holomorphically induced is
(u, v) > (detv) 1, (W) @ T,(v). 24)

We let d,(u,v)=(det v)*. The trivial representation of GI(n, C) is denoted by 1. If
the representation (2.3) is unitary in a space of holomorphic functions on 2 the
space is a reproducing kernel Hilbert space [3], and the kernel is given (uniquely
up to multiplication by a positive real constant) by

K., oz w)=det((z—w*)/20) " 1,(z—w*)20) @ 1,((z—w*)/2)~". (2.5

If one can express the function z—K_ ., ,(z,0) as the Fourier-Laplace transform
of a function with values in the set of positive semi-definite matrices, as in (2.2),
the kernel defines a Hilbert space on which the representation is unitary.

We use this observation on representations V, _ , where either 1, or 7, is
trivial. Representations where both 7, and 7, are non-trivial may then be
obtained by forming tensor products of these simple representations.

Proposition2.2. Let t=1(n,,n,,...,n,,0,0,...,00€S; and let i<l. Up to multipli-
cation by a strictly positive real number

det(z/2i) " t(z/2i) "' = [t (k) e =P d p, (k)
O

det(z/21) ' 1(z/2i) "1 = [t (k) e =R dy, (k).

(4}

(2.5)

Proof. We need only prove the first formula. Let F(z)= | t(k)e""*¥ dp,(k). Then,

for aeGi(n,C) o
Flaza*)=det(a*a) 't(a* ") F(z)1(a™).

Thus the claim follows if we can prove that F(i)=0. (By the irreducibility of
7, F(i) is a constant multiple of the identity matrix). Let e, denote the highest
weight vector for t. {t(k)e,,e,> is then a polynomial in I,~1I,, . It is in fact a
product of minors symmetric around the diagonal in k and thus, by the semi-
invariance of the measure p;, {(t(k)e;,e;>>0 ae. [y]. Hence {(F(i)e,,e,>
+£0. Q.E.D.

We let 7, be the representation t in (2.5) and let 7,(a)=1('a™").

Tensor products of holomorphic representations may be decomposed along
the lines of [6]. We shall only need the subrepresentation corresponding to the
restriction to the diagonal in £ x @. This representation always occurs in the
decomposition. Thus we may state

Proposition 2.3 [8]. The representations U,

T1,72,k

7,(0,0,..., —my, ..., —m)®1,(ny,...,n,0,...,00®9,

holomorphically induced from

with i+j <k are unitary.

IfU_, . ,isunitary,thensois U, for any me N, since we can tensor U,

Ty, T2, . 11, T2, k+m 4 1. T2, k
with the known ([14], [11]) unitary representation U, ; ,. Thus
Lemma2d. If U, ., , is not unitary then neither is U, _, , _,, for any meN.
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§3. On Missing K-types

The space @ is an open subset of M(n, €). The set &(V) of polynomials on the
dual to M(n,C) with values in a finite dimensional complex vector space V may
be identified with the space of V-valued constant coefficient differential operators
on &. We write elements of &(V) as p=p(6/0z). If V=V is the dual to the vector
space V; we define for every holomorphic function f from £ to V, and every
element p in &(V|) the C-valued holomorphic function (p,f) by

(P.f)(2)=(p(9/02), f (- )(z). (3.1)

In the following we shall make use of the bounded realization # of the
Hermitian symmetric space G/K

B={zeMn C)|zz*<1}. (3.2)

By the above remark a constant coefficient differential operator on £ is also a
constant coefficient differential operator on 2, and vice-versa. The Cayley
transform C,,

Co@)=(1+iz)/(1—iz) (3.3)

is a biholomorphic map from & onto %. More generally the map
(Cep oS )@ =det(i(z + 1)/Y2) 1, (2 + 1)/1/2)

@1, (iz+ )/Y/2) " f(z— V)/i(z+1))

sends holomorphic vector valued functions on 2 into holomorphic vector
valued functions on #. We let

(3.4)

Ub tz,kzc

T1,

U, . .CoL (3.5)

T, T2,k YT, T, 1,72,k

and if U,, ,, , is unitary in a Hilbert space H of holomorphic functions on & we
let H denote the corresponding Hilbert space of holomorphic functions on 4.
The restriction of U}, , to K is given by

(U3, e, 0) @) = (det o) 1, @) @ 7, (0) f(u ™" z ). (3.6)

In particular, the K-types are polynomials on %. The action of the full Lie
algebra through x—dU} _, ,(x) is described in [6, p.35].

Lemma3.1. If U, .. , is unitary on a Hilbert space H of holomorphic functions on
9, and p is a constant coefficient differential operator then

12,k

YfeH: (p,f)=0 < VgeH": (p,g)=0.

Proof. The Cayley transform is in G In fact it is essentially of the form e for
some xeg®. The map (3.4) may be viewed as the extension of U,, . , to that

element. The claim then follows by power series expansion and the invariance of

under U,, . . The converse is analogous. Then term (z¢* +d*) may be a cause

a b -
for some concern. However, J(g,z)=(zc*+d*)~" for g:[c d] satisfies
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J(g,8,,2)=J(g,.2,2)J(g,,2). If we put g, =g; ! we get
zc*+d*=(a—({az+b)fcz+d)c)~L. (3.7
The right hand side is the expression that was used to obtain (3.4). Q.E.D.

Let G/K be a hermitian symmetric space of the non-compact type. Cor-
responding to a Cartan decomposition g=£® s let yS=£"@ s @D s . lf Aisa
finite dimensional unitary representation of K on V, let

O(A)= {Analytic functions ¢: G— V||
VkeK: @(gk)=A(k) ' o(g) and Vxez™: r(x) =0},

where r denotes differentiation from the right. G acts on @(1) by left translation.
The space G/K is isomorphic to a bounded homogeneous domain #c 4*, the
Harish-Chandra realization of G/K. Through this identification the action of G
on ((4) becomes an action of G on the space of V,-valued holomorphic functions
on #. We denote this representation by U,.

Proposition 3.3. Suppose 4; is irreducible and that U, is unitary in a reproducing
kernel Hilbert space H, of holomorphic functions B#—V, ,i=1,2. Then U, 4, is
unitary in a reproducing kernel Hilbert space H, q;, of holomorphic functions
B-V, QV,, and

H, ,,2H;, ®V,,+V, ®H,,. (3.8)

Proof. Consider U, ® U,, on the Hilbert space H; ® H,,. Following the proof
of Proposition2.5 in [6] we observe that H, ® H,, is a reproducing kernel
Hilbert space of holomorphic functions on % x4, that the subspace H, of
functions that vanish on the diagonal of # x # is a G-invariant Hilbert space,
and that the restriction map R,

R(fs ®/N2) = [1(2)®f,(2) (39

intertwines U; ® U,, with a subrepresentation U} g, of U, ,,. R(H; ® H,)) is
canonically a Hilbert space and U; g,, is unitary on this space. But R(H,,
® H ) contains all the constant functions v, ® v,, v;€V, , hence U} ¢,,=Uj; g1,
and R(H; ®H;,)=H,, g,,. The inclusion (3.8) is then obvious. Q.E.D.

Corresponding to U, we let dU, denote the associated representation of
U(4%), and we define
W(A)={dU,(u) vlue(4"), veV,}. (3.10)

W(i) is a %(g%-module of polynomials on #. If A is irreducible, any
subspace of polynomials on # invariant under all dU,(u), ue#(4"%), contains
W (). (W(A) is the irreducible quotient of the module #(4%) g@ V,.) In this

UL DAT)

case, if U, is unitary on a Hilbert space H, of holomorphic functions on 4, then
W(A)cH, and W(4)=H,. By results in [3] H, is a reproducing kernel Hilbert
space and the kernel is unique up to multiplication by positive reals.

Corollary 3.4. If W(4,) is unitarizable and if W(L; ® A,)PW(4,)®V,, then W(4,)
is not unitarizable.




Singular Holomorphic Representations 73

Let us return to the case at hand, G=SU(n,n). As in the general case,
Proposition 3.3 and Corollary 3.4 can be dualized into statements about annihi-
lators of modules, and it is those that will be used in what follows:

We consider representations U? _ , with 1, and 7, fixed (and arbitrary) and
drop temporarily these subscripts. Let W, denote the corresponding #(g%-
module (3.10).

We define a bilinear pairing B between the space &, of (V,, ®V,,)-valued
constant coefficient differential operators on # and the space &, of V, ®V,,-
valued polynomials on 4 by, for e€é,, and peZ,,

B(e,p)=(e(0/0z), p(-))(0), (3.11)
and we define
A, ={ec& |V peW,,VzeZ: (e,p)z)=0},
and
W2 ={eeé,|V peW,: B(e,p)=0}. (3.12)

Since W, is invariant under differentiation we have

Lemma 3.5. 4, =W?.

Thus A, +0 exactly when W, is not equal to the set of all V, ®V,,-valued
polynomials on 4, i.e. when certain K-types are missing from W,. K acts on &,
through the pairing B as

(Ri (1, v) €)(8/02) =(det v) " 7, () @ 1, (v) e(‘u(d/02)'v™1). (3.13)

The elements of 4, may be taken to be homogeneous polynomials. Let d(4,)
denote the lowest degree occuring in A4,. If 4,0 clearly d(4,)=1.

Corollary 3.6. Assume that W, and W, _, are unitarizable and that A, +0. Then
A1 ¥0and d(A,_)=d(A,)—1.

Proof. Let U denote the representation U!, , corresponding to (U, , ,(g)f)(2)
=det(cz+d)"'f((az+b)/(cz+d)), and let W denote the corresponding %(z%)-
module. ((3.10)). It is easy to see that W contains all first order polynomials on
A. Let ecA,, peW,_,, and geW. It follows from Proposition 3.3 that pe W, and
q-peW,. Hence {{e,q].p>=0. Q.E.D.

Corollary 3.7. If W, is unitarizable and d(A,)=1 then W, _, is not unitarizable.

§4. The Main Result

Using Corollary 3.7 we shall now prove that the representations in Propo-
sition 2.3 exhaust the set of unitary holomorphic representations of SU(n, n).
Let t,=1(ny,...,n,;,0,...,0) and consider the reproducing kernel

K, .,z w)= [ 1,(k)e"" X dp, (k).
o,

It is easy to see that a constant coefficient (homogeneous) V -valued differential
operator ¢(0/0z) annihilates H if and only if

1,15,i
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YveV

o VkeO;: (e(k), T,(k)v)=0. 4.1
0, is a sufficiently big part of the variety V(I,, ,) that we conclude

Lemma4.1. ee&(V,) annihilates H, _, ; if and only if
VoeV,,: (t,(z) e(2), v)el;

As before we identify 7, with the representation a —t,('a~"). For each first
order polynomial e in &£(V},) and each vector v in V,, let

pe,v(z)=(1:2(z) e(Z), U)'

Pe, (b za)=(1,(2) T,(a)e(b ™" za), 7,(B " )v).

Let (R(a,b)e)(z)=1,(a)e(b~'za). It follows that the functions p.., transform
according to a subrepresentation of (a,b)— R(a,b)®1,('b~'). A (very) special
case of the Littlewood-Richardson rule (see e.g. [7]) asserts that one of the
irreducible subrepresentations of R is

Then

p,=1(0,...,0, -1)®@71(n,,...,n;, 1,0,...,0)

on, say, V, < &(V/,). Clearly for any polynomial e in sz, P..,+0 for some v’s in
V,,. On the other hand the representations contained in (a,b)— p,(a,b)®1,('b ")
that occur in the space of polynomials p, ,; eeV,,, veV,,, must be of the form 7
®1’ (Lemma 1.1) and hence, by Lemma 1.3,

VeeV,

P2’

YoeV,: (1,(2) e(a), v)el

Of course V, also carries the representation (a,b)— p,(a~','b~") which, by
duality, is the one we should consider. This means:

Proposition4.2. The space H, . i=1,...,n—1, is annihilated by first order
constant coefficient differential operators. The corresponding K-type that does not
appear in H is (u, v) > (detv)'p,(u, v).

1,12,i

Let 7,=1(0,...,0, —m,, ..., —m,;) and let
p1=10,...,0, =1, —m,, ..., —m)®1(1,0,...,0).
By similar reasoning we have

Proposition 4.3. The space H_ , ;,j=1,...,n—1, is annihilated by first order
constant coefficient differential operators. The corresponding K-type that does not
appear in H is (u,v)—>(detv)’p,(u,v).

t1,1,j

Let 7, and 7, be as before and turn to the bounded domain . If all first
order polynomials with values in V, ®V,, were contained in H? this
would imply that the K-type (u, v)—»(det v)'“ p5(u,v), where

Ty,T2,0+j°

p3=7(0,...,0, =1, =my, ..., —=m)®z(ny, ..., n;, 1,0,...,0),

should appear. However, usmg that H®

o, tz,J”CHt IJ®H1 e.i» the first order
polynomials that occur in H®

are seen to be of the form v, ®q+p®v,,

T1,T2,i+J
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where geH' ,,, peH? | and veV, (i=1,2). Hence it follows from Pro-
position4.2 and Proposition 4.3 that the above K-type is missing. Thus

Proposition4.4. The space H,, , ;. i,je{l,...,n—1}, is annihilated by first order
constant coefficient differential operators. The corresponding K-type that does not
appear in H is (u, v)— (det v) ™4 p,(u, v).

Ty, 72,0+ j

Combining the last three propositions with Lemma 2.4 and Corollary 3.7 we
obtain

Theorem 4.5. The representations U, ,, , of SU(n,n), holomorphically induced from
1,(0,..,0, =y, .. —m)® T,y ..., 1,0, ..., 0)®F,

are unitary if and only if i+j=<k.

§5. U(p, 9

Only a few extra observations are needed to handle these groups along the lines
of the preceding chapters. We shall be content to give these and then state the
theorem. The notation essentially follows [8].

We assume p>gq and let r=p-—g. Throughout 7, denotes an irreducible
representation of Gl(g,C) belonging to the set S, and 7, an irreducible repre-
sentation of Gl(p, L) whose contragredient belongs to S. Elements of M(q, C) are
denoted z,,z,, etc, and elements of M(r, ¢, C), the space of linear maps from €4
to €’, are denoted u,,u,, etc. The maximal compact subgroup K is isomorphic
to U(p)x U(g). The domain corresponding to 2 for U(n,n) is again denoted &,
and is defined as

D={(z,u)|ze M(q,C), ueM(r,q,C), and (z —z*)/i >u*u}. é.1

Representations U, ., ,, holomorphically induced from irreducible unitary
representations of K, are again considered. If U, , , is unitary in a Hilbert space
H_ . .. this space is a reproducing kernel Hilbert space ([3]) and the kernel is

given by
—D2i iut)2
Kbty 23,00) = et (2, =25 =iy 20) e, 41752 ’“ZM]

_iul/ﬁ 1
®1,((z; — 2§ —iuFuy)2) 7" (5.2)

The t,-part of this kernel differs slightly from that of [8]. If we write
elements g of U(p, q) as

g=(°° g) aeM(p,C), etc, and let p=(Z) for (z,u)e 2,
y

the action of g on @ is given as g-p=(xp+ B)(yp+9)~". A slight problem occurs
when the automorphic factor J (g, p)=o—(g-p)y (cf. (3.7) and (2.3)) is considered:
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For p,= ((l)) the representation k— J,(k, p,) of K 13 not unitary. An equivalent

representation which is unitary is

o (7 o (51

0 1

(]/izﬂ -I, where I is the identity on €9). Thus, for the representations U,

Ty, 12,k

it is understood that the t,-part of the multiplier has been changed by
1/y2 0 . . .

Ad (rl ( /})/‘ 1)) With this change the Eq.(5.2) follows from the covariance

properties of the kernel. Later, when the bounded realization is considered the

automorphic factor must be changed back to its original form. As this change

does not affect the number of K-types it is insignificant and we shall make no
further comments on this issue.

Let t,=1(n,,...,n,;,0,...,0). Since, up to a constant multiple,
det((z; — 23 —iutu,)/2) 71 ((z, — 25 —iufu,)20)

— j‘ ,Cz(k)eitr(zl —z5 —iudu)k d,ui(k), (53)
0,

where 0,={keM(q,C)|k=k* k=0, and rank k <i}, we get from Proposition4.2

Proposition5.1. The Hilbert space H, ., ; is annihilated by first order constant
coefficient differential operators.

Let 1, =7(0,...,0, —m,, ..., —m;) and let 1 denote the contragredient repre-
sentation, i.e. YbeGl(p, €): A(b)=1('b~"). Then, up to a constant multiple,

det((zl—zg—iugul)/zi)ﬂ'rl [(le;z/f%;i llug‘/l/i]
Tt

e o [ 220 iugy2
=ik [—iul/l/i 1

where ¢;= {ke M(p,C)|k=k*, k=0, and rank k <j}.

Since in a reproducing kernel Hilbert space of holomorphic functions norm
convergence implies uniform convergence on compacta, a constant coefficient
differential operator that annihilates a dense subspace, annihilates the whole
space. Thus, if we can find a differential operator p(d/0z, 8/0u) such that

A oo [Ei— 2020 w2
(p(@/@z,@/&u),@jj/l(k)e [—iul/l/i 1 ] ko dyj)_o (5.5)

] ked (k). (5.4)

9,

for all (zy,u,), (z,,u,) in 2, and all veV,, then p annihilates H, , ; With k

k
= [ ! ﬁ ] where k, e M(q, C), etc., the condition (5.5) is equivalent to
2

ﬂ*
(B(—"ky/2i, —i'B/Y/2), A(k)v)=0 (5.6)
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on 0, for all veV, . We shall be looking for first order polynomials p and may
therefore just as well look for first order polynomials p such that

(p(ky,'B), A(k)v) (5.7)
on @, for all veV,. Write elements z of M(p,C) as z= [Z’ 22], where
zZy 2z,
z,€M(q,C), etc. As in the proof of Propositions4.2 and 4.3 we can find a space
V, 4 {0} of first order polynomials on M(p,C) such that V, is invariant under the
representation
(p(a,b)a)(z)=A(b~1)qb~" za)(=1(b)q (b~ ' za)),
VveV,, VqeV,: (A(z)q(z),v)el;, ,, (5.8)
and any first order polynomial ¢ on M(p, €) which satisfies (5.8) belongs to V. If
0 .
we can find a geV, such that q( ZZ>=q (Z1 ) we will be done. Using
Zy Z, z; 0
the invariance of V, under p(a,1), aeGl(p,T), it follows readily that for any
0 . .
g€V, the polynomial q,,q, [zl 22] =q [zl ], satisfies (5.8). Thus it suffices
Zy Z4 zy 0
to prove

0
Lemma 5.2, 3geV, such that q [21 0] #*0.
23

Proof. Assume the converse and write

q (2 Z) =q,(21)+q,(2,) +q5(25) +q4(z,).

Then for all geV, q, and g, are zero. If

1
a=(y T)eMeO o aey,
and hence, for all ueM(r,q,C) and all z,,z,, q,(z,u*)+q,(z;u*)=0. Thus g, =4,
=0, and hence V,={0}. Contradiction.
We can then state:

Proposition5.3. The Hilbert space H
coefficient differential operators.

w.1,; is annihilated by first order constant

Finally, by forming tensor products as in §4, we arrive at
Theorem 5.4. The representations U, ., . of U(p,q), holomorphically induced from
7,0,...,0, —=my, ..., = m)®@1,(ny,...,n;,0,...,0)® 9,

are unitary if and only if i+j<k.
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§6. A Concluding Remark

As a corollary we get that any irreducible unitary holomorphic representation of
U(p, q) appears in the k-th fold tensor product of the harmonic representation
for some k, as was conjectured in [8]. Since the harmonic representation itself is
the sum of all representations living on the orbit(s) ¢, this conjecture has a
natural extension to tube domains and conceivably to arbitrary Hermitian
symmetric spaces of the non-compact type.

We wish to thank M. Harris, LE. Segal, and M. Vergne for friendly discussions about these topics.
We are also grateful for the valuable comments of the referee.
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