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Introduction 

In this article the full set of irreducible unitary holomorphic representations of 
U (p, q) is determined. 

For  a general Hermitian symmetric space G/K of the noncompact type the 
set of irreducible unitary representations of G on scalar valued holomorphic 
functions has been found by Wallach [14] and by Rossi and Vergne [11]. For 
the groups Mp(n, ~) and SU(n, n) unitary irreducible representations on vector 
valued holomorphic functions have been obtained by Gross and Kunze [1] from 
the decomposition of tensor products of the harmonic (Segal-Shale-Weil) repre- 
sentation L. Later the complete description of these tensor products for the 
groups Mp(n, lR) and U(p,q) was given by Kashiwara and Vergne [8] (see also 
[4]), and it was conjectured that any irreducible unitary representation with 
highest weight appears in the k-th fold tensor product of L for some k. As we 
shall see, for the groups U(p, q) this is indeed so. 

The case of G=SU(2,2) has been treated in [9] and [2]. In both cases some 
rather technical computations of F-functions were successfully completed by 
means of the detailed knowledge of Clebsch-Gordan and Racah coefficients for 
U(2), available through the physics literature. Based on results in [10] a different 
proof for SU(2, 2) was recently given [15]. 

For G=SU(n,n) the representations are of the form (U(g)f)(z) 
=J(g-l ,z)-l f((az+b)/(cz+d)) where the automorphic factor J(g,z) is a pro- 
duct of an automorphic factor J0(g, z), which does not contain det(c z + d) to any 
power, and det(cz+d) to an integer power. Let U =  Uso, k if the power is k. The 
key observation we make is: If Ujo,k and Uso, k_ 1 are unitary and the Hilbert 
space Hjo,k of Ujo, k is annihilated by constant coefficient differential operators, 
then USo,k_ ~ is annihilated by constant coefficient differential operators of one 
order less. To establish this fact and to make full use of it we need the theory of 
tensor products of holomorphic representations as developed in [-5] and [6]. 

* This research was supported in part by NSF grant MCS 77-07596 

0020-9910/80/0062/0067/$02.40 



68 H.P. Jakobsen 

w On the Ring ~ = ~ [ z ]  of Polynomials in the Entries of z 

Let S denote the set of irreducible polynomial representations r of Gl(n, lE) for 
which ~(a*)=z(a)* for all a in Gl(n, ll?,). It is a classical result, due to Schur [13], 
that the representation P of Gl(n,~)x Gl(n,C) on the space ~ = t r [ z ]  of poly- 
nomials in the entries of a (generic) n x n complex matrix z given by, for peN, 

(P(a, b) p) (z )=p(b  -1 z a) (1.1) 

decomposes into a multiplicity free sum of irreducible representations p of the 
form p(a, b)=v(a) |  where r s S  and ~' is the contragredient representation. 
This result will be needed later. It may be proved quite simply: 

Lemma 1.1. P = (~)r | 
r~S 

Proof Let z=~ l  |  be an irreducible representation of Gl(n,~)x  Gl(n,C) on a 
finite dimensional vector space V~ and assume that r's restriction to U(n,~) 
x U(n,C) is unitary. Assume moreover that there exists a non-zero linear map 
T: V: ~ ~ such that 

V v~ V~, V zeM(n, ff2), V(a,b)eGl(n, ll2) x Gl(n, ff2): 

(Tv)(b - 1 z a) = (T(~ l(a) | r 2 (b)) v)(z). (1.2) 

Let Tv=(Tv)  (1), where 1 denotes the identity matrix. T is clearly a non-zero 
linear functional on V~. It follows from (1.2) that 

Tv = T(zl (a) | re(a)) v (1.3) 

for all aeGI(n,C). Hence the trivial representation is contained in the repre- 
sentation a--*~l(a)| ) of Gl(n, ll2). This happens exactly when r 2 =z'l and in 
this case the trivial representation is contained exactly once. Finally it follows 
from (1.2) that 

(TO(z) = 7"(r 1 (z) | 1) v (1.4) 

for all z, where we have extended z~ to M(n,r  by continuity. This implies that 
r l  must be polynomial. The converse is easily obtained. It is sufficient to 
construct T which clearly may be taken to be 

7"v=(v,w) (1.5) 

where w # 0 is the unique (up to scalar multiples) vector for which (~(a)| ~'(a))w 
=w  for all a in Gl(n,~2). 

The above result has been generalized to arbitrary Hermitian symmetric 
space of the non-compact type by Schmid [12]. 

Definition 1.2. I,, r= 1,... ,n, denotes the ideal in ~ generated by all r-order 
minors (=  subdeterminants). 

It is a well-known result that these ideals are prime. Actually this may be 
proved quite simply from the above, but we omit the proof. The variety V(Ir) of 
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the ideal I, is V(Ir)= {zeM(n,  ll2)lrank z < r - 1 } .  It follows that P leaves the ideal 
I r invariant. We denote by S~ the subset of S consisting of all r 
= z(n 1, n 2 . . . .  , n i . . . .  , n,) with n 1 > n 2 > ... > n~ > 0. Obviously then 

Lemma 1.3. 
P[I = @ z |  ' . 

~eS~ 

w Construction of Irreducible Holomorphic Representations of U(n, n) 

Let 
~ i0' l} 

As usual we write the elements of G as [~ bd]wherea, b, cand  d a r e e l e m e n t s o f  

M(n, ~2). The maximal compact subgroup K is taken to be 

K = { ( : - b a )  (a+ib,  a - i b ) e U ( n ) x U ( n ) } .  

We let v =a + i b  and u = a - l b .  In what follows the notation etc. will be that of 
[8]. It is realy SU(n,n) we are interested in but it is more convenient to work 
with K as above and the difference is insignificant. 

Let 
= {z e M(n, IE)l (z - z*)/2 i > 0}, and 

(2.1) 
( g l = { k e m ( n , C ) l k = k *  , k>O, and rank k<l} ,  

f o r / = 0 ,  1 . . . .  , n - 1 .  ~ is the unbounded realization of the Hermitian symmetric 
space G/K. 

The starting point is the following theorem due to Rossi and Vergne [11, 
w167 

Theorem 2.1.7here is a semi-invariant measure #l on (9 t ( l = O, 1, . . . ,  n -  1) such that 

det(z/i)-t  = ~ eimZk) dgt(k). (2.2) 

An analogous formula was derived for an arbitrary Hermitian symmetric 
space of the non-compact type. 

We shall be looking at representations of G on vector valued holomorphic 
functions on ~ of the form 

( U ~ , ~ 2 , k ( g ) f ) ( z ) = d e t ( c z + d ) - k z 1 ( z c * + d * ) |  (2.3) 

where g-1 = (~ bd),r,  and ~2 are irreducible representations of U(n)(Gl(n,C)) 

on V~ and V~2, respectively, ~2 belongs to the set S, and T l is the contragredient 
of an element of S. The representation of K from which this representation is 
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holomorphically induced is 

(u, v) --, (det v) k z I (U) ~) "~ 2 (V). (2.4) 

We let 6k(U,V)=(det  v) k. The trivial representation of Gl(n, ff2) is denoted by 1. If 
the representation (2.3) is unitary in a space of holomorphic functions on ~ the 
space is a reproducing kernel Hilbert space [3], and the kernel is given (uniquely 
up to multiplication by a positive real constant) by 

K ..... .  k ( Z , w ) = d e t ( ( z - - w * ) / 2 i )  k z l ( ( z - - w * ) / 2 i ) Q z 2 ( ( z - - w * ) / 2 i ) - l .  (2.5) 

If  one can express the function z ~ K . . . .  2, k(Z,O) as the Fourier-Laplace transform 
of a function with values in the set of positive semi-definite matrices, as in (2.2), 
the kernel defines a Hilbert space on which the representation is unitary. 

We use this observation on representations V ..... k where either z 1 or z 2 is 
trivial. Representations where both z 1 and z 2 are non-trivial may then be 
obtained by forming tensor products of these simple representations. 

Proposition2.2. Le t  z - = z ( n l , n 2 ,  . . . ,ni,0,0, ...,0)ESI and let i < l. Up to multipli- 
cation by  a s tr ic t ly  posi t ive  real number  

det (z/2 i ) - l  z ( z /2  i ) -  1 = ~ z (k) e itrCzk) d #l(k ) 

o, (2.5) 
det (z/2 i)-1 .r(tz/2 i ) -  1 = ~ ,r(tk) eitr(zk) d#t(k)" 

r 

P r o o f  We need only prove the first formula. Let F(z)= ~'r(k)eitrtzk)d/~l(k ). Then, 
for aeGl (n ,  ff~) o, 

F(a z a*)= det (a* a) - l  "r(a* - 1) F(z)  z (a -1). 

Thus the claim follows if we can prove that F ( i )#O .  (By the irreducibility of 
z ,F( i )  is a constant multipIe of the identity matrix). Let e 1 denote the highest 
weight vector for z. ( z ( k ) e l , e ~ )  is then a polynomial in I i \ I ~ +  1. It is in fact a 
product of minors symmetric around the diagonal in k and thus, by the semi- 
invariance of the measure #~, ( t ( k ) e l , e l ) > O  a.e. [#l]. Hence < F ( i ) e l , e ~ )  
:t:0. Q.E.D. 

We let z 2 be the representation z in (2.5) and let z l ( a ) = z ( t a - 1 ) .  
Tensor products of holomorphic representations may be decomposed along 

the lines of [6]. We shall only need the subrepresentation corresponding to the 
restriction to the diagonal in ~ x 9 .  This representation always occurs in the 
decomposition. Thus we may state 

Proposition2.3 [8-1. The representat ions  U~ ..... k holomorphical ly  induced f r o m  

zl(O, O, . . . ,  - m  1 . . . .  , - m j ) @ z 2 ( n l  . . . . .  ni, O . . . .  , 0 ) |  k 

with i + j  N k are unitary.  
If U~1 .... k is unitary, then sois U~,, ~2, k + m  for any meN,  since we can tensor U~ ..... k 

with the known ([14], [11]) unitary representation U1, 1, 1. Thus 

Lemma2.4.  I f  U~ ..... k is not  uni tary  then nei ther  is U~,~2,k_ m fo r  any  m e N .  
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w On Missing K-types 

The space ~ is an open subset  of  M(n,~) .  The set g(V) of polynomials  on the 
dual to M(n,112) with values in a finite dimensional  complex vector  space V may  
be identified with the space of V-valued constant  coefficient differential opera tors  
on 5~. We  write elements of  eC(V) as p=p(c?fl?z). If V =  V; is the dual to the vector  
space I/1 we define for every ho lomorph ic  function f f rom ~ to I/1 and every 
element p in d~ ') the r ho lomorph ic  function (p, f )  by 

(p, f )  (z) = (p(O/Oz),f (" ))(z). (3.1) 

In the following we shall make  use of  the bounded  realizat ion ~ of the 
Hermi t i an  symmet r ic  space G/K 

= {z~M(n,  112)1 z z* < 1 }. (3.2) 

By the above remark  a constant  coefficient differential opera to r  on N is also a 
constant  coefficient differential opera to r  on ~ ,  and vice-versa. The  Cayley 
t ransform Co, 

Co(z ) = (1 + i z)/(1 - i z) (3.3) 

is a b iho lomorph ic  m a p  from ~ onto  N'. M o r e  generally the m a p  

(C ...... kf)  (z) = det (i (z + 1)/1/2) -k z l ((z + 1 )/1//2) 

@ rz(i(z  + 1)/] /~)-  l f ( ( z - -  1)/i(z + 11) 
(3.4) 

sends ho lomorph ic  vector  valued functions on ~ into ho lomorph ic  vector  
valued functions on M. We let 

U b - C  .... 2.kU~l C-1  (3.5) 
~ l , r 2 , k - -  ,~2,k r l ,~2,k 

and if U, ..... k is uni tary in a Hi lber t  space H of ho lomorph ic  functions on ~ we 
let H b denote  the corresponding Hi lber t  space of ho lomorph ic  functions on @. 
The restr ict ion of U~ .... k to K is given by 

(U~ .... k(u, v) f ) ( z )  = (det v) k zl(u) | r 2 (v) f (u-1 z v). (3.6) 

In part icular,  the K- types  are polynomials  on M. The  act ion of the full Lie 
algebra through x~dU~,~2,k(X ) is described in [6, p. 35]. 

L e m m a  3.1. I f  U~. ~, k is unitary on a Hilbert space H of  holomorphic functions on 
~ ,  and p is a constant coefficient differential operator then 

V f e H :  ( p , f ) = 0  r VgeHb:  (p ,g )=0 .  

Proof. The Cayley t ransform is in G r In fact it is essentially of the form e ~ for 
some x e p  r The  m a p  (3.4) may  be viewed as the extension of U, ..... ~ to that  
element. The claim then follows by power  series expansion and the invar iance of 
under  U~ ..... k- The  converse is analogous.  Then  te rm (zc* +d*) may  be a cause 

for some  concern. However ,  J ( g , z ) = ( z c * + d * )  -1 for g = / a  ~ / 
L ~  

satisfies 
kc a j  
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J(gag2,z)=J(gl ,g2z)J(g2,z)  �9 If we put gl =g21 we get 

z c* + d* = ( a -  ((a z + b)/(c z + d)) c)- 1. (3.7) 

The right hand side is the expression that was used to obtain (3.4). Q.E.D. 

Let G/K be a hermitian symmetric space of the non-compact type. Cor- 
responding to a Cartan decomposition ~ =,f � 9  let ~r  JCq)~+O/~- .  If 2 is a 
finite dimensional unitary representation of K on V a let 

(9(2) = {Analytic functions (p : G ~ Va] 

Vk~K: q~(gk)=2(k) -1 (p(g) and gx~/r  r(x)q~=0}, 

where r denotes differentiation from the right. G acts on (9(2) by left translation. 
The space G/K is isomorphic to a bounded homogeneous domain ~ c fi+, the 
Harish-Chandra realization of G/K. Through this identification the action of G 
on (9(2) becomes an action of G on the space of Va-valued holomorphic functions 
on H. We denote this representation by U a. 

Proposition 3.3. Suppose 2 i is irreducible and that Ua, is unitary in a reproducing 
kernel Hilbert space Ha, of holomorphic functions H ~ Va,, i = 1, 2. 7hen Ua, | is 
unitary in a reproducing kernel Hilbert space Ha, oa ~ of holomorphic functions 
~ ~ Va, | Va~ and 

H< | ~ Ha, | Va2 + Va, | Haa' (3.8) 

Proof. Consider Uz, | Ua2 on the Hilbert space Ha, | H a .  Following the proof 
of Proposition2.5 in [-6] we observe that Ha,| is a reproducing kernel 
Hilbert space of hotomorphic functions on ~ x H, that the subspace H 0 of 
functions that vanish on the diagonal of ~ x H is a G-invariant Hilbert space, 
and that the restriction map R, 

(R(f~ | = f~ (z) | (z) (3.9) 

intertwines Ua, | Ua2 with a subrepresentation U~, | of Ual | R(Ha,| is 
canonically a Hilbert space and U;~,| is unitary on this space. But R(Ha, 
| ) contains all the constant functions t h | v~eVa,, hence U~,| = Ua,| ~ 
and R(Ha, | 1 7 4  ~. The inclusion (3.8) is then obvious. Q.E.D. 

Corresponding to U a we let dU a denote the associated representation of 
q/(~r and we define 

W(2)= {dUa(u). vlusY/(~r veVJ .  (3.10) 

W(2) is a q/(~e)-module of polynomials on ~.  If 2 is irreducible, any 
subspace of polynomials on ~ invariant under all dUa(u), uEq/(yr contains 
W(2). (W(2) is the irreducible quotient of the module q/(~r ~)~, Va. ) In this 

case, if U a is unitary on a Hilbert space H a of holomorphic functions on H, then 

W(2 )cH  a and W(2)= H a. By results in [3] H a is a reproducing kernel Hilbert 
space and the kernel is unique up to multiplication by positive reals. 

Corollary 3.4. I f  W(21) is unitarizable and if W(21 | 213 W(21) | Vae then W(/~2) 
is not unitarizable. 
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Let us return to the case at hand, G=SU(n,n). As in the general case, 
Proposition 3.3 and Corollary 3.4 can be dualized into statements about annihi- 
lators of modules, and it is those that will be used in what follows: 

b We consider representations U ...... k with z~ and "[2 fixed (and arbitrary) and 
drop temporarily these subscripts. Let W k denote the corresponding ~ ( ~ ) -  
module (3.10). 

We define a bilinear pairing B between the space d~ of (V~ | V~2)'-valued 
constant coefficient differential operators on N and the space ~k of V~, | V~- 
valued polynomials on ~ by, for eegk, and Pe~k, 

and we define 

and 

B(e, p) = (e(O/c?z), p( . ))(0), 

A k = {e6~kl V p6 Wg, V z ~ :  (e, p)(z) = 0}, 

(3.11) 

W ~  {eegklV pe Wk: B(e,p)=O}. (3.12) 

Since W k is invariant under differentiation we have 

Lemma 3.5. A k = Wk ~ 

Thus Ak+O exactly when W k is not equal to the set of all V~| 
polynomials on ~,  i.e. when certain K-types are missing from W k. K acts on gk 
through the pairing B as 

(R'k(U, v) e)(~/Oz) = (det v) -k z 1 (u) | z2(v ) e(tu(~/(?z)~v- 1). (3.13) 

The elements of A k may be taken to be homogeneous polynomials. Let d(A k) 
denote the lowest degree occuring in A k. If A k +0  clearly d(Ak)> 1. 

Corollary3.6. Assume that W k and W k_l are unitarizable and that Ak 4=O. 7hen 
Ak_ 1 :~0 and d (Ak_ l )=d(A , ) -  1. 

Proof. Let 0 denote the representation U b corresponding to (U1,1, l(g)f)(z) 1,1,1 
=det (cz+d) - l f ( (az+b) / (cz+d) ) ,  and let W denote the corresponding q/(~r 
module. ((3.10)). It is easy to see that W contains all first order polynomials on 
~.  Let eSAk, peWk_~, and qeW. It follows from Proposition 3.3 that p e W  k and 
q . p e W  k. Hence ([e,q],p)=O. Q.E.D. 

Corollary3.7. I f  W k is unitarizable and d(Ak)= l then Wk_ 1 is not unitarizable. 

w The Main Result 

Using Corollary3.7 we shall now prove that the representations in Propo- 
sition 2.3 exhaust the set of unitary holomorphic representations of SU(n, n). 

Let z 2 = z(n I . . . . .  n~, 0 .. . .  ,0) and consider the reproducing kernel 

K1 . . . .  i(z, w)= ~ z2(k)e i'r(z-w*)k dpi(k)" 

It is easy to see that a constant coefficient (homogeneous) V~'2-valued differential 
operator e(c?/Oz) annihilates Ht,~2,1 if and only if 
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Vve V,:, Vke (91: (e('k), z2(k)v ) = 0. (4.1) 

(9~ is a sufficiently big part of the variety V(Ii+~) that we conclude 

Lemma 4.1. eeg(V" ) annihilates Hl,~,i if  and only if 

Vve V~ : (z2(z) e(z), v)eli+ a. 

As before we identify z~ with the representation a--*z2('a-1). For each first 
order polynomial e in g(V~') and each vector v in V~ let 

Pe, v(Z) = ( 'C2(Z)  e(z), v). 
Then 

Pe,,(b- 1 za) = (zE(z) zz(a ) e (b - '  za), z2('b -1)V). 

Let (R(a,b)e)(z)=zz(a)e(b- lza) .  It follows that the functions Pe,~ transform 
according to a subrepresentation of (a, b) ~ R(a, b)| A (very) special 
case of the Littlewood-Richardson rule (see e.g. [7]) asserts that one of the 
irreducible subrepresentations of R is 

P 2  - -  Z ( 0  . . . .  , 0 ,  - -  1 ) |  . . .  , ni, t, 0 , . . . ,  O) 

on, say, V p c g ( V ' ) .  Clearly for any polynomial e in Vp~, pe,~+O for some v's in 
V,. On the other hand the representations contained in (a, b ) ~  p2(a, b)| 
that occur in the space of polynomials p~,~; eeVp2, veV,~, must be of the form z 
|  (Lemma 1.1) and hence, by Lemma 1.3, 

V eeVp2, VveK2: (Zz(Z)e(z),v)~li+l. 

Of course Vo2 also carries the representation (a ,b )~pE( ta - l , ' b  -a) which, by 
duality, is the one we should consider. This means: 

Proposition4.2. The space Ha,~, i , i= 1 . . . . .  n -  1, is annihilated by first order 
constant coefficient differential operators. The corresponding K-type that does not 
appear in H a .... i is (u, v) --* ( det v) i p z (U , V). 

Let zl =z(0  . . . .  , 0 , - r n  a . . . .  , - m j )  and let 

Pl = z(0 . . . .  ,0, - 1, - ml, ..., - mj)| 0 . . . .  ,0). 

By similar reasoning we have 

Proposition 4.3. The space H~I ' a,j,J = 1 . . . .  , n -  1, is annihilated by first order 
constant coefficient differential operators. The corresponding K-type that does not 
appear in H,I, 1,j is (u, v) --* (det v) Jp a (u, v). 

Let z I and z a be as before and turn to the bounded domain ~.  If all first 
order polynomials with values in V~,| were contained in H~,,~,i+ j, this 
would imply that the K-type (u, v ) ~  (det v)~+Jp3(u, v), where 

P3 =z(0  . . . .  ,0, - 1, - m a ,  ..., - m j ) |  ..., ni, 1,0 . . . . .  0), 

/ 4  b ~ L/b ~ ' ~ / 4 b  should appear. However, using that ..~,,,2,i+j a,.~l,l,j'..~.yxxl,.r the first order 
polynomials that occur in Hb~,,,~,~+j are seen to be of the form V l @ q + p @ v 2 ,  
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where q~H~ .... i, _ b peH~, l .S  , and vieV~, (i=1,2).  Hence it follows from Pro- 
position 4.2 and Proposition 4.3 that the above K-type is missing. Thus 

Proposition 4.4. The space H ...... ~+~, i , je{1 . . . . .  n - 1  }, is annihilated by first order 
constant coejficient differential operators. The corresponding K-type that does not 
appear in H ...... i+s is (u, v)--*(det v)i+~ p3(u, v). 

Combining the last three propositions with Lemma 2.4 and Corollary 3.7 we 
obtain 

Theorem 4.5. 7he representations U~ ..... k of S U(n, n), holomorphically induced from 

zl(0 .... ,0, - m x  . . . . .  -mj ) |  1 . . . .  ,ni,O . . . . .  0) |  k 

are unitary if and only if i + j  < k. 

w 5. U(p, q) 

Only a few extra observations are needed to handle these groups along the lines 
of the preceding chapters. We shall be content to give these and then state the 
theorem. The notation essentially follows [8]. 

We assume p > q  and let r = p - q .  Throughout  z 2 denotes an irreducible 
representation of Gl(q,C) belonging to the set S, and z 1 an irreducible repre- 
sentation of Gl(p, ll~) whose contragredient belongs to S. Elements of M(q,112) are 
denoted z~,z2, etc., and elements of M(r,q,C),  the space of linear maps from ~q 
to ~r, are denoted Ul,U2, etc. The maximal compact  subgroup K is isomorphic 
to U(p) x U(q). The domain corresponding to ~ for U(n,n) is again denoted 9 ,  
and is defined as 

~ =  {(z ,u)lz6M(q,  ~),  ueM(r ,q ,  llJ), and ( z -  z*)/i >u*u}.  (5.1) 

Representations U~ ..... k, holomorphically induced from irreducible unitary 
representations of K, are again considered. If  U~ ..... k is unitary in a Hilbert space 
H ...... k, this space is a reproducing kernel Hilbert space ([3]) and the kernel is 
given by 

(z - z * ) / 2 i  
K ...... k(Zl, Ul, Z2, U2) = det ((z 1 - z* - iu~ ul)/Zi)-kZx - iu 1/1/~ 

| Zz((Z 1 - z~ - i u * u O / 2 i  ) -  1. 

The zl-part  of this kernel differs 
elements g of U(p, q) as 

(5.2) 

slightly from that of [8]. If we write 

g =  ? , e E M ( p ,  II~), etc., and let p =  for ( z , u ) e ~ ,  

the action o f g  on @ is given as g .p=(c~p+[J)(Tp+6) -~. A slight problem occurs 
when the automorphic factor Jl(g, P)= c~-(g, p)y (cf. (3.7) and (2.3)) is considered: 
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li\ 
For p0= ~0~ the representation k--~Jl(k, po)of  K is not unitary. An equivalent 

representation which is unitary is 

(l/~ =1//2.I 0 where Iq is the identity on Cq). Thus, for the representations U~ ..... k 
it is understood that the rl-part of the multiplier has been changed by 

( ( 1 / 0 ~  ~) ) With this change the Eq. (5.2) follows from the covariance Ad zl 

properties of the kernel. Later, when the bounded realization is considered the 
automorphic factor must be changed back to its original form. As this change 
does not affect the number of K-types it is insignificant and we shall make no 
further comments on this issue. 

Let % = r ( n  I . . . . .  hi,0, ...,0). Since, up to a constant multiple, 

det ( (z 1 - z~ - iu~  u 1)/2 i)-i z 2( (z l - z~ - i u*  u1)/2 i )- t 

= ~ z2(k)ei,.~=, -=~ -i.~.,)k d#i(k) ' (5.3) 

where (9~= {keM(q,~2)lk=k*,k>O, and rank k __< i}, we get from Proposition4.2 

PropositionS.1. The Hilbert space H 1 .... i is annihilated by first order constant 
coefficient differential operators. 

Let ~1 =v(0 . . . .  ,0, - m l ,  ..., -m j )  and let 2 denote the contragredient repre- 
sentation, i.e. VbeGl(p, I1~): 2(b)=~('b-X). Then, up to a constant multiple, 

((z 1 - z* - iu~  u1)/2i )-jza [ (zl 
z*)/2i o 

det 

,~('k) e -,r [(Zl - z~)/2i " ,u ] 
r _ iu l / l /~  l~/ l /~] 'kdl~j(k) ,  (5.4) 

where (gj = {keM(p, t12)1 k = k*, k > 0, and rank k <j}. 
Since in a reproducing kernel Hilbert space of holomorphic functions norm 

convergence implies uniform convergence on compacta, a constant coefficient 
differential operator that annihilates a dense subspace, annihilates the whole 
space. Thus, if we can find a differential operator p(O/Sz, ~?/c?u) such that 

@(8/Sz, 8/Su), ~J~ 2(tk)e -'~ I--lull] ,/~[(zl-z*)/2i l ]lU*/1/~j k v .d# , )=O (5.5) 

for all (Zx,UO, (z2,u2) in N, and all veV,~, then p annihilates H~,I,~. With k 

= [  kl~ fl "] where kieM(q,e), etc., the condition (5.5)is equivalent to 
fl* k 2 

(p(- 'k l /2 i ,  - i 'fill~2), 2('k)v) = 0 (5.6) 
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on (9~, for all v~ V,. We shall be looking for first order  polynomials  p and may  
therefore just as well look for first order polynomials  p such that  

(p('kl, 'fl), 2(tk)v) = 0 (5.7) [zl z2] 
on (g j, for all veV~. Write elements  z of  M ( p , ~ )  as z =  , where 

Z 3 Z 4 

zl~M(q, tE), etc. As in the p roof  of  Proposi t ions4.2  and 4.3 we can find a space 
Vp 4: {0} of first order  po lynomia ls  on M(p, r  such that  Vp is invar iant  under  the 
representa t ion 

(p(a, b)q)(z)= 2(tb -1) q(b -1 za)( = r(b) q(b-1 za)), 

Vve V~,, Vq6 Vo: (2('z) q(z), v)eI~+ 1, (5.8) 

and any first order  po lynomia l  q on M(p, ll2) which satisfies (5.8) belongs to V o. If  

zl zz = q  we will be done. Using we can find a q e Vp such that  q z3 z4! z3 

the invariance of Vp under  p(a, 1), a eGl(p, ll~), it follows readily that  for any 

q e Vp the po lynomia l  q,, q, =q , satisfies (5.8). Thus  it suffices 
to prove  z3 z4 z3 

LemmaS.2 .  3q~V o such that q z3 

Proof. Assume the converse and write 

zl z2)=ql(zl)+q2(z2)_t_q3(z3)+q4(z4). 
q z3 z4 

Then for all qe  Vp ql and q3 are zero. If 

u,) 
a,= 1 eM(p, ll2) p(a,, 1)q~V o 

and hence, for all u~M(r,q, IE) and all z l , z  3, q2(ZlU*)-l-q4(z3u*)=O. Thus  qz =q4  
=0 ,  and hence Vp = {0}. Contradict ion.  

We can then state: 

PropositionS.3. The Hilbert space H~,t.j is annihilated by first order constant 
coefficient differential operators. 

Finally, by forming tensor products  as in w we arrive at 

Theorem 5.4. The representations U~ ..... h of U(p, q), holomorphically induced from 

"c1(0 . . . .  ,0, - m  1 . . . .  , - m j ) |  1 . . . .  ,ni,O .... , 0 ) |  k 

are unitary if and only if i +j < k. 
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w 6. A Concluding Remark 

As  a c o r o l l a r y  we get  t ha t  any i r r educ ib l e  un i t a ry  h o l o m o r p h i c  r e p r e s e n t a t i o n  o f  

U(p ,q)  appea r s  in the  k- th  fold t e n s o r  p r o d u c t  o f  the  h a r m o n i c  r e p r e s e n t a t i o n  

for s o m e  k, as was  c o n j e c t u r e d  in [8].  S ince  the  h a r m o n i c  r e p r e s e n t a t i o n  i tself  is 
the  s u m  of  all r e p r e s e n t a t i o n s  l iv ing  on  the  orbit(s)  ( 9 ,  this c o n j e c t u r e  has  a 
n a t u r a l  e x t e n s i o n  to  t u b e  d o m a i n s  and  c o n c e i v a b l y  to  a r b i t r a r y  H e r m i t i a n  

s y m m e t r i c  spaces  o f  the  n o n - c o m p a c t  type.  

We wish to thank M. Harris, I.E. Segal, and M. Vergne for friendly discussions about these topics. 
We are also grateful for the valuable comments of the referee. 
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