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Abstract

This talk is basically a progress report for a project whose aim is to study

quantum deformations of hermitian symmetric spaces. Most of it, in particular

relating to the algebraic aspects of certain quadratic algebras, is joint work

with A. Jensen, S. J�ndrup, and H.C. Zhang.

1 Introduction

The issue we wish to address here is that of quantum deformations of hermitian

symmetric spaces. This is a quantization which goes in another direction than the

well established attempts of quantization by means of translating classical observables

into self adjoint operators. Instead, in the spirit of \non-commutative geometry", one

tries to \quantize" the underlying spaces.

What is a hermitian symmetric space D anyway? By de�nition it is a connected

complex manifold with a Hermitian structure in which each point is an isolated �xed

point of an involutive holomorphic isometry. Automatically, it becomes K�ahlerian.

We will only be interested in irreducible spaces of the non-compact type. The clas-

si�cation of such spaces was begun by Cartan ([2]) and �nished by Harish-Chandra

([5]).

Operationally, we may, see e.g. [6, Theorem 6.1], de�ne it to be a space

D = G=K; (1)
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where G is a connected noncompact simple Lie group with center feg and K has

non-discrete center and is a maximal compact subgroup of G.

Equivalently, D is a bounded symmetric domain (i.e. a domain in which each

point is an isolated �xed point of an involutive holomorphic di�eomorphism of D

onto itself). G may then be taken to be the group of bi-holomorphic maps of D into

itself, and K as the subgroup of isometries.

Example 1.1

D = fn� n complex matrices z j z

�

z < 1g : (2)

Here, G = SU(n; n) and K = S(U(n)� U(n)).

We have the following useful algebraic version of the situation:

g = p

�

� k� p

+

, and U(g) = U(p

�

) � U(k) � U(p

+

): (3)

It is well known that we may choose

D � p

+

: (4)

Furthermore, p

�

and p

+

are abelian k-modules and much of the geometry and anal-

ysis can be described in terms of spaces of holomorphic functions, e.g. polynomials,

on these spaces. The k-module structure is given by 2-dimensional weight diagrams,

[7], e.g. (for SU(m;n))
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or (for Sp(n;R))
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There are more examples later in the article.

This is the structure we wish to quantize, basically by inseting a \q" in an appro-

priate place.
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2 Quantum groups

Given an n � n Cartan matrix A = (a

ij

) of �nite type, choose d

i

2 f1; 2; 3g such

that (d

i

a

ij

) is symmetric. The quantum group U

q

is de�ned by the generators

E

i

; F

i

;K

i

;K

�1

i

(1 � i � n) and relations (\quantized Serre relations")

K

i

K

j

= K

j

K

i

; K

i

K

�1

i

= K

�1

i

K

i

= 1; (7)

K

i

E

j

K

�1

i

= q

d

i

a

ij

E

j

; K

i

F

j

K

�1

i

= q

�d

i

a

ij

F

j

;

E

i

F

j

� F

j

E

i

= �

ij

K

i

�K

�1

i

q

d

i

� q

�d

i

;

1�a

ij

X

s=0

(�1)

s

"

1 � a

ij

s

#

d

i

E

1�a

ij

�s

i

E

j

E

s

i

= 0; i 6= j;

1�a

ij

X

s=0

(�1)

s

"

1� a

ij

s

#

d

i

F

1�a

ij

�s

i

F

j

F

s

i

= 0; i 6= j:

As is very well known, U

q

is a Hopf algebra with comultiplication 4, antipode S,

and counit � de�ned by

4(E

i

) = E

i


 1 +K

i


 E; 4(F

i

) = F

i


K

�1

i

+ 1
 F

i

; (8)

4(K

i

) = K

i


K

i

; S(E

i

) = �K

�1

i

E

i

; S(F

i

) = �F

i

K

i

; S(K

i

) = K

�1

i

; and

�(E

i

) = �(F

i

) = 0; �(K

i

) = 1:

Actually, there is another coproduct, �

D

, which for some purposes is more useful.

For instance, it behaves better with respect to tensor products when q is a real

parameter. In fact, it is the coproduct introduced by Drinfeld (whence the subscript).

4

D

(E

i

) = E

i


K

�1=2

i

+K

1=2

i


 E

i

; 4

D

(F

i

) = F

i


K

�1=2

i

+K

1=2


 F

i

: (9)

There are two interesting families of anti-linear anti-involutions, !

1

and !

2

; of

this algebra,

!

1

(E

i

) = �

i

� F

i

; !

1

(F

i

) = �

i

� E

i

; !

1

(K

i

) = K

�1

i

; !

1

(q) = q

�1

; (10)

and

!

2

(E

i

) = �

i

� F

i

; !

2

(F

i

) = �

i

� E

i

; !

2

(K

i

) = K

i

; !

2

(q) = q; (11)

where 8i : �

2

i

= 1.

Above, we consider U

q

to be an algebra over C (q), the �eld of rational functions in

the \dummy" variable q. At times, e.g. when studying unitarity, we shall \localize"

the algebra at a speci�c complex number �, i.e. q �! �. We will not go into the

details here but just mention that some care is needed for this process when q is a

root of unity.
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3 Quadratic algebras

Let V be a �nite dimensional vector space over C , let R be a subspace of V 
 V ,

and let I

2

be the two-sided ideal in T (V ) generated by R. The quadratic algebra A

is de�ned as

A = T (V )=I

2

: (12)

It is a graded algebra which is generated by the elements of degree 1.

Let

P= P (V

�

): (13)

An element

f =

X

i;j

�

ij

v

i


 v

j

2 R (14)

de�nes a bilinearform on P�P by

f(p; q) =

X

i;j

�

ij

v

i

(p)
 v

j

(q) 2 C : (15)

The associated variety is de�ned as

� = V(R) = f(p; q) 2 P�P j 8f 2 R : f(p; q) = 0g : (16)

In many interesting cases,

R = R(�) = ff 2 V 
 V j f(p; q) = 0 for all (p; q) 2 �g : (17)

Moreover, in the cases to follow as well as for e.g. the Sklyanin algebra,

� = f(p; �(p)) j p 2 Eg ; (18)

where

E = �

1

(�); (19)

and � is an automorphism of E. Typically, E consists of a continuous part which is

an algebraic variety together with a few extra points, lines etc. \at in�nity".

The idea now is to relate the representation theory of A to the geometry of E. As

such it becomes an instance of non commutative algebraic geometry as introduced by

Artin ([1]).

Of interest are of course simple modules as well as certain \geometric" modules:

De�nition 3.1 A graded module M is a point module if

� M is cyclic.

� H

M

(t) = (1� t)

�1

.
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It is a line module if

� M is cyclic.

� H

M

(t) = (1� t)

�2

:

Here,

H

M

(t) =

X

t

n

dimM

n

(20)

is the Hilbert series. Of course, one can go on to de�ne plane modules, etc.

Finally, one is interested in �nding all fat points.

De�nition 3.2 A graded module M is called a fat point if it is 1-critical of Gelfand-

Kirillov dimension 1 and of multiplicity 1.

Basically, this means that from a certain step on, the spaces M

n

all have the same

dimension e > 1. Furthermore, if N is any graded submodule, then M=N is �nite

dimensional.

Remark 3.3 Actually, the above de�nitions ought to be formulated in terms of a

certain category Proj(A) of graded modules modulo �nite dimensional modules. Eg.

the fat points are closely related to the irreducible points in this category.

4 Quadratic algebras associated to hermitian sym-

metric spaces

Let g now correspond to a hermitian symmetric space and consider the corresponding

quantum group U

q

. Analogous to the decomposition

U(g) = U(p

�

) � U(k) � U(p

+

); (21)

we would like to have a decomposition

U

q

= A

�

� U

q

(k) �A

+

; (22)

and where A

�

and A

+

are quadratic algebras that furthermore are (as linear spaces)

U

q

(k)-modules.

Theorem 4.1 ([8]) This is indeed possible.
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4.1 Special case: su(n;m)

In the case of su(n;m) the set of simple compact roots break up into two orthogonal

sets:

P

c

= f�

1

; : : : ; �

n�1

g [ f�

1

; : : : ; �

m�1

g. Thus,

8i; j : E

�

i

E

�

j

= E

�

j

E

�

i

: (23)

Assume moreover that these roots have been labeled in such a way that

h�; �

1

i = h�; �

1

i = h�

i

; �

i+1

i = h�

j

; �

j+1

i = �1; (24)

for all i = 1; : : : ; a� 2 and for all j = 1; : : : ; b� 2.

Theorem 4.2 ([9]) For a simple compact root vector E

�

and E

�

an arbitrary ele-

ment of the quantum algebra of weight � set

(adE

�

)(E

�

) = E

�

E

�

� q

h�;�i

E

�

E

�

; (25)

where, as usual, h�; �i =

2(�;�)

(�;�)

. De�ne Z

0;0

= E

�

and

Z

i;j

= (adE

�

i

) : : : (adE

�

0

)(adE

�

j

) : : : (adE

�

0

)(E

�

); (26)

for i = 0; : : : ;m� 1 and j = 0; : : : ; n � 1, where adE

�

0

and adE

�

0

are de�ned to be

the identity operator. Let Z

1

= Z

i;j

, Z

2

= Z

i;j+y

, Z

3

= Z

i+x;j

, and Z

1

= Z

i+x;j+y

.

Then

Z

1

Z

3

= qZ

3

Z

1

(27)

Z

1

Z

2

= qZ

2

Z

1

Z

2

Z

4

= qZ

4

Z

2

Z

3

Z

4

= qZ

4

Z

3

Z

2

Z

3

= Z

3

Z

2

Z

1

Z

4

� Z

4

Z

1

= (q � q

�1

)Z

2

Z

3

:

Proof: This follows from the Serre relations by using Lusztig's automorphisms ([13])

of the quantum group (in fact, a representation of the Hecke algebra), given in part

by

T

�

(E) = �E

�

E + q

�1

EE

�

, and (28)

T

�

(F ) = �EE

�

+ qE

�

:

(This is for the simply laced case). We �nally remark that there are no further

relations. This follows since it is clear that the algebra generated by the Z

ij

's must

have the same Hilbert series as the polynomial algebra (q = 1). 2
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So, what we �nd in this special case is the so-called quantum matrix algebra

M

q

(n). It has been studied by many people, e.g. [4],[14],[15], but mostly from the

point of view of generalizing Gl(n; C ). Thus, the quantum determinant det

q

;

det

q

=

X

�2S

n

(�q)

l(�)

Z

1;�(1)

: : :Z

n;�(n)

; (29)

is usually set to 1.

By construction we clearly have

Proposition 4.3 Let

�

A

+

be the algebra generated by the Z

ij

's and let

�

A

�

be de�ned

analogously. Then

U

q

=

�

A

�

U

q

(k)

�

A

+

: (30)

We shall later introduce another space, A

+

, which can compete with

�

A

+

about

being the most \natural".

5 Modules

In the special case of su

q

(2; 2), we have found in [9] that

E = f(z

1

; z

2

; z

3

; z

4

) j z

1

z

4

= z

2

z

3

g ; (31)

together with two planes at in�nity. The automorphism � is given by, on the contin-

uous part,

�(z

1

; z

2

; z

3

; z

4

) = (z

1

; q � z

2

; q � z

3

; q

2

� z

4

): (32)

The simple modules are given as follows (this is partly well-known) : Unless q

satis�es q

m

= 1 for some positive integer m, they are 1-dimensional.

If q

m

= 1 is a primitive root of unity, the picture is more complicated. All simple

modules are still �nite-dimensional and there are still some families of 1-dimensional

modules. But in addition there are the following representations together with similar

ones with some of the generators permuted ([9]):

Let

I

m

=

2

6

6

6

6

6

6

6

4

1 0 0 0 0

0 q 0 0 0

0 0 q

2

0 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 q

m�1

3

7

7

7

7

7

7

7

5

; �

m

=

2

6

6

6

6

6

6

6

4

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 1 0

3

7

7

7

7

7

7

7

5

; (33)

and

�

k

=

2

6

6

6

6

6

6

6

4

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 1 0

3

7

7

7

7

7

7

7

5

; a k � k matrix : (34)
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Z

2

; Z

1

invertible:

Z

1

! x

1

�

�1

; Z

2

! x

2

I

m

(35)

Z

3

! x

3

I

m

; Z

4

! x

4

�I

m

+ �I

�1

m

x

5

(36)

where x

1

x

4

= x

2

x

3

.

Z

2

invertible, Z

1

; Z

4

nilpotent:

Z

4

! x

4

�

k

; Z

2

! x

2

I

k

(37)

Z

3

! x

3

I

k

; Z

1

!

x

1

1 � q

2

�

t

k

(1 � I

2

k

) (38)

where x

1

x

4

= x

2

x

3

and k = m or

m

2

(the last case is of course only possible if m is

even). Moreover,

fpoint modulesg  ! V(z

1

z

4

� z

2

z

3

) [ V(z

2

z

3

) ! E: (39)

fline modulesg  ! flines on V(z

1

z

4

� z

2

z

3

)g [ (2 planes at 1) [P

2

: (40)

The higher dimensional cases su

q

(n;m) are more complicated. The space

E = �

1

(�) (41)

is, more-or-less, a union of the spaces for su

q

(2; 2). There are still many open prob-

lems, but some, for instance to �nd the center in the case of a root of unity, have

recently been solved [10] (see also [11]).

For reasons of having a nice point variety E, the following alternative candidate

to a quadratic algebra associated to su

q

(n;m) might be preferred:

Lemma 5.1 It is possible to multiply the elements

~

Z

i;j

from the right by certain

elements from the algebra U

K

in such a way that the resulting elements Z

i;j

satisfy:

Let Z

1

= Z

i;j

, Z

2

= Z

i;j+a

, Z

3

= Z

i+b;j

and Z

4

= Z

i+b;j+a

. Then

Z

1

Z

3

= q

b

Z

3

Z

1

(42)

Z

1

Z

2

= q

a

Z

2

Z

1

(43)

Z

2

Z

4

= q

b

Z

4

Z

2

(44)

Z

3

Z

4

= q

a

Z

4

Z

3

(45)

Z

2

Z

3

= q

b�a

Z

3

Z

2

(46)

Z

1

Z

4

q

1�a

� q

b�1

Z

4

Z

1

= (q � q

�1

)Z

2

Z

3

: (47)
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Lemma 5.2 The continuous part of the point variety of the quadratic algebra corre-

sponding to these relations is the set

�

E

= fz j z is an n�m matrix of rank 1 g : (48)

De�nition 5.3 By the quadratic algebra of type AIII(n,m) we mean the algebra A

+

above, subject to the relations (42)-(47).

Remark 5.4 The \quantization" of the hermitian symmetric space is not just the

algebra A

+

above but the whole structure involving both A

+

as well as its counter part

A

�

, their interrelation, their modules, and the realization of U

q

(g)-modules on these

algebras.

6 Quadratic algebras related to other hermitian

symmetric spaces.

We present here, without details, the quadratic algebras we have constructed for the

other hermitian symmetric spaces. The construction proceeds in analogy with the

su(n;m) case and, basically, the tools are Lusztig's automorphisms together with

lengthy computations.

6.1 Type B

n

:

The resulting quadratic relations are:

W

i;i

W

j;j

�W

j;j

W

i;i

=

1 � q

2

q + q

�1

W

2

i;j

(i < j); (49)

W

i;i

W

j;k

�W

j;k

W

i;i

= (1 � q

2

)W

i;j

W

i;k

(i < j and j < k);

qW

i;j

W

j;k

�W

j;k

W

i;j

= (q

�2

� q

2

)W

i;k

W

j;j

(i < j < k);

W

i;j

W

k;l

�W

k;l

W

i;j

= q

�1

W

i;l

W

j;k

� qW

j;k

W

i;l

( i < j < k);

W

i;j

W

k;l

�W

k;l

W

i;j

= (q

�1

� q)W

i;l

W

k;j

(i; k < j < l);

W

i;i

W

i;j

= q

�2

W

i;j

W

i;i

(i < j);

W

i;;j

W

j;j

= q

�2

W

j;j

W

i;j

(i < j);

W

i;j

W

i;k

= q

�1

W

i;k

W

i;j

(i < j < k);

W

i;j

W

k;l

= W

k;l

W

i;j

(i � j; k < i; and j < l):

6.2 The case of O

�

(2n).

After a simple modi�cation, this simply becomes a sub-case of B

n

:
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6.3 Some results for D

n

.

Z

n

�

n�1

%

�

n

&

Z

1

�

1

�! � � �

�

n�2

�! Z

n�1

Z

n+2

�

n�2

�! � � �

�

1

�! Z

2n

�

n

&

�

n�1

%

Z

n+1

(50)

The relations are:

Z

i

Z

i+r+1

= q

�1

Z

i+r+1

Z

i

if r � 0 and r 6= 2(n� i); (51)

Z

i

Z

2n+1�i

� Z

2n+1�i

Z

i

= �qZ

i+1

Z

2n�i

+ q

�1

Z

2n�i

Z

i+1

for 1 = 1; : : : ; n� 1:

In this case we have found the following invariant element is

Z

1

Z

2n

� q

�1

Z

2

Z

2n�1

+ � � �+ (�q)

�n+1

Z

n

Z

n+1

: (52)

6.4 The case of O(2n� 1; 2).

Z

1

�

1

�! � � �

�

n�2

�! Z

n�1

�

n�1

�! Z

n

�

n�1

�! Z

n+1

�

n�2

�! � � �

�

1

�!

(53)

The analogous relations are:

Z

i

Z

i+r

= q

�2

Z

i+r

Z

i

if r > 0 and r 6= 2(n� i); (54)

Z

i

Z

2n�i

� Z

2n�i

Z

i

= �q

2

Z

i+1

Z

2n�i�1

+ q

�2

Z

2n�i�1

Z

i+1

for 1 = 1; : : : ; n� 1:

In this case the invariant element is

Z

1

Z

2n�1

+ � � �+ (�1)

i�1

(q)

2(i�1)

Z

i

Z

2n�i

+ � � � + (�)

n

q

�2n+2

1 + q

�2

Z

2

n

: (55)

6.5 The exceptional cases E

6

and E

7

.

In these cases there are basically two relations: Let us associate to each positive

non-compact root 
 an elementW




as above. We order these (partially) according to

height. Observe that if 


1

6= 


2

then

< 


1

; 


2

>=

2(


1

; 


2

)

(


1

; 


1

)

2 f0; 1g : (56)

If (


1

; 


2

) = 0, de�ne Case A to be one in which ht(


1

) < ht(


2

) and where exists

a (unique) shortest compact root � for which

�




1

= 


1

+ � and

�




2

= 


2

� � also are

non-compact (and perpendicular) roots, and Case B to be the one in which either

ht(


1

) = ht(


2

) or, if ht(


1

) < ht(


2

), Case A does not occur. We can then give the

quadratic relations:
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W




1

W




2

�W




2

W




1

= q

�1

W




2

W




1

� qW




1

W




2

(Case A), (57)

W




1

W




2

�W




2

W




1

= 0 (Case B).

W




1

W




2

= q

�1

W




2

W




1

(if (


1

; 


2

) 6= 0 and ht(


1

) < ht(


2

)).

7 Unitarity

The main tool when q is real is the Shapovalov determinant of the hermitian form in

the quantum case as proved by de Concini and Kac ([3]) (c.f. [12]): If � 2 X, the

determinant of the contravariant hermitian form on the weight space M

�

(�)

��

of the

Verma module M

�

(�) of highest weight � (and type (+;+; : : : ;+)) is given by

det

�;�

(�) =

Y

�24

+

Y

m2N

 

[m]

d

�

�

d

�

(�+��

m

2

�;�

_

)

� �

�d

�

(�+��

m

2

�;�

_

)

�

d

�

� �

�d

�

!

Par(��m�)

: (58)

In the case of the anti-linear involution !

2

, characterized by

!

2

(K

i

) = K

i

; (59)

it follows from the decomposition

U

q

= A

�

� U

q

(k) �A

+

; (60)

together with the Shapovalov determinant and the Drinfeld coproduct �

D

, where the

latter guarantees unitarity of tensor products of unitary modules, that we have

Theorem 7.1 Let q be a real (non-zero) parameter. The set of unitarizable highest

weight modules for the usual choice of signs �

i

, extended to the quantum case as !

2

,

is the same as for q = 1.

Proposition 7.2 If jqj = 1, there are only �nite-dimensional unitarizable modules,

and q has to be a root of unity (with respect to !

1

).
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