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1 Introdu
tion

Theories with matrix degrees of freedom are of wide interest in physi
s.

Quantum 
hromodynami
s (QCD) is an important example. Ea
h gluon

�eld 
arries two 
olor indi
es. They 
an be treated as row and 
olumn in-

di
es of a matrix �eld. A typi
al term in the a
tion of a physi
al theory is


onstru
ted by multiplying matrix �elds together and taking the tra
e of the

resulting produ
t; this serves to preserve gauge invarian
e. M(atrix)-Theory

[1℄, a 
andidate for a uni�ed theory of gravitational, strong and ele
troweak

intera
tions, is another major example. In this model, the matri
es des
ribe

the positions of D0-branes and their relative distan
es non
ommutatively [2℄.

So far, the most su

essful 
al
ulational tool for both theories is perturba-

tive analysis, whose approximation assumptions are valid in the high-energy

regime of QCD and the 
lassi
al limit of M-theory. Indeed, there is an ex
el-

lent agreement between perturbative QCD predi
tions and measurements of

high-energy s
attering experiments among quarks and gluons. (See Ref.[3℄,

for instan
e, for a general introdu
tion and further literature on the subje
t.)

Perturbative M-theory 
al
ulations of s
attering pro
esses among M-theory

obje
ts are, by and large, in good agreements with 
lassi
al supergravity,

too. (Ref.[4℄ lists two latest reviews on the subje
t. Further literature 
an

be found therein.) To study important low-energy phenomena of QCD like


olor 
on�nement, hadron spe
trum or the parton distribution of a nu
leon,

or large quantum e�e
ts of supergravity, however, it is ne
essary to develop

non-perturbative methods.

As we have just noted, both QCD and M-theory are intrinsi
ally matrix

models. Little is known about the rami�
ations of the matrix nature, though

many resear
hers believe that this is the key to a deeper understanding of

the physi
s of a matrix model. One approa
h is to study its symmetry. This


onsists in identifying a symmetry of a generi
 matrix model, expressing the

symmetry in terms of a Lie algebra (or quantum group) and developing a

representation theory for the Lie algebra.

Numerous examples have demonstrated the fruitfulness of studying rep-

resentation theories. To name but a few, the representation theory of so(3)

shapes the energy spe
tra of physi
al systems with rotational symmetry; the

representation theory of the Poin
ar�e algebra enables us to 
lassify massless

fundamental parti
les [3℄; even more remarkably, the so(4) symmetry of the

hydrogeni
 atom di
tates its energy spe
trum 
ompletely [5℄.

Perhaps the most prominent example in re
ent years is the Virasoro al-
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gebra, a Lie algebra des
ribing two-dimensional 
onformal symmetry. Its

representation theory reveals how the redu
ibility of a lowest-weight repre-

sentation depends on the values of 
, the 
entral 
harge, and h, the eigenvalue

of the lowest-weight state under the a
tion of L

0

, the energy operator. We


an use one of these irredu
ible representations relevant to string theory to

dedu
e the mass spe
trum of a free string [6℄. We 
an also use a small num-

ber of su
h redu
ible representations to build up a so-
alled minimal model

des
ribing a physi
al system at 
riti
ality like the Ising model and the three-

state Potts model [7℄. In addition, the representation theory renders us a


hara
ter formula

Tr exp

(L

0

�
=24)(2�i�)

=

q

h+(1�
)=24

�(�)

;

where � is a 
omplex variable, Tr means a sum over all states of lowest-weight

representation and �(�) is the Dedekind fun
tion

�(�) = exp

�i�=12

1

Y

n=1

(1� exp

2�in�

):

If we interpret � as the ratio between two 
omplex periods along two linearly

independent dire
tions on a torus, this 
hara
ter formula be
omes nothing

but the holomorphi
 part of the partition fun
tion of a 
onformal �eld theory

on a torus [8℄. Thus we 
an solve for the thermodynami
s of this system.

In Ref.[9℄, Rajeev and one of us gave an exposition on the basi
 proper-

ties of a newly dis
overed Lie algebra

^

G

�;�

F

for open matrix 
hains in the

large-N limit [10℄. (By an open matrix 
hain we mean a state produ
ed

by the a
tion of a produ
t of a row ve
tor, several square matri
es and a


olumn ve
tor of 
reation operators on the va
uum.) They 
an be inter-

preted as mesons in QCD, dis
retized open strings in a string-bit model [11℄

or one-dimensional open quantum spin 
hain systems. The relation of this

Lie algebra with another Lie algebra for 
losed matrix 
hains was dis
ussed

at length in Ref.[12℄. We would like to build upon the results of Ref.[9℄, and

work out a representation theory for it. In this arti
le, we will present �rst

results on the subje
t.

As noted in Ref.[12℄,

^

G

�;�

F


an be broken down into a dire
t sum of

subalgebras in a manner similar to the triangular de
omposition of a semi-

simple Lie algebra. Just as su
h a triangular de
omposition gives rise to
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lowest weight representations, this de
omposition for

^

G

�;�

F

leads to inter-

esting representations generated by a weight ve
tor, whi
h we will 
all a

lowest weight ve
tor, and the 
orresponding representation a lowest weight

representation. It 
an be made irredu
ible by quotienting out the maximal

subrepresentation. Some lowest weight ve
tors produ
e unitary representa-

tions.

Sin
e the Cartan subalgebra we have found for

^

G

�;�

F

is simultaneously

a maximally 
ommutative subalgebra, we 
an treat it as a linear spa
e gen-

erated by a maximally 
ommuting set of quantum observables. A highest

weight ve
tor is then a quantum eigenstate of this set of quantum observ-

ables, and the highest weight a set of quantum numbers. An interesting

result we are going to show is that if only a �nite number of these quan-

tum numbers are non-zero, then this eigenstate must be, in the 
ontext of

QCD, a multiple meson state. Any state with an in�nite number of non-zero

quantum numbers must be a tensor produ
t of a multiple meson and a state


oming from an irredi
ible representation of a 
ertain quotient algebra whi
h

extends and generalizes the Virasoro algebra. Already for the 
ase � = 1 the

quotient algebra is quite interesting. Spe
i�
ally, it is an extension of the

Virasoro algebra by an in�nite Heisenberg algebra (the details of this will

appear elsewhere???). We expe
t the representation theory of the quotient

algebra to lead to novel physi
s.

This paper is organized as follows. We will review without proofs the

de�nition of

^

G

�;�

F

and its basis properties in Se
tion 2, further details of

whi
h 
an be found in Refs.[9℄ and [12℄. We will work out two useful bases

for the Lie algebra in Se
tion 3, and its Cartan subalgebra and root ve
otors

in Se
tion 4. The reader is advised to read only the statements of the propo-

sitions in these two se
tions on a �rst reading, and return to them later on if

he or she is interested in the details. We will de�ne the notion of a Verma-

like module and the asso
iated Hermitian form in Se
tion 5, and use this to

identify the representation spa
es of multiple meson states in Se
tion 6 and

other states whi
h are related to the quotient???? algebra in Se
tion 7.

We follow Refs.[15℄ and [16℄ in the usage of Lie algebra terminologies.

2 De�nitions

Two Lie algebras were de�ned in Ref.[12℄: the grand string algebra and the

open string algebra. The latter is our major interest in this arti
le, and
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was de�ned as a quotient of the former. We will brie
y review them in

this se
tion. Further details of the notations and formalism 
an be found in

Refs.[9℄ and [12℄. One agreement we need to make with the reader now is that

unless otherwise spe
i�ed, the summation 
onvention will not be adopted.

operator of expression

whi
h kind

�rst

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

se
ond

�

�

�

1

�

2


 l

_

I

_

J

third r

_

I

_

J


 �

�

1

�

2

fourth �

I

J

any X, X

_

I

_

J

or Y

_

I

_

J

Table 1: Some basis ve
tors of the grand string algebra. They form an over-


omplete set of generators for the open string algebra. � and �

F

are positive

integers. �

1

, �

2

, �

3

and �

4

are positive integers between 1 and �

F

in
lusive.

_

I and

_

J are �nite empty or non-empty sequen
es of integers, ea
h of whi
h

is between 1 and � in
lusive. I and J are �nite non-empty sequen
es of in-

tegers, ea
h of whi
h is between 1 and � in
lusive.

�

� and � are operators

a
ting on two di�erent �

F

-dimensional Hilbert spa
es, and f , l, r and � are

operators a
ting on the same in�nite-dimensional Hilbert spa
es. All three

Hilbert spa
es were introdu
ed in Ref.[9℄. (Some notations are abused here

for the sake of future 
onvenien
e; stri
tly speaking, the operators of the se
-

ond, third and fourth kind should be written as

�

�

�

1

�

2


 l

_

I

_

J


 1, 1
 r

_

I

_

J


�

�

1

�

2

and

1
 �

I

J


 1, respe
tively.) EVEN MORE STRICTLY...???

The elements of the grand string algebra were originated from operators

a
ting on 
losed or open matrix 
hains (whi
h are sometimes 
alled 
losed

or open singlet states). Some of them are shown in Table 1. A physi
al

observable is a linear 
ombination of su
h operators. An operator of the �rst

kind repla
es a whole open singlet state with a �nite linear 
ombination of

open single states; an operator of the se
ond kind repla
es the 
onjugate

and the adja
ent adjoint partons of an open singlet state with a �nite linear


ombination of open singlet states with possibly other 
onjugate and adjoint

partons; an operator of the third kind is similar to the se
ond kind in a
tion

ex
ept that they a
t on the end with a fundamental parton; an operator of

the fourth kind propagates an open singlet state to a �nite linear 
ombination

5



of open singlet states in ea
h of whi
h a middle segment of adja
ent adjoint

partons in the original state is repla
ed with a possibly di�erent sequen
e of

adjoint partons.

Note that as operators a
ting on 
losed or open matrix 
hains, the oper-

ators tabulated are not linearly independent; as elements of the grand string

algebra, however, they are linearly independent. Listed below are the Lie

bra
kets of the grand string algebra between

1. an operator of the �rst kind and any operator:

h

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

;

�

�

�

5

�

6


 f

_

K

_

L


 �

�

7

�

8

i

=

Æ

�

5

�

2

Æ

_

K

_

J

Æ

�

7

�

4

�

�

�

1

�

6


 f

_

I

_

L


 �

�

3

�

8

� Æ

�

1

�

6

Æ

_

I

_

L

Æ

�

3

�

8

�

�

�

5

�

2


 f

_

K

_

J


 �

�

7

�

4

; (1)

h

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

;

�

�

�

5

�

6


 l

_

K

_

L

i

=

Æ

�

5

�

2

�

�

�

1

�

6




X

_

J

1

_

J

2

=

_

J

Æ

_

K

_

J

1

f

_

I

_

L

_

J

2


 �

�

3

�

4

� Æ

�

1

�

6

�

�

�

5

�

2




X

_

I

1

_

I

2

=

_

I

Æ

_

I

1

_

L

f

_

K

_

I

2

_

J


 �

�

3

�

4

; (2)

h

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

; r

_

K

_

L


 �

�

5

�

6

i

=

Æ

�

5

�

4

�

�

�

1

�

2




X

_

J

1

_

J

2

=

_

J

Æ

_

K

_

J

2

f

_

I

_

J

1

_

L


 �

�

3

�

6

� Æ

�

3

�

6

�

�

�

1

�

2




X

_

I

1

_

I

2

=

_

I

Æ

_

I

2

_

L

f

_

I

1

_

K

_

J


 �

�

5

�

4

; (3)

and

h

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

; �

K

L

i

=

�

�

�

1

�

2




0

�

X

_

J

1

J

2

_

J

3

=

_

J

Æ

K

J

2

f

_

I

_

J

1

L

_

J

3

�

X

_

I

1

I

2

_

I

3

=

_

I

Æ

I

2

L

f

_

I

1

K

_

I

3

_

J

1

A


 �

�

3

�

4

: (4)

2. an operator of the se
ond kind and an operator of the se
ond, third or

fourth kind:

h

�

�

�

1

�

2


 l

_

I

_

J

;

�

�

�

3

�

4


 l

_

K

_

L

i

=

Æ

�

3

�

2

�

�

�

1

�

4




0

�

Æ

_

K

_

J

l

_

I

_

L

+

X

_

J

1

J

2

=

_

J

Æ

_

K

_

J

1

l

_

I

_

LJ

2

+

X

_

K

1

K

2

=

_

K

Æ

_

K

1

_

J

l

_

IK

2

_

L

1

A

�Æ

�

1

�

4

�

�

�

3

�

2




0

�

Æ

_

I

_

L

l

_

K

_

J

+

X

_

L

1

L

2

=

_

L

Æ

_

I

_

L

1

l

_

K

_

JL

2

+

X

_

I

1

I

2

=

_

I

Æ

_

I

1

_

L

l

_

KI

2

_

J

1

A

(5)
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h

�

�

�

1

�

2


 l

_

I

_

J

; r

_

K

_

L


 �

�

3

�

4

i

=

�

�

�

1

�

2




0

B

B

B

B

B

�

X

_

J

1

_

J

2

=

_

J

_

K

1

_

K

2

=

_

K

Æ

_

K

1

_

J

2

f

_

I

_

K

2

_

J

1

_

L

�

X

_

I

1

_

I

2

=

_

I

_

L

1

_

L

2

=

_

L

Æ

_

I

2

_

L

1

f

_

I

1

_

K

_

J

_

L

2

1

C

C

C

C

C

A


 �

�

3

�

4

; (6)

and

h

�

�

�

1

�

2


 l

_

I

_

J

; �

K

L

i

=

�

�

�

1

�

2




0

�

Æ

K

_

J

l

_

I

L

+

X

K

1

K

2

=K

Æ

K

1

_

J

l

_

IK

2

L

+

X

J

1

J

2

=

_

J

Æ

K

J

2

l

_

I

J

1

L

+

X

J

1

J

2

=

_

J

Æ

K

J

1

l

_

I

LJ

2

+

X

J

1

J

2

=

_

J

K

1

K

2

=K

Æ

K

1

J

2

l

_

IK

2

J

1

L

+

X

J

1

J

2

J

3

=

_

J

Æ

K

J

2

l

_

I

J

1

LJ

3

�Æ

_

I

L

l

K

_

J

�

X

L

1

L

2

=L

Æ

_

I

L

1

l

K

_

JL

2

�

X

I

1

I

2

=

_

I

Æ

I

2

L

l

I

1

K

_

J

�

X

I

1

I

2

=

_

I

Æ

I

1

L

l

KI

2

_

J

�

X

L

1

L

2

=L

I

1

I

2

=

_

I

Æ

I

2

L

1

l

I

1

K

_

JL

2

�

X

I

1

I

2

I

3

=

_

I

Æ

I

2

L

l

I

1

KI

3

_

J

1

C

C

C

C

C

A

: (7)

3. an operator of the third kind and an operator of the third or fourth

kind:

h

r

_

I

_

J


 �

�

1

�

2

; r

_

K

_

L


 �

�

3

�

4

i

=

Æ

�

3

�

2

0

�

Æ

_

K

_

J

r

_

I

_

L

+

X

J

1

_

J

2

=

_

J

Æ

_

K

_

J

2

r

_

I

J

1

_

L

+

X

K

1

_

K

2

=

_

K

Æ

_

K

2

_

J

r

K

1

_

I

_

L

1

A


 �

�

1

�

4

�Æ

�

1

�

4

0

�

Æ

_

I

_

L

r

_

K

_

J

+

X

L

1

_

L

2

=

_

L

Æ

_

I

_

L

2

r

_

K

L

1

_

J

+

X

I

1

_

I

2

=

_

I

Æ

_

I

2

_

L

r

I

1

_

K

_

J

1

A


 �

�

3

�

2

and (8)
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h

r

_

I

_

J


 �

�

1

�

2

; �

K

L

i

=

0

�

Æ

K

_

J

r

_

I

L

+

X

K

1

K

2

=K

Æ

K

2

_

J

r

K

1

_

I

L

+

X

J

1

J

2

=

_

J

Æ

K

J

2

r

_

I

J

1

L

+

X

J

1

J

2

=

_

J

Æ

K

J

1

r

_

I

LJ

2

+

X

J

1

J

2

=

_

J

K

1

K

2

=K

Æ

K

2

J

1

r

K

1

_

I

LJ

2

+

X

J

1

J

2

J

3

=

_

J

Æ

K

J

2

r

_

I

J

1

LJ

3

�Æ

_

I

L

r

K

_

J

�

X

L

1

L

2

=L

Æ

_

I

L

2

r

K

L

1

_

J

�

X

I

1

I

2

=

_

I

Æ

I

2

L

r

I

1

K

_

J

�

X

I

1

I

2

=

_

I

Æ

I

1

L

r

KI

2

_

J

�

X

L

1

L

2

=L

I

1

I

2

=

_

I

Æ

I

1

L

2

r

KI

2

L

1

_

J

�

X

I

1

I

2

I

3

=

_

I

Æ

I

2

L

r

I

1

KI

3

_

J

1

C

C

C

C

C

A


 �

�

1

�

2

: (9)

4. two operators of the fourth kind:

�

�

I

J

; �

K

L

�

= Æ

K

J

�

I

L

+

X

J

1

J

2

=J

Æ

K

J

2

�

I

J

1

L

+

X

K

1

K

2

=K

Æ

K

1

J

�

IK

2

L

+

X

J

1

J

2

=J

K

1

K

2

=K

Æ

K

1

J

2

�

IK

2

J

1

L

+

X

J

1

J

2

=J

Æ

K

J

1

�

I

LJ

2

+

X

K

1

K

2

=K

Æ

K

2

J

�

K

1

I

L

+

X

J

1

J

2

=J

K

1

K

2

=K

Æ

K

2

J

1

�

K

1

I

LJ

2

+

X

J

1

J

2

J

3

=J

Æ

K

J

2

�

I

J

1

LJ

3

+

X

K

1

K

2

K

3

=K

Æ

K

2

J

�

K

1

IK

3

L

�(I $ K; J $ L) + � � � ; (10)

The ellipses in the last equation represent terms whi
h 
annot be written in

terms of the operators listed in Table 1; they play no role in the open string

algebra, to be introdu
ed immediately.

As the elements of the grand string algebra 
ome from phyis
al observ-

ables of open matrix 
hains, it should not be surprising the open matrix


hains provide a representation of the grand string algebra, albeit not a

8



faithful one. As we mentioned in the Introdu
tion, an open matrix 
hain 
an

be abstra
tly written as

�

�

�

1


 s

_

K


 �

�

2

.

�

�

1

,

�

�

2

, . . . , and

�

�

�

F

span a �

F

-

dimensional ve
tor spa
e; �

1

, �

2

, . . . , and �

�

F

span another �

F

-dimensional

ve
tor spa
e; and all ve
tors of the form s

_

K

span an in�nite-dimensional ve
-

tor spa
e. Let T

o

be the ve
tor spa
e 
onsisting of �nite linear 
ombinations

of open matrix 
hains. The a
tions of the four kinds of operators on an open

matrix 
hain are given by

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

�

�

�

�

5


 s

_

K


 �

�

6

�

= Æ

�

5

�

2

Æ

_

K

_

J

Æ

�

6

�

4

�

�

�

1


 s

_

I


 �

�

3

; (11)

�

�

�

1

�

2


 l

_

I

_

J

�

�

�

�

3


 s

_

K


 �

�

4

�

= Æ

�

3

�

2

X

_

K

1

_

K

2

=

_

K

Æ

_

K

1

_

J

�

�

�

1


 s

_

I

_

K

2


 �

�

4

(12)

r

_

I

_

J


 �

�

1

�

2

�

�

�

�

3


 s

_

K


 �

�

4

�

= Æ

�

4

�

2

X

_

K

1

_

K

2

=

_

K

Æ

_

K

2

_

J

�

�

�

3


 s

_

K

1

_

I


 �

�

1

(13)

and

�

I

J

�

�

�

�

1


 s

_

K


 �

�

2

�

=

�

�

�

1




0

�

X

_

K

1

K

2

_

K

3

=

_

K

Æ

K

2

J

s

_

K

1

I

_

K

3

1

A


 �

�

2

: (14)

Then T

o

be
omes a representation spa
e for the grand string algebra.

De�nition 2.1 The Lie algebra denoted as

^

G

�;�

F

in Ref.[9℄ and later on


alled the open string algebra in Ref.[12℄ is de�ned as the quotient of the

grand string algebra by the radi
al of the representation T

o

. We will 
all T

o

the de�ning representation.

Eqs.(1), (5), (8) and (10) show that the spa
e generated by ea
h kind of

operators forms a subalgebra of the open string algebra. The four subalgebras

were denoted by F

�;�

F

= gl(�

F

) 
 F

�


 gl(�

F

), gl(�

F

)


^

L

�

,

^

R

�


 gl(�

F

)

and

^

�

�

, respe
tively, in Ref.[9℄. In addition, Eqs.(1) to (4) tell us that

gl(�

F

)
 F

�


 gl(�

F

) is a proper ideal isomorphi
 to gl(1), and Eqs.(1) to

(9) tell us that all the operators of the �rst three kinds together span a bigger

proper ideal

^

M

�;�

F

.

For future 
onvenien
e, let us introdu
e some more operators of the fourth

kind a
ting on the de�ning representation spa
e. They are �

;

;

, �

I

;

and �

;

J

,

and are de�ned by

�

;

;

�

�

�

�

1


 s

_

K


 �

�

2

�

�

�

#(

_

K) + 1

�

�

�

�

1


 s

_

K


 �

�

2

; (15)
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�

I

;

�

�

�

�

1


 s

_

K


 �

�

2

�

�

X

_

K

1

_

K

2

=

_

K

�

�

�

1


 s

_

K

1

I

_

K

2


 �

�

2

(16)

and

�

;

J

�

�

�

�

1


 s

_

K


 �

�

2

�

�

X

_

K

1

K

2

_

K

3

=

_

K

Æ

K

2

J

�

�

�

1


 s

_

K

1

_

K

3


 �

�

2

(17)

Though these operators look 
ompletely new, they are a
tually elements of

the open string algebra, as 
an be seen from the following identities whi
h

are now fully general:

�

_

I

_

J

=

�

X

i=1

�

i

_

I

i

_

J

+

�

F

X

�=1

�

�

�

�


 l

_

I

_

J

=

�

X

j=1

�

_

Ij

_

Jj

+

�

F

X

�=1

r

_

I

_

J


 �

�

�

: (18)

The reader 
an 
he
k the validity of Eq.(18) by verifying that the left and

right hand sides have the same a
tion on any open matrix 
hain.

Without re
ourse to Eq.(18), there is a representation of �

;

J

dire
tly in

terms of matrix annihilation operators as shown in the following formula,

where the summation 
onvention for 
olor indi
es is adopted:

�

;

J

=

1

N

(b�2)=2

a

�

b�1

�

b

(j

b

)a

�

b�2

�

b�1

(j

b�1

) � � �a

�

b

�

1

(j

1

): (19)

We know of no representation of �

;

;

or �

I

;

in terms of matrix annihilation or


reation operators without using Eq.(18).

Sometimes we will use the generi
 notation X

_

I

_

J

or Y

_

I

_

J

to refer to

�

�

�

1

�

2




f

_

I

_

J


 �

�

3

�

4

,

�

�

�

1

�

2


 l

_

I

_

J

, r

_

I

_

J


 �

�

1

�

2

or �

_

I

_

J

, ignoring �

1

, �

2

, �

3

and �

4

.

3 Bases

The operators listed in Table 1 do not form a basis for the open string algebra

be
ause they are over
omplete. In this se
tion, we will work out two bases

whi
h will be of use in future dis
ussions. Readers who are not interested in

the details may read only the statements of Propositions 3.3 and 3.6, then

move on dire
tly to the next se
tion.
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Before we start, we need to re
all a lexi
ographi
 ordering for integer

sequen
es from Ref.[12℄. We will use it to 
onstru
t another one for a basis

of the open string algebra. (Both orderings are denoted as > as there is no

danger of 
onfusion.)

De�nition 3.1 We designate

_

I >

_

J if either

1. #(

_

I) > #(

_

J); or

2. #(

_

I) = #(

_

J) = a 6= 0, and there exists an integer r � a su
h that

i

1

= j

1

, i

2

= j

2

, . . . , i

r�1

= j

r�1

and i

r

> j

r

.

De�nition 3.2 Here is a lexi
ographi
 ordering for a basis of the open string

algebra.

1. X

_

I

_

J

> Y

_

K

_

L

if

(a) #(

_

I)�#(

_

J) > #(

_

K)�#(

_

L); or

(b) #(

_

I)�#(

_

J) = #(

_

K)�#(

_

L) and #(

_

I) +#(

_

J) > #(

_

K) +#(

_

L);

or

(
) #(

_

I) = #(

_

K), #(

_

J) = #(

_

L) and

_

J >

_

L; or

(d)

_

J =

_

L, #(

_

I) = #(

_

K) and

_

I >

_

K;

2. �

_

I

_

J

> r

_

I

_

J


 �

�

1

�

2

>

�

�

�

3

�

4


 l

_

I

_

J

>

�

�

�

5

�

6


 f

_

I

_

J


 �

�

7

�

8

;

3.

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

>

�

�

�

5

�

6


 f

_

I

_

J


 �

�

7

�

8

if

(a) �

2

�

4

> �

6

�

8

as 
on
atenated sequen
es; or

(b) �

2

�

4

= �

6

�

8

and �

1

�

3

> �

5

�

7

;

4.

�

�

�

1

�

2


 l

_

I

_

J

>

�

�

�

3

�

4


 l

_

I

_

J

if

(a) �

2

> �

4

; or

(b) �

2

= �

4

and �

1

> �

3

;

5. r

_

I

_

J


 �

�

1

�

2

> r

_

I

_

J


 �

�

3

�

4

if

(a) �

2

> �

4

; or
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(b) �

2

= �

4

and �

1

> �

3

.

Note that 
hanging the basis 
hanges the lexi
ographi
 ordering also.

Proposition 3.3 The following set B

0

of elements forms a basis for the open

string algebra:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that �

1

+ �

2

> 2 and �

3

+ �

4

> 2;

2. all

�

�

�

1

�

2


 l

_

I

_

J

su
h that �

1

6= 1 or �

2

6= 1;

3. all r

_

I

_

J


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1; and

4. all �

_

I

_

J

.

This proposition is a 
onsequen
e of the following two lemmas.

Lemma 3.4 B

0

is a linearly independent set.

Proof. We will prove this by ad absurdum. Consider an arbitrary sum X

of a �nite number of the elements listed in Proposition 3.3. Write down X

a

ording to the following

Convention: the numeri
al 
oeÆ
ient of �

_

I

_

J

in X is written as 
(�

_

I

_

J

). The


oeÆ
ients of other operators are written similarly. (By de�nition, only a

�nite number of the 
oeÆ
ients are non-zero.)

Assume that this sum X is identi
ally equal to zero. There are now

several possibilities. Consider �rst the 
ase in whi
h some 
(�

_

I

_

J

) 6= 0 in the

sum X, whi
h 
an then be written as

p

X

i=1


(�

_

I

i

_

J

i

)�

_

I

i

_

J

i

+ � � � ;

where p is a �nite positive integer,

_

J

1

=

_

J

2

= � � � =

_

J

q

<

_

J

q+1

� � � � �

_

J

p

for

some integer q � p,

_

I

r

6=

_

I

s

for 1 � r; s � q su
h that r 6= s, and the ellipses
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denote terms involving operators of other kinds. Then a
ting the sum on

�

�

1


 s

_

J

1


 �

1

yields

q

X

i=1


(�

_

I

i

_

J

1

)

�

�

1


 s

_

I

i


 �

1

+ � � � ;

where the ellipses 
onsist of terms proportional to

�

�

�

1


 s

_

K


 �

�

2

, where

�

1

> 1 or �

2

> 1. This is manifestly non-zero, a 
ontradi
tion. Hen
e there

is no operator of the form �

_

I

_

J

in the sum.

Similarly, 
onsidering the a
tion of the sum on a state of the form

�

�

�




s

_

K


�

1

will rule out the presen
e of any

�

�

�

1

�

2


l

_

I

_

J

in the sum. Then 
onsidering

�

�

1


 s

_

K


 �

�

will rule out any r

_

I

_

J


 �

�

1

�

2

. Finally, 
onsidering

�

�

�

1


 s

_

K


 �

�

2

will eliminate all

�

�

�

1

�

2


 f

_

I

_

J


�

�

3

�

4

. Consequently, no element of B

0


an appear

in the sum to make it zero, and B

0

is linearly independent. Q.E.D.

Lemma 3.5 Any element of the open string algebra 
an be written as a �nite

sum of the elements listed in Proposition 3.3.

Proof. This follows from the following formulae, whi
h the reader 
an 
he
k

one by one by verifying that the a
tions of the left and right hand sides of

any equation below on any open matrix 
hain are the same:

�

�

1

1


 l

_

I

_

J

= �

_

I

_

J

�

�

X

i=1

�

i

_

I

i

_

J

�

�

F

X

�=2

�

�

�

�


 l

_

I

_

J

; (20)

r

_

I

_

J


 �

1

1

= �

_

I

_

J

�

�

X

j=1

�

_

Ij

_

Jj

�

�

F

X

�=2

r

_

I

_

J


 �

�

�

; (21)

�

�

�

1

�

2


 f

_

I

_

J


 �

1

1

=

�

�

�

1

�

2


 l

_

I

_

J

�

�

X

j=1

�

�

�

1

�

2


 l

_

Ij

_

Ij

�

�

F

X

�

3

=2

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

3

; (22)

where �

1

6= 1 or �

2

6= 1;

�

�

1

1


 f

_

I

_

J


 �

�

2

�

3

= r

_

I

_

J


 �

�

2

�

3

�

�

X

i=1

r

i

_

I

i

_

J


 �

�

2

�

3

�

�

F

X

�

1

=2

�

�

�

1

�

1


 f

_

I

_

J


 �

�

2

�

3

; (23)
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where �

2

6= 1 or �

3

6= 1; and

�

�

1

1


 f

_

I

_

J


 �

1

1

= �

_

I

_

J

�

�

X

i=1

�

i

_

I

i

_

J

�

�

X

j=1

�

_

Ij

_

Jj

+

�

X

i;j=1

�

i

_

Ij

i

_

Jj

�

�

F

X

�=2

�

�

�

�


 l

_

I

_

J

+

�

F

X

�=2

�

X

j=1

�

�

�

�


 l

_

Ij

_

Jj

�

�

F

X

�=2

r

_

I

_

J


 �

�

�

+

�

F

X

�=2

�

X

i=1

r

i

_

I

i

_

J


 �

�

�

+

�

F

X

�

1

;�

2

=2

�

�

�

1

�

1


 f

_

I

_

J


 �

�

2

�

2

: (24)

Q.E.D.

We now give a di�erent basis for the open string algebra. We will use it

to 
onstru
t \Verma-like modules".

Proposition 3.6 The following set B

4

of elements form a basis for the open

string algebra:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

;

2. all

�

�

�

1

�

2


 l

_

I

_

J

su
h that the last integers in

_

I and

_

J are not simultaneously

1;

3. all r

;

;


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1;

4. all r

I

;


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1 or the �rst integer of I is not 1;

5. all r

;

J


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1 or the �rst integer of J is not 1;

6. all r

I

J


�

�

1

�

2

su
h that the �rst integers in I and J are not simultaneously

1;

7. �

;

;

, all �

I

;

and all �

;

J

; and

8. all �

I

J

su
h that the �rst integers in I and J are not simultaneously 1

and the last integers in I and J are not simultaneously 1 either.

We need a series of lemmas to prove this assertion.
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Lemma 3.7 The following set B

1

of elements is linearly independent:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that �

1

+ �

2

> 2 and �

3

+ �

4

> 2;

2. all

�

�

�

1

�

2


 l

_

I

_

J

;

3. all r

_

I

_

J


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1;

4. �

;

;

, all �

I

;

and all �

;

J

; and

5. all �

I

J

su
h that the �rst integers in I and J are not simultaneously 1.

Proof. Consider the following set B

1

(n) of operators:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that �

1

+ �

2

> 2 and �

3

+ �

4

> 2;

2. all

�

�

�

1

�

2


 l

_

I

_

J

su
h that #(

_

I) + #(

_

J) < n;

3. all

�

�

�

1

�

2


 l

_

I

_

J

su
h that #(

_

I) + #(

_

J) � n and �

1

+ �

2

> 2;

4. all r

_

I

_

J


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1;

5. �

;

;

, all �

I

;

and all �

;

J

;

6. all �

I

J

su
h that #(I) +#(J) < n+ 2 and the �rst integers of I and J

are not simultaneously 1; and

7. all �

I

J

su
h that #(I) + #(J) � n+ 2.

Clearly, B

1

(0) = B

0

and so B

1

(0) is a basis for the open string algebra.

Assume that B

1

(p) is linearly independent for some non-negative integer

p. Consider now the 
ase B

1

(p + 1). The operators belonging to B

1

(p) but

not to B

1

(p + 1) are all of �

1

_

I

1

_

J

su
h that #(

_

I) + #(

_

J) = p, whereas the

operators belonging to B

1

(p+1) but not to B

1

(p) are all of

�

�

1

1


 l

_

I

_

J

su
h that

#(

_

I)+#(

_

J) = p. Consider any pair of

_

I and

_

J su
h that #(

_

I)+#(

_

J) = p. If

there is an integer in

_

I larger than 1, de�ne q

1

to be the minimal non-negative

integer su
h that the (q+1)-th integer of

_

I is larger than 1; otherwise, de�ne

q

1

to be equal to #(

_

I). De�ne q

2

from the properties of

_

J similarly. Let q be

the minimum of q

1

and q

2

. We 
an then write

_

I =

_

I

1

_

I

2

and

_

J =

_

I

1

_

J

2

, where
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_

I

1

is the number 1 appearing q times, and

_

I

2

or

_

J

2

is empty or starts with

an integer larger than 1. From Eq.(20), we have

�

1

_

I

1

_

J

= �

_

I

2

_

J

2

�

�

X

i=2

�

i

_

I

2

i

_

J

2

�

�

X

i=2

�

i1

_

I

2

i1

_

J

2

� � � � �

�

X

i=2

�

i

_

I

1

_

I

2

i

_

I

1

_

J

2

�

�

F

X

�=1

�

�

�

�


 l

_

I

2

_

J

2

�

�

F

X

�=1

�

�

�

�


 l

1

_

I

2

1

_

J

2

� � � � �

�

F

X

�=1

�

�

�

�


 l

_

I

1

_

I

2

_

I

1

_

J

2

: (25)

Note that �

1

_

I

1

_

J

belongs to B

1

(p) but not to B

1

(p + 1),

�

�

1

1


 l

_

I

1

_

I

2

_

I

1

_

J

2

belongs to

B

1

(p + 1) but not to B

1

(p), and all other terms on the right hand side of

Eq.(25) belong to both B

1

(p) and B

1

(p + 1). Eq.(25) therefore provides a

one-to-one 
orresponden
e between the operators belonging to B

1

(p) but not

to B

1

(p+1), and the operators belonging to B

1

(p+1) but not to B

1

(p). It then

follows from the indu
tive hypothesis at the beginning of this paragraph that

B

1

(p+ 1) is linearly independent. As a result, B

1

(n) is linearly independent

for any non-negative integer value of n. Sin
e any element of B

1

belongs to

B

1

(n) for a suÆ
ient large value of n, B

1

is linearly independent, too. Q.E.D.

Lemma 3.8 The following set B

2

of elements is linearly independent:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that �

1

+ �

2

> 2 and �

3

+ �

4

> 2;

2. all

�

�

�

1

�

2


 l

_

I

_

J

;

3. all r

;

;


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1;

4. all r

I

;


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1, or the �rst integer of I is not 1;

5. all r

;

J


�

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1, or the �rst integer of J is not 1;

6. all r

I

J


 �

�

1

�

2

su
h that

(a) �

1

6= 1,

(b) �

2

6= 1 or

(
) the �rst integers in I and J are not simultaneously 1;

7. �

;

;

, all �

I

;

and all �

;

J

; and
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8. all �

I

J

su
h that the �rst integers in I and J are not simultaneously 1,

and the last integers in I and J are not simultaneously 1 either.

Proof. This is done by applying Eq.(21) and an indu
tive argument similar

to that in Lemma 3.7 on the set B

2

(n) below:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that �

1

+ �

2

> 2 and �

3

+ �

4

> 2;

2. all

�

�

�

1

�

2


 l

_

I

_

J

;

3. all r

;

;


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1;

4. all r

I

;


 �

�

1

�

2

su
h that #(I) < n and at least one of the following three


onditions holds:

(a) �

1

6= 1,

(b) �

2

6= 1 or

(
) the �rst integer of I is not 1;

5. all r

I

;


 �

�

1

�

2

su
h that #(I) � n and at least one of the following two


onditions holds:

(a) �

1

6= 1 or

(b) �

2

6= 1;

6. all r

;

J


�

�

1

�

2

su
h that #(J) < n and at least one of the following three


onditions holds:

(a) �

1

6= 1,

(b) �

2

6= 1 or

(
) the �rst integer of J is not 1;

7. all r

;

J


 �

�

1

�

2

su
h that #(J) � n and at least one of the following two


onditions holds:

(a) �

1

6= 1 or

(b) �

2

6= 1;
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8. all r

I

J


�

�

1

�

2

su
h that #(I)+#(J) < n and at least one of the following

three 
onditions holds:

(a) �

1

6= 1,

(b) �

2

6= 1 or

(
) the �rst integers of I and J are not 1 simultaneously;

9. all r

I

J


�

�

1

�

2

su
h that #(I)+#(J) � n and at least one of the following

two 
onditions holds:

(a) �

1

6= 1 or

(b) �

2

6= 1;

10. all �

;

;

, all �

I

;

and all �

;

J

;

11. all �

I

J

su
h that #(I) + #(J) < n + 2, the �rst integers of I and

J are not simultaneously 1, and the last integers of I and J are not

simultaneously 1 either; and

12. all �

I

J

su
h that #(I) +#(J) � n+ 2 and the �rst integers of I and J

are not simultaneiously 1.

We invite the reader to work out the detail. Q.E.D.

Lemma 3.9 The following set B

3

of elements is linearly independent:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that �

3

+ �

4

> 2;

2. all

�

�

�

1

�

2


 l

_

I

_

J

;

3. all r

;

;


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1;

4. all r

I

;


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1 or the �rst integer of I is not 1;

5. all r

;

J


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1 or the �rst integer of J is not 1;

6. all r

I

J


�

�

1

�

2

su
h that the �rst integers in I and J are not simultaneously

1;

7. �

;

;

, all �

I

;

and all �

;

J

; and
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8. all �

I

J

su
h that the �rst integers in I and J are not simultaneously 1

and the last integers in I and J are not simultaneously 1 either.

Proof. This is done by applying Eq.(23) and an indu
tive argument similar

to that in the Lemma 3.7 on the set B

3

(n) below:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that

(a) #(

_

I) + #(

_

J) < n, and

(b) �

3

+ �

4

> 2;

2. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that

(a) #(

_

I) + #(

_

J) � n,

(b) �

1

+ �

2

> 2, and

(
) �

3

+ �

4

> 2;

3. all

�

�

�

1

�

2


 l

_

I

_

J

;

4. all r

;

;


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1;

5. all r

I

;


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1 or the �rst integer of I is not 1;

6. all r

;

J


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1 or the �rst integer of J is not 1;

7. all r

I

J


 �

�

1

�

2

su
h that #(I) + #(J) � n + 2 and at least one of the

following three 
onditions holds:

(a) �

1

6= 1,

(b) �

2

6= 1 or

(
) the �rst integers in I and J are not simultaneously 1;

8. all r

I

J


 �

�

1

�

2

su
h that #(I) + #(J) < n + 2 and the �rst integers in I

and J are not simultaneously 1;

9. �

;

;

, all �

I

;

and all �

;

J

; and

10. all �

I

J

su
h that the �rst integers in I and J are not simultaneously 1,

and the last integers in I and J are not simultaneously 1 either.
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Again we invite the reader to work out the detail. Q.E.D.

Lemma 3.10 B

4

is a linearly independent set.

Proof. This is done by applying Eq.(22) with �

1

and �

2

arbitrary, and an

indu
tive argument similar to that in the Lemma 3.7 on the set B

4

(n) below:

1. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that #(

_

I) + #(

_

J) < n;

2. all

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

su
h that

(a) #(

_

I) + #(

_

J) � n, and

(b) �

3

6= 1 or �

4

6= 1;

3. all

�

�

�

1

�

2


 l

_

I

_

J

su
h that #(

_

I) + #(

_

J) < n + 2 and the last integers in

_

I

and

_

J are not simultaneously 1;

4. all

�

�

�

1

�

2


 l

_

I

_

J

su
h that #(

_

I) + #(

_

J) � n+ 2;

5. all r

;

;


 �

�

1

�

2

su
h that �

1

6= 1 or �

2

6= 1;

6. all r

I

;


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1 or the �rst integer of I is not 1;

7. all r

;

J


 �

�

1

�

2

su
h that �

1

6= 1, �

2

6= 1 or the �rst integer of J is not 1;

8. all r

I

J


�

�

1

�

2

su
h that the �rst integers in I and J are not simultaneously

1;

9. �

;

;

, all �

I

;

and all �

;

J

; and

10. all �

I

J

su
h that the �rst integers in I and J are not simultaneously 1,

and the last integers in I and J are not simultaneously 1 either.

On
e again we invite the reader to work out the detail. Q.E.D.

Lemma 3.11 Any operator of the �rst three kinds 
an be written as a �nite

linear 
ombination of the elements in B

4

.
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Proof. This follows from the equations below. They 
ome from Eqs.(20) to

(24). From Eqs.(26) to (36) in the next lemma,

_

K

0

is the empty sequen
e,

and

_

K

n

= K

n

is the sequen
e 11 : : : 1 with n integers for n > 0.

The �rst equation is

�

�

�

1

�

2


 l

_

IK

n

_

JK

n

=

�

�

�

1

�

2


 l

_

I

_

J

�

n�1

X

p=0

�

X

j=2

�

�

�

1

�

2


 l

_

I

_

K

p

j

_

J

_

K

p

j

�

n�1

X

p=0

�

F

X

�

3

=1

�

�

�

1

�

2


 f

_

I

_

K

p

_

J

_

K

p


 �

�

3

�

3

; (26)

where �

1

and �

2

are any positive integers not larger than �

F

, n is any positive

integer, and

_

I and

_

J are any integer sequen
es su
h that at least one of them

is empty or having the last integer larger than 1.

The se
ond equation is

r

K

n

_

I

K

n

_

J


 �

�

2

�

3

= r

_

I

_

J


 �

�

2

�

3

�

n�1

X

p=0

�

X

i=2

r

i

_

K

p

_

I

i

_

K

p

_

J


 �

�

2

�

3

�

n�1

X

p=0

�

F

X

�

1

=1

�

�

�

1

�

1


 f

_

K

p

_

I

_

K

p

_

J


 �

�

2

�

3

; (27)

where n is positive, and

1. if

_

I =

_

J = ;, then �

1

+ �

2

> 2;

2. if

_

I 6= ; and

_

J = ;, then the �rst integer of

_

I 6= 1 or �

2

+ �

3

> 2;

3. if

_

I = ; and

_

J 6= ;, then the �rst integer of

_

J 6= 1 or �

2

+ �

3

> 2; and

4. if

_

I 6= ; and

_

J 6= ;, then the �rst integers

_

I and

_

J 
annot be 1

simultaneously.

The third equation is

r

_

K

n

_

K

n


 �

1

1

=

�

F

X

�=1

�

�

�

�


 l

;

;

�

�

F

X

�=2

r

;

;


 �

�

�

�

n�1

X

p=0

�

X

i=2

r

i

_

K

p

i

_

K

p


 �

1

1

�

n�1

X

p=0

�

F

X

�=1

�

�

�

�


 f

_

K

p

_

K

p


 �

1

1

; (28)
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where n is any non-negative integer. The fourth equation is

r

1

_

I

;


 �

1

1

= �

1

_

I

;

� �

_

I1

;

+

�

X

i=2

�

i

_

I1

i

�

�

X

j=2

�

1

_

Ij

j

+

�

F

X

�=1

�

�

�

�


 l

_

I1

;

�

�

F

X

�=2

r

1

_

I

;


 �

�

�

; (29)

where

_

I is any sequen
e. The �fth equation is

r

;

1

_

J


 �

1

1

= �

;

1

_

J

� �

;

_

J1

+

�

X

i=2

�

i

i

_

J1

�

�

X

j=2

�

j

1

_

Jj

+

�

F

X

�=1

�

�

�

�


 l

;

_

J1

�

�

F

X

�=2

r

;

1

_

J


 �

�

�

; (30)

where

_

J is any sequen
e. The sixth equation is

r

K

n

1

_

I

K

n


 �

1

1

= r

1

_

I

;


 �

1

1

�

n�1

X

p=0

�

X

i=2

r

i

_

K

p

1

_

I

i

_

K

p


 �

1

1

�

n�1

X

p=0

�

F

X

�

1

=1

�

�

�

1

�

1


 f

_

K

p

1

_

J

_

K

p


 �

1

1

; (31)

where n is any positive integer,

_

I is any sequen
e, and r

1

_

I

;


 �

1

1

is given by

Eq.(29). The last equation is

r

K

n

K

n

1

_

J


 �

1

1

= r

;

1

_

J


 �

1

1

�

n�1

X

p=0

�

X

i=2

r

i

_

K

p

i

_

K

p

1

_

J


 �

1

1

�

n�1

X

p=0

�

F

X

�

1

=1

�

�

�

1

�

1


 f

_

K

p

_

K

p

1

_

I


 �

1

1

; (32)

where n is any positive integer,

_

J is any sequen
e, and r

;

1

_

J


 �

1

1

is given by

Eq.(30). Q.E.D.

Lemma 3.12 Any operator of the fourth kind 
an be written as a �nite linear


ombination of the elements in B

4

.
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Proof. Firstly, noti
e that

�

K

n

_

I

K

n

_

J

= �

_

I

_

J

�

n�1

X

p=0

�

X

i=2

�

i

_

K

p

_

I

i

_

K

p

_

J

�

n�1

X

p=0

�

F

X

�=1

�

�

�

�


 l

_

K

p

_

I

_

K

p

_

J

(33)

and

�

_

IK

n

_

JK

n

= �

_

I

_

J

�

n�1

X

p=0

�

X

j=2

�

_

I

_

K

p

j

_

J

_

K

p

j

�

n�1

X

p=0

�

F

X

�=1

r

_

I

_

K

p

_

J

_

K

p


 �

�

�

; (34)

where n is a positive integer, and

_

I and

_

J satisfy one of the following 
ondi-

tions:

1.

_

I = ;,

_

J 6= ; and the last integer of

_

J is not 1;

2.

_

J = ;,

_

I 6= ; and the last integer of

_

I is not 1; or

3. both

_

I and

_

J are non-empty, their �rst integers are not simultaneously

1, and their last integers are not simultaneously 1 either.

Lemma 3.11 implies that those l's and r's in Eqs.(36) and (34) whi
h do

not belong to B

4


an be substituted with the ones whi
h do so. Hen
e the

�'s on the left hand sides 
an be written as �nite linear 
ombinations of the

elements of B

4

.

Se
ondly, 
onsider �

K

m

K

n

, where m and n are possibly di�erent positive

integers. It 
an be written as

�

K

m

K

n

= �

_

K

m�1

_

K

n�1

�

�

X

i=2

�

i

_

K

m�1

i

_

K

n�1

�

�

F

X

�=1

�

�

�

�


 l

_

K

m�1

_

K

n�1

: (35)

The se
ond and last terms on the right hand side of this equation 
an be

written as �nite linear 
ombinations of the elements of B

4

by Eq.(34) and

Lemma 3.11, respe
tively. Thus an indu
tive argument on m+n implies that

any �

K

m

K

n


an be written as a �nite linear 
ombination of the elements of B

4

.

Lastly, 
onsider any �

K

m

_

IK

n

K

m

_

JK

n

, where

_

I and

_

J satisfy one of the three


onditions just beneath Eq.(34). It 
an be written as

�

K

m

_

IK

n

K

m

_

JK

n

= �

_

K

m�1

_

IK

n

_

K

m�1

_

JK

n

�

�

X

i=2

�

i

_

K

m�1

_

IK

n

i

_

K

m�1

_

JK

n

�

�

F

X

�=1

�

�

�

�


 l

_

K

m�1

_

IK

n

_

K

m�1

_

JK

n

: (36)
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Again, Eq.(34) and Lemma 3.11 show that the se
ond and last terms on the

right hand side of this equation 
an be written as �nite linear 
ombinations

of the elements of B

4

. Thus an indu
tive argument on #(

_

I) + #(

_

J) implies

that these � 
an be written as �nite linear 
ombination of the elements of

B

4

. Q.E.D.

Proposition 3.6 is a dire
t 
onsequen
e of Lemmas 3.10, 3.11 and 3.12.

4 Cartan Subalgebra and Root Ve
tors

We are going to work out a Cartan subalgebra

4

and the root ve
tors asso
i-

ated with it for the open string algebra. We will need these results in future

se
tions. On
e again those who are not interested in details may only read

the statements of the propositions in this se
tion, and move on to the next

se
tion dire
tly.

Proposition 4.1 All

�

�

�

1

�

1


 f

_

I

_

I


�

�

2

�

2

, all

�

�

�

�


 l

_

I

_

I

, all r

_

I

_

I


�

�

�

and all �

_

I

_

I

form

an over
omplete set of generators of a Cartan subalgebra G

00

of the open

string algebra

5

.

Proof. In terms of the basis B

0

, what we need to show is that

1. all

�

�

�

1

�

1


 f

_

I

_

I


 �

�

2

�

2

su
h that �

1

6= 1 and �

2

6= 1,

2. all

�

�

�

�


 l

_

I

_

I

, su
h that � 6= 1,

3. all r

_

I

_

I


 �

�

�

su
h that � 6= 1 and

4. all �

_

I

_

I

form a basis for this Cartan subalgebra. It is obvious thatG

00

is 
ommutative

and, a fortiori, nilpotent. Consider an element X of the normalizer of G

00

.

Let us express X in terms of the basis B

0

using the Convention in the proof

of Lemma 3.4. Consider

4

Following Humphreys [15℄, we de�ne a Cartan subalgebra of a Lie algebra L as a

nilpotent subalgebra whi
h is equal to its normalizer in L.

5

The spe
ial 
ase �

F

= 1 has been proven in Ref.[12℄.
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Case 1 There exist in X terms of the form 
(�

_

I

i

_

J

i

)�

_

I

i

_

J

i

su
h that i is a positive

integer not larger than p,

_

I

i

6=

_

J

i

, 
(�

_

I

i

_

J

i

) 6= 0 for ea
h i and 
(�

_

I

_

J

) = 0 for

any other

_

I and

_

J su
h that

_

I 6=

_

I

i

or

_

J 6=

_

J

i

for ea
h i. Without loss of

generality, we 
an further assume that either

_

I

1

�

_

I

i

and

_

I

1

�

_

J

i

(37)

for ea
h value of i, or

_

J

1

�

_

I

i

and

_

J

1

�

_

J

i

(38)

for ea
h value of i.

If Eq.(37) is true, then

h

�

�

1

1


 f

_

I

1

_

I

1


 �

1

1

; X

i

= 
(�

_

I

1

_

I

1

)

�

�

1

1


 f

_

I

1

_

J

1


 �

1

1

+ � � � ; (39)

whi
h 
learly does not belong to G

00

. If instead Eq.(38) is true, then

h

�

�

1

1


 f

_

J

1

_

J

1


 �

1

1

; X

i

= �
(�

_

I

1

_

I

1

)

�

�

1

1


 f

_

I

1

_

J

1


 �

1

1

+ � � � ; (40)

whi
h 
learly does not belong to G

00

either. Thus there is no term propor-

tional to �

_

I

_

J

in X su
h that

_

I 6=

_

J .

Next, 
onsider

Case 2 There exist in X terms of the form 
(r

_

I

i

_

J

i


 �

�

i

�

i

)r

_

I

i

_

J

i


 �

�

i

�

i

su
h that

the following four 
onditions hold:

1. i is a positive integer not larger than p;

2.

_

I

i

�

i

6=

_

J

i

�

i

for ea
h i;

3. 
(r

_

I

i

_

J

i


 �

�

i

�

i

) 6= 0 for ea
h i; and

4. 
(r

_

I

_

J


 �

�

�

) = 0 for any other

_

I,

_

J , � and � su
h that

_

I� 6=

_

I

i

�

i

or

_

J� 6=

_

J

i

�

i

for ea
h i.
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Without loss of generality, we 
an further assume that for all values of i,

either

_

I

1

�

1

�

_

I

i

�

i

and

_

I

1

�

1

�

_

J

i

�

i

(41)

for ea
h value of i, or

_

J

1

�

1

�

_

I

i

�

i

and

_

J

1

�

1

�

_

J

i

�

i

: (42)

for ea
h value of i.

If Eq.(41) holds, then

h

�

�

1

1


 f

_

I

1

_

I

1


 �

�

1

�

1

; X

i

= 
(r

_

I

1

_

J

1


 �

�

1

�

1

)

�

�

1

1


 f

_

I

1

_

J

1


 �

�

1

�

1

+ � � � ; (43)

whi
h does not belong to G

00

. If instead Eq.(42) holds, then

h

�

�

1

1


 f

_

J

1

_

J

1


 �

�

1

�

1

; X

i

= �
(r

_

I

1

_

J

1


 �

�

1

�

1

)

�

�

1

1


 f

_

I

1

_

J

1


 �

�

1

�

1

+ � � � ; (44)

whi
h does not belong to G

00

either. Thus there 
annot be any term propor-

tional to r

_

I

_

J


 �

�

�

in X su
h that

_

I� 6=

_

J�.

Similar arguments by 
ontradi
tion enable us to rule out the remaining

two 
ases.

Case 3 There exist in X terms of the form 
(

�

�

�

i

�

i


 l

_

I

i

_

J

i

)

�

�

�

i

�

i


 l

_

I

i

_

J

i

su
h that the

following four 
onditions hold:

1. i is a positive integer not larger than p;

2.

_

I

i

�

i

6=

_

J

i

�

i

for ea
h i;

3. 
(

�

�

�

i

�

i


 l

_

I

i

_

J

i

) 6= 0 for ea
h i; and

4. 
(

�

�

�

�


 l

_

I

_

J

) = 0 for any other

_

I,

_

J , � and � su
h that

_

I� 6=

_

I

i

�

i

or

_

J� 6=

_

J

i

�

i

for ea
h i.

Case 4 There exist in X terms of the form 
(

�

�

�

i

�

i


 f

_

I

i

_

J

i


�

�

i

�

i

)

�

�

�

i

�

i


 f

_

I

i

_

J

i


�

�

i

�

i

su
h that the following four 
onditions hold:
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1. i is a positive integer not larger than p;

2.

_

I

i

�

i

�

i

6=

_

J�

i

�

i

for ea
h i;

3. 
(

�

�

�

i

�

i


 f

_

I

i

_

J

i


 �

�

i

�

i

) 6= 0 for ea
h i; and

4. 
(

�

�

�

�


 f

_

I

_

J


 �

�

�

) = 0 for any other

_

I,

_

J , �, �, � and � su
h that

_

I�� 6=

_

I

i

�

i

�

i

or

_

J�� 6=

_

J

i

�

i

�

i

for ea
h i.

Q.E.D.

Proposition 4.2 A ne
essary and suÆ
ient 
ondition for a ve
tor of the

open string algebra to be an eigenve
tor with respe
t to the Cartan subalgebra

G

00

is that this ve
tor is proportional to

�

�

�

1

�

2


f

_

I

_

J


�

�

3

�

4

, where

_

I�

1

�

3

6=

_

J�

2

�

4

6

.

Proof. The suÆ
ient part is obvious. Let us prove the ne
essary part.

Write down the eigenve
tor V in terms of the basis set B

0

a

ording to

the Convention in the proof of Lemma 3.4. It is 
lear that V 
ontains no

term proportional to an element in B

0

. Now 
onsider Case 1 in the proof of

Proposition 4.1. If Eq.(37) is true, then Eq.(39) tells us that V 2 F

�;�

F

; on

the 
ontrary, if Eq.(38) is true, then Eq.(40) still yields the same 
on
lusion

that V 2 F

�;�

F

.

Next 
onsider Case 2 in the proof of Proposition 4.1 together with the

additional assumption that 
(�

_

I

_

J

) = 0 for all

_

I and

_

J . If Eq.(41) is true,

then Eq.(43) tells us that V 2 F

�;�

F

; on the 
ontrary, if Eq.(42) is true, then

Eq.(44) still yields the same 
on
lusion, namely V 2 F

�;�

F

.

Finally, 
onsider Case 3 in the proof of Proposition 4.1 together with the

additional assumptions that 
(�

_

I

_

J

) = 0 and 
(r

_

I

_

J


�

�

�

) = 0 for all

_

I,

_

J , � and

�. An argument similar to the ones in the �rst two 
ases will lead us to the

same 
on
lusion that V 2 F

�;�

F

.

We therefore 
on
lude that in all 
ase, V 2 F

�;�

F

. Now, we know that

F

�;�

F

is isomorphi
 to gl(1) whose properties then lead to the ne
essary

part of this proposition. Q.E.D.

6

This is a more elegant proof than the 
orresponding one in Ref.[12℄, whi
h deals with

the 
ase �

F

= 1 only.
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5 Verma-Like Modules

Verma modules are a valuable tool for 
onstru
ting non-trivial unitary lowest

weight irredu
ible representations of familiar Lie algebras like the Virasoro

algebra. We are going to adopt the same philosophy to 
onstru
t unitary

lowest weight irredu
ible representations for the open string algebra. This

algebra, however, di�ers from the Virasoro algebra in one important aspe
t

| its Cartan subalgebra and the asso
iated root ve
tors do not span the

whole open string algebra. This implies there 
annot be any triangular de-


omposition of the open string algebra in the traditional sense. Nevertheless,

there is still a de
omposition very similar to the triangular de
omposition,

and we 
an use this other de
omposition as a starting point to de�ne a mod-

ule whi
h resembles a Verma module. We will 
all this a Verma-like module.

It was noted in Ref.[12℄ that the subalgebra

^

�

�

admits a de
omposition

into subalgebras of \raising", \diagonal" and \lowering" operators. Indeed,

we will see shortly that the open string algebra 
an be Z-graded.

Let #(

_

I) be the number of integers in

_

I, and

^

G

m

a subspa
e of the

grand string algebra spanned by all operators of any form shown in Table 1

(and all operators of the �fth kind not mentioned in Se
tion 2) su
h that

#(

_

I)�#(

_

J) = m or #(I)�#(J) = m. Then the grand string algebra is a

dire
t sum of

^

G

m

for all integral values of m. Furthermore, the reader 
an


he
k from the Lie bra
kets of the grand string algebra, all of whi
h 
an be

found in Ref.[12℄ and most of whi
h were reprodu
ed in Se
tion 2, that

[

^

G

m

;

^

G

n

℄ �

^

G

m+n

: (45)

Hen
e the set of all

^

G

m

provides a Z-grading for the grand string algebra.

Moreover, the de�ning representation is, in a natural way, a graded represen-

tation for the grand string algebra with the grade of

�

�

�

1


 s

_

K


 �

�

2

equal to

#(

_

K). Re
all that the open string algebra is the quotient of the grand string

algebra by the radi
al of this graded representation. It follows that the open

string algebra is also Z-graded:

^

G

�;�

F

=

1

M

m=�1

G

m

(46)

with G

m

being the image of

^

G

m

under the quotient operation.

The Cartan subalgebraG

00

is a subalgebra ofG

0

. LetG

0+

be the subspa
e

of G

0

spanned by all operators of any form shown in Table 1 su
h that
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_

I�

1

�

3

>

_

J�

2

�

4

,

_

I�

1

>

_

J�

2

,

_

I >

_

J or I > J . Then G

0+

is a subalgebra of

G

0

[12℄. Likewise, let G

0�

be the subspa
e of G

0

spanned by all operators of

any form shown in Table 1 su
h that

_

J >

_

I or J > I. Then G

0�

is another

subalgebra of G

0

. Moreover, we have G

0

= G

�

�G

00

�G

+

. Consider

G

+

� G

0+

�

 

1

M

m=1

G

m

!

(47)

and

G

�

� G

0�

�

 

�1

M

m=�1

G

m

!

: (48)

It follows from the fa
t that G

0+

is a subalgebra of G

0

and Eq.(45) that G

+

is

a subalgebra of the open string algebra. Likewise, G

�

is another subalgebra

of

^

G

�;�

F

. Then

^

G

�;�

F

= G

+

�G

00

�G

�

: (49)

Let us now 
onstru
t a module for the open string algebra using Eq.(49).

Consider the universal enveloping algebra U(

^

G

�;�

F

) of the open string alge-

bra. Let h

I

(�

1

;

_

I;�

2

), h

II

(�;

_

I), h

III

(

_

I;�) and h

IV

(

_

I) be �xed fun
tions on

an integer sequen
e

_

I and, with the ex
eption of h

IV

, the positive integer(s)

�

1

, �

2

or � also. The subs
ripts tell us the kinds of operators with whi
h the

fun
tions are asso
iated. Constru
t the left ideal I of U(

^

G

�; F

) generated by

1. all elements in G

�

,

2. all

�

�

�

1

�

1


 f

_

I

_

I


 �

�

2

�

2

� h

I

(�

1

;

_

I;�

2

) � 1

with 1 being the identity element of U(

^

G

�;�

F

),

3. all

�

�

�

�


 l

_

I

_

I

� h

II

(�;

_

I) � 1;

su
h that

�

�

�

�


 l

_

I

_

I

2 B

4

,

4. all

r

_

I

_

I


 �

�

�

� h

III

(

_

I;�) � 1

su
h that r

_

I

_

I


 �

�

�

2 B

4

and
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5. all

�

_

I

_

I

� h

IV

(

_

I) � 1

su
h that �

_

I

_

I

2 B

4

.

The values of all h

I

, h

II

, h

III

and h

IV

listed above 
an be freely 
hosen.

Fix the values of these four fun
tions on other arguments by the su

eeding

equations in all of whi
h

_

K

0

stands for the empty sequen
e and

_

K

n

= K

n

stands for the sequen
e 11. . . 1 with n integers for n > 0:

h

II

(�

1

;

_

IK

n

) = h

II

(�

1

;

_

I)�

n�1

X

p=0

�

X

j=2

h

II

(�

1

;

_

I

_

K

p

j)

�

n�1

X

p=0

�

F

X

�

2

=1

h

I

(�

1

;

_

I

_

K

p

;�

2

); (50)

where �

1

is any positive integer not larger than �

F

, n is any positive integer,

and

_

I is any integer sequen
e su
h that either it is empty or its last integer

is larger than 1 (
.f., Eq.(26));

h

III

(K

n

_

I;�

2

) = h

III

(

_

I;�

2

)�

n�1

X

p=0

�

X

i=2

h

III

(i

_

K

p

_

I;�

2

)

�

n�1

X

p=0

�

F

X

�

1

=1

h

I

(�

1

;

_

K

p

_

I;�

2

); (51)

where n is positive, and either

1.

_

I is empty and �

2

6= 1, or

2.

_

I is non-empty and the �rst integer of

_

I is not 1

(
.f. Eq.(27));

h

III

(

_

K

n

; 1) =

�

F

X

�=1

h

II

(�; ;)�

�

F

X

�=2

h

III

(;;�)�

n�1

X

p=0

�

X

i=2

h

III

(i

_

K

p

; 1)

�

n�1

X

p=0

�

F

X

�=1

h

I

(�

1

;

_

K

p

; 1); (52)
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where n is any non-negative integer (
.f., Eq.(28));

h

IV

(K

n

_

I) = h

IV

(

_

I)�

n�1

X

p=0

�

X

i=2

h

IV

(i

_

K

p

_

I)�

n�1

X

p=0

�

F

X

�=1

h

II

(�;

_

K

p

_

I); (53)

where n is any positive integer,

_

I is either empty or has both its �rst and

last integers larger than 1, and the values of h

II


an either be freely 
hosen

or determined from Eq.(50) (
.f., Eq.(33));

h

IV

(IK

n

) = h

IV

(I)�

n�1

X

p=0

�

X

j=2

h

IV

(I

_

K

p

j)�

n�1

X

p=0

�

F

X

�=1

h

III

(I

_

K

p

;�); (54)

where n is a positive integer, I is a non-empty sequen
e whose �rst and last

integers are both larger than 1, and the values of h

III

where either freely


hosen or 
ould be determined from Eq.(51) or (52) (
.f., Eq.(34));

h

IV

(K

m

_

IK

n

) = h

IV

(K

m

_

I)�

n�1

X

p=0

�

X

j=2

h

IV

(K

m

_

I

_

K

p

j)

�

n�1

X

p=0

�

F

X

�=1

h

III

(K

m

_

I

_

K

p

;�); (55)

where both m and n are positive integers,

_

I is a non-empty integer sequen
e

whose �rst and last integers are both larger than 1, the values of h

III


ould be

determined from Eq.(51) or (52), and those of h

IV


ould be determined from

Eq.(53) (
.f., Eq.(36)). The four fun
tions h = (h

I

; h

II

; h

III

; h

IV

) determined

in this way will be 
alled a lowest weight. Clearly, the four fun
tions are not

linearly indepedent. Eqs.(26), (27), (33), (34) and (36) then imply that I is

spanned by G

+

and all elements of the form

�

�

�

1

�

1


 f

_

I

_

I


 �

�

2

�

2

� h

I

(�

1

;

_

I;�

2

) � 1;

�

�

�

�


 l

_

I

_

I

� h

II

(�

1

;

_

I) � 1;

r

_

I

_

I


 �

�

�

� h

III

(

_

I;�) � 1 or

�

_

I

_

I

� h

IV

(

_

I) � 1:

De�ne M to be U=I.

^

G

�;�

F

a
ts on M by left multipli
ation and so M

is a valid representation of

^

G

�;�

F

. Let v

h

(OBS UNIFORMIZE NOTATION:
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EITHER v

h

or j v

h

i ???? (and doesn't jv

h

i look better?)) be the image of 1

in M. Then

G

�

(v

h

) = 0;

�

�

�

1

�

1


 f

_

I

_

I


 �

�

2

�

2

(v

h

) = h

I

(�

1

;

_

I;�

2

)v

h

;

�

�

�

�


 l

_

I

_

I

(v

h

) = h

II

(�;

_

I)v

h

;

r

_

I

_

I


 �

�

�

(v

h

) = h

III

(

_

I;�)v

h

; and

�

_

I

_

I

(v

h

) = h

IV

(

_

I)v

h

: (56)

We will 
all any v

h

satisfying Eq.(56) a lowest weight ve
tor. (Note that

not all elements in G

+


an be written as �nite linear 
ombinations of root

ve
tors of G

00

and so this notion of a lowest weight ve
tor is di�erent from

the traditional one.) The Poin
ar�e{Birkho�{Witt theorem implies that v

h

together with all the elements in M of the form

E(v

h

) =

n

Y

p=1

X

_

I

p

_

J

p

v

h

; (57)

where n is any positive integer, X

_

I

p

_

J

p

2 G

+

for ea
h value of p and the produ
t

is arranged in the reverse of the lexi
ographi
 ordering in De�nition 3.2,

forms a basis for M. The expe
tation value of E(v

h

), whi
h we will denote

as hE(v

h

)i, is the 
oeÆ
ient of v

h

in the expression for E(v

h

) written in this

basis. We will 
all M a Verma-like module. (Again if G

+

and G

�

were

spanned by root ve
tors, M would be a Verma module.)

A lowest weight representation of the open string algebra is a Verma-

like module or a quotient of it. In general, a lowest weight representation

is not irredu
ible. If there is a maximal subrepresentation of a Verma-like

module, the resulting quotient representation will be an irredu
ible lowest

weight representation.

To establish the notion of unitarity for lowest weight representations, we

introdu
e a number of auxiliary notions as follows. De�ne an antilinear anti-

involution ! on

^

G

�;�

F

by

!(

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

) =

�

�

�

2

�

1


 f

_

J

_

I


 �

�

4

�

3

;

!(

�

�

�

1

�

2


 l

_

I

_

J

) =

�

�

�

2

�

1


 l

_

J

_

I

;

!(r

_

I

_

J


 �

�

1

�

2

) = r

_

J

_

I


 �

�

2

�

1

;

!(�

I

J

) = �

J

I

: (58)
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(Readers who know how these four kinds of operators were introdu
ed in

Refs.[9℄ and [12℄ should be aware that this antilinear anti-involution is noth-

ing but the Hermitian 
onjugation of 
reation and annihilation operators of

partons.) This antilinear anti-involution of

^

G

�;�

F

extends straightforwardly

to an antilinear anti-involution of its universal enveloping algebra U(

^

G

�;�

F

).

From now on, we assume all the weight fun
tions to be real. This allows

us to de�ne a sesquilinear form h� j �i on two elements E

1

(v

h

) and E

2

(v

h

) of

M, both of whi
h are of the form Eq.(57), by

hE

1

(v

h

) j E

2

(v

h

)i � h!(E

1

)E

2

(v

h

)i; (59)

where the R.H.S. is the expe
tation value of the element !(E

1

)E

2

(v

h

) of M

introdu
ed previously. Sin
e h!(E)v

h

i is the 
omplex 
onjugate of hE(v

h

)i,

h� j �i is a Hermitian form of M. Moreover, it is 
learly 
ontravariant.

A lowest weight representation is unitary if its Hermitian form is positive

de�nite. Of 
ourse, a Verma-like module is not unitary in general. Neverthe-

less, by a judi
ious 
hoi
e of weight fun
tions, it is possible to obtain unitary

quotient representations with the help of this Hermitian form. In this 
ase

we 
all it unitarizable.???

6 Tensor Produ
ts of the De�ning Represen-

tation

Re
all the de�ning representation in Se
tion 2. It is unitary and irredu
ible.

More unitary irredu
ible representations 
an be obtained from the de�ning

representation by taking its tensor produ
ts. Can they be obtained from

Verma-like modules? We will answer this question in the form of a theorem.

To state it, we need

De�nition 6.1 A Verma-like module is approximately �nite if its lowest

weight fun
tion h satis�es the following 
onditions:

1. h

I

(�

1

;

_

I;�

2

)� h

I

(�

3

;

_

J ;�

4

) is a non-negative integer if

_

J�

3

�

4

>

_

I�

1

�

2

;

2. h

II

(�;

_

I) =

P

_

I

1

;�

1

h

I

(�;

_

I

_

I

1

;�

1

);

3. h

III

(

_

I;�) =

P

�

1

;

_

I

1

h

I

(�

1

;

_

I

1

_

I;�); and

4. h

IV

(

_

I) =

P

�

1

;

_

I

1

;

_

I

2

;�

2

h

I

(�

1

;

_

I

1

_

I

_

I

2

;�

2

).
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(By 
onvergen
e and unitarity, only a �nite number of summands 
an be

non-zero in ea
h of the last three equations.)

7

Theorem 6.2 The following statements pertaining to a unitary irredu
ible

representation of open string algebra are equivalent:

1. The representation is a tensor produ
t of the de�ning representation.

2. The representation is the quotient of an approximately �nite Verma-like

module by its maximal subrepresentation.

3. The representation is the quotient of a Verma-like module in whi
h h

I

,

h

II

, h

III

and h

IV

are all non-zero only on a �nite number of arguments

by its maximal subrepresentation.

4. The representation is the quotient of a Verma-like module in whi
h

h

IV

is non-zero only on a �nite number of arguments by its maximal

subrepresentation

8

.

Moreover, the maximal subrepresentations in the above statements are the

radi
al of the Hermitian form of the Verma-like module.

There are some interesting physi
al interpretations of this theorem. In

the 
ontext of QCD, a tensor produ
t of the de�ning representation is a spa
e


onsisting of multiple meson states. Theorem 6.2 thus re
e
ts on
e again a

long-established fa
t that in the large-N limit, one 
annot break an open

string into several, or 
ombine several open strings to one [19℄. Furthermore,

the proof of Proposition 4.1 
learly shows that G

00

is a maximally 
ommu-

tative subalgebra of

^

G

�;�

F

. We may thus think of G

00

as a linear spa
e

generated by a maximally 
ommuting set of linearly independent quantum

observables, of whi
h the lowest weight state is an eigenstate with all its

eigenvalues, or quantum numbers, given by the weight fun
tions. If this

state has only a �nite number of non-zero quantum numbers, any other state

generated by it will have a �nite number of non-zero quantum numbers, too.

Consequently, the above theorem implies that if an eigenstate, lowest weight

or not, has only a �nite number of non-zero quantum numbers with respe
t

7

This de�nition is slightly di�erent from the one we gave earlier in Ref.[17℄; here we

impose the additional 
ondition that h

IV

(;) satis�es the last equation.

8

We thank S. G. Rajeev for suggesting this fourth statement.
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to these quantum observables, then this eigenstate must be a multiple meson

state.

Before embarking on the proof of the equivalen
es, let us make some

simple observations whi
h have, among other things, as 
onsequen
es the

statements about the Hermitian form in the theorem.

Lemma 6.3 The maximal subrepresentation of a unitarizable Verma-like

module is the radi
al of the Hermitian form.

Proof. If we quotient out by the radi
al of the Hermitian form in the Verma

module we get a representation with a non-degenerate Hermitian form (still


ontravariant of 
ourse). A priori it might seem possible that this represen-

tation 
ould have a proper unitary quotient. However, exa
tly due to the

unitarity assumption, if there exists a non-zero maximal proper invariant

subspa
e I su
h that the quotient by it is unitary, then in fa
t the quotient

must be equivalent to I

?

. But sin
e the spa
e is 
y
li
, this is only possible

if I = 0 whi
h is a 
ontradi
tion. Q.E.D.

Lemma 6.4 If for a given weight h there exists a 
ontravariant unitary low-

est (or highest) weight module V

h

, then it is unique.

Proof. Let v

h

denote the lowest weight ve
tor and let A

h

denote the annihi-

lator of v

h

in the envelopping algebra U . Then V

h

' U=A

h

and by Lemma 6.3,

A

h

is equal to the set of Y 2 U for whi
h Y v

h

= 0 , hY v

h

j Y v

h

i = 0. By


ontravarian
e, the latter 
ondition is expressible entirely in terms of the Lie

algebra stru
ture and h. Q.E.D.

We will now prove Theorem 6.2 by a series of lemmas in whi
h 1., 2., 3.

and 4. stand for the four enumerated statements in Theorem 6.2.

Lemma 6.5 1. ) 2.

Proof. First of all we observe that the de�ning representation T

o

is obviously

approximately �nite. Indeed, it is elementary to verify that the following

identities hold in T

o

�

�

�

1

�

2


 l

_

I

_

J

=

�

F

X

�

3

=1

X

_

K

�

�

�

1

�

2


 f

_

I

_

K

_

J

_

K


 �

�

3

�

3

; (60)
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r

_

I

_

J


 �

�

3

�

4

=

�

F

X

�

1

=1

X

_

K

�

�

�

1

�

1


 f

_

K

_

I

_

K

_

J


 �

�

3

�

4

and (61)

�

_

I

_

J

=

�

F

X

�

1

;�

2

=1

X

_

K

1

;

_

K

2

�

�

�

1

�

2


 f

_

K

1

_

I

_

K

2

_

K

1

_

J

_

K

2


 �

�

2

�

2

(62)

for all

_

I;

_

J; �

1

; �

2

; �

3

, and�

4

. It is 
lear that the tensor produ
t T

d

o

= T

d

o




T

d

o

: : :
T

d

o

(d 
opies) will have the same property. Furthermore, any Young

symmetrizer 





will de�ne an invariant subspa
e and a non-zero weight ve
tor

v




whi
h is annihilated by any subalgebra gl(N)

�

� gl(1) � gl(�

F

)
F

�




gl(�

F

).

Let


 = (


1

; 


2

; : : :) with 


1

� 


2

� � � � � 


n

� 0 = 


n+1

= 


n+2

= � � �

su
h that d = 


1

+ 


2

+ : : : + 


n

. Again, by looking at the subalgebras

gl(N) it follows that 





(T

o

) 
arries an irredu
ible representation. That v




is

annihilated by all of G

�

and forms a one-dimensional representation for G

00

is equally 
lear. The lowest weight is given by the formulae

h

I

(1; ;; 1) = 


1

;

h

I

(1; ;; 2) = 


2

;

.

.

.

h

I

(1; ;; �

F

) = 


�

F

;

h

I

(2; ;; 1) = 


�

F

+1

;

.

.

.

h

I

(�

F

; ;; �

F

) = 


�

F

�

F

;

h

I

(1; 1; 1) = 


�

F

�

F

+1

;

.

.

.

h

I

(1; 1; �

F

) = 


�

F

�

F

+�

F

;

h

I

(2; 1; 1) = 


�

F

�

F

+�

F

+1

;

.

.

.

h

I

(�

F

; 1; �

F

) = 


2�

F

�

F

;

h

I

(1; 2; 1) = 


2�

F

�

F

+1

;
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.

.

.

h

I

(�

F

; �; �

F

) = 


��

F

�

F

;

h

I

(1; 11; 1) = 


��

F

�

F

+1

;

.

.

.

h

I

(�

1

;

_

K; �

2

) = 


n

and

h

I

(�

1

;

_

I;�

2

) = 0 if

_

I�

1

�

2

>

_

K�

1

�

2

: (63)

The equations (60-62) 
learly also hold in 





(T

o

). Q.E.D.

Lemma 6.6 2. ) 1.

Proof. Let h

I

be given in terms of a 
 as in Eq.(63). Then, sin
e it is non-

zero only on a �nite number of arguments, 
 de�nes a Young symmetrizer







. Consider 





(T

o

). It is easy to see that this spa
e has the right lowest

weight. By Lemma 6.4 it is unique. Q.E.D.

Lemma 6.7 2. ) 3.

Proof. A

ording to De�nition 6.1, only a �nite number of the summands

in the formula

h

IV

(;) =

X

�

1

;

_

I

1

;

_

I

2

;�

2

h

I

(�

1

;

_

I

1

_

I

2

;�

2

)

are non-zero, so there exists an integer sequen
e

_

K su
h that h

I

(�

1

;

_

I;�

2

) = 0

for any �

1

and �

2

if

_

I >

_

K. Then h

II

(�;

_

I) = h

III

(

_

I;�) = h

IV

(I) = 0 if

_

I >

_

K. In parti
ular, h

II

, h

III

and h

IV

are non-zero on a �nite number of

arguments only. Q.E.D.

Lemma 6.8 h

I

(�

2

;

_

J ;�

4

)�h

I

(�

1

;

_

I;�

3

) is a non-negative integer if

_

I�

1

�

3

>

_

J�

2

�

4

9

.

Proof. Let

_

I and

_

J be arbitrarily 
hosen integer sequen
es, and �

1

, �

2

, �

3

and �

4

arbitrarily 
hosen positive integers not greater than �

F

. Noti
e that

�

�

�

1

�

2


 f

_

I

_

J


 �

�

3

�

4

;

�

�

�

1

�

1


 f

_

I

_

I


 �

�

3

�

3

�

�

�

�

2

�

2


 f

_

J

_

J


 �

�

4

�

4

and

�

�

�

2

�

1


 f

_

J

_

I

�

�

4

�

3

;

9

Observe that this result is 
ompletely general: any unitary irredu
ible representation

of the open string algebra 
onstru
ted from a Verma-like module satis�es the �rst 
ondition

in De�nition 6.1.
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where

_

I�

1

�

3

>

_

J�

2

�

4

, span a subalgebra of the open string algebra. This

subalgebra is isomorphi
 to sl(2; C ). We therefore dedu
e from the repre-

sentation theory of sl(2; C ) that h

I

(�

2

;

_

J ;�

4

) � h

I

(�

1

;

_

I;�

3

) must be a non-

negative integer. Q.E.D.

Lemma 6.9 3. ) 2..

Proof. Sin
e h

I

is non-zero on a �nite number of arguments only, Lemma 6.8

implies that there exists an integer sequen
e

_

K�

1

�

2

su
h that

1. h

I

(�

1

;

_

K; �

2

) > 0;

2. h

I

(�

1

;

_

I;�

2

) = 0 if

_

I�

1

�

2

>

_

K�

1

�

2

; and

3. 0 < h

I

(�

1

;

_

I;�

2

) � h

I

(�

3

;

_

J ;�

4

) if

_

K�

1

�

2

>

_

I�

1

�

2

>

_

J�

3

�

4

.

In other words, Eq.(63) with the partition � holds.

We will move on to show that h

II

satis�es De�nition 6.1. The proofs

for h

III

and h

IV

are similar. Let

_

K

1

�

3

be the integer sequen
e su
h that

h

II

(�

3

;

_

K

1

) > 0 and h

II

(�;

_

I) = 0 if

_

I� >

_

K

1

�

3

. Then Eq.(22) implies that

X

�

h

I

(�

3

;

_

K

1

;�) = h

II

(�

3

;

_

K

1

)�

X

i

h

II

(�

3

;

_

K

1

i) > 0:

Hen
e

_

K

1

�

3

�

_

K�

1

.

_

K

1

�

3

<

_

K�

1

is impossible or else

X

�

h

I

(�

1

;

_

K;�) = h

II

(�

1

;

_

K)�

X

i

h

II

(�

1

;

_

Ki) = 0;

a 
ontradi
tion. Thus �

3

= �

1

and

_

K

1

=

_

K. That h

II

satis�es De�nition 6.1

now follows from the fa
t that h

II

(�;

_

I) is a sum of

1. all h

I

(�;

_

I

_

I

1

;�

1

) where �

1


an take on any value and

_

I

1

is an integer

sequen
e su
h that

_

I

_

I

1

� <

_

K�

1

,

2. all h

II

(�;

_

I

_

I

1

i) where

_

I

1

i is any integer sequen
e su
h that

_

I

_

I

1

� <

_

K�

1

but

_

I

_

I

1

i� >

_

K�

1

,

and the fa
t that the summands in the se
ond family vanish identi
ally.

Q.E.D.

Lemma 6.10 3. ) 4..
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Proof. Trivial. Q.E.D.

Lemma 6.11 h

II

(�

2

;

_

J)� h

II

(�

1

;

_

I) � 0 and h

III

(

_

J ;�

2

)� h

III

(

_

I;�

1

) � 0 if

_

I�

1

>

_

J�

2

.

Proof. This 
omes from the inequalities

hv

h

j

�

�

�

�

2

�

1


 l

_

J

_

I

��

�

�

�

1

�

2


 l

_

I

_

J

�

j v

h

i � 0

and

hv

h

j

�

r

_

J

_

I


 �

�

2

�

1

��

r

_

I

_

J


 �

�

1

�

2

�

j v

h

i � 0:

Q.E.D.

Lemma 6.12 4. ) 3..

Proof. Let

_

K be an integer sequen
e su
h that h

IV

(

_

K) > 0 and h

IV

(

_

I) = 0

for any

_

I >

_

K. Eqs.(22), (23) and (24) imply that for this

_

I,

�

F

X

�

1

;�

2

=1

h

I

(�

1

;

_

I;�

2

) = h

IV

(

_

I)�

�

X

i=1

h

IV

(i

_

I)�

�

X

j=1

h

IV

(

_

Ij) +

�

X

i;j=1

h

IV

(i

_

Ij)

= 0: (64)

Assume that some h

I

(�

1

;

_

I;�

2

) 6= 0 in Eq.(64). Then there exist two

integers �

1

and �

2

su
h that h

I

(�

1

;

_

I; �

2

) < 0. By Lemma 6.8, h

I

(�

3

;

_

J ;�

4

) <

0 if

_

J >

_

I. Hen
e for this

_

J ,

0 >

�

F

X

�

3

;�

4

=1

h

I

(�

3

;

_

J;�

4

)

= h

IV

(

_

J)�

�

X

i=1

h

IV

(i

_

J)�

�

X

j=1

h

IV

(

_

Jj) +

�

X

i;j=1

h

IV

(i

_

Jj)

= 0;

a 
ontradi
tion. We thus 
on
lude that h

I

(�

1

;

_

I;�

2

) = 0 for any integer

sequen
e

_

I su
h that

_

I >

_

K and any integers �

1

and �

2

. In parti
ular,

h

I

is non-zero on a �nite number of arguments only. A similar argument

using Lemma 6.11 shows that h

II

and h

III

are non-zero on a �nite number

of arguments only. Q.E.D.
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7 Other Unitary Irredu
ible Representations

Now that we have identi�ed a 
lass of unitary irredu
ible representations, it

is natural for us to ask how other unitary irredu
ible representations look

like. One 
ru
ial observation is that not only are the above tensor produ
t

representations faithful representations of the full open string algebra, but

also they are 
ompletely determined as representations of gl(1) = gl(�

F

)


F

�


 gl(�

F

), a proper ideal. Even more so, they are 
ompleteely determined

by the ideal sl(1) = [gl(1); gl(1)℄ and are the only representations that

remain faithful and unitary as representations of this ideal. This suggests

that other unitary irredu
ible representations 
an be obtained as unitary

lowest weight representations from the quotient algebra by sl(1), i.e. as

\truly in�nite" (t.i.) representations of the open string algebra - lowest

weight representations in whi
h sl(1) a
ts trivially. Indeed, it turns out

that

Theorem 7.1 Any unitary irredu
ible lowest weight representation of the

open string algebra is a tensor produ
t of a unitary irredu
ible approximately

�nite representation and a unitary irredu
ible lowest weight representation in

whi
h any element of sl(1) a
ts as the 0 operator.

10

Together with the physi
al interpretation of Theorem 6.2, this result im-

plies that if a lowest weight state has an in�nite number of non-zero quantum

numbers, it must be a tensor produ
t of a multiple meson state and a state

in a representation of the quotient algebra. As remarked in the introdu
tion,

the quotient algebra extends and generalizes the Virasoro algebra. Already

for the 
ase � = 1 the quotient algebra is quite interesting. Spe
i�
ally,

it is an extension of the Virasoro algebra by an in�nite Heisenberg algebra

(the details of this will appear elsewhere???). We expe
t the representation

theory of the quotient algebra to lead to novel physi
s.

Let h

I

, h

II

, h

III

and h

IV

be the weight fun
tions of an arbitrary unitary

lowest weight representation R of the open string algebra, and v

h

its lowest

weight ve
tor (somewhat abusing notation, we do not distinguish between the

spa
e and the representation). Our task is to produ
e two representations

R

a:f:

and R

t:i:

su
h that R

a:f:

is approximately �nite, R

t:i:


omes from the

quotient algebra (is trivial on sl(1)), and R = R

t:i:


 R

a:f:

. As usual, we

do this by proving a su

ession of lemmas.

10

This is a 
orre
ted version to Theorem 3 in Ref.[17℄
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Lemma 7.2 In the �rst two equations below, assume that

_

I�

1

>

_

J�

2

, and

in the third assume that

_

I >

_

J . Let

�

�

�

1

�

2




~

l

_

I

_

J

�

�

�

�

1

�

2


 l

_

I

_

J

�

�

F

X

�

3

=1

X

_

K

�

�

�

1

�

2


 f

_

I

_

K

_

J

_

K


 �

�

3

�

3

; (65)

~r

_

I

_

J


 �

�

1

�

2

� r

_

I

_

J


 �

�

1

�

2

�

�

F

X

�

3

=1

X

_

K

�

�

�

3

�

3


 f

_

K

_

I

_

K

_

J


 �

�

1

�

2

; and (66)

~�

_

I

_

J

� �

_

I

_

J

�

�

F

X

�

1

;�

2

=1

X

_

K;

_

L

�

�

�

1

�

1


 f

_

K

_

I

_

L

_

K

_

J

_

L


 �

�

2

�

2

: (67)

Then

�

�

�

1

�

2




~

l

_

I

_

J

j v

h

i, ~r

_

I

_

J


 �

�

1

�

2

j v

h

i and ~�

_

I

_

J

j v

h

i have �nite norms.

Proof. We will show that ~�

_

I

_

J

j v

h

i has a �nite norm. The rest of the lemma


an be proved by a simpler version of the following argument.

For any non-negative integer p, 
onsider the operator

~�

_

I

_

J

(p) = �

_

I

_

J

�

�

F

X

�

1

;�

2

=1

X

_

K;

_

L

#(

_

K

_

L)�p

�

�

�

1

�

1


 f

_

K

_

I

_

L

_

K

_

J

_

L


 �

�

2

�

2

: (68)

Certainly it is well de�ned be
ause there are only a �nite number of sum-

mands in Eq.(68). (We 
an de�ne

~

l

_

I

_

J

(p) and ~r

_

I

_

J

(p) similarly.) Let

s(

_

I;

_

J;

_

K;

_

L) =

X

_

K

0

;

_

L

0

Æ

_

K

_

I

_

L

_

K

0

_

I

_

L

0

Æ

_

K

_

J

_

L

_

K

0

_

J

_

L

0

:

Clearly, s is a positive integer. Sin
e

[~�

_

I

_

J

(p); f

_

K

0

_

J

_

L

0

_

K

0

_

I

_

L

0

℄ = 0 (69)

for #(

_

K

0

_

L

0

) � p,

hv

h

j ~�

_

J

_

I

(p)~�

_

I

_

J

(p) j v

h

i = hv

h

j �

_

J

_

I

�

_

I

_

J

j v

h

i

�

�

F

X

�

1

;�

2

=1

X

_

K;

_

L

#(

_

K

_

L)�p

s(

_

I;

_

J;

_

K;

_

L)

�

h

I

(�

1

;

_

K

_

J

_

L;�

2

)

�h

I

(�

1

;

_

K

_

I

_

L;�

2

)

�

; (70)
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whi
h, in turn, is non-negative owing to unitarity. That p 
an be arbitrar-

ily large and Lemma 6.8 together then imply that for any �xed non-empty

integer sequen
es

_

I and

_

J , only a �nite number of

h

I

(�

1

;

_

K

_

J

_

L;�

2

)� h

I

(�

1

;

_

K

_

I

_

L;�

2

);

where �

1

and �

2

are arbitrary positive integers not larger than �

F

, and

_

K

and

_

L are empty or non-empty integer sequen
es, are non-zero. As a result,

X

_

K;

_

L

#(

_

K

_

L)>q

0

�

�

�

1

�

1


 f

_

K

_

I

_

L

_

K

_

J

_

L


 �

�

2

�

2

j v

h

i = 0 (71)

for some positive integer q

0

be
ause its norm vanishes. Thus ~�

_

I

_

J

j v

h

i has a

�nite norm. Q.E.D.

De�ne R

f

to be the subspa
e of R generated by the a
tions of elements

of gl(�

F

) 
 F

�


 gl(�

F

) on the lowest weight ve
tor v

h

. Let for brevity

~

X

denote any one of the operators de�ned in (65-67). It now follows easily that

~

Xv is well de�ned for any v 2 R

f

.

Lemma 7.3 For any v 2 R

f

and any F 2 gl(�

F

)
 F

�


 gl(�

F

),

~

XFv = F

~

Xv:

Proof. Any F 2 gl(�

F

) 
 F

�


 gl(�

F

) 
ommutes, for �xed

_

I;

_

J , with

everything in gl(�

F

) 
 F

�


 gl(�

F

) of the form

�

�

�

1

�

1


 f

_

K

_

I

_

L

_

K

_

J

_

L


 �

�

2

�

2

ex
ept

possibly �nitely many. The 
laim now follows by a simple 
omputation as in

the proof of the previous lemma. Q.E.D.

Corollary 7.4 Let

~

X

_

I

p

_

J

p

stand for either

�

�

�

1

�

2




~

l

_

I

_

J

, ~r

_

I

_

J


 �

�

1

�

2

or ~�

_

I

_

J

. Then

n

Y

p=1

~

X

_

I

p

_

J

p

j v

h

i (72)

has a �nite norm for any value of n.

Proof. This follows dire
tly from Lemma 7.2 and Lemma 7.3. Q.E.D.
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Lemma 7.5 There exist � 2 R and N 2 N su
h that for all �

1

; �

2

:

h

I

(�

1

; I;�

2

) = � provided #(I) � N .

Proof. Observe that sin
e

_

I >

_

J , (70) implies more generally for any

�

1

; �

2

; �

3

; �

4

that (the non-negative integer)

�

h

I

(�

1

;

_

K

_

J

_

L;�

2

)� h

I

(�

3

;

_

K

_

I

_

L;�

4

)

�


an be non-zero for at most �nitely many

_

K;

_

L. As a spe
ial 
ase of this,

noti
e that for any i = 1; : : : ;�

F

, only a �nite number of

h

I

(�

1

;

_

K

_

L;�

2

)� h

I

(�

3

;

_

Kfig

_

L;�

4

);

are non-zero. Hen
e, there exists an N 2 N su
h that for any U with #(U) �

N , any �

1

; �

2

; �

3

; �

4

; �

5

; �

6

, and any indi
es 1 � i; j � �

F

, h

I

(�

1

;U ;�

2

) =

h

I

(�

3

;Ufig;�

4

) = h

I

(�

5

; fjgU ;�

6

). But sin
e for any two sequen
es U; V

with #(U) = #(V ) = N there is a sequen
eW su
h that both U and V o

ur

as substrings ofW , it follows that we must have h

I

(�

1

;U ;�

2

) = h

I

(�

3

;V ;�

4

).

Q.E.D.

We 
an now de�ne the two spa
es R

t:i:

(the truly in�nite) and R

a:f:

(the

almost �nite).

De�nition 7.6 Let � be as in Lemma 7.5, set h

a:e:

I

= h

I

� �, and let

h

a:e:

II

; h

a:e:

III

, and h

a:e:

IV

be de�ned from h

a:e:

I

as in De�nition 6.1. R

a:f:

then

is de�ned as the lowest weight representation having this lowest weight. Sim-

ilarly, R

t:i:

is de�ned to be the lowest weight representation given by the

lowest weight (h

q

I

; h

q

II

; h

q

III

; h

q

IV

) with h

q

I

� �, and h

q

W

= h

W

� h

a:e:

W

for

W = II; III; IV .

In the following we shall, among other things, 
onsider elements f

_

I

_

J

, with

_

I >

_

J a
ting in R

f

or in R

a:f:

. We will use the same symbol for these a
tions

sin
e the two spa
es are in fa
t equal as ve
tor spa
es. As representations

of gl(�

F

) 
 F

�


 gl(�

F

) they di�er by a tensor produ
t of a 1-dimensional

representation (de�ned by �) and this is trivial on said elements. Further-

more, in the representation R

t:i:

ea
h f

_

I

_

J

, with

_

I >

_

J a
ts trivially sin
e

by 
onstru
tion they must annihilate the lowest weight ve
tor while at the

same time having 
ommutators with the other generators that again yields

elements f

_

K

_

L

, with

_

K >

_

L.
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Proof of Theorem 7.1. Let X

_

I

p

_

J

p

stand for either

�

�

�

1

�

2


l

_

I

_

J

, r

_

I

_

J


�

�

1

�

2

or �

_

I

_

J

and

likewise

~

X

_

I

p

_

J

p

stand for either

�

�

�

1

�

2




~

l

_

I

_

J

, ~r

_

I

_

J


 �

�

1

�

2

or ~�

_

I

_

J

. It follows that R

t:i:

is

generated by operators of the from X

_

I

p

_

J

p

. Further, it follows from Lemma 7.2,

Lemma 7.3, and Corollary 7.4 that any element of R 
an be written as a

�nite linear 
ombination of elements of the form

n

Y

p=1

~

X

_

I

p

_

J

p

n

I

Y

p=1

�

�

�

(I)

p

�

(I)

p


 f

_

I

(I)

p

_

J

(I)

p


 �

�

(I)

p

�

(I)

p

v

h

; (73)

where the two produ
ts are arranged in su
h a way that in ea
h produ
t, the

fa
tors follow the lexi
ographi
 ordering from De�nition 3.2 with �, r and

l repla
ed with ~�, ~r and

~

l, respe
tively. Denote the lowest weight ve
tor of

R

t:i:

by v

t:i:

and the lowest weight ve
tor of R

a:f:

by v

a:f:

. Assume they are

both unit ve
tors in their respe
tive spa
es. We 
an then de�ne a surje
tion

from R

t:i:


R

f

to R by mapping

 

n

Y

p=1

X

_

I

p

_

J

p

v

t:i:

!




 

n

I

Y

p=1

�

�

�

(I)

p

�

(I)

p


 f

_

I

(I)

p

_

J

(I)

p


 �

�

(I)

p

�

(I)

p

v

a:f:

!

(74)

to the one shown in Eq.(73). Be
ause of Lemma 7.3 and the above remarks,

this is easily seen to be a map that preserves the respe
tive inner produ
ts.

By looking at the images of R

t:i:


 v

a:f:

and v

t:i:


 R

a:f:

it follows that R

t:i:

and R

a:f:

are unitary. The irredu
ibility is obvious, 
.f. Lemma 6.4. Q.E.D.
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