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Abstract. We determine the highest weights that give rise to
unitarity when q is real. We further show that when q is on the
unit circle and q 6= ±1, then unitary highest weight representations
must be finite dimensional and q must be a root of unity. We an-
alyze the special case of the “ladder” representations for su(m,n).
Finally we show how the quantized Ladder representations and
their analogues for other Lie algebras play an important role.

1. Introduction

Unitary highest weight representations for simple complex Lie al-
gebras have been important both in analysis as well as mathematical
physics for a long time and for many different reasons, [14], [22], [19],
[20], [16], [18], [5], [6], [7], [4], [3].

Whereas many of the early attempts were analytic, the recent ones
have been more algebraic. Now, completely algebraic proofs of the
classification of the full set of such representations have been given
[11], [8].

With these results and methods in place it then becomes natural to
extend the investigations into the realm of quantum groups, the latter
being in the shape of quantized enveloping algebras. This is exactly
the purpose of the present article.

On our way to this goal we have discovered some objects which may
be called ‘quantized hermitian symmetric spaces’, or perhaps more cor-
rectly, quantum deformed hermitian symmetric spaces (see [9] and, for
the case g = su(n,m), [10]). These are quadratic algebras. We discuss
these spaces briefly in Section 3. Besides this, the main ingredient is
the quantized Shapovalov determinant due to De Concini and Kac.

We consider q’s which are either real or on the unit circle. There
is a big difference between these cases, the latter reduces more or less
directly to the study of finite dimensional representations at roots of
unity. This assertion is proved in Section 5. Sections 2 and 4 give
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definitions and background material. The case where q is real is treated
in Section 6 and here the Shapovalov determinant is presented. Finally,
having this determinant at our disposal, we return to the primitive
roots of unity in Section 7 for a quick observation concerning unitarity
in this domain.

2. Background. Quantum groups

Given an n × n Cartan matrix A = (aij) of finite type, choose di ∈
{1, 2, 3} such that (diaij) is symmetric. The quantum group Uq is
defined by the generators Ei, Fi, Ki, K

−1
i (1 ≤ i ≤ n) and relations

(‘quantized Serre relations’)

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,(1)

KiEjK
−1
i = qdiaijEj, KiFjK

−1
i = q−diaijFj,

EiFj − FjEi = δij
Ki −K−1

i

qdi − q−di
,

1−aij∑
s=0

(−1)

[
1− aij
s

]
di

E
1−aij−s
i EjE

s
i = 0, i 6= j,

1−aij∑
s=0

(−1)s
[

1− aij
s

]
di

F
1−aij−s
i FjF

s
i = 0, i 6= j.

As is very well known, Uq is a Hopf algebra with co-multiplication
4, antipode S, and co-unit ε defined by

4(Ei) = Ei ⊗ 1 +Ki ⊗ E, 4(Fi) = Fi ⊗K−1
i + 1⊗ Fi, (2)

4(Ki) = Ki ⊗Ki, S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Ki) = K−1

i , and

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

For our purposes there are two interesting families of anti-linear anti-
involutions, ω1 and ω2, of this algebra

ω1(Ei) = εi · Fi, ω1(Fi) = εi · Ei, ω1(Ki) = K−1
i , ω1(q) = q−1,

(3)

and

ω2(Ei) = εi · Fi, ω2(Fi) = εi · Ei, ω2(Ki) = Ki, ω2(q) = q, (4)

where ∀i : ε2i = 1.
At the moment we consider Uq to be an algebra over C(q), the field

of rational functions in q. Later on, when we ‘localize’, we consider
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subalgebras over C[q, q−1] or even Z[q, q−1]. These will be subalgebras
generated, in standard notation (see e.g. [1]), by the elements

E
(r)
i , r ≥ 0, i = 1, . . . , n, (5)

F
(r)
i , r ≥ 0, i = 1, . . . , n, (6)

Ki, K
−1
i ,

[
Ki; c
t

]
, i = 1, . . . , n, c ∈ Z, t ∈ N. (7)

(Actually, when we specialize q to a real value (different from −1 and
0 ) we can just as well consider the original generators Ei, Fi, K

±1
i .)

If we replace E by E ′ = EK−1/2 and F by F ′ = FK1/2 then we get
the physicists coproduct ∆D (D for Drinfeld)

4D E
′
i = E ′i ⊗K

−1/2
i +K

1/2
i ⊗ E ′i and 4D F

′
i = F ′i ⊗K

−1/2
i +K

1/2
i ⊗ F ′i .

(8)

When q is real, this is much better for unitarity questions and hence
is the one we will use there, whereas when q is on the unit circle, we
will use the coproduct (2). Specifically, when q is real and if we use
an involution of the form (4), then the tensor product of unitarizable
modules is again unitary provided the tensor product is based on ∆D.

When q is real there is no problem with the square roots K
±1/2
i in

(8) since the weights of the Ki’s either are of the form eα1·t, eα2·t, . . . ,
or −eα1·t,−eα2·t, . . . for real numbers α1,α2, . . . (depending on the def-
inition of the highest weight representation).

3. Definitions of the modules.

Let Uq be a quantum group as above, defined in terms of an n × n
Cartan matrix A. Assume furthermore that we are in the case of a
hermitian symmetric space. Then the set of roots ∆ can be written as
a disjoint union

∆ = ∆c ∪∆n (9)

where ∆c are the compact roots and ∆n are the non-compact roots.
Specifically, if g denotes the simple complex Lie algebra defined by A,
then there is a decomposition, compatible with (9),

g =p− ⊕ k⊕ p+, (10)

where k is a maximal compact subgroup with a 1 dimensional cen-
ter such that ∆c is the root system for [k, k], and p± are abelian Lie
subalgebras consisting of root spaces corresponding to the roots ∆±n ,
respectively. Moreover,

[k, p±] ⊆ p±. (11)
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Finally, there is exactly one simple non-compact root β ∈ ∆+
n . We

denote the corresponding elements in Uq by Eβ, Fβ, and K±1
β . Let

Πc = {µ1, . . . , µn−1} denote a choice of simple compact roots, and
denote similarly the corresponding elements of Uq by Eµi , Fµi , and K±1

µi
,

for i = 1, . . . , n−1. Then the elements Eµi , Fµi , K
±1
µi

, and K±1
β together

generate the quantum analogue Uq(k) of the enveloping algebra U(k).
This is a subalgebra of Uq(g).

Let U−q (g) denote the subalgebra of U(g) generated by the elements
Fµi , i = 1, . . . , n− 1 and Fβ. Let p−q denote the subspace

p−q = Span
{

adFµi1 · · · adFµir (FβKβ) | r = 0, 1, . . .
}
, (12)

of U−q (g), where adFµi denotes the quantum adjoint action. In an
arbitrary Hopf algebra, the adjoint action is defined by the formula

(ad(a))(u) =
∑

aiuS(bi) if (13)

∆a =
∑

ai ⊗ bi. (14)

The Kβ in (12) is inserted to give nicer formulas and is not important
here. (C.f. Remark 3.2.) Let A− denote the subalgebra generated by
p−q . It is then clear that we have a decomposition

U−q (g) =A−U−(k), (15)

where U−(k) is defined in the obvious way. Indeed, we can define an
analogous structure A+ for the positive part of the quantized envelop-
ing algebra in such a way that we get a decomposition of Uq(g). In fact,
we have the following result (c.f. [9] and, for the case g = su(n,m),
[10]).

Theorem 3.1. There exists a decomposition

Uq(g) =A− · Uq(k) · A+, (16)

where the algebras A± are quadratic algebras. The decomposition is
invariant under the adjoint action of Uq(k).

Remark 3.2. The action of U(k) on an element B ∈ A− may be
obtained by demanding that the action on an element B ⊗ u with u ∈
Uq(k) should satisfy that the left action on Bu ∈ Uq(g) should turn into
a tensor product action,

Fµ(B ⊗ u) = (F i ∗B)⊗Giu if (17)

∆(Fµ) =
∑

F i ⊗Gi, (18)
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with a similar formula for Eµ. Indeed, this leads just to the adjoint
action. However, it leads in some sense to simpler formulas for A− if
we interchange Ei and Fi by e.g. the automorphism φ,

φ(Ei) = Fi, φ(Fi) = Ei, φ(Ki) = Ki, φ(q) = q−1. (19)

Equivalently, we may consider the coproduct

∆φ = (φ⊗ φ) ◦∆ ◦ φ. (20)

This leads to the formulas

Fµ ∗B = FµB − (KµBK
−1
µ )Fµ, (21)

Eµ ∗B = (EµB −BEµ)Kµ. (22)

Using this action one can define a quadratic algebra directly as gener-
ated by the Uq(k) orbit through Fβ. We shall, however, not pursue this
point further here.

Lemma 3.3. Let q be generic. The relations in A− all come from
the relations in degree 2, i.e. they are generated by a subspace Va of
A−1 ⊗ A−1 . The subspace Va is a k module generated by one or two
highest weight vectors of the quantized anti-symmetric kind

Z−β ⊗W−β−µ − qpZ−β−µ ⊗W−β, (23)

where p is an appropriate power. It is only in the case where g =
su(n,m)C that there are two highest weight representations.

Proof. It follows from Lusztig’s canonical bases that e.g. the Hilbert
series of A− at a generic q will be the same as for q = 1. The rest is
just standard representation theory. �

We now introduce the modules to be considered.

Definition 3.4. Let r1, . . . rn−1 be non-negative integers, let Λ0 =
(r1, . . . , rn−1), let λ ∈ R, and let δ = (δ1, . . . , δn), where each δi = ±1.
The Verma module M δ

Λ(g) of highest weight Λ = (Λ0, λ) and sign δ is
the module generated by a non-zero vector vΛ for which

U+
q (g)v = 0 (24)

Kµiv = δiq
diriv, and Kβv = δβq

λdβ , (25)

and where U−q (g) acts freely (recall that U−q (g) has no zero divisors).

We denote by M δ
Λ(k) the Uq(k) module defined by the same data. If

δ = (1, . . . , 1) we just write MΛ.

Actually, we will only consider the sign δ = (1, 1, . . . , 1). The reason
is that in general, the signs δi can be counterbalanced by the signs εi
on the anti-involutions.
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4. Unitarity

The notion of unitarity is introduced in the following more or less
standard way: Throughout we let ω be a fixed anti-linear anti-automorphism
of Uq(g). To each of the following notions we really ought to ap-
pend the phrase ‘with respect to ω’, but we will omit this. Given

a = a(q) =
∑
ciq

i∑
djqj
∈ C(q) let a =

∑
ciω(qi)∑
djω(qj)

∈ C(q).

Definition 4.1. A sesquilinear hermitian form H on a vector space V
over C(q) with values in C(q) is a map V × V −→ C(q) that satisfies

H(au, v) = aH(u, v), H(u, av) = aH(u, v), and (26)

H(u, v) = H(v, u), for a ∈ C(q), and u, v ∈ V. (27)

It is easy to see that the module MΛ carries a unique sesquilinear
form HΛ with values in C(q) such that

HΛ(vΛ, vΛ) = 1 and HΛ(gu, v) = HΛ(u, ω(g)v) for g ∈ Uq(g), u, v ∈MΛ.
(28)

More generally, so does M δ
Λ.

Definition 4.2. If H is a sesquilinear form on a vector space V which
carries a representation π of Uq(g) such that

H(π(g)u, v) = H(u, π(ω(g))v) for g ∈ Uq(g), u, v ∈ V,
(29)

we say that H is invariant with respect to π.

The following notion only makes sense for modules and algebras that
have been evaluated/localized at a q ∈ C.

Definition 4.3. We say that π is unitarizable on V if there exists an
invariant sesquilinear form H on V which is positive semi-definite.

Returning to the module MΛ, it is clear from the decomposition
(9) (and more directly from the fact that the simple compact roots
µ1, . . . , µn−1 are the simple roots for the semi-simple part [k, k] of k)
that the kernel NΛ(k) of the hermitian form on the Uq(k) module also
defined by Λ, will generate a subset A− ·NΛ(k) of the kernel NΛ(g) of
H. Indeed, Λ defines a finite dimensional simple Uq(k) module VΛ and

MΛ/(A− ·NΛ(k)) = A− ⊗ VΛ (30)

as a vector space. In fact, as a Uq(k) module. Also observe that we
have the following result:
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Lemma 4.4. Let ω2 be as in (4). Let H1 and H2 be invariant forms
on vector spaces V1, V2 carrying representations π1, π2. Assume Hi is
invariant w.r.t. πi, i = 1, 2. Then H1⊗H2 is invariant w.r.t. π1⊗ π2,
provided that the latter is defined by means of ∆D.

5. The case |q| = 1.

Suppose that q is on the unit circle (and different from ±1). Suppose
we have a unitary highest weight representation with a highest weight
vector vΛ satisfying

H(vΛ, vΛ) = 1 and KβvΛ = qdβλ (31)

for some real λ. Then, if ω(Eβ) = −Fβ, the fact thatH(F
(s)
β vΛ, F

(s)
β vΛ) ≥

0 implies, through (29) and the formula ([2])

E
(s)
β F

(s)
β =

∑
0≤t≤s

F
(s−t)
β

[
Kβ; 2t− 2s

t

]
E

(s−t)
β , (32)

that

(−1)s([s]!di)
2

[
Ki; 0
s

]
di

(33)

must be positive. Here,[
Ki; c
t

]
di

=
t∏

s=1

Kiq
di(c−s+1) −K−1

i q−di(c−s+1)

qdis − q−dis
, and (34)

[s]!di =
s∏
j=1

qdij − q−dij

qdi − q−di
. (35)

Now, if qdi = exp(i · θ) is not a root of unity,

(−1)s
s∏
j=1

sin(jθ) sin((λ+ 1− j)θ) (36)

must be non-negative for all s. Let θ0 = −(λ+1)θ. Then in particular,

∀s ∈ N : sin(∼θ) sin(θ0 + ∼θ) ≥ 0, (37)

and this is impossible since, under the current assumptions, {ei·s·θ}∞s=1

is dense in S1.
When q is a (primitive) mth root of unity one ends up with the study

of the unitarity of finite dimensional representations. At the moment
we shall be satisfied with giving two examples involving the so-called
‘Ladder Representations’ for SU(p, q). Later, in Section 7, we shall
prove a general result.
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Let us for simplicity assume that q = ei
π
p , where p is a positive

integer. First we consider a scalar representation. This is where we in
the case where q = 1 find the ‘wave equation’ representation:

Kβv = ei
π
p
λ · v for the simple non-compact root β, (38)

Kαv = 0 for all simple compact roots. (39)

Observe that the vectors F
(j)
β ·v are highest weight vectors for Uq(k).

Unitarity as above then implies that

sin(sθ) sin((s− λ− 1)θ) > 0 (40)

for s = 1, . . . , s0 − 1 and that sin((s0 − λ − 1)θ) = 0. (s0 is then the
number of k-types.) Now, in general there will of course be other ‘kq-
types’, corresponding to various minors. But here we leave those out,
by demanding that

(Z1Z4 − qZ2Z3)v ≡ 0. (41)

More precisely, the element in A−∈ = A−∞ · A−∞ of highest weight -
β − γ1, where γ1 is the smallest non-compact root which is orthogonal
to β, should be in the kernel of the hermitian form. We have that
γ1 = β + µ + ν, where µ, ν are the two simple compact roots that
have non-zero inner product with β. The condition is easily seen to be
equivalent to

Eβ(FβFνFµFβ −
1

q + q−1
FνFβFµFβ)v = 0. (42)

We then get that

tan(λθ) = − tan(θ), (43)

i.e. that λθ = −θ + rπ for some integer r. Now observe that we have
periodicity in the λ-solutions: If λ0 is a solution, then so is λ0 + 2aπ

θ
for any integer a. We need then only consider the cases r = 0, 1 above.
Of these, r = 1 leads to λ = p− 1 and hence sin(−λθ) < 0. This is in
conflict with the equation (43) above. The case r = 0 has the ‘classical’
solution λ = −1. With this value, it is easy to see that s0 exists, indeed
we have

s0 = p (=
π

θ
). (44)

Next we consider the usual ‘vector case’:

Kβv = ei
π
p
λv for the simple non-compact root β, (45)

Kαv = 0 for all simple compact roots except one, ν, and (46)

Kνv = ei
π
p
n, for one of the simple compact roots ν for which aνβ 6= 0,(47)
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where n ∈ N, λ ∈ R. We now demand that a certain first order expres-
sion should vanish, namely that

Eβ(FvFβ + aFβFν)v = 0, where (48)

a = −sin((n+ 1)θ)

sin(nθ)
. (49)

The choice of a implies that this is a highest weight vector for U(k). It
follows then from (48) that

sin(λθ) sin(nθ) = sin((λ+ 1)θ) sin((n+ 1)θ). (50)

Again we have periodicity. The classical solution is λ = −n − 1. Just
as for the scalar case, the periodicity must in fact be in terms of 2π.
So, let us assume that λ = −n − 1. Let the integer u be determined
such that

2πu ≤ (n+ 1)θ ≤ 2πu+ π ⇐⇒ (51)

2up ≤ n+ 1 ≤ (2u+ 1)p (52)

(this may not always be possible). If it is, and if both inequalities in
(52) are sharp then

s0 = (2u+ 1)p− n. (53)

The reason for this is that with the removal of the ideal generated by
the kq-type (41), the only ones left are those similar to the scalar case.
Indeed, we can take over the conclusion from that case immediately.
Furthermore observe that

1 < s0 < p+ 1. (54)

The case where either 2πu = (n+1)θ, or 2πu+π = (n+1)θ correspond
to the degenerate case where s0 = 1.

Clearly, if there is no integer u such that (52) holds, then there is no
unitarity. Summarizing,

Proposition 5.1. There is unitarity at the vector representation (45)
- (47) in the Ladder series if and only if there exists an integer u such
that 2up ≤ n+1 ≤ (2u+1)p. Corresponding to this, the possible values
of λ are −n− 1 + 2π · p · a, for a ∈ Z.

6. Unitarity for real t.

The Shapovalov determinant of the hermitian form in the quantum
case was introduced and determined by De Concini and Kac ([2]) (c.f.
Joseph [12]). Essentially, it is the determinant of the hermitian formHΛ

introduced above and computed in a fixed basis, namely the canonical
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basis of U−q (g) introduced by Lusztig ([15]). Actually, De Concini and
Kac work with bilinear forms and with a fixed involution ω, but it is
clear that a change of involution by some signs εi will at most change
the determinant by a sign, and switching between bilinear and sesqui-
linear has no significance what so ever. If Λ ∈ X, the determinant
of the contravariant hermitian form on the weight space Mζ(Λ)−η of
the Verma module Mζ(Λ) of highest weight Λ (and sign (1, 1, . . . , 1))
is given by

detΛ,ζ(η) =
∏
β∈4+

∏
m∈N

(
[m]dβ

ζdβ(Λ+ρ−m
2
β,β∨) − ζ−dβ(Λ+ρ−m

2
β,β∨)

ζdβ − ζ−dβ

)Par(η−mβ)

.
(55)

Remark 6.1. Later on it is a part of the proof of unitarity to analyze
the behavior of the Shapovalov form as a function of the λ in Λ =
(Λ0, λ) around a point λ0 where the determinant vanishes. Specifically,
we take an interest in the N ∈ N for which (locally) detΛ,ζ(η) = (λ −
λ0)N · Fη(ζ, λ) with Fη(ζ, λ0) 6= 0. Notice that this makes sense when
e.g. ζ is real and non-zero and that in this case, the degree N of
vanishing does not depend on ζ. Below, we will be using a basis which
is formally different since it is directly related to the decomposition (9).
However, a change of basis will, naturally, not influence the degree of
vanishing.

Consider from now on the case of the anti-linear involution ω2, char-
acterized by

ω2(Ki) = Ki for i = 1, . . . , n and (56)

ω2(Fi) = Ei for i = 1, . . . , n− 1 and ω2(Fβ) = −Eβ. (57)

Theorem 6.2. Let q = et. The set of unitary representations is the
same as for q = 1.

Proof. First of all we consider the finite dimensional representation VΛ

of Uq(k) defined by Λ = (Λ0, λ),

VΛ = MΛ(k)/NΛ(k). (58)

The norm square of an element in the highest weight module defined
by q = et and (Λ0, λ) then depends smoothly on t and λ. As far as Uq(k)
is concerned, λ is of no relevance. Furthermore, we have unitarity at
t = 0. If the unitarity and/or the weight content of VΛ were to change
at some non-zero t, it would lead to a new zero in the Shapovalov form.
But, clearly, the form does not depend on t. Hence this is impossible.



UNITARITY FOR QUANTUM GROUPS 11

Thus, it follows that VΛ is unitary for all t and has the same weight
multiplicities (the last, of course, is very well known).

Turning now to the full Uq(g) modules, the classical case with t = 0
is well known ([7]).

Let the space of λ’s for which there is unitarity at t = 0 be given as

Lunit = {λ | λ ≤ λcrit} ∪ {λr, . . . , λ0} , (59)

where λcrit < λr < . . . < λ0. We shall occasionally refer to the discrete
set as the Wallach set. Observe that we do not count λcrit as a member
of this set. The Wallach set may thus be empty.

Consider the unitarity in terms of the two variables t and λ. If λ is
below the critical value ‘the first possible place of non unitarity’, λcrit,
then, by definition, the Shapovalov form cannot be zero. Observe that
this does not depend on t. Hence, since there is unitarity at t = 0 there
is unitarity throughout the set (which is closed by continuity)

{(λ, t) | λ ≤ λcrit} . (60)

Consider now (c.f. (30) that

MΛ =
(
A− ·NΛ(k)

)
⊕
(
A− ⊗MΛ(k)/NΛ(k)

)
. (61)

This is a Uq(k) invariant vector space decomposition, and the first
summand is in the radical of the hermitian form. It descends, of course,
to a decomposition of each weight space. When computing the deter-
minant there will thus be factorization, with a contribution from the
first summand which is independent of λ.

Let us then look at a point λ > λcrit which is not in the Wallach
set, i.e. a point where there is no unitarity when t = 0. Keeping this
λ fixed, if there is unitarity for some t 6= 0 it implies in particular
that the (lowest order) polynomial (vector valued) which we know has
a negative norm at t = 0 must vanish for some t 6= 0. This however
leads to a zero in the Shapovalov form. Specifically, the lowest order
vanishing term must define a primitive vector, hence there will be a
zero in the hermitian form, hence in the Shapovalov form, which is
not implied by the zeros due to kq. But we know that the hermitian
form on the second summand in (61) is non-degenerate at q = 1. Thus
there are no more zeros in the form than what is implied by the first
summand in (61).

Finally, when λ is in the Wallach set we have unitarity for t = 0. If
there are some t’s where there is no unitarity, it must be because some
of the elements that vanish have become non-vanishing. Of course,
some of the elements with positive norm might also change sign, but
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that can only happen if they move into the kernel of the hermitian form
and take up the places of some which have left the kernel. Ultimately,
it follows from the Shapovalov form that this cannot happen, but to get
around this vanishing versus non-vanishing, we prove unitarity at λ0,
‘the last possible place of unitarity’, where one easily can see what goes
on. After that we use that the general point in the Wallach set can be
obtained as the tensor product of such a representation with a certain
number of copies of the so-called ‘wave-equation representation’.

The representation space of (Λ0, λ0) corresponding to the last point
of unitarity is annihilated by a first order differential operator when
t = 0. Equivalently, a first order k-type Vγ ⊂ A−1 ⊗ VΛ has norm
zero (is in the radical of the hermitian form). Now, if something that
vanishes at 0 ‘stops vanishing’, it must be the first order element itself
since if it remains vanishing, so does the ideal it generates. But, for a
fixed t, the first order element has a positive norm as λ goes to infinity
and a negative norm as t goes to minus infinity. Hence, for each t there
is a λ(t) where the norm vanishes. This has got to be the one given by
the Shapovalov form, i.e. the one which does not depend on t. Thus,
the first order element vanishes at λ0 for all t. As pointed out above,
one has of course to make sure that the ideal A− · Vγ stays the same
for all t, in particular, that it does not shrink. But that follows from
Lemma 3.3. Hence, we have unitarity for all t at λ = λ0.

The wave-equation representation is characterized by the fact that its
k-types are of the form (0, λ1)− nβ, for n = 0, 1, 2, 3, . . . . (Λ0 = 0.) It
is easy to see that it is unitary for all t (c.f. below, or the computations
in Section 5 which carry over to the case where q = et). �

A more constructive proof, especially of the unitarity in the Wallach
set, may be given based on the following observation:

Proposition 6.3. In the classical case q = 1 there is a series of unitary
representations for which the set of k-types either is of the form {n · ξ |
n = 1, 2, . . . } or {r·ξ1+s·ξ2 | (r, s) ∈ N0×N0\(0,0)} and such that any
representation in the Wallach set is a tensor product of representations
from this series.

Remark 6.4. For =su(n,m) these are the so-called Ladder Repre-
sentations. From now on we shall use this name also in the cases of
=sp(n,R) and =so∗(2n). The possibility with two parameters only oc-
cur for the cases e6 and e7. In case =so(n, 2) the Wallach set is empty
except in the ‘wave-equation’ case. The usefulness of Proposition 6.3
here is that the unitarity of the series, due to the size of the k spectrum,
is easy to prove (c.f. below).
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Proof. [Of Proposition 6.3] For g = su(m,n), sp(n,R) this is a conse-
quence of the ‘Kashiwara-Vergne Conjecture’ ([13]), proved for sp(n,R)
in [6] and for su(n,m) in [5]. In all cases the representations are char-
acterized by a Λ0 which is either 0 (the ‘wave-equation’) or is zero on
all but one of the simple compact roots, and if Λ0(hi) > 0 for the hi of
a simple compact root αi, then (β, αi) 6= 0. (For sp(n,R) there is the
further restriction that only Λ0(hi) = 1 is allowed for this root.) It is
then easy to see, using the classification of unitaries in [7] (see also [8])
the claim for so∗(2n), e6, e7. As mentioned in Remark 6.4, for so(n, 2)
it is only the representations Λ = (0, λ) that have a Wallach set, and
here the discrete set consists of one point, corresponding to the trivial
one dimensional representation. �

Remark 6.5. For so(n, 2) there are also Ladder representations. The
case where n is even is richest in this respect. But we do not need them
here.

The constructive version of the proof of Theorem 6.2 then consists
of establishing the unitarity in the quantum case (q = et) of the repre-
sentations in Proposition 6.3. In the case of the wave-equation for an
arbitrary g as well as the Ladder representations for su(m,n), sp(n,R),
and so∗(2n), this follows from the computation (32)-(33) since it suffices
to investigate the norm of the highest weight vector in each k-type, and

these vectors are of form F
(j)
β vΛ, j = 0, 1, 2, . . . . In the cases of e6, e7

the unitarity follows because one is left with computations which are
equivalent to ones in so(8, 2), and so(10, 2), respectively, and where the
value of λ corresponds to positivity (a fact which is easily established
using that so(n, 2) has essentially no Wallach set).

7. A general result for the case where q is on the unit
circle

With the use of the Shapovalov determinant we can also establish
the following result

Proposition 7.1. Corresponding to the usual compact real form of a
simple Lie algebra g, let Λ = (r1, . . . , rn) be dominant and integral. The
finite dimensional representation with highest weight vΛ such that

U+
q (g)vΛ = 0 (62)

Kµiv = qdirivΛ for i = 1, . . . , n,



14 JAKOBSEN

is unitary for q = ei·θ, 0 ≤ θ ≤ π, provided that

∀β ∈ ∆+ :
π

θ
≥ 〈Λ + ρ, β〉 − 1. (63)

Proof. Set π
θ0

= maxβ∈∆+〈Λ+ρ, β〉−1. It is then clear from the Shapo-

valov determinant (this is also clear for other reasons) that the finite
dimensional module defined by equation (62) has the same weights as
for q = 1 as long as q is given as q = ei·θ with 0 ≤ θ ≤ θ0. Since
we have unitarity at q = 1 and since a transition to non-unitarity has
got to pass through a place where the kernel of the hermitian form
increases, and hence the highest weight module decreases, the claim
follows easily. �
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