
Homotopy theory and classifying spaces

Bill Dwyer

Copenhagen (June, 2008)

Contents

1. Homotopy theories and model categories . . . . . . . . . . . . . . . . . . 3

What is a homotopy theoryT? – Examples of homotopy theories (Tpair presentation)
– The homotopy categoryHo(T) – Examples of homotopy categories – Model cat-
egory: (C, E) with extras – Examples of model categories(C, E) – Dividends from
a model category structure on(C, E) – Equivalences between homotopy theories –
T(C, E) ∼ T(C′, E ′) for model categories – Examples of equivalences between ho-
motopy theories

2. Homotopy limits and colimits . . . . . . . . . . . . . . . . . . . . . . . . 17

Colimits and related constructions – Aside: notation for special coends – Homo-
topy colimits and related constructions – Model category dividend – Construction
of hocolim, version I – Construction ofhocolim, version II – Homotopy limits and
related constructions – Another model category dividend – Construction ofholim,
version I – Construction ofholim, Version II – Properties of homotopy (co)limits –
Mysteries of (I) and (II) revealed

3. Spaces from categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Categories vs. Spaces – The Grothendieck Construction – Thomason’s Theorem –
Variations onCnF (all ∼ on N) – Extension to homotopy coends – The parallel
universe ofHom and⊗ – Properties of Kan extensions – Does pulling back preserve
hocolim? – Terminal functors – Does pulling back preserveholim? – Initial functors

4. Homology decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Approximation data forBG – Approximation data fromG-orbits – Obtaining alterna-
tive approximation data – SixZ/p-homology decompositions – How to obtain the six
decompositions – Identify hocolim for subgroup diagram – Identify hocolim for cen-
tralizer diagram – Relate posets KC2 ∼ KC1 – Relate posets KC3 ∼ KC2

1



2

5. Localizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Left Bousfield localization – Example with discrete categories – Another model cat-
egory dividend – Examples of model category localizations (I) – Examples of model
category localizations (II) – Localization with respect toR-homology,R ⊂ Q –
Localization with respect toZ/p-homology – MixingLQ(X) with the Lp(X)’s to
recoverX – An approximation toLp – The Bousfield-Kanp-completionCp – The
Bousfield-Kanp-completionCp: good & bad

6. Cohomology of function spaces . . . . . . . . . . . . . . . . . . . . . . . 56

The Steenrod algebraAp – Modules and algebras overAp – The functorT – The
functorT ↔ function spaces out ofBV – Lannes works his magic – Outlining the
proof – The caseX = K = K(Z/p, n) – The case in whichX is p-finite. – Tower
{Us} = {· · · → Un → Un−1 → · · · → U0} – T and maps fromBV – In the
presence of a volunteer. . .

7. Maps between classifying spaces . . . . . . . . . . . . . . . . . . . . . . 68

Cohomology of homotopy fixed point sets –X a finite complex: setting the scene –
X a finite complex (II) – Aside: sighting ofCp(p-bad space) – MapsBQ → BG:
individual components – MapsBQ → BG: how many components? – Maps into
CpBG for G finite – Fusion functors – Fusion systems

8. Linking systems andp-local classifying spaces . . . . . . . . . . . . . . . 78

DoesF determineCpBG? – Switch to thep-centric collection – Thep-centric cen-
tralizer diagram – The categoricalp-centric centralizer model – The linking system –
Lc vs.Fc – the orbit picture – Lifting fromHo(Sp) to Sp – Fusion relations suffice!
– p-local finite groupX

9. p-compact groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Definition of ap-compact group – Some basic properties ofp-compact groups – More
cohomology of homotopy fixed point sets – The centralizer ofV in X is ap-compact
group. – The centralizer ofV in X is a subgroup –∃ non-trivialV → X – Existence
of a Sylowp-subgroup for finiteG – Existence of a maximal torus inX

10. Wrapping up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Another commutative diagram? – Homotopy theories – Localizations & completions
– The functorT andH∗ Homh(BV,−) – Homology decompositions and maps to
BG – p-compact groups andp-local finite groups – Conclusion



Lecture 1: Homotopy theories and model categories 3

Lecture 1.

Homotopy theories and model categories

These arerough notes. Read at your own risk! The presentation is not
necessarily linear, complete, compact, locally connected, orthographically

defensible, grammatical, or, least of all, logically watertight. The author doesn’t always
tell the whole truth, sometimes even on purpose.

This first lecture is deep background: before getting to classifying spaces, I’d like to
describe some homotopy theoretic machinery. The first question to ask before trying
to understand this machinery is averybasic one.

Slide 1-1 Slide 1-1

What is a homotopy theoryT?

Equivalent answers
• Tpair categoryC with a subcategoryE of equivalences

• Ten categoryR enriched over spaces (simplicial sets)

• Tsc Segal category

• Tcss complete Segal space

• Tqc quasi-category

• T∞ ∞-category (or(∞, 1) category)

Just like categories
Internal function objectsT3 = Cath(T1, T2) = ThT1

2

The main message here is that there has been a remarkable convergence of opinion over
the last few years about what a homotopy theory is [11]. All formulations give notions
which are equivalent (in a homotopy theoretic sense, see slide 1–10 below), although
the objects involved look very different in detail.

A pair (C, E) is a relative category, and from the point of view ofTpair homotopy
theory is relative category theory. This is the form under which homotopy theories
usually show up in nature;E is usually some collection of morphisms inC which are
not isomorphisms but have some claim to be considered honorary isomorphisms (for
instance ifC = Top is the category of topological spaces,E might be the collection of
homotopy equivalences). But any categoryC gives a homotopy theory: takeE to the
identity maps or (it turns out equivalently) the isomorphisms inC. Another possibility
is to takeE = C.

A categoryR enriched over topological spaces is an ordinary category furnished with a
topology on each morphism space [9]. From the point of view ofTen homotopy theory
is a continuous form of category theory. (Nottoo continuous: notice that we don’t
worry about topologies on sets of objects.) The transitionTpair =⇒ Ten involves
inverting the arrows inE in a derived sense [38]. Alternatively, the function spaces
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in the simplicial category can be view as spaces of zigzags in the original categoryC,
where the backwards-point arrows lie inE [36].

A Segal category is a simplicial space which is discrete at level 0 and satisfies
some homotopical product conditions [89] [10]. The transitionTen =⇒ Tsc

amounts to taking the nerve, and treating it as a simplicial space.

A complete Segal space is simplicial space which is not necessarily discrete at
level 0 and satisfies some homotopy fibre product conditions and some other

homotopical conditions [89] [11]. The transitionTsc =⇒ Tcss requires repackaging
group-like topological monoids of equivalences into their associated classifying spaces,
but leaving the non-invertible morphisms alone. This is an unusually transparent model
for a homotopy theory: an equivalence is just a map between simplicial spaces which
is a weak equivalence at each level. Internal function objects are also easy to come by
here.

A quasi-category (∞-category) is a simplicial set, treated from what classically
would be a very peculiar point of view [62] [63]. In some sense this is the most

economical model for a homotopy theory.

1.1 Exercise.Let C be a category andE its subcategory of isomorphisms.
In this particular case, describe in detail each of the various models for the

homotopy theory ofT(C, E).

The notationCath(T1, T2) or ThT1
2 denotes the homotopy theory of functors from the

first homotopy theory to the second, but taken in the correct homotopy theoretic way.
The notationThT1

2 is very similar to a notation for homotopy fixed point sets that will
come up later on (2.28), but I’ll use it anyway. This same ambiguity comes up without
the “h”: if X andY are spaces,Y X is the space of maps fromX to Y , but if Y is a
space andG is a groupY G is the fixed-point set of the action ofG onY .

The above internal function objects for homotopy theories are tricky to define correctly
in some models, but can have a very familiar feel to them. If(C, E) and(C′, E ′) are two
category pairs in which all of the morphisms inE andE ′ are invertible, then the function
objectCath(T(C, E), T(C′, E ′)) is equivalent in the sense of homotopy theories to the
category in which the objects are functorsC → C′ and the morphisms are natural
transformations. (To promote this to a homotopy theory, pick natural isomorphisms
between functors as equivalences.)

? 1.2 Exercise.Let G andH be two discrete groups, treated as one-object categories
or as homotopy theories (the latter by designating all morphisms as equivalences). De-
scribe the groupoid of functorsG → H in terms of the group structures ofG andH.
How many components are there to the groupoid? What are the vertex groups?

1.3 Exercise.Let C be a category, and letE = C. LetTop be the homotopy the-
ory of topological spaces, where the equivalences are taken to be weak homotopy

equivalences. What geometric structures do you think are described by the homotopy
theoryCath(T(C, E),Top)?
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Examples of homotopy theories (Tpair presentation)

Geometry
Notation C E
Tophe Top homotopy equivalences
Top Top weak homotopy equivalences
TopR Top R-homology isomorphisms
Top≤n Top iso onπi for i ≤ n

Algebra
Sp simplicial sets |f | an equivalence inTop
sGrp simplicial groups |f | an equivalence inTop

simp. rings, Lie alg.,etc (same)
ChR chain complexes overR homology isomorphisms

DG algebras homology isomorphisms

The first four examples illustrate the fact that a category can be associated with many
different homotopy theories. For instance, inTop≤n the(n + 1)-sphere is equivalent
to a point, but itTop it isn’t.

1.4 Exercise.Give an example of a map which is an equivalence inTop but not
in Tophe.

Simplicial sets. Simplicial sets [49] [70] are slightly more complicated analogs of
simplicial complexes. They have two advantages over simplicial complexes:

• Better colimit properties. In a simplicial complexX a simplex is determined by
its set of vertices, so collapsing the vertices ofX to a single point in the category
of simplicial complexes causesX itself to collapse to a point. But it’s hard not
to want to collapse the two endpoints of a one-simplex together to get a circle.
Simplicial sets possess monolithic simplices of various dimensions; these have
vertices but are not determined by them. Collapsing is easy.

• Better limit properties. The relationship between the geometric realization of
the (categorical) product of two simplicial complexes and the product of their
realizations is obscure. (At best these two spaces have the same homotopy type).
There is no such problem with simplicial sets.

There is a short discussion of how to get from simplicial complexes to simplicial sets
in [43, §3]. Simplicial complexes are based on the category∆, which can be described
up to isomorphism in (at least) the following three ways. (Note that any (partially)
ordered set gives an associated category, in which there is a unique morphismx → y
if x ≤ y.)

1. ∆ is the category whose objects are the ordered setsn = {0, . . . , n}, n ≥
0, and whose maps are the weakly order-preserving maps between these sets
(“weakly”= preserves≤).
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2. ∆ is the category whose objects are the finite ordered simplicial complexes∆n,
n ≥ 0 and whose maps are the simplicial complex maps between these objects
which are weakly order-preserving on the vertices. (Here∆n is the space of
convex linear combinations of{0, . . . , n}.)

3. ∆ is the category whose objects are the finite categoriesn, n ≥ 0, and whose
morphisms are the functors between them.

A simplicial setX is a contravariant functor from∆ to Set, i.e., a functorX : ∆op→
Set; maps between simplicial sets are natural transformations of functors. For each
n ≥ 0, X has a setXn = X(n) = X(∆n) of n-simplices, and these sets are related by
various face maps, degeneracy maps, and their composites. For example, there are two
face (vertex) mapsX1 → X0, corresponding to the two vertex inclusions∆0 → ∆1,
and one degeneracy mapX0 → X1 corresponding to the collapse∆1 → ∆0.

1.5 Exercise.Any topological spaceY has an associated simplicial setSing(Y ), the
singular complex ofY , given bySing(Y )n = Hom(∆n, Y ). Given this and the usual
construction of singular homology, how would you define the homology of a simplicial
set?

The geometric realization functor for simplicial complexes extends to a geometric re-
alization functor|(−)| for simplicial sets; the realization functor is left adjoint to the
singular complex functor (1.5). The realization ofX can be obtained explicitly as
|X| = X×∆∆∗; the notation stands for the cartesian product over∆ of the contravari-
ant functorX with the covariant functor∆∗ (slide 2–2). Both of these are functors to
Top, where we think ofX as taking values in discrete spaces. More formally,|X| is
the coend of the functor(n,m) 7→ Xn ×∆m on∆op×∆.

1.6 Exercise.Draw an analogy betweenF×CG, for (F : Cop→ Top, G : C → Top),
andM ⊗R N , for (M a rightR-module,N a leftR-module). Check the formula

M ⊗R N ∼= R⊗Rop⊗ZR (M ⊗Z N)

(which seems to relate⊗R to Hochschild homology). What’s the corresponding for-
mula if any forF ×C G?

? 1.7 Exercise.Observe that any categoryC has an associated simplicial setN(C),
the nerve ofC, with N(C)n = Hom(n, C) (hereHom denotes the set of functors).
Try to determine the homotopy type of|N(C)| in some simple cases, e.g., ifC is the
pushout category (three objectsa, b, c, and mapsb → a andb → c), or if C is the
(co-)equalizer category (two objectsa, b, and two distinct mapsa→ b).

? 1.8 Exercise.Let I be the category0→ 1 (i.e., the categoryn for n = 1). Verify
that N(I) is the simplicial set which corresponds to the ordered simplicial complex
{{0}, {1}, {0, 1}}; its geometric realization is the interval. Observe that a functorF :
C → D gives a mapN(C)→ N(D) of simplicial sets, and that a natural transformation
betweenF,G : C → D gives a homotopyN(C × I) ∼= N(C)×N(I)→ D.

? 1.9 Exercise. Conclude that if a categoryC has a terminal object or an initial
object, thenN(C) has a contractible geometric realization.
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1.10 Exercise. Convince yourself that ifK is a finite simplicial complex andC is
the category determined by the poset of simplices ofK (ordered by inclusion), then
|N(C)| is homeomorphic to|K|. Conclude that any finite complex is weakly homotopy
equivalent to the nerve of a category. What about any topological spaceX? Can you
choose the category and the weak equivalence to be natural inX?

1.11 Exercise.If K is a simplicial complex, there is a simplicial setSing(K) given
by letting Sing(K)n be the set of simplicial complex maps∆n → K (these maps
are not required to be monomorphisms on the vertex sets). Check that|Sing(K)| is
not necessarily homeomorphic to|K|. Are they homotopy equivalent? Check that the
situation is substantially nicer ifK is an ordered simplicial complex andSing(K) is
defined in terms of (weakly) ordered simplicial set maps∆∗ → K.

1.12 Exercise.The process of passing from (ordered) simplicial complexes
to simplicial sets is not totally unrelated to the passage from varieties over a

field to objects inA1-homotopy theory. A simplicial set is a contravariant functor from
finite ordered simplicial complexes to sets which takes whatever pushouts exist in the
domain category to pullbacks in the range. The first step in constructingA1-homotopy
theory is to consider contravariant functors from varieties to simplicial sets which take
certain pushout-like diagrams in the category of varieties to homotopy pullbacks of
simplicial sets. Are there any other examples of this kind of construction?

Simplicial objects. A simplicial object in a categoryC is a functor∆op→ C.

1.13 Exercise. Let R be a ring and consider an object in the categorysModR of
R-modules. There is a normalization functorN : sModR → ChR, which involves
dividing out by images of degeneracy maps and taking the alternating sum of the face
maps. The functorN establishes an equivalence of categories betweensModR and
the category of non-negatively graded objects ofChR. Familiarize yourself with this
[70, Chap. 5] [49, III.2]. What isN−1(R[n]), whereR[n] is the chain complex which
is zero except for a copy ofR in degreen?

Non-abelian homological algebra. Simplicial objects can serve as substitutes for
chain complexes in categories which are not abelian. For instance, Quillen [84] defined
cohomology for a commutative ringR by applying an “indecomposables” functor to a
simplicial resolution ofR, in much the same way as you might define higher Tor’s for
anR-module by applying a tensor product functor to a chain complex resolution of the
module.
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The homotopy categoryHo(T)
The most visible invariant of a homotopy theory
Tpair Ho(C, E) = E−1C
Ten Ho(R) = π0R (i.e. π0(morphism spaces))

Pluses and minuses

• Elegant (but only a small part of the structure)

• Can be hard to compute in theTpair case.

FormingHo(C, E) involves taking seriously the idea that the maps inE are honorary
isomorphisms:Ho(C) is the category which results if the morphisms inE are forcibly
declared to be isomorphisms.

1.14 Exercise.Let K be a finite simplicial complex,C the poset of simplices ofK
(ordered by inclusion) andE = C. The categoryHo(C) is a groupoid (because every
morphism has been made invertible). Can you identify this groupoid in some simple
cases? In general?

1.15 Exercise. In the above situation, can you guess what the categoryR en-
riched over spaces which corresponds toT(C, E) looks like? What is lost in this

case in passing fromT(C, E) to Ho(T(C, E))? Is it always the case that something is
lost?

Slide 1-4 Slide 1-4

Examples of homotopy categories

Geometry
(C,E) MapsX → Y in Ho(C, E)
Tophe homotopy classesX → Y
Top homotopy classesCW(X)→ Y
TopR homotopy classesCW(X)→ LR(Y )
Top≤n homotopy classesCW(X)→ Pn(Y )

Algebra
Sp homotopy classes|X| → |Y |
sGrp pointed homotopy classesB|X| → B|Y |
ChR chain homotopy classes Proj. Res.(X)→ Y

Note:CW(X) denotes a cell complex which is weakly equivalent to the spaceX.

There is a general theme in the above examples: mapsX → Y in the homotopy
category of(C, E) are computed by finding some kind of a nice stand-inX ′ for X and
computing some sort of equivalence classes of maps inC from X to Y . Clearly, there
is extra structure in the categories which makes this possible.
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1.16 Exercise.Try to make one of the above calculations by hand, for instance, in the
Top case. First, construct a categoryQ in which the objects are spaces and the maps
X → Y are given by[CW(X), Y ]. (Observe that[CW(X), Y ] ∼= [CW(X),CW(Y )]).
Then build a functorTop→ Q. Show that the functor sends weak equivalences to iso-
morphisms and that it is universal with respect to this property.

One of the most convenient frameworks in which it is possible to make calculations
like this is the framework of Quillen model categories.

Slide 1-5 Slide 1-5

Model category: (C, E) with extras

Routine axioms
• MC0 equivalences(∼), cofibrations(↪→), fibrations(�)

• MC1-3 composites, retracts, 2 out of 3, limits, colimits

Lifting

• MC4
A� _

f

��

// X

g

����
B //

h~
~

>>~
~

Y

∃h if f or g is∼

Factorization

• MC5 any map factors
∼
↪→ ·� and ↪→ · ∼�

For more information on model categories, see for instance [58], [49, II], [41], or [54].
The ur-reference is Quillen [86].

Axioms MC1-3 guarantee thatC has limits and colimits, that all three distinguished
classes of maps are closed under composites and retracts, and that the class of equiv-
alences has the “2 out of 3” property (given composable arrowsf , andg, if two of
the three mapsf , g, fg are equivalences, so is the third). In recent treatments the
factorizations fromMC5 are usually assumed to be functorial.

1.17 Exercise.What does it mean to say, for instance, that the class of cofibrations is
closed under retracts?

A map which is a (co-)fibration and an equivalence is called an acyclic (co)fibration.
Axiom MC4 is reminiscent of the homotopy lifting property or the homotopy extension
property. This axiom is sometimes expressed as the statement that cofibrations have the
left lifting property (LLP) with respect to acyclic fibrations, while fibrations have the
right lifting property (RLP) with respect to acyclic cofibrations.

1.18 Exercise.Observe that the model category axioms are self-dual; ifC is a model
category, so isCop.
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1.19 Exercise.UseMC4 in combination with the retract property to show that in a
model categoryC a mapf is a cofibration if and only iff has the LLP with respect to
acyclic fibrations, or an acyclic cofibration if and only if it has the LLP with respect
to fibrations. (By duality, there are parallel characterizations of fibrations and acyclic
fibrations.) Conclude that, given the equivalences, the fibrations and cofibrations de-
termine one another.

Suppose thatC is a model category with initial objectφ and terminal object∗ (why
do such objects always exist in a model category?). An objectX of C is cofibrant
if φ ↪→ X and fibrant if X � ∗. A cofibrant replacementXc for X is obtained
from theMC5 factorizationφ ↪→ Xc ∼

� X and a fibrant replacementX f from the
factorizationX

∼
↪→ X f � ∗. (More loosely, a cofibrant replacement is a cofibrant

object mapping toX by an equivalence, and a fibrant replacement is a fibrant object
receiving an equivalence fromX.)

1.20 Exercise. If (C, E) is a model category, argue thatHomHo(C)(X, Y ) can
be computed as the set of “homotopy classes” of maps inC from Xc to Y f .

The homotopy classes are constructed as follows. DefineX × ∆1 (a notation, not a
product!) by factoring the fold map:Xc q Xc ↪→ X × ∆1

∼
� X. Now declare two

mapsf, g : Xc→ Y f to be homotopic iff +g : XcqXc→ Y f extends overX×∆1.
(Hint: manipulate cofibrations and fibrations to show that homotopy is an equivalence
relation on mapsXc → Y f and that homotopy respects compositions. Then construct
a categoryC′ with the same objects asC, but in which the mapsX → Y are the
homotopy classes of mapsXc → Y f , and argue that an appropriate functorC → C′ is
universal with respect to functors onC which send equivalences to isomorphisms.)

1.21 Exercise.[37] Expand on the above idea to get objectsX×∆n, n ≥ 0,
all equivalent toX, which fit into a cosimplicial objectX × ∆∗ in C. To

begin,X ×∆0 is Xc andX ×∆1 is as above. ConstructX × ∂∆2 by gluing3 copies
of X ×∆1 together along the “vertex” copies ofX ×∆0. Build X ×∆2 by noticing
that there is a natural mapX × ∂∆2 →M , where

M = (X ×∆1)×X×∆0 (X ×∆1),

and factoring this map into the a cofibration followed by an acyclic fibration. Where
did M come from? (Consider the two collapses of an ordered 2-simplex onto an ordered
1-simplex.) Proceed by induction̂̈

Remark. The simplicial setHomC(X×∆∗, Y
f) is equivalent toHomR(X, Y ), where

R is the category enriched over spaces (simplicial sets) representing the homotopy
theory(C, E).
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Examples of model categories(C, E)
Geometry
• Tophe, Hurewicz fibrations, closed NDR-pair inclusions

• Top, Serre fibrations, retracts of relative cell inclusions

• TopD , objectwise Serre fibrations, retracts of relative diagram cell inclusions.

Algebra

• Sp, Kan fibrations, monomorphisms

• Ch+
R, surjections in degrees> 0, monomorphisms such that the cokernel in

each degree is projective

HereCh+
R is the category of nonnegatively graded chain complexes overR, with ho-

mology isomorphisms as equivalences.

1.22 Exercise.Verify that the indicated choices produce a model category structure on
Ch+

R (this is one way to build up homological algebra).

1.23 Exercise.Produce another model category structure onCh+
R in which the cofi-

brations are the monomorphisms and the fibrations are maps which are surjective in
positive degrees and in each degree have an injectiveR-module as cokernel. Conclude
that there are sometimes options available when it comes to putting a model category
structure on(C, E).

Remark. It’s not too complicated to produce the model category structure onTop (and
actually pretty interesting, since the usual approach depends on a widely applicable
trick due to Quillen called the small object argument). The verifications I’ve seen for
the model category structure onSp are messier and less satisfying.

Diagrams give interesting model categories.

1.24 Exercise. Suppose that(C, E) has a model category structure. LetD be the
pushout category (two-source category){a ← b → c}, and consider the categoryCD
whose objects are the functorsD → C and whose morphisms are the natural trans-
formations; this provides a homotopy theory in which the equivalences are the natural
transformations which for each object ofD give a morphism inE . Consider a mor-
phism

X ←−−−− Y −−−−→ Zy y y
X ′ ←−−−− Y ′ −−−−→ Z ′

in CD and call it

• a fibration, if each of the vertical maps is a fibration inC, and

• a cofibration, ifY → Y ′, X qY Y ′ → X ′ andZ
∐

Y Y ′ → Z ′ are cofibrations
in C.
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Verify that these choices give a model category structure onCD.

1.25 Exercise.Suppose thatD is the pullback category (two-sink category)

a→ b← c .

Use the previous exercise+ duality to obtain for free a model category structure on
CD.

1.26 Exercise.Formulate the notion of a categoryD in which the objects have
nonnegative integer gradings and in which the grading of the source of a mor-

phism is always strictly less than the grading of the target; call this, say, anincreasing
category, since the morphisms increase the nonnegative integer grading). Let(C, E) be
a model category. Generalize the above to get model category structures onCD and on
CDop

. (It would be tempting to callDop adecreasing category.)

As indicated on the slide, ifD is any category there is a model category structure on
TopD in which the fibrations are the maps of diagrams which give objectwise fibra-
tions inTop. The cofibrations are constructed as follows. LetDn be then-disk and
Sn−1 = ∂Dn its boundary For eachx ∈ D, then-disk Dn

x based atx is the functor
D → Top given by

Dn
x (y) = qHomD(x,y)D

n = Dn ×HomD(x, y) .

Then− 1 sphereSn−1
x = ∂Dn

x is defined similarly. A mapX → Y in CD is a relative
diagram cell inclusion ifY is obtained fromX by iteratively (perhaps transfinitely)
attaching cells of the form(Dn

x , ∂Dn
x ) for variousn, x. The cofibrations inTopD are

the retracts of relative cell inclusions.

1.27 Exercise.Produce a model category structure as above onSpD (remember,
Sp = simplicial sets). How about something similar for(Ch+

R)D? (These are
called projective model category structures.)

1.28 Exercise.[49, VIII.2.4] Produce a model category structure onSpD in
which the cofibrations are the objectwise cofibrations. (This is much harder,

and requires a willingness to let go of any desire to describe the fibrations explicitly.)
This is called the injective model structure onSpD.

Remark. If C is a model category, it does not seem to be true in general that there
is a model category structure on the diagram categoryCD. Such a model category
structure is known to exist only ifC is nice (cofibrantly generated) [56, 11.6] orD is
nice (above, see [56, Ch. 15] or [58, Ch. 5]). There are ways to work around this; one
of them (roughly) [26] is to construct another categoryD′ fromD such thatD′ is nice
(i.e. CD′ has a model category structure) and the homotopy theory ofCD′ is equivalent
to the homotopy theory ofCD.
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Dividends from a model category structure on(C, E)
Calculate
• Ho(C) (or evenTen(C, E)) from (C, E)

• Diagrams:Theory of(C, E)(D,F) ∼ T(C, E)hT(D,F)

Construct

• Derived functors

• Homotopy limits & colimits

Identify

• EquivalencesT(C, E) ∼ T(C′, E ′)

The exercises above suggest how to computeHo(C, E), or even the associated topo-
logically enriched category, from a model category structure on(C, E). Equivalences
between homotopy theories are discussed below, while homotopy limits/colimits will
come up later. The diagram classification goes as follows. If(C, E) and(D,F) are two
relative categories, the relative category

Fun((D,F), (C, E)) = (C, E)(D,F)

has as objects the functorsC → D which takeE to F , has as morphisms the natural
transformations, and has as equivalences (i.e. distinguished subcategory) those natural
transformations which carry each object ofC to an equivalence inD. Then if(C, E) has
a model category structure, the homotopy theory of this functor category is equivalent
to the mapping objectCath(T(D,F), T(C, E)). This has been worked out explicitly
for C = Sp but almost certainly holds in general.

1.29 Exercise.It’s possible to view this diagram classification claim as a gener-
alization of bundle classification theory. How?

1.30 Exercise.Let C be the categoryTop (or, with appropriate adjustments, the
categorySp, if this seems more convenient). LetD be the category1 = 0 → 1

(treated as a homotopy theory with only the identity maps as equivalences). Consider
as above the homotopy theory of functorsD → C. Show that ifX andY are CW-
complexes, the set of equivalence classes of functorsF : D → C with F (0) ∼ X and
F (1) ∼ Y is in bijective correspondence with the set

π0 Auth(X) \ [X, Y ] / π0 Auth(Y ) .

Here [X, Y ] is the set of homotopy classes of maps fromX to Y , Auth(Z) is the
group-like monoid of self-homotopy equivalences ofZ, and the orbit sets are obtained
from the composition action of self-equivalences on maps.

1.31 Exercise.Looking at the previous exercise with a homotopy theoretic
eye strongly suggests considering the double Borel construction

Auth(X)\\Map(X, Y )// Auth(Y ) .



Lecture 1: Homotopy theories and model categories 14

What is the significance of this construction in terms of the functorsD → C? (Note
that the above exercise amounts to the statement thatπ0 of this construction classifies
certain functors.) What happens ifD = n, n > 1?

1.32 Exercise.In the above situation, compute homotopy classes of maps inCD
from X → Y to Z → W in terms of homotopy constructions inC. (You’re

computing the homotopy category of the homotopy theoryCath(TD, T(C, E)).)

Slide 1-8 Slide 1-8

Equivalences between homotopy theories

Paradox

There is a homotopy theory of homotopy theories.

Equivalences vary with context
(Ten) F : R→ R′ is an equivalence ifHo(F ) is an equivalence

of categories andHomR(x, y) ∼ HomR′ (Fx, Fy)

(Tcss) F : X∗ → Y∗ is an equivalence ifXn ∼ Yn, n ≥ 0

(Tpair) F : (C, E)→ (C′, E ′) is an equivalence if (??)

SpecialTpair case
Filling in (??) easier for model categories

There are set-theoretic problems with contemplating the homotopy theory ofall ho-
motopy theories, but these are easy to evade by sticking to homotopy theories whose
objects and morphisms are sets in some chosen Grothendieck universe [44,§32]. The
slide refers to the fact that determining whether or not a map between homotopy theo-
ries is an equivalence can be tricky, but there are some easy ways to check this in the
model category case.

The simplest context in which to characterize equivalences between homotopy theories
is Ten: the category of topologically (respectively, simplicially) enriched categories. A
functorF : R → R′ between two of these objects is an equivalence if

• π0F : π0R → π0R′ is an ordinary equivalence of categories (in other wordsF
induces an equivalence of categoriesHo(R)→ Ho(R′)), and

• for any two objectsx, y ofR, the map

HomR(x, y)→ HomR′(Fx, Fy)

induced byF is an equivalence inTop, i.e., a weak homotopy equivalence (resp.
an equivalence inSp).
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T(C, E) ∼ T(C′, E ′) for model categories

Conditions on adjoint functors F : C ↔ C′ : G

1. F (↪→) = (↪→) and G(�) = (�)

2. f : Ac ∼→ G(Bf) ⇔ f[ : F (Ac) ∼→ Bf

Definition 1. (1) = Quillen pair, (1) + (2) = Quillen equivalence

Theorem 2. A Quillen equivalence(F, G) inducesT(C, E) ∼ T(C′, E ′)

In a Quillen pair,F preserves cofibrations andG preserves fibrations. The condition
on a Quillen equivalence is that in addition, ifA is a cofibrant object ofC andB is a
fibrant object ofC′, then a mapf : A → G(B) is a equivalence inC if and only if the
adjoint mapf [ : F (A)→ B is an equivalence inC′.

1.33 Exercise.Show that ifF andG form a Quillen pair, thenF preserves acyclic
cofibrations andG preserves acyclic fibrations. (Use the fact that these kinds of maps
are characterized by lifting properties; see 1.19.)

It may be unclear how a Quillen pair(F,G) induces an equivalence of homotopy the-
ories, since the functors in the pair do not necessarily preserve equivalences, and so do
not directly induce morphisms of homotopy theories. The key observation is due to K.
Brown [58, 1.1.12].

1.34 Exercise.Let F be a functor from a model category into some other category. If
F takes all acyclic cofibrations to isomorphisms, thenF takes all equivalences between
cofibrant objects to isomorphisms.

There is also a dual form involving fibrations and fibrant objects. It’s known that ifC
is a model category, then the morphisms ofC which become isomorphisms inHo(C)
are exactly the equivalences (no additional morphisms are inverted). It follows that
if (F,G) is a Quillen pair, thenF preserves equivalences between cofibrant objects
and so induces a map of pairs(Cc, Ec) → (C′, E ′), whereCc is the full subcategory of
cofibrant objects inC andEc = E∩Cc. Now it is necessary to observe that the inclusion
(Cc, Ec)→ (C, E) induces an equivalence of homotopy theories. The zigzag

T(C, E) ∼← T(Cc, Ec)→ T(C′, E ′)

is the map which if(F,G) is a Quillen equivalence induces the equivalenceT(C, E) ∼
T(C′, E ′).
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Examples of equivalences between homotopy theories

Examples
• Top andSp

• Sp∗ andsGrp

• Simplicial algebras and DG+ algebras

• Chain complexes andHZ-module spectra

Meta-examples

• Ten, Tsc, Tcss, andTqc (Tpair belong here?)

HereSp∗ is the category of pointed simplicial sets; a map in this context is an equiva-
lence if it induces an equivalence inSp between the basepoint components.

Implicit above is the statement thatTsc, Tcss, Ten, etc. have model category structures.
So it’s important to be careful in thinking about “maps” between homotopy theories;
such a map will necessarily be represented by an actual morphism only if the source
homotopy theory is cofibrant in the appropriate sense and the target homotopy theory
is fibrant.

Remark. It is almosttrue that a map(C, E) → (C′, E ′) of homotopy theories is an
equivalence if and only if the induced map of diagram theories

Cath(T(C′, E ′),Sp)→ Cath(T(C, E),Sp)

is an equivalence [40]. But not quite; the problem is an interesting one that arises even
for discrete homotopy theories, i.e., ordinary categories.

1.35 Exercise.Give an example of a functorF : C → C′ between (ordinary)
categories such that (1)F induces an equivalence of categoriesSetC

′
→

SetC , but (2)F itself is not an equivalence of categories. (Hint:retracts!) Go on to
characterize the functorsC → C′ which have property (1).
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Lecture 2.

Homotopy limits and colimits

Slide 2-1 Slide 2-1

Colimits and related constructions

Colimit for X : C → S
colim: SC ↔ S : ∆

HomSC (X, ∆(Y )) ∼= HomS(colim X, Y )

LKanF for X : C → S and F : C → D
LKanF : SC ↔ SD : F ∗

HomSC (X, F ∗Y ) ∼= HomSD (LKanF X, Y )

Coend for X : Cop × C → S

A(C) =

a
f

// b

���
�
�

a′ //

OO�
�
�

b′

coend X ∼= colimA(C)(f 7→ X(a, b))

This slide describes colimits (left adjoints to diagonal functors), left Kan extensions
(left adjoints to restriction functors) and coends (not described directly, but asserted to
be given by some funny associated colimits).

The pictorial description ofA(C) signifies that an object ofA(C) is a solid arrowf :
a → b in C, while a morphism from the top solid arrow to the bottom one is the
indicated peculiar type of commuting square. Note that taking left and right endpoints
of the object arrows gives a functorA(C)→ Cop×C. The categoryA(C) is sometimes
called thearrow categoryof C, and sometimes thetwisted arrow category. I prefer the
second name because it’s a reminder that one of the vertical arrows in a morphism is
twisted backwards.

2.1 Exercise.Check that the colimit description of the coend [68, IX.6] is correct.

2.2 Exercise. If G is a (discrete) group, letCG denote the category associated toG;
this is the category with one object in which the maps from the object to itself are
given byG. A functor CG → S amounts to an object ofS with an action ofG. Let
H be a subgroup ofG, andF : CH → CG the natural functor. Compute the left Kan
extension functorSCH → SCG if (a) S is the category of sets, or (b)S is the category
of R-modules for a ringR. In both cases, compute the colimit functorsSCG → S.

2.3 Exercise. It’s clear that a colimit is an example of a Kan extension. It is also
possible to compute Kan extensions in terms of colimits. Ifd ∈ D, theover category
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(also called comma category)F↓d can be described pictorially as follows:

c, F (c)

h

���
�
�
�
�
�
�

''PPPPPPPPPPPPP

F (h)

���
�
�
�
�
�
�

d

c′, F (c′)
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Show thatLKanF (X) is the functor which assigns tod ∈ D the colimit, overF↓d, of
the functor which assigns to(c, F (c)→ d) the objectX(c) [56, 11.8]. Symbolically,

LKanF (X)(d) = colimF↓d [(c, F (c)→ d) 7→ X(c)]

This is sometimes expressed by saying that left Kan extensions can be computed point-
wise.

2.4 Exercise. Show that ifF : C → D is the inclusion of a full subcategory, then
LKanF (X) actually is an extension ofX to D (in other words, the restriction of
LKanF (X) to C is isomorphic toX). Show by example that this is not necessarily
the case in other situations.

Slide 2-2 Slide 2-2

Aside: notation for special coends

Monoidal categoryS
• Bifunctor⊗ : S × S → S
• Usually associative, unital (commutative) up to. . .

⊗ over C of functors C → S
X : Cop→ S, Y : C → S

X ⊗C Y := coend of (a, b) 7→ X(a)⊗ Y (b)

Usually⊗ = ×
S = Sp, ⊗ = ×

MapSp(X ×C Y, Z) ∼= HomSpC (X, Map(Y, Z))

This slide establishes a notation for “balanced products” of functors with values in a
(symmetric) monoidal category in terms of an associated coend. The functors are both
defined on some categoryC, but one of them is required to be contravariant and one
covariant. We’ll be mostly in the case in which the monoidal structure is given by
cartesian product inTop or Sp.

Note that the last displayed isomorphism does in fact make sense:Y is a contravariant
functor C → Sp, and so the functorMap(Y, Z), sendinga to Map(Y (a), Z) is a
covariant functor.
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2.5 Exercise. Convince yourself that the last displayed isomorphism on the slide is
correct.

2.6 Exercise.Try to interpret the tensor product of a left module over a ringR with
a right module as a coend in the above sense. It may be necessary to deal with addi-
tive categories (= morphisms are abelian groups, composition is bilinear) and additive
maps between them.

2.7 Exercise. Let G be a discrete group with associated categoryCG (2.2). Let
X : CG → Sp be a contravariant functor (a rightG-space) andY : CG → Sp a co-
variant functor (a leftG-space). Show thatX ×CG

Y is the orbit space of action ofG
on X × Y obtained by converting the action onX to a left action usingg 7→ g−1 and
then taking the diagonal action on the product.

Slide 2-3 Slide 2-3

Homotopy colimits and related constructions
C, S homotopy theories

Homotopy colimit for X : C → S
hocolim: SC ↔ S : ∆

Homh
SC (X, ∆(Y )) ∼ Homh

S(hocolim X, Y )

LKanh
F for X : C → S and F : C → D

LKanh
F : SC ↔ SD : F ∗

Homh
SC (X, F ∗Y ) ∼= Homh

SD (LKanh
F X, Y )

Homotopy coend forX : Cop × C → S
hocoend X = hocolimA(C) of (a→ b) 7→ X(a, b)

U ⊗h
C V = hocolimA(C) of (a→ b) 7→ U(a)⊗ V (b)

Remark. Most of the time when homotopy colimits come up in these lectures,C is an
ordinary discrete category, treated as a homotopy theory by taking the equivalences to
be the isomorphisms. The objectsSC andSD on this slide should really beShC and
ShD, but it seemed too cluttered to have an “h” decorating both the function categories
and thehom constructions.

This brings up the fact that the slide contains the first appearance ofHomh(U, V ): this
stands for the function space of maps fromU to V , whereU andV are objects in some
homotopy theoryT. The homotopy type ofHomh(U, V ) may be more or less deeply
buried, depending on how the homotopy theory is presented. If the theory is given as
a categoryR enriched overSp, thenHomh(U, V ) is the space of mapsU → V in
R. If T is given by a pair(C, E), then in generalHomh(U, V ) has to be computed as
a space of zigzags [36], though if(C, E) has a model structure there is a more direct
approach (see 1.21, [58, 5.4], or [56, Ch. 17]). If(C, E) has the structure of a simplicial
model category [58, 4.2] [56, Ch. 9], thenHomh(U, V ) is equivalent to the simplicial
mapping spaceMap(U c, V f), whereU c is a cofibrant replacement forU and V f a
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fibrant replacement forV . In practice,Homh(U, V ) is usually given by any reasonable
mapping space construction that respects equivalences in both variables.

The last displayed definition contains an underlying assumption that the pairing map
S×S → S is a map of homotopy theories (or, ifS is a category with equivalences, can
be suitably adjusted to become a map of homotopy theories). This won’t be an issue
for us, since in the monoidal category(Sp,×) the monoidal operation× does preserve
equivalences.

2.8 Exercise.Explain whatX ⊗h
C Y should mean ifX andY are, respectively,

contravariant and covariant functors fromC to the category of chain complexes
of modules over a commutative ringR.

Note. The adjunctions above are in the appropriate enriched category sense; for in-
stance the second one asserts that the two functors

Homh
SC (X, F ∗Y ) and Homh

SD (LKanh
F X, Y )

are explicitly equivalent as functors

(SC)op× SD → Sp .

Depending on the model for homotopy theories that is currently on the workbench, this
explicit equivalence may or may not be realized by a direct morphism in the functor
category; it may well be specified as a zigzag of morphisms which are direct equiva-
lences.

Slide 2-4 Slide 2-4

Model category dividend

Theorem
If S admits a model category structure:

Existence
hocolim, LKanh

F , hocoend exist for targetS.

Realizability
• hocolim ∼ functorSC → S,

• LKanh
F ∼ functorSC → SD , and

• hocoend ∼ functorSCop×C → S.

Remark. This theorem may or may not have been proved in the form in which it’s
stated, but it’s certainly true. The only issue is whether the various constructions avail-
able have been explicitly identified as homotopy colimits (etc.) in the sense of the
previous slide.



Lecture 2: Homotopy limits and colimits 21

Slide 2-5 Slide 2-5

Construction of hocolim, version I

Assumptions
• S admits a model structure

• SC admits the projective model structure
(fibrations are objectwise)

The assumptions hold ifS is Sp, orTop.

Conclusion
hocolim X ∼ colim Xc, X ∈ SC

The assumptions hold ifC is an increasing category (1.26) or ifS admits a cofibrantly
generated model category structure. For instance, the above technique always works for
computing homotopy pushouts (1.24; see [41,§10]). Every object inSp is cofibrant,
so a homotopy pushout inSp can be calculated by converting the two maps involved
into cofibrations (leaving the common domain unchanged) and then taking a pushout.

2.9 Exercise. Give an example to show that in(Tophe)∗ (the category
of pointed topological spaces with pointed homotopy equivalences as the

equivalences) the coproduct of two objects is not necessarily equivalent to the homo-
topy coproduct of the objects. (Even coproducts sometimes have to be derived.)

2.10 Exercise.Look ahead to slide 2–9. Can you think of an example in which the
product of a collection of objects in a model category is not equivalent to their homo-
topy product (the product of their fibrant replacements)?

2.11 Exercise. How about an example different from the one you got by
applying the “opposite category” trick to 2.9̂̈ .
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Construction of hocolim, version II
Top, Sp. . . .

(A) |Y | for Y : ∆op→ {Top or Sp}

|Y | =
(

∆∗ ×∆op Y for Top

∆[∗]×∆op Y for Sp

(B) Repl∗(X) : ∆op→ S for X : C → S
Repl∗(X)(n) =

a
f : {0→1→···→n}→C

f(0)

hocolim = (A) + (B)
hocolim X ∼ |Repl∗(X)|
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Note. The functor∆∗ is the functor∆→ Top which sends the setn to the geometric
n-simplex∆n (the space of convex linear combinations of points inn. Similarly,∆[∗]
is the functor∆ → Sp which sendsn to the simplicial set∆[n] corresponding to
then-simplex, considered as an ordered simplicial complex.Repl∗(X) is called the
simplicial replacementof the diagramX [18, XII].

2.12 Remark. This construction of the homotopy colimit works in many simplicial
model categories. Sometimes it’s a good idea to insist that the values of the functorX
are cofibrant objects in the base category; this guarantees the coproducts which enter
into the formation ofRepl∗(X) have the correct equivalence type and that the gluing
involved in the realization construction is well-behaved. It is something of a surprise
that this cofibrancy condition is not necessary inTop [30]. It is necessary inTop∗
(2.9).

Remark. In general, it is necessary to be careful in forming the realization of an
arbitrary simplicial object in a simplicial model category. (If youare careful, the re-
alization of the simplicial object should be equivalent to its homotopy colimit as a
functor∆op→ S.) Being careful in this case means checking to see that the simplicial
object is Reedy cofibrant [58, 5.2] [49, VII]. Roughly, “Reedy cofibrant” means that
combined images of the degeneracy maps at each level sit cofibrantly inside the object
at that level, a request which is not unreasonable, since taking the realization involves
collapsing out the images of the degeneracy maps. Every simplicial object inSp is
Reedy cofibrant, but the same is not true of every simplicial object inTop; this leads
to the tale of the thick realization of a simplicial topological space [91, Appendix].

2.13 Exercise. Check that the above simplicial construction does in fact give a ho-
motopy pushout inTop which agrees up to equivalence with the sort of homotopy
pushout from slide 2–5. (The outcome of the simplicial construction isn’t nearly as
elaborate as it might look. Realizing a simplicial object involves collapsing the images
of degeneracy maps, and almost all of the pieces of the simplicial replacement for a
pushout diagram are degenerate.)

2.14 Exercise.Verify that the simplicial set∆[n] is the functor∆op → Set which
sendsm to Hom∆(m,n). Conclude that for any simplicial setX, HomSp(∆[n], X)
is naturally isomorphic toXn.

? 2.15 Exercise.The following is not hard to prove, but it is completely implausible
at first sight. The coend formula for the realization of a simplicial objectX∗ in Sp
exhibits|X∗| as a quotient

|X∗| =
∐
n

(∆[n]×Xn) / ∼

where in this case∼ is an equivalence relation generated by the morphisms in∆op.
But X∗ is just a simplicial object in the category of simplicial sets, as such it amounts
to a functor

X : ∆op→ Set∆
op

or X : : ∆op×∆op→ Set
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The second way of looking atX leads to the definition of the diagonaldiag(X); this
is the simplicial set

diag(X) : ∆op diag−−→∆op×∆op X−→ Set .

Prove that for any simplicial objectX in Sp, |X| is isomorphic todiag(X).

2.16 Exercise.In Top, interpret the above simplicial homotopy colimit ofX → Y
as the mapping cylinder of the map. What’s the (simplicial ) homotopy colimit of
X → Y → Z? Interpret a homotopy colimit inTop indexed by an arbitrary category
in terms of building blocks of this kind [18, XII.2].

? 2.17 Exercise.Verify that the nerve (1.7) of a categoryC can be identified as the
homotopy colimit of the constant functor which assigns to each object ofC the one-
point space. The constant functor is treated as taking values inSp, and the homotopy
colimit is in Sp.

2.18 Exercise.The above construction of the homotopy colimit works for the category
Sp∗ of pointed simplicial sets (and also in the categoryTop∗ of pointed spaces, as
long as the values of the functorX are assumed to be cofibrant, see 2.12). Verify that
the homotopy colimit in the pointed category is obtained by forming the homotopy
colimit in the unpointed category and collapsing out the nerve of the index category
(i.e., the unpointed homotopy colimit of the one-point basepoint functor).

2.19 Exercise.Draw a picture of a homotopy coequalizer inTop.

2.20 Exercise. Filtering ∆∗ or ∆[∗] by skeleta gives an increasing fil-
tration of hocolim X, which leads to a homology spectral sequence for

h∗(hocolim X) (hereh∗ is any homology theory). Identify theE2 page of the spectral
sequence as

E2(i, j) = colimi hj(X)

wherecolimi is thei’th (classical) left derived functor of the colimit functorAbC →
Ab andhj(X) is the functorC → Ab obtained by applyinghj to X.

2.21 Exercise.In the above situation, show that theE2 page can be identified
more explicitly as

E2(i, j) = HiN(hj(Repl∗(X))) .

Herehj(Repl∗(X)) is the simplicial abelian group obtained fromRepl∗(X) by apply-
ing Ej , N is normalization as in (1.13), andHi is thei’th homology group of a chain
complex.

2.22 Exercise. In an exercise that, in light of the above two, might seem
obscurely confusing, show that ifA ∈ Ab∆op

is a simplicial abelian group,
then

colimi A ∼= HiN(A) .

Resolve the confusion by observing that ifB : C → Ab is any functor,colim∗(B) can
be computed by a simplicial replacement formula.
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Homotopy limits and related constructions
C, S homotopy theories

Homotopy limit for X : C → S
∆: S ↔ SC : holim

Homh
SC (∆(Y ), X) ∼ Homh

S(Y, holim X)

RKanh
F for X : C → S and F : C → D

F ∗ : SD ↔ SC : RKanh
F

Homh
SC (F ∗Y, X) ∼= Homh

SD (Y, RKanh
F X)

Homotopy end for X : Cop × C → S
hoend X = holimA(C) of (a→ b) 7→ X(a, b)

Remark. The opposite of a homotopy theory is a homotopy theory, so a hapless lec-
turer who was pressed for time could point out that homotopy limits are just homotopy
colimits in the opposite category, and leave it at that. . .

In this slide, as in 2–3,SC andSD should really beShC andShD

2.23 Exercise.Formulate the notion of right Kan extension, and show that right Kan
extensions can be computed pointwise (2.3). It will probably be necessary to consider
theunder categoriesd↓F :

F (c), c

h

���
�
�
�
�
�
�

F (h)

���
�
�
�
�
�
�

d
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F (c′), c′

Identify some interesting right Kan extension.

2.24 Exercise.If X, Y : C → S are two functors between ordinary categories, there is
a functorHX,Y : Cop× C → Set given by

HX,Y (c, c′) = HomS(X(c), Y (c′)) .

Check that the end of this functor is isomorphic toHomSC (X, Y ).

Remark. Suppose thatC andS are homotopy theories. The mapping theoryShC is
defined so that ifX, Y : C → S are objects of the theory, then

Homh
SC(X,Y ) ∼ hoendC

[
(c, c′) 7→ Homh

S(X(c), Y (c′))
]

.
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Another model category dividend

Theorem
If S admits a model category structure:

Existence
holim, RKanh

F , hoend exist for targetS.

Realizability
• holim ∼ functorSC → S,

• RKanh
F ∼ functorSC → SD , and

• hoend ∼ functorSCop×C → S.

Remark. This really does follow from the corresponding remark about homotopy
colimits, etc., because the notion of a model category is self-dual (1.18).
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Construction of holim, version I

Assumptions
• S admits a model structure

• SC admits the injective model structure
(cofibrations are objectwise)

The assumptions hold ifS is Sp (Top?)

Conclusion
holim X ∼ lim X f , X ∈ SC

? 2.25 Exercise.Determine what this says about homotopy pullbacks inSp orTop.
What do you need to do to compute the homotopy limit of a tower

· · · → Xn → Xn−1 → · · ·X1 → X0

in a model category.
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Construction of holim, Version II
Top, Sp. . . .

(A) Tot Y for Y : ∆→ {Top or Sp}

Tot Y =

(
MapTop∆ (∆∗, Y ) for Top

MapSp∆ (∆[∗], Y ) for Sp

(B) Repl∗(X) : ∆→ S for X : C → S
Repl∗(X)(n) =

Y
f : {0→1→···→n}→C

f(n)

holim = (A) + (B)
holim X ∼ TotRepl∗(c 7→ X(c)f)

Remark. The phrasec 7→ X(c)f here stands for the functor that results from the
objectwise process of making every value of the functorX fibrant. InTop, this doesn’t
require any action. The dual issue (replacingX by c 7→ X(c)c) does in fact come up in
forming homotopy colimits, but I didn’t emphasize it because (1) every object ofSp is
cofibrant, and (2) by accident or good luck, depending on your point of view, the issue
is not important if the target category isTop.

? 2.26 Exercise.Interpret this formula for holim more explicitly (at least inTop).
A point in the holim is

• For eachc ∈ C, a point inxc ∈ X(c).

• For each arrowf : c→ c′ in C, a path inX(c′) betweenf(xc) andxc′ .

• For each compositionc→ c′ → c′′ in C, a2-simplex inX(c′′) with (?).

• (?)

? 2.27 Exercise. What construction does this give for the homotopy pullback in
Top?

2.28 Exercise. Let G be a discrete group, andX a G-space, treated as a functor
CG → Sp (or CG → Top) (2.2). Show thathocolim X is the Borel construction
EG ×G X; in other words, the bundle overBG associated to the action ofG on X.
Check thatholim X is the space of sections of this bundle. There is special terminology
and notation for these homotopy limits and colimits:holim X is called the homotopy
fixed point set of the action ofG on X and denotedXhG, while hocolim X is called
the homotopy orbit space of the action ofG onX and denotedXhG.

2.29 Exercise.Filtering ∆∗ or ∆[∗] by skeleta gives in this case a second
quadrant homotopy spectral sequence forπ∗ holim X. (Some problems do

come up. you need a basepoint to define homotopy groups, and there’s no hope of
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choosing a basepoint if for instanceholim X is empty. So assume thatX is a diagram
of pointed objects to guarantee a distinguished point inholim X.) Compare this with
2.20. Show that theE2 page of the spectral sequence is given by

E2(−i, j) = limi πjX

where limi is the i’th right derived functor oflim: AbC → Ab. Or maybe not;
remember thatπ0 is just a set, whileπ1 is a possibly nonabelian group. This spectral
sequence might occupy more second quadrant than you expect [14].
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Properties of homotopy (co)limits
for functorsC → S
Universal maps

hocolim X → colim X

lim X → holim X

Homotopy invariance

X ∼→ Y =⇒
(

hocolim X ∼→ hocolim Y

holim X ∼→ holim Y

Mapping adjointness
Homh

S(hocolim X, Y ) ∼ holimCop of c 7→ Homh(X(c), Y )

Homh
S(Y, holim X) ∼ holimC of c 7→ Homh(Y, X(c))

Remark. The two homotopy limits on the right in the last display are homotopy limits
of functors intoSp (or Top).
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Mysteries of (I) and (II) revealed
for X : C → Sp

Homotopy colimit
Suppose thatX takes on cofibrant values.

hocolim X ∼ ∗ ×h
C X

(I) ∼ ∗ ×C Xc
proj

(II) ∼ ∗c
proj ×C X

Homotopy limit
Suppose thatX takes on fibrant values.

holim X ∼ Homh( ∗, X)
(I) ∼ Map( ∗, X f

inj)

(II) ∼ Map( ∗c
proj, X)
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This is a lot like homological algebra: if you want to compute the derived tensor prod-
uct of two chain complexes, you can make either one or the other projective, it doesn’t
matter which.

Remark. In the first box,∗ is a contravariant constant functor, and in the second
box it’s a covariant one. The simplicial formula forhocolim X arises from taking the
following cofibrant model for∗ in the projective model category structure onSpC

op

:

(∗c
proj)(x) = N(x↓C) .

See 2.23 for a description of the under categoryc↓C; for brevity,C here stands for the
identify functor onC.

2.30 Exercise.Check that this formula does provide a cofibrant model for∗, and that
(∗c

proj)×C X does in fact describe the simplicial model forhocolim X.

In the second box,Map stands for the simplicial mapping complex and∗c
proj is a cofi-

brant model for∗ in the projective model category structure onSpC . The cosimplicial
formula forholim X arises from taking the cofibrant model given by

(∗c
proj)(x) = N(C↓x) .
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Lecture 3.

Spaces from categories

In this section we’ll look at various constructions on categories which give interesting
results when the nerve functor is applied. At then end there’s a short discussion of
terminal functors and initial functors (generalization of terminal objects and initial ob-
jects). The basic properties of these functors don’t directly involve nerves of categories,
but the functors are tied to nerves in a couple of different ways.

Slide 3-1 Slide 3-1

Categories vs. Spaces

Geometrization
N : Cat→ Sp

Properties
• F : C → D 7→ N F : N C → ND
• τ : F

.→ G 7→ H : N C ×∆[1]→ D

Advantages

• Categories more visible than spaces.

• Natural transformations more accessible than homotopies.

Can homotopy colimits (coends) be built in?
F : C → Cat =⇒ hocolimC N(F ) ∼ N(?)

It is pretty clear that ifC is a category then the nerveN C of C, considered up to equiv-
alence inSp, does not capture a lot of the structure inC.

3.1 Exercise.Give an example of two categoriesC andD such thatN C andND are
equivalent (i.e. weakly homotopy equivalent) as simplicial sets, but such thatC andD
are not equivalent as categories.

But there is something to be said.

3.2 Exercise. Show thatN C andND are weakly equivalent as simplicial
sets if and only if the category pairs(C, C) and(D,D) give equivalent ho-

motopy theories. (In other words, the nerveN C, considered up to the usual notion of
equivalence for simplicial sets, exactly captures the homotopy theory that results from
inverting all of the arrows inC.)

3.3 Exercise.Show thatN C, considered up to isomorphism of simplicial sets,
determinesC up to isomorphism of categories. (Hint: look at the left adjoint to

N : Cat→ Sp).

Trying to interpolate between the previous two exercises might well lead to the notion
of a quasicategory.
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The Grothendieck Construction
F : C → Cat =⇒ categoryCnF

x

•

c

Object Morphism

x

•

c

im(x)

x′

•
•

jjjj
44

c′___________ //f

____ //
F (f)

The Grothendieck constructionCnF is also denotedC oF ,
∫
C F , or in general anything

else that somehow connotes adding up the values ofF overC. The slide is supposed to
indicate that an object of the categoryCnF is a pair(c, x), wherec ∈ C andx ∈ F (c);
a morphism(c, x) → (c′, x′) is then a pair(f, g), wheref is a morphismc → c′ in C
andg is a morphismF (f)(x)→ x′ in F (c′).

3.4 Exercise.Suppose thatF is the constant functorC → Cat with valueD. Show
thatCnF is the product categoryC × D.

3.5 Exercise.Suppose that the groupG acts on the groupH by automorphisms, and
let F : CG → Grp be the corresponding functor (2.2). Show thatCnF is the category
corresponding to the semidirect product groupG n H. (The intent here is that the
n symbol is oriented so that the closed triangle points sideways towards the normal
subgroup.)
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Thomason’s Theorem
F : C → Cat

Theorem
N(CnF ) ∼ hocolimC N(F )

Example
F : C → Set, CnF = Transport Category
• Object: (c, x), c ∈ C, x ∈ F (c)

• Morphism: f : c→ c′ with f(x) = x′

N(Transport Category) ∼ hocolim F
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The reference for Thomason’s theorem is [97].

3.6 Exercise. In the above situation, show that the nerve of the transport category is
actually isomorphic tohocolim F , wherehocolim F is formed according to the sim-
plicial formula.

3.7 Exercise.Consider the possibility thatCnF might be the homotopy col-
imit of F in the category of homotopy theories. Can you find any evidence

for or against this suggestion? Is there any reason to believe that the nerve functor from
categories to simplicial sets should commute with (homotopy) colimits?
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Variations on CnF (all ∼ on N)
F : C → Cat

Cn(F op)

x

•

c

(c, x)

im(x)

x′

•
j j j j
tt•

c′

(c′, x′)

___________ //f

____ //
F (f)

Also have(CnF )op and(Cn(F op))op!

This slide refers implicitly to the fact that for any categoryD, the nerve ofDop is
naturally equivalent inSp to the nerve ofD. We’ll see why in a minute. Meanwhile,
we’ve come up with four different categories whose nerves representhocolim N(F ).

3.8 Exercise.Draw (CnF )op and(Cn(F op))op.

3.9 Exercise.Suppose thatF : C → D is a functor, and thatd ∈ D. Show thatN(d↓F )
is the homotopy colimit overC of the functorc 7→ HomD(d, F (c)). Show thatN(F↓d)
is the homotopy colimit overCop of the functorc 7→ HomD(F (c), d).

Note thatCnF op is quite weird, in that the two arrows that comprise a morphism in
some sense go in different directions.

For a functorF : C → Cat, call the categoriesF (c), c ∈ C, thefibre categoriesfor
the obvious projection functorCnF → C.
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3.10 Exercise.Show that if all of these fibre categories have contractible nerve, then the
projectionN(CnF ) → N(C) is an equivalence of simplicial sets. (Use the homotopy
invariance of homotopy colimits, the fact that the nerve ofC is hocolimC ∗, and some
sort of functoriality which I haven’t stated but which must be built into Thomason’s
theorem.)

3.11 Exercise.Show that adjoint functors

F : C ↔ D : G

induce inverse equivalences (up to homotopy) betweenN C andND. Hint: natural
transformations give homotopies (1.8). Deduce (again 1.9) that any category with an
initial object or a terminal object has a contractible nerve.

Recall that ifC is a category,A(C) stands for the twisted arrow category ofC (2.1).
There are natural functorsA(C)→ C andA(C)→ Cop.

? 3.12 Exercise.Show thatA(C) → C can be identified asCnF → C for some
functor C → Cat. Observe that all of the fibre categories have contractible nerves.
Show that the same is true ofA(C)→ Cop. Conclude that in the diagram

C ← A(C)→ Cop

both of the functors induce equivalences on nerves [85, p. 94].
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Extension to homotopy coends
F : C → Cat, G : Cop→ Cat N(GoCnF ) ∼ N(G)×h

C N(F )

GoCnF = {(c, x, y)}

Morphism

x
•

x′
•

•
44___ //

F (f)

y
•

•tt

c

y′
•

c′______ //
f

_ _ _oo
G(f)
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There’s a discussion of the Grothendieck construction model for homotopy coends
in [36, §9]. It’s terse, and I don’t thing the phrase “homotopy coend”’ appears any-
where, but the argument does produce an equivalence between the nerve of a two-sided
Grothendieck construction and a simplicial model for the homotopy coend along the
lines of slide 2–6.

The slide signifies that an object ofGoCnF is a triple(c, x, y) wherec ∈ C, x ∈ F (c),
andy ∈ G(c). A morphism(c, x, y)→ (c′, x′, y′) is itself a triple, consisting of a map
f : c → c′ in C, a mapF (f)(x) → x′ in F ′(c) and a mapG(f)(y′) → y in G(c). It
should be pretty clear how to compose these triples.

The reader is left to ponder the multitudinous variants ((Gop)oCnF , GoCn(F op),
. . .), all of which have equivalent nerves. One point that sometimes disorients me a bit
is the fact that the opposite category construction(−)op is acovariantfunctor onCat.

Working with Grothendieck constructions can be unexpectedly tricky. Here’s an exam-
ple (which when sorted out leads to yet larger collections of categories with equivalent
nerves). Suppose thatC is category with equivalencesE (i.e. a homotopy theory) and
thatx andy are objects ofC. Consider the diagram categoryZiZaZig(x, y) described
by the following picture:

A
∼

~~~~
~~

~~
~~

//

∼

���
�
�
�
�
�
� B

∼

���
�
�
�
�
�
�

x y

∼
``@@@@@@@@

∼
��~~

~~
~~

~~

A′

∼

__@@@@@@@@
// B′

The solid arrow zigzags are the objects of the category, and the pictured commuta-
tive diagram (which includes the dashed arrows) gives a morphism between the upper
zigzag and the lower one. The problem is to understand the homotopy type of the nerve
of this category. There are several ways to take this homotopy type apart; the most sym-
metrical one is to observe that an object consists of a triple(U, V, h), whereU : A→ x
is an object of the over categoryE↓x, V : y → B is an object of the under category
y↓E , andh is an element ofF (U, V ) = HomC(A,B). The functorF is contravariant
in U , covariant inV , and takes values in sets (= discrete categories). A morphism
(U, V, h)→ (U ′, V ′, h′) in ZiZaZig(x, y) consists of a morphismu : U → U ′ in E↓x
and a morphismv : V → V ′ in y↓E such thatu∗(h′) = v∗(h) (this is the commutativ-
ity of the central square).

A first guess based on looking at the variances might have

ZiZaZig(x, y) ∼= DnF for D = (E↓x)op× (y↓E)

but this would be hasty.
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3.13 Exercise.Show that((E↓x)op× (y↓E))nF is the diagram category

A
∼

~~~~
~~

~~
~~

// B

∼

���
�
�
�
�
�
�

x y

∼
``@@@@@@@@

∼
��~~

~~
~~

~~

A′

∼

__@@@@@@@@

∼

OO�
�
�
�
�
�
�

// B′

A better formula is this

ZiZaZig(x, y) ∼= (y↓E) n F o (E↓x)

3.14 Exercise.Make sense of the above formula. In particular, ifG is a con-
travariant functorC → Cat, defineG o C and observe that its nerve is equiva-

lent tohocolimCop N(G). Observe nevertheless thatG o C is not quite isomorphic to
(Cop)nG, or even to the opposite of this last category. Observe further that the notation
(y↓E) n F o (E↓x) above now makes sense in two ways, either as

[ (y↓E) n F ] o (E↓x)

or as
(y↓E) n [F o (E↓x) ]

Show that these two interpretations give isomorphic categories (thank goodness) and
that the nerve of this object (and hence the nerve ofZiZaZig(x, y)) is in fact equivalent
to hocolim(E↓x)op×(y↓E) H.
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The parallel universe ofHom and⊗
Setup
• R→ S aug.k-algebras F : C → D categories

• RM, SN CX, DY

Dictionary

• k ⊗R M hocolimC X ∼ ∗ ×h
C X

• HomR(k, M) holimC X ∼ Homh
C(∗, X)

• S ⊗R M LKanh
F (X) ∼ D ×h

C X

• HomR(S, M) RKanh
F (X) ∼ Homh

C(D, X)
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At this point we’re beginning to work our way towards some preliminary applications
of the Grothendieck construction; more applications will come up later on.

The notationCX on this slide denotes for short thatX is a covariant functor fromC
to, say,Sp. In the notationD ×h

C X, D is shorthand for the contravariant functor
C → SetD given by

c 7→ HomD(F (c),−) .

(Note that the object on the right actually is a functor fromD to Set.) The indicated
homotopy coend can be computed objectwise inD; in symbols

(D ×h
C X)(d) = HomD(F (−), d)×h

C X .

The fact thatD stands for aD Hom-functor which is contravariant onC is silently
implied by the fact thatD appears on the left side of the homotopy coend.

Similarly, Homh
C(D, X) stands for the functorD → Sp which sendsd to

Homh
C(HomD(d, F (−)), X) .

The fact thatD here represents a covariantHom-functor onC is necessitated by the fact
thatD appears inside of aHomh construction in which the second component, namely
X, is covariant.

The parallel universes here involve two constructions (restriction of a module along a
ring homomorphism, pullback of a diagram along a functor), each of which has both
left and right adjoints. In both cases there’s an underlying homotopy theory (at least if
you replace modules over the rings by chain complexes of modules) and both the left
adjoint and the right adjoint can be usefully derived (although the slide doesn’t refer to
the possibility of deriving the algebraic constructions). The main point of the slide is
psychological rather than mathematical: if you use notation for left and right homotopy
Kan extensions which is similar to familiar algebraic notation, you find yourself led to
correct conclusions.

3.15 Exercise.Find some reason to believe that the indicated formulas for the
right and left homotopy Kan extensions are correct.

For the material on the next few slides, see [57] or [39,§9].
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Properties of Kan extensions

Transitivity (pushing forward over functors)
M, R // 33S // T X, C // 33D // S

On the left
Algebra T ⊗R M ∼= T ⊗S S ⊗R M

Topology S ×h
C X ∼ S ×h

D D ×
h
C X

On the right

Algebra HomR(T, M) ∼= HomS(T, HomR(S, M))

Topology Homh
C(S, X) ∼ Homh

D(S, Homh
C(D, X))

3.16 Exercise.What does this transitivity say about homotopy colimits?

3.17 Exercise.Check the transitivity properties by using adjointness properties of the
homotopy Kan extensions.
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Does pulling back preservehocolim?

Cofinality (pulling back)
R→ S, SN C → D, DY

On the left
Algebra ∀N : k ⊗R N ∼= k ⊗S N ?

Topology ∀Y : hocolim F ∗(Y ) ∼ hocolim Y ?

Topology ∀Y : ∗ ×h
C Y ∼ ∗ ×h

D Y ?

Solution

Algebra k ⊗R N ∼= (k ⊗R S)⊗S N , want
�� ��k ⊗R S ∼= k

Topology ∗ ×h
C Y ∼ (∗ ×h

C D)×h
D Y want

�� ��∗ ×h
C D ∼ ∗

In this slide,∗ ×h
C Y stands for∗ ×h

C F ∗Y , whereF denotes the functorC → D.
This notation makes the analogy with the ring context clearer. GivenF : C → D
the slide looks at the question of whether for everyY : D → Sp, the natural map
hocolim F ∗Y → hocolim Y is an equivalence.

3.18 Exercise.(for fun) Can you think of any augmentedk-algebra mapsR → S for
which k ⊗R S ∼= k? What about maps for which the analogous statement is true for
derived tensor products?
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Terminal functors
Definition 3. F : C → D terminal if ∗ ×h

C D ∼ ∗.

Theorem
F : C → D terminal,DY =⇒ hocolimC Y ∼ hocolimD Y

Interpretation (Grothendieck construction!)

(∗ ×h
C D)(d) = N(d↓F )

F (c), c

h

���
�
�
�
�
�

F (h)

���
�
�
�
�
�

d

77nnnnnnnnnnnnn

''PPPPPPPPPPPPP

F (c′), c′

This theorem guarantees that if for eachd ∈ D the under categoryd↓F has a con-
tractible nerve, thenF : C → D preserves homotopy colimits (in other words, for each
Y : D → Sp, hocolim F ∗Y ∼ hocolim Y .

3.19 Exercise.Prove that this is an if and only if condition. Hint: consider the functors
onD given byHomD(d,−) for variousd. Show that each one has a contractible homo-
topy colimit (use the Grothendieck construction to interpret this in category theoretical
terms). Investigate what it means forF ∗ HomD(d,−) to have a contractible homotopy
colimit.

3.20 Exercise.(Sanity check.) Show that ifτ is a terminal object of a categoryC, then
the inclusion{τ} → C is a terminal functor.

3.21 Exercise.GivenF : C → D, prove that if for eachd ∈ D the nerve ofd↓F is
connected, thenF preserves arbitrary colimits. Is this an if and only if statement?

3.22 Exercise.Prove Quillen’s Theorem A, which states that ifF : C → D is a functor
with the property that for eachd ∈ D the under categoryd↓F has nerve equivalent to
a point, thenF induces an equivalence on nerves.

Somewhat trickier is Quillen’s Theorem B, which states the following. Suppose that
the nerve ofD is connected (to make the statement simpler) and that for each map
f : d → d′ in D the (obvious) induced mapN(d′↓F ) → N(d↓F ) is an equivalence.
Then the homotopy fibre of the mapN(C) → N(D) is equivalent toN(d↓F ) for any
d ∈ D. Assume the following statement:

Theorem 3.23. Suppose thatN(D) is connected, and thatF : D → Sp is a functor
which takes each morphism ofD to an equivalence inSp. Then the homotopy fibre of
the natural maphocolimD F → hocolimD ∗ = N(D) is equivalent in a natural way
to F (d) for anyd ∈ D.
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3.24 Exercise.Given Theorem 3.23, prove Quillen’s Theorem B. Do this by taking
the Grothendieck construction of the functord 7→ (d↓F ) onDop and arguing that for
categorical reasons (natural transformations, adjoint functors, etc.) the nerve of this
category is equivalent toN(C).

3.25 Exercise.Prove another version of Quillen’s Theorem B in which the under cate-
gories are replaced by over categories. (Note thatd 7→ (F↓d) gives a covariant functor
D → Cat.

3.26 Exercise.This represents an attempt to calculate the homotopy fibre
of N(F ) : N(C) → N(D) when neither version of Quillen’s Theorem B

applies. The idea is that two directions competing with one another are bound to be
better than a single direction (and if something doesn’t work the first time, try it again).
For eachd ∈ D, let d l F be the category

d0

����
��

��
��

���
�
�
�
�
�
�

// F (c), c

F (f)

���
�
�
�
�
�
�

f

���
�
�
�
�
�
�

d

d′0

__>>>>>>>
// F (c′), c′

The formulad 7→ (d l F ) gives a functorA2 : D → Cat. Use the argument in
3.24 to calculate the homotopy fibre ofN(F ) under the assumption thatA2 sends each
morphism ofD to a functor which induces an equivalence on nerves. Now prove the
same thing withA2 replaced byA2n, whereA2n(d) is the categoryd l2n F :

d0

����
��

��
��

���
�
�
�
�
�
�

// d1

���
�
�
�
�
�
� d2

oo

���
�
�
�
�
�
�

// d2n−2
oo

���
�
�
�
�
�
�

// F (c), c

F (f)

���
�
�
�
�
�
�

f

���
�
�
�
�
�
�

d · · ·

d′0

^^>>>>>>>
// d′1 d′2

oo // d′2n−2
//oo F (c′), c′

Can you see the homotopy fibre taking shape? What happens in the colimit? (Another
question: is there any advantage to using patterns with two adjacent arrows pointing in
the same direction?)
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Does pulling back preserveholim?

Cofinality (pulling back)
R→ S, SN C → D, DY

On the right
Algebra ∀N : HomR(k, N) ∼= HomS(k, N) ?

Topology ∀Y : holim F ∗(Y ) ∼ holim Y ?

Topology ∀Y : Homh
SC (∗, Y ) ∼ Homh

SD (∗, Y ) ?

Solution

Algebra HomR(k, N) ∼= HomS(S ⊗R k, N)
�� ��S ⊗R k ∼= k

Topology Homh
SC (∗.Y ) ∼= Homh

SD (D ×h
C ∗, Y )

�� ��D ×h
C ∗ ∼ ∗

Here, givenF : C → D, the question is whether for every functorY : D → Sp, the
natural mapholim Y → holim F ∗Y is an equivalence.
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Initial functors
Definition 4. F : C → D initial if D ×h

C ∗ ∼ ∗.

Theorem
F : C → D initial, DY =⇒ holimC Y ∼ holimD Y

Interpretation (Grothendieck construction again!)

(D ×h
C ∗)(d) = N(F↓d)

c, F (c)

h

���
�
�
�
�
�

""FF
FF

FF
FF

F

F (h)

���
�
�
�
�
�

d

c′, F (c′)

<<xxxxxxxxx

3.27 Exercise.(Another sanity check.) Verify that ifι is an initial object ofD, then the
inclusion{ι} → D is an initial functor.

3.28 Exercise.Does the converse of the theorem on the slide hold? (In other
words, if a functorF preserves all homotopy limits, isF initial?)

The theorem on the slide is Bousfield and Kan’s cofinality theorem for homotopy limits
[18, XI.9.2], which they use [18, XI.10.6] to identify theR-completion as what in our
terms would be called a homotopy right Kan extension (slide 5–9).
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Lecture 4.
Homology decompositions

In this lecture, we’ll use the machinery of homotopy colimits and Grothendieck con-
structions to construct homology approximations for classifying spaces of finite groups.
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Approximation data for BG

Approximating BG by B(subgroups)
• F : D → Sp

• ∀d, F (d) ∼ BHd, Hd ⊂ G

• Approximation:hocolim F → BG

BH1

��

�'GG
GG

GG
GG

GG
GG

GG
GG

++
BH2

��
// BG

BH3

��

7?wwwwwwww

wwwwwwww
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Homology decomposition ⇔ hocolim F ∼p BG

The slide is a bit vague. The idea is that there is a natural transformation fromF to
the constant functor with valueBG which induces a maphocolim F → BG. For each
d ∈ D the mapF (d) → BG is supposed to be equivalent toBHd → BG for some
subgroupHd ⊂ G. The symbol∼p denotes aZ/p-homology isomorphism.
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Approximation data from G-orbits

G-orbit ⇔ B(subgroup)
(X ∈ OG) ⇔ (XhG ∼ BGx, x ∈ X)

S : D → OG =⇒ ShG is approximation data

X1

��

�%
CC

CC
CC

C

CC
CC

CC
C

++X2

��
// ∗

X3
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HereOG is the category ofG-orbits, i.e., transitiveG-sets. The slide points out that if
you have a diagram ofG-orbits, it’s easy to take homotopy orbit spaces and construct
a diagram of classifying spaces. Since the orbits all map to the trivial orbit, their
homotopy orbit spaces all map toBG. (The slide does not ask the question of whether
this last map is a modp homology isomorphism.)

4.1 Exercise.Given a transitiveG-setX, considered as a functorCG → Set, use the
Grothendieck construction (in this case the transport category construction) to construct
a category with nerveXhG. Why is this nerve equivalent toBGx for x ∈ X?

4.2 Exercise. [28] Let (C, E) be the homotopy theory ofG-spaces, whereE
is the class ofG-maps which are ordinary weak homotopy equivalences. Let

(D,F) be the homotopy theory given by the categorySp↓BG of spaces overBG
with equivalencesF the maps of spaces overBG which are ordinary weak homotopy
equivalences of spaces. Show that these two homotopy theories are equivalent. Hint:
(C, E) has a projective model category structure, while(D,F) has a model category
structure inherited fromSp (same fibrations and cofibrations).

4.3 Exercise.What happens with the above exercise if you replaceSp↓BG
bySp↓B for an arbitrary spaceB? Don’t ignore the possibility thatB might

not be connected.
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Obtaining alternative approximation data

Collection C: set of subgroups ofG closed under conjugation

Subgroup diagram ofC (Hi ∈ C)

IC =

G/H1

��
G/H2

I(G/H) = G/H

IhG(G/H) ∼ BH

Centralizer diagram of C (im(Hi) ∈ C)

JC =

H1
� v

Σ1

)))i)i)i)i

��
G

H2

( �
Σ2

555u5u5u5u

J(H, Σ) = Σ

JhG(H, Σ) ∼ BZG(im H)

Given a collection of subgroups ofG closed under conjugation, this slide describes two
ways of obtaining an associated diagram of transitiveG-sets.

In the subgroup diagram forC, the categoryIC is the category ofG-orbitsG/H for
H ∈ C. The approximation functorS assigns toG/H the transitiveG-setG/H itself.

In the centralizer diagram forC, the categoryJC has as objects the pairs(H,Σ), where
H is a group andΣ is a conjugacy class of monomorphismsH → G with image an



Lecture 4: Homology decompositions 42

element ofC. (Σ is a orbit for the action ofG by conjugation on the set of group
monomorphismsH → G.) A morphism(H1,Σ1) → (H2,Σ2) is a group homomor-
phismH1 → H2 such that the obvious diagram commutes up toG-conjugacy. The
decomposition functorS assigns to(H,Σ) the G-orbit Σ. On the slide,ZG(im H)
denotes the centralizer inG of the image ofH under any of the homomorphisms con-
tained inΣ

4.4 Exercise.Suppose thatC consists of only a single conjugacy class of subgroup, so
that up to equivalence of categories bothIC andJC have only a single object. Describe
the approximation diagramsJhG : JC → Sp andIhG : IC → Sp and calculate their
homotopy colimits directly.
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Six Z/p-homology decompositions

Collections (p |#(G))
• C1 = {non-trivialp-subgroups}
• C2 = {non-trivial elementary abelianp-subgroups}
• C3 = {V ∈ C2 | V = pZ(ZG(V ))}

Z/p-homology decompositions?
C Subgroup decomposition Centralizer decomposition
C1 Yes Yes
C2 Yes Yes
C3 Yes Yes

Finally, here’s a claim that specific nontrivial homology decompositions actually exist,
six of them in fact. For each of the three specified collections of subgroups, there are
two associated decompositions.

Some references for this material and what follows later on in this lecture are [33],
[34] and, holding the world record for the number of decompositions and the detail
in which they’re studied, [50]. Many of the ideas go back to Webb (e.g. [99]) and
Jackowski-McClure [59], or even further.

4.5 Exercise.What happens with the above six decompositions ifp doesn’t divide the
order ofG?

4.6 Exercise.[33, 1.21] LetC4 be the collection consisting only of the trivial subgroup,
andC5 the collection consisting only ofG itself. Show that these two collections also
give homology decompositions. Are they interesting?

4.7 Exercise.If the subgroup decomposition forC gives aZ/p-homology
decomposition forG, does the same hold true for any collectionC ′ strictly

containingC?
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How to obtain the six decompositions

KC = {posetC under inclusion}, KC = N(KC)

Identify hocolims
I : IC → Sp hocolim IhG ∼ (KC)hG (subgroup diagram)
J : JC → Sp hocolim JhG ∼ (KC)hG (cent’lizer diagram)

Relate posets
KC1 ∼ KC2 ∼ KC3 (via G-maps)

Start here

(KC1 )hG ∼p BG

The aim of this slide is to describe an economical way to study various decomposi-
tions. Given a collectionC of subgroups ofG, the subgroup and centralizer decom-
positions associated toC provide two approximations toBG. It turns out that these
approximations are essentially the same, and can be identified with the natural map
(KC)hG → BG, whereKC is the nerve of the poset (under inclusion) of the given by
the subgroups contained inC. (G acts on this poset by conjugation.) Thus one of these
approximations gives a homology decomposition if and only if the other one does.

We’re thrown back on studyingKC1 , KC2 andKC3 , but it turns out that they are all
equivalent to one another, by maps which respect the actions ofG. So we either have
six homology decompositions to look at (two for each collection) or none. Ken Brown
breaks the suspense [1, V.3.1] with the equivalence at the bottom of the slide.
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Identify hocolim for subgroup diagram

IhG : IC → Sp I(G/H) = G/H

Reduction tohocolim I
Want: hocolim(IhG) ∼ (KC)hG

Have: hocolim(IhG) ∼ (hocolim I)hG

Need: hocolim I ∼ KC

Grothendieck construction

ICnI =

(x1 ∈ G/H1)

��

� // Gx1

��
(x2 ∈ G/H2)

� // Gx2

= KC

Equivalence of categories,G-equivariant
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The problem is to show that the homotopy colimit of the subgroup diagram associated
to a collectionC, is equivalent to the Borel construction of the action ofG on the nerve
of the poset given byC. The proof technique is to express both the homotopy colimit
and the Borel construction in categorical terms using Grothendieck Constructions and
then observe that the two categories which come out of the process are equivalent.

4.8 Exercise. Actually, this isn’t quite the argument which the slide pretends to de-
scribe. Can you carry out the argument in the above deceptive paragraph?
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Identify hocolim for centralizer diagram

JhG : JC → Sp J(H, Σ) = Σ

Reduction tohocolim J
Want: hocolim(JhG) ∼ (KC)hG

Have: hocolim(JhG) ∼ (hocolim J)hG

Need: hocolim J ∼ KC

Grothendieck construction

JCnJ =

H1 � s

&&LLLLLL

��

� // im(H1)

��
G

H2

+ �

88rrrrrr � // im(H2)

= KC

Equivalence of categories,G-equivariant

An object of the Grothendieck constructionJCnJ consists of a conjugacy classΣ of
monomorphismsH ↪→ G with image inC together with an element ofΣ; this amounts
to a monomorphismH ↪→ G with image inC. The morphisms in the Grothendieck
construction are commutative diagrams (inGrp) of the indicated type.
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Relate posets KC2 ∼ KC1

KC1 = {nontrivialp-subgroups} KC2 =
{nontrivial elementary abelianp-subgroups}

An initial functor ι : KC2 → KC1

(ι↓P ) ∼ ∗

V

%%KKKKKKKKKK

��

Identity functor

��
V · pZ(P ) // P Middle functor

pZ(P )

99sssssssss

OO

Constant functor

OO

KC2 → KC1 initial =⇒ KC2 ∼ KC1
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Relate posets KC3 ∼ KC2

KC2 = {nontrivial elementary abelianp-subgroups} KC3 = {V ∈ C2 | V =
pZ(ZG(V ))}

Adjoint functors β : KC2 ↔ KC3 : ι
(βι→ id, id→ ιβ)

W W
�ιoo

V
� β // pZ(ZG(V ))

β andι give inverse∼ on nerves.
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Lecture 5.

Localizations

This lecture discusses localizations of homotopy theories, more particularly homol-
ogy localizations of the homotopy theory of spaces, and even more particularlyZ/p-
homology localizationLp. It concludes with a discussion of the Bousfield-Kanp-
completion functorCp, which is a type of approximation toLp. The functorCp comes
up in an essential way in the study of the cohomology of function spaces.

First, the general setup.
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Left Bousfield localization

Setup
(C, E) a homotopy theory,E ⊂ F ⊂ C (E =∼, F =≈)

Definition 5. I : (C, E)→ (C,F) a left Bousfield localizationif ∃J

I : (C, E)↔ (C,F) : J J full & faithful

Properties

• L = JI (localization functor),X local⇔X ∈ im(L)

• L2 ∼ L

• X
≈→ L(X) terminal amongX

≈→ Y

• X
≈→ L(X) initial amongX → (local)

Remark. A functorF : U → V between homotopy theories is “full and faithful” if for
every pair(x, y) of objects ofU the natural mapHomh

U (x, y)→ Homh
V(Fx, Fy) is an

equivalence inSp. In the homotopical situation this is an indivisible concept; as far as
I can see, there’s no good way to break “full” and “faithful” apart.

The process of localizing a homotopy theory involves adding new equivalences to the
ones that were there before (just as localizing a ring involves adding new units). From
theTpair point of view, this is passing from a pair(C, E) to (C,F) whereE ⊂ F . There
is always a map: (C, E) → (C,F), andI is called a left Bousfield localization ifI
is a left homotopy adjoint, i.e.,I has a right homotopy adjointJ such thatJ is full
and faithful [16], [56, 3.3]. This means that the homotopy theory(C,F) is essentially
embedded in(C, E) as, well, the image ofJ .

Recall that the notion of homotopy adjoint is easiest to express from theTen point of
view (2–3).

5.1 Exercise.Show thatL converts a morphism inF to a morphism inE .

5.2 Exercise.What exactly do the termsterminal and initial mean as they are
used on the slide?
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Example with discrete categories

Context

• C = Ab

• R = Z[1/p]

• E = (isos),F = {f | R⊗ f an iso}
• (C, E) ∼ModZ, (C,F) ∼ModR

Properties

• L = R⊗ (−), X local⇔X anR-module

• L2 ∼ L

• X
≈→ L(X) terminal amongX

≈→ Y

• X
≈→ L(X) initial amongX → (local)

This is in fact a legitimate example: the homotopy theory(ModZ,F) is equivalent
to the discrete categoryModR. Usually the process of inverting morphisms creates
higher homotopy groups in the morphism spacesHomh

C,F (−,−), but not in this case
[36, 7.3].
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Another model category dividend
E ⊂ F ⊂ C
Definition (f a morphism of C, X an object)
• f ⊥ X if Homh

(C,E)(f, X) is an equivalence inSp.

• f< = {g : f ⊥ X =⇒ g ⊥ X}.

Assume

• (C, E) is a model category++

• there is a mapf such thatF = f<

Theorem

1. (C, E)→ (C,F) is a left Bousfield localization.

2. (C,F) is a model category withCc
F = Cc

E .

3. L is the fibrant replacement functor in(C,F).

This slide describes a common situation in which it’s possible to construct and identify
a left Bousfield localization. (Maybe [24] it’s theonly situation!) Say that a map
f looks invisible to an objectX in a model category(C, E) (or X can’t seef ) if
Homh(f,X) is an equivalence. The idea is to start with a mapf and letF = f<

be the class of all maps which look look invisible to all spaces which can’t seef .
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Then, under relatively mild conditions (the++), (C, E) → (C,F) is a left Bousfield
localization [56, ch.4] [48].

This is calledlocalization with respect to the mapf . Under the relatively mild con-
ditions mentioned above, it turns out that the class of newly inverted mapsf< is (up
to E) the class of maps which can be built fromf by homotopy colimit constructions.
(This is not quite true: one direction is OK [56, 4.2.9] but the other one is bogus [56,
2.1.6]. But it’s not far off.)

5.3 Exercise.Show that the localization on slide 5–2 is localization with respect to the
mapZ→ Z given by multiplication byp.

5.4 Exercise.Show that in the above situation an objectX is local (i.e.L(X) ∼ X) if
and only iff ⊥ X. (Recall that iff ⊥ X theng ⊥ X for all g ∈ F .) Conclude that
the class of local objects is closed under homotopy limits.
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Examples of model category localizations (I)

Localization with respect to a map
Pick your favorite mapf and letF = f<

C = Sp, f = (Sn+1 → ∗)
• f< = {g : πi(g) iso for i ≤ n}
• L = Pn (n’th Postnikov stage)

• (local)= (πi vanishes fori > n)

C = ChZ, f = ⊕i(Σ
iZ[1/p]→ 0)

• f< = {g : Z/p⊗h g is an equivalence}
• L = derivedp-completion

• (local)= homology groups are Ext-p-complete

Remark. An abelian groupA is Ext-p-complete[18, VI] [51] if the natural mapA →
ExtZ(Z/p∞, A) is an isomorphism. Here “the natural map” is the map induced by the
connecting homomorphism in the exact sequence

0→ Z→ Z[1/p]→ Z/p∞ → 0 .

5.5 Exercise.Show that ifA is a finitely generated abelian group, thenExtZ(Z/p∞, A)
is isomorphic to thep-completionAp̂ = lim A/pnA, and thatAp̂ is Ext-p-complete.

5.6 Exercise. Show thatA 7→ ExtZ(Z/p∞, A) is the zero’th left derived
functor (in the classical sense of Cartan and Eilenberg) of the functorA 7→

Ap̂ on the category of abelian groups [18, VI.2]. This is an unusual situation in which
it turns out to be interesting to take the left derived functors of a functor which itself
is not left exact, so the zero’th left derived functor does not coincide with the original
functor. What’s the first left derived functor in this case?
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Examples of model category localizations (II)

Localization with respect to a homology theoryE∗
Pick your favoriteE∗, letF = {E∗-isos}, and follow Bousfield.

Theorem (Bousfield)
There exists a magic morphismf with f< = F .

Widely applicable
• Spaces

• Spectra

• ChR (e.g,E∗(X) = H∗(A⊗h
R X))

• simplicial universal algebras

The original references for localization with respect to homology are [12] (for the space
case) and [13] (for the spectrum case). It’s worth thinking about the construction of the
magic morphismf and about why the construction works; the lemma to look for is [12,
11.2] or [49, X.2.8]. Don’t make the mistake of thinking that the mapf is necessarily
subject to human comprehension. For instance, ifE∗ = H∗(; Z/p), the f can be
taken to be the coproduct of all monomorphicHZ/p∗-equivalences between countable
simplicial sets (actually, for set theoretic reasons, in forming the coproduct that givesf
you would only take one representative from eachisomorphism classof monomorphic
HZ/p∗-equivalence).

5.7 Exercise. Show that a spaceX is local with respect toE∗ (i.e. L(X) ∼ X) if
and only if anyE∗-isomorphismA → B induces an equivalenceHomh(B,X) →
Homh(A,X) (cf. 5.4).
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Localization with respect toR-homology,R ⊂ Q
Properties
LR = localization inSp with respect toH∗(−; R)

• LR preserves components, connectivity, nilpotency.

• X 1-connected=⇒ πiLR(X) ∼= R⊗ πi(X)

• X 1-connected=⇒ Hi(LRX; Z) ∼= R⊗Hi(X; Z)

• LR preserves fibrations of connected nilpotent spaces.

Algebraization if R = Q
Sp1 = 1-connected spaces, F = {H∗(−; Q) isos}
Lie0 = {0-connected DG Lie alg/Q}, H = {H∗ isos}.�� ��(Sp1,F) ∼ (Lie0,H)
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If R ⊂ Q, localization with respect toR-homology is relatively simple, at least for
1-connected spaces. The statement that the homotopy theory of simply-connected ra-
tional spaces is equivalent to the homotopy theory of connected differential graded Lie
algebras overQ is due to Quillen [83]; this was one of the first applications of model
category machinery. Sullivan came up with a dual approach [96] that works in the
finite-type case and includes the theory of minimal models (see also [17]). See [55] for
an up-to-date survey of rational homotopy theory.

5.8 Exercise.Prove that any simply-connected spaceX is HZ-local, i.e.,LZX ∼ X.

5.9 Exercise.As remarked above, homology localization can also be done in the
category of spectra [13]. Give an example of a nontrivial spectrumX such that

LZX ∼ ∗.

A connected spaceX is nilpotentif π1(X) is a nilpotent group and, for eachi ≥ 2 the
natural action ofπ1(X) on πi(X) is nilpotent (= trivial up to a finite filtration or in
loose terms “upper triangular”).

? 5.10 Exercise.Show that a connected spaceX is nilpotent if and only ifπ1(X)
is a nilpotent group and for eachi ≥ 2 the natural action ofπ1(X) on Hi(X̃; Z) is
nilpotent. (HereX̃ is the universal cover ofX, and the action is induced by covering
transformations.)

? 5.11 Exercise. Show that a connected spaceX is nilpotent if and only if each
Postnikov stage ofX can be built from Eilenberg-Mac Lane spaces by a finite number
of principal fibrations with connected fibre.

5.12 Exercise.Is “connected” necessary in the previous exercise?
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Localization with respect toZ/p-homology

Properties (Completion?)
Lp = localization inSp with respect toH∗(−; Z/p)

• Lp preserves components, connectivity, nilpotency.

• X 1-connected, fin. type=⇒ πiLp(X) ∼= Zp ⊗ πi(X)

• X 1-connected=⇒ Hi(LpX; Z) ∼= ??

• Lp preserves fibrations of connected nilpotent spaces.

General formula for homotopy groups ofLpX
X 1-connected=⇒

0→ Hom(Z/p∞, πi−1X)→ πiLpX → Ext(Z/p∞, πiX)→ 0

The slide points out that from the point of view of the homotopy groups, localizing a
1-connected space with respect toHZ/p looks like a type of completion.
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? 5.13 Exercise.Verify that the description on the slide of theHZ/p-localization of
a 1-connected spaceX of finite type is correct. One approach is to calculate the lo-
calization of an Eilenberg-MacLane space directly, and then use the fact that the class
of HZ/p-local spaces is closed under homotopy limits, together with various homol-
ogy arguments, to climb up the Postnikov tower ofX. (Note that in order to compute
the localization of a spaceY , it’s enough to produce a local spaceY ′ and anHZ/p-
equivalenceY → Y ′.) Start by showing thatK(Z/p, n) is local with respect toHZ/p
(5.4). . Extend this top-GEMs (i.e., products ofK(Z/p.n)’s for variousn, also known
as modp Generalized Eilenberg-Mac Lane spaces) Using homotopy limit arguments
(pullback, towers) show that (products of)K(Z/pj , n) andK(Zp, n) (variousj, n) are
alsoHZ/p-local. Show thatK(Z, n) → K(Zp, n) gives an isomorphism onHZ/p,
and conclude that this is a localization map. Now go Postnikov.

5.14 Exercise.Show that ifX is one-connected, thenLp(LQ(X)) ∼ ∗. What about
LQ(Lp(X))?

? 5.15 Exercise.The short exact sequence

0→ Z→ Z[1/p]→ Z/p∞ → 0

leads to a fibration sequence

BZ/p∞ → K(Z, 2)→ K(Z[1/p], 2)

Use this or any other technique to show that the mapBZ/p∞ → K(Z, 2) is anHZ/p-
equivalence, and so induces an equivalenceLp(BZ/p∞)→ K(Zp, 2) ∼ Lp(BS1).

5.16 Exercise.ComputeH∗(BZ/p∞; Z) andH∗(BZ/p∞; Q). How can this
be? It’s enough to make a person reread [93, 5.4] with a big cup of coffee.

5.17 Exercise.If A is any direct sum of copies ofZ, show thatK(Ap̂, n)
is HZ/p-local (5.5). Be careful. Calculate thatK(A,n) → K(Ap̂, n) is an

HZ/p-isomorphism, and conclude that this map is anHZ/p-localization map. Using
various Postnikov and fibration arguments in conjunction with 5.6, derive the short
exact sequence at the bottom of the last slide.
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Mixing LQ(X) with the Lp(X)’s to recoverX

The Arithmetic Square (Sullivan)
X nilpotent =⇒ homotopy fibre square

X //

��

Q
p Lp(X)

��
LQX // LQ(

Q
p Lp(X))
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? 5.18 Exercise. If X is 1-connected, use a direct homology calculation to show
that the arithmetic square is a homotopy fibre square. The right vertical map is an
HQ-equivalence, and the lower horizontal map is anHZ/p-equivalence (5.14). Let
P be the homotopy pullback of the square. Argue thatP maps toLQ(X) by an
HQ-equivalence, and that for any primeq the mapP →

∏
p Lp(X) is anHZ/q-

equivalence. Observe that for anyq the projection
∏

p Lp(X) → Lq(X) is anHZ/q-
equivalence (tricky!). Conclude thatX → P induces an isomorphism on integral
homology, and finish the argument by using the fact that both spaces areHZ-local
(5.8).

5.19 Exercise.The trickiness mentioned above is relatively minor and has
to do with avoiding the temptation to invoke an imaginary infinite Künneth

formula. Find an example of a sequence of spacesXn such that eachXn has, say,
the rational cohomology of a point, but

∏
n Xn does not. How about an example with

integral homology?

5.20 Exercise.LetA andB be sets of primes, and writeLA, for instance, forLZ[p−1:p∈A].
Show that ifX is 1-connected there is a homotopy fibre square

LA∩B(X) //

��

LA(X)

��
LB(X) // LA∪B(X)

Many people have studied a number of problems of the following type (under the gen-
eral heading of genus problems): given a spaceX, how many spacesY are there (up
to equivalence) with the property thatLQY ∼ LQX andLp(Y ) ∼ Lp(X) for all p.
If such aY exists, call it aremixingof X, since it’s obtained by takingX apart into
p-complete and rational pieces, and then mixing them together in some way.

5.21 Exercise.Let X be a sphere. Produce a remixing ofX not equivalent toX.

(Cheap trick?) Most of the time, ifX has finitely generated integral homology groups
the interesting remixings ofX are those which also have finitely generated integral
homology. Call these theniceremixings.

5.22 Exercise.Let X be a sphere. Show that any nice remixing ofX is equivalent
to X.

5.23 Exercise.Can you produce a 2-cell complex with a nontrivial nice remix-
ing?

5.24 Exercise.In theory, all remixings ofX can be constructed by taking
the maps

∏
p Lp(X) → LQ(

∏
p Lp(X)) andLQ(X) → LQ(

∏
p Lp(X))

in the arithmetic square forX and adjusting them. What adjustments are possible?
Which adjustments give nice remixings? See [101] for a proof that a finite1-connected
complex has only a finite number of homotopically distinct nice remixings.
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An approximation to Lp

HZ/p-localization functor Lp�



�
	HZ/p-local

spaces

J

��

I //
�



�
	HZ/p-local

spaces

�� ��spaces

RKanh
J (I)∼Lp

99rrrrrrrrrr

Bousfield-Kanp-completion functor Cp (Lp → Cp)�� ��p-GEMs

j

��

i //
�



�
	HZ/p-local

spaces

�� ��spaces

RKanh
j(i)∼Cp

99rrrrrrrrrr

Recall that ap-GEM is a product of copies ofK(Z/p, n)’s for variousn. The category
of p-GEMs is to be taken as a full subcategory of spaces.

The fact thatRKanh
J(I) ∼ Lp follows from the fact that homotopy Kan extensions

can be computed pointwise (cf. 2.3 and 2.23) and the fact that for any spaceX, X↓J
hasX → Lp(X) has a (homotopically) initial object (slide 5–1). The functorCp,
denoted(Z/p)∞ in [18], is defined by an explicit cosimplicial construction [18, I.4];
the expression as a homotopy right Kan extension is from [18, XI.10.6].

5.25 Exercise.(This is probably very hard, or impossible.) For functorsF :
C → D andX : C → Sp, observe that the right homotopy Kan extension

RKanh
F (X) can be computed by the formula

RKanh
F (X)(d) ∼ Homh

SpC (c 7→ Homh
D(d, c), X) .

(This is the formula for the right homotopy Kan extension from slide 3–7.) Now for any
spaceX, let K(X) be the functor onp-GEMs given byA 7→ Homh(X, A). This is a
kind of cochain functor; the homotopy groups ofHomh(X, A) are various cohomology
groups ofX with coefficients in the homotopy groups ofA (in other words, various
products of modp cohomology groups ofX). Applied to the case ofCp, the above
formula states thatCp(X) is the space of natural maps, asA ranges throughp-GEMs,
of K(X, A) to A. In other words,Cp(X) is some sort of double-dual ofX over the
category ofp-GEMs. The problem is to find some interesting relationship between
this remark and Mandell’s theorem [69] that (under certain finiteness and nilpotency
assumptions)Cp(X) is the space ofE∞ Fp-algebra maps fromC∗(X, Fp) to F̄p.
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The Bousfield-Kanp-completionCp

Properties
• Cp preserves disjoint unions, connectivity

• Cp preservesHZ/p∗-nilpotent fibrations

• Cp(∼p) =∼
• X nilpotent =⇒ Lp(X) ∼ Cp(X).

Computability
Unstable Adams spectral sequence⇒ π∗Cp(X)

Building CpX if H∗X has finite type
X → {Xs}, Xs p-finite, H∗X ∼= colim H∗Xs:

Cp(X) ∼ holim Xs

The properties ofCp are mostly worked out in [18]; for instance, preservation of dis-
joint unions is I.7.1 and preservation of connectivity is I.6.1. Thefibre lemma[18,
II.5.1] states thatCp preserves fibrations in which the monodromy action ofπ1(base)
on each homology groupHi(fibre; Z/p) is nilpotent. The fact thatCp takesHZ/p-
equivalences to equivalences follows from the previous slide, or from [18, I.6.2]. The
statement thatLp(X) ∼ Cp(X) if X is nilpotent is from [12,§4].

The following piece of information will prove absolutely indispensable later on.

? 5.26 Exercise.Show that ifQ is a finitep-group, thenanyaction ofQ on a vector
space overFp is nilpotent.

The last box on the slide refers to a tower of spaces{Xs} underX, spaces which are
p-finite in the sense that each space has a finite number of components, each homotopy
group of each component is a finitep-group, and each component has only a finite
number of non-trivial homotopy groups. The last condition on the tower is that the
natural map

colims H∗(Xs; Z/p)→ H∗(X; Z/p)

is an isomorphism. The statement is that ifH∗(X; Z/p) is of finite type then such a
tower exists and, given any such tower,Cp(X) is equivalent to its homotopy limit. This
is a combination of [18, III.6.4] and 6.28.

Remark. There’s a very interesting alternative approach to the construction ofCp(X)
in [18, IV]. Suppose without loss thatX is pointed and connected, and letGX be
Kan’s group model [70] [49, V.5] forΩX. ThenCpX is equivalent toB(GX)p̂, where

(GX)p̂ = lim GX/Γ(p)
i GX is the (dimensionwise)p-lower-central-series completion

of GX.
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The Bousfield-Kanp-completionCp: good & bad

Definition
• LpX ∼ CpX = X p-good

• LpX 6∼ CpX = X p-bad

p-good examples

• X nilpotent (e.g.π1X trivial)

• π1X finite

p-bad examples

• S1 ∨ S1

• S1 ∨ Sn

News flash
Cp(p-badX) sighted in the wild!

The spaceCp(X) is alwaysHZ/p-local (it’s a homotopy limit ofp-GEMs, cf. 5–9),
and soCpX ∼ LpX if and only if X → CpX is anHZ/p-equivalence. This last is the
definition of “Z/p-good” in [18, I.5]. Thep-good examples are from [18]. Bousfield
[15] provides the indicatedp-bad examples.

The last statement promises that in the near future we will encounter thep-completion
of a p-bad space in a relatively simple geometric setting that doesn’t seem to deserve
such a visitation.
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Lecture 6.

Cohomology of function spaces

In this section we’ll look at how algebra can be combined with homotopy theory to
compute the cohomology of mapping spaces with domainBZ/p. The machinery only
works sometimes (we’ll try to figure out why this is true) but it works amazingly often.

Slide 6-1 Slide 6-1

The Steenrod algebraAp

p = fixed prime,H∗ = H∗(−; Z/p)

p odd Structure of Ap p = 2

• {β,Pi, i ≥ 0} {Sqi, i ≥ 0}
• P0 = 1 Sq0 = 1, Sq1 = β

• Adem relationsPiPj = · · · Sqi Sqj = · · ·
• Ap → Ap ⊗Ap Sqn 7→

P
i+j=n Sqi⊗ Sqj

• |β| = 1, |Pi| = 2i(p− 1) |Sqi| = i

All in all
Ap = cocommutative Hopf algebra overFp

The traditional place to learn about the Steenrod operations is in Steenrod and Epstein
[94]; the best place to learn about the Steeenrod algebra is in Milnor [72], and the most
enigmatic source for the Adem relations is Bullett-Macdonald [23]. Here’s a question
that Quillen tossed out as a throwaway during a lecture I was at years ago, and that
many other people have probably thought of since. The answer says everything there
is to say about the Steenrod algebra (short of computingExt!) in veryfew words.

6.1 Exercise.Milnor identifies the dual of the mod2 Steenrod algebra as a commuta-
tive Hopf algebra overF2 with antipode. A Hopf algebra like this is exactly a cogroup
object in the category of commutativeF2-algebras, soHom(A2,−) gives a functor
which assigns a group to every commutativeF2-algebra. GivingA2 as a Hopf algebra
is exactly the same as specifying this functor. What’s the functor?

6.2 Exercise.What’s the above functor in the odd primary case?
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Modules and algebras overAp

Modules overAp

• Gradedmodules Sqi : Mk →Mk+i

• U = unstable modules Sqi x = 0, i > |x|
• M , N (unstable) modules=⇒ M ⊗N (unstable) module

Algebra over Ap

• Graded algebras,µ : M ⊗M →M respectsAp

• K = unstable algebras Sq|x| x = x2

• R, S (unstable) algebras=⇒ R⊗ S (unstable) algebra

Geometry

• H∗(suspension spectrum) ∈ U
• H∗(space) ∈ K

The slide glosses over the fact thatK is the category of unstablegraded-commutative
algebras overAp.

6.3 Exercise. What kind of geometric object would give rise to an algebra overAp

which isnot unstable?

6.4 Exercise.Give an example of an object ofK which is not isomorphic toH∗X for
any spaceX.

6.5 Exercise. Why are objects inK andU necessarily concentrated in non-negative
degrees?
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The functor T

V = V1 = Z/p, H = H∗BV

Left adjoint(s) to H⊗−
TU : U ↔ U : (H⊗−)

�� ��TU = TK (= T ) TK : K ↔ K : (H⊗−)

K
TK

//

forget

��

K

forget

��
U

TU // U

Crucial properties
• T is exact

• T preserves⊗
• Same properties withV1 ↔ Vn = (Z/p)n
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The functorT is left adjoint to tensoring withH, and, incredibly enough, you get
the same result (to the extent that this makes any sense) whether you computeT in
the categoryU of unstable modules or in the categoryK of unstable algebras. The
universal reference for all thingsT is [64].

6.6 Exercise. Let Fp be the trivial object ofK concentrated in degree0. Show that
there are natural maps

T (R)→ H⊗R→ R

(the second one induced by the uniqueK-mapH→ Fp).

6.7 Exercise.Calculate directly thatT (Fp) → Fp is an isomorphism. Now try
T (ΣFp) ∼= ΣFp. (This probably requires looking a little more carefully at the

Steenrod algebra action onH.) Use this last calculation and the fact thatT preserves
⊗ to conclude thatT commutes with suspension. Go on to show that ifM is any finite
object ofU orK (i.e. an object of finite type which is concentrated in a finite number
of degrees) then the natural mapT (M)→M is an isomorphism.

6.8 Exercise. If R be an object ofK, we’ll use the phrasemodule overR to
denote a graded moduleM overR (in the usual sense) with the property that the

multiplication mapR ⊗M → M is a morphism inU . If M andN are modules over
R, observe thatTorR

i (M,N) is naturally an object ofU (and also a module overR).
Prove that there are natural isomorphisms

T (TorR
i (M.N)) ∼= TorTR

i (TM,TN) .
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The functor T ↔ function spaces out ofBV

X ∈ Sp, want to understandHomh(BV, X).

Consequence of adjointness
X ← BV ×Homh(BV, X)

H∗X → H⊗H∗ Homh(BV, X)

λX : T (H∗X)→ H∗ Homh(BV, X)

Question
How often isλX an isomorphism?

Assume:H∗X of finite type,T (H∗X) of finite type.

Whenever we work withTH∗X, we will always assume thatH∗X is of finite type and
thatTH∗X is of finite type.

Remark. Morel [79] works out the entire theory ofT without any of these finite
type conditions, at the price of replacing the category of spaces by the category of

pro-p-finite spaces. There’s a philosophical point here. The modp homology ofX ∈
Sp is naturally expressed as a filtered colimitcolimα H∗(Xα; Z/p), whereXα ranges
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over the finite subcomplexes ofX. The dual cohomologyH∗X is thenlimα H∗Xα,
so the cohomology has a natural profinite structure. The functorT doesn’t see this
structure, and so is vulnerable to becoming geometrically irrelevant in some situations.
There are three ways to evade this problem:

1. modify T (which might damage it beyond repair),

2. stay within the finite type world, so the profinite structure onH∗ is trivial

3. modify the notion of “space” in order to get rid of the profinite topology onH∗.

We choose alternative (2), while Morel works out (3). . ., conceptually more satisfying
but a little more abstract. (Note that the cohomology of a pro-p-finite space doesnot
have a profinite structure, although its homology does.)

6.9 Exercise.What’s the geometric significance of the natural mapT (H∗X)→ H∗X
(see 6.6). In other words, what’s the relationship between this map and the above
natural mapT (H∗X) → H∗ Homh(BV,X)? What is suggested by the fact that the
map of 6.6 is an equivalence ifH∗X is finite (6.7)?
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Lannes works his magic

Tweak of the question
λc

X : T (H∗X)→ H∗ Homh(BV, CpX)

N-conditions on(T (H∗X), Homh(BV, CpX))

1. T (H∗X)1 = 0

2. Homh(BV, CpX) is anH-space, is nilpotent, isp-complete

3. β : T (H∗X)1 → T (H∗X)2 is injective

4. π1 Homh(BV, CpX) is finite

Lannes Theorem
T (H∗X)0 ∼= H0 Homh(BV, CpX).

λc
X is an isomorphism if anyN-condition holds.

The next few slides will sketch the proof of the theorem. This might make theN-
conditions a little easier to understand.

At this point even the mapλc is a little mysterious. Somewhere in here is a claim that
if H∗X has finite type (andTH∗X has finite type?) there exists a dashed lift in the
diagram

H∗(CpX)
λCpX //

��

H∗ Homh(BV,CpX)

��
T (H∗X)

λX //

λc
X

66mmmmmmm
H∗ Homh(BV, X)
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It’s probably unclear why anything likeCpX should show up here. One useful remark
is thatH∗X only depends on theZ/p-homology type ofX, and so anything that’s
constructed out ofH∗X, such asTH∗X, can at the very best only give information
aboutLpX. This would explain an appearance ofLpX in the theorem, but there you
are, it’sCpX, notLpX. We’ll see what’s going on in a minute.

? 6.10 Exercise.Show that ifX is one-connected, the natural mapκ : Homh(BV,X)→
Homh(BV,CpX) induces is aZ/p-homology equivalence. (Show that the homotopy
fibre F of X → CpX has uniquelyp-divisible homotopy groups. Argue that the ho-
motopy fibre ofκ over a mapf : BV → CpX is the space of sections of a bundle
overBV with fibre F induced fromf . If it helps, interpret this space of sections as a
homotopy fixed point setF hV for an action ofV onF depending onf . Show that the
homotopy groups of such a space of sections (=homotopy fixed point set) are uniquely
p-divisible, and thus (careful withπ1!) that the space isZ/p-acyclic.)

6.11 Exercise.How far beyond1-connected spaces does the above result extend?
What happens ifπ1X is finite? What ifX is a connected loop space (careful: the

homotopy fibreF might not be connected)?

6.12 Exercise.The slide is a bit cavalier; produce an example of anH-space which
is not nilpotent. (Presumably, the author of the slide didnot mean to allow this as a
possibility.)

6.13 Exercise.Show that the statement aboutT (H∗X)0 is equivalent to the statement
that there is an isomorphism[BV,CpX] ∼= HomK(H∗X, H).
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Outlining the proof

X p-finite ↔
• π0X finite

• πiX finite p-group

• πiX = 0 for i >> 0.

One step at a time

1. λX an iso ifX = K(Z/p, n)

2. λX an iso ifX is p-finite

3. A tour of towers

4. λc
X exists, iso if anyN-condition holds

We’ll approach the proof in three steps, with a digression on towers of spaces between
the second and the third. The line of argument is from [29], augmented by [92].

In the definition ofp-finite, the conditions onπiX are supposed to hold for all possible
choices of a basepoint inX. A spaceX is p-finite if and only ifX has a finite number
of components and each component isp-finite.
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6.14 Exercise.Given a fibrationF → E → B (with connected baseB), show that if
B andF arep-finite, so isE. Show that ifE andB arep-finite, so isF . On the other
hand, give an example in whichF andE arep-finite, butB isn’t.

6.15 Exercise.Let C be the smallest class of spaces with the following properties:

1. C is closed under equivalences,

2. C containsK(Z/p, n) for all n ≥ 1, and

3. if X in C andf : X → K(Z/p, n) is a map for somen ≥ 1, then the homotopy
fibre off belongs toC.

Show that a spaceX is p-finite if and onlyπ0X is finite and each component ofX
belongs toC.
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The caseX = K = K(Z/p, n)
This slide:Y ∗ = H∗Y , Y ∗ of finite type

TY = left adjoint to(Y ∗ ⊗ –) onK
M = Homh(Y, K) ∼

Q
K(Z/p, mi)

Theorem
TY (K∗) ∼= H∗ Homh(Y, K)

Proof (Yoneda,Hom = HomK)
(1) Hom(TY (K∗), Z∗) ∼= Hom(K∗, Y ∗ ⊗ Z∗)

(2) Hom(M∗, Z∗) ∼= [Z, M ] ∼= [Y × Z, K]

∼= Hom(K∗, Y ∗ ⊗ Z∗)

T (H∗K) ∼= H∗ Homh(BV, K)

This proof relies on the fact thatH∗K(Z/p, n) is a free object ofK on a generator of
degreen; choosing a generator ofHnK(Z/p, n) leads to a natural isomorphism

HomK(H∗K(Z/p, n), R) ∼= Rn .

Since such a choice also leads to a natural isomorphism

[Z,K(Z/p, n)] ∼= HnZ

it follows that there is a natural isomorphism

HomK(H∗K(Z/p, n),H∗Z) ∼= [Z,K(Z/p, n)]

This isomorphism is independent of any choice of generator. A similar natural iso-
morphism arises ifK(Z/p, n) is replaced by a product of modp Eilenberg-MacLane
spaces (such asHomh(Y, K(Z/p, n))).
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6.16 Exercise.Prove that ifY is any space, thenHomh(Y, K(Z/p, n)) is equivalent
to a product of modp Eilenberg-MacLane spaces. (This is probably a lot easier in the
simplicial world.)

6.17 Exercise.The application of Yoneda’s lemma above seems to be questionable,
because the argument shows only that the two objects in question (TY (K∗) andM∗)
represent the same functor on the subcategory ofK given by objectsZ∗ which can be
realized as the cohomology of a space. What saves the day?

6.18 Exercise. An argument identical to the one on the slide shows that the
Lannes map

λX : T (H∗X)→ H∗ Homh(BV, X)

is an equivalence ifX is a finite product of modp Eilenberg-MacLane spaces. What
happens ifX is an infinite product of such Eilenberg-MacLane spaces? What about if
X is just tall (X =

∏∞
i=1K(Z/p, i)) or just wide (X =

∏∞
i=1 K(Z/p, n)) ?
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The case in whichX is p-finite.

X → Y → K = K(Z/p, n)

H∗X ⇐ TorH∗K(H∗Y, Fp) EMSS
λY an iso (Ex. 6.15)

Mapping side (EMSS+ Homh preserves fibrations)
H∗ Homh(BV, X)⇐ TorTH∗K(TH∗Y, Fp)

Space side (T is nice)
TH∗X ⇐ TorTH∗K(TH∗Y, Fp)

T (H∗X) ∼= H∗ Homh(BV, X)

The argument with the Eilenberg-Moore spectral sequence is from [29].

The point here is to work by induction on the complexity ofX. By Exercise 6.15 we
can get any connectedp-finite X by starting from a point and repeatedly taking fibres
of maps into modp Eilenberg-MacLane spaces.

6.19 Exercise.Why is it clear that ifλZ is an isomorphism for each componentZ of
X, thenλX is an isomorphism?

6.20 Exercise.Suppose thatF → E → B is a fibration and that bothH∗B andH∗E
are of finite type. The modp cohomology Eilenberg-Moore spectral sequence for this
fibration converges strongly (i.e. with finite filtrations in each degree) if and only if the
monodromy action ofπ1B on each one of the cohomology groupsHiF is nilpotent
(trivial up to a finite filtration). So why does the mapping side spectral sequence on the
slide converge?
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6.21 Exercise.The “T is nice” tag is a little bit too glib. The nice properties
of T do lead to a formula

TorTH∗K(TH∗Y, Fp) ∼= T
{

TorH∗K(H∗Y, Fp)
}

but this a formula in the category of graded objects inU (oneTori for eachi). Follow-
ing the spectral sequence through is no problem, sinceT is exact and commutes with
colimits (why?), but there’s some geometric work to be done in the limit in order to
stitch the graded pieces together. Figure out what this work is, and explain how to do
it. It may help to look at Rector’s paper [87].
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Tower {Us} = {· · · → Un → Un−1 → · · · → U0}

colim H∗Us
?
= H∗ holim Us

Assume: eachUn p-finite, colim H∗Us of finite type

N-conditions on (H∗
∞ = colim H∗Us, U∞ = holim Us)

1. H1
∞ = 0

2. U∞ is anH-space, is nilpotent, isp-complete

3. β : H1
∞ → H2

∞ is injective

4. π1U∞ is finite

Tower Theorem
H0
∞ ∼= H0U∞, always.

H∗
∞ ∼= H∗U∞ if any N-condition holds.

See [92] for general background about towers.

The exercises below are meant to set up some of the machinery that’s used in working
with towers. They more or less lead to a proof of the above theorem, at least in some
cases.N-condition (3) is a list of three successively more general alternatives: either
U∞ is anH-space, or more generallyU∞ is nilpotent, or even more generallyU∞ is
p-complete (here and later on, a spaceX is p-complete ifX ∼ CpX). Shipley [92]
proves the tower theorem under the assumption thatU∞ is p-complete.

6.22 Exercise. Prove that if each component ofU∞ has a finite fundamental
group, or ifH1

∞ = 0, or if the stated Bockstein injectivity holds, thenU∞ is
p-complete. (Hint: Show that if a component ofU∞ has a finite fundamental group,
then this group is a finitep-group; show that if the Bockstein injectivity holds then each
component ofU∞ has a finite modp vector space as fundamental group; and show that
if H1

∞ = 0 then each component ofU∞ is simply connected.)

First, there is the general problem of understanding homotopy limits of towers and their
homotopy groups. Note that it is possible to talk about towers in any categoryC; these
are just functors from the poset of nonpositive integers intoC. A map between towers
is a natural transformation of functors.
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6.23 Exercise. (Homotopy limit of a tower) Let{Us} be a tower inSp. Show that
holim Us can be computed in either of two ways:

• replace{Us} up to equivalence by a tower of fibrations, and take the limit of this
replacement tower, or

• take the space of tuples(u0, ω0, u1, ω1, . . .), whereui ∈ Ui andωi is a path in
Ui betweenui and the image ofui+1.

(It’s worth it to try to make simplicial sense of the second description.) Letσ :
∏

Us →∏
Us be the shift map, which sends(u0, u1, . . .) to (u′0, u

′
1, . . .), whereu′i is the image

of ui+1 in Ui. Conclude thatholim Us can be interpreted as the homotopy pullback

holim Us
//_____

���
�
�

∏
Us

(id,σ)

��∏
Us

diag // (
∏

Us)× (
∏

Us)

or as the homotopy equalizer

holim Us
//___ ∏

Us

id //

σ
//
∏

Us

or even as the homotopy fixed point set ofσ acting on
∏

Us (i.e., the homotopy fixed
point set of the action on

∏
Us of the free monoid on one generator, where the generator

acts byσ).

If {As} is a tower of abelian group, the shift mapσ :
∏

As →
∏

As is defined in the
same way as above. The kernel of(1− σ) :

∏
As →

∏
As is the limit lim As (check

this); the cokernel is denotedlim1 As.

6.24 Exercise. (Milnor sequences) [49, VI.2.15] Show that if{Us} is a tower of
pointed one-connected spaces, there are short exact (Milnor) sequences

0→ lim1 πi+1Us → πi holim Us → limπiUs → 0

Definelim1 for a tower of nonabelian groups in such a way that these sequences can
be extended to handleπ1.

6.25 Exercise.Show that a short exact sequence

0→ {As} → {Bs} → {Cs} → 0

of towers of (abelian) groups leads to a six-term exact sequence

0→ limAs → lim Bs → limCs → lim1 As → lim1 Bs → lim1 Cs → 0 .
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6.26 Exercise.(Pro-isomorphisms) A tower{As} of abelian groups (groups, pointed
sets) ispro-trivial if for any s ≥ 0 there is at > s such that the tower mapAt →
As is trivial. Show that if{As} is pro-trivial thenlim As is trivial and lim1 As (if
applicable) is trivial. A mapf : {As} → {Bs} of towers is apro-isomorphismif
ker(f) andcoker(f) are protrivial. Show that iff is a pro-isomorphism thenf induces
isomorphisms onlim and onlim1 (if applicable).

6.27 Exercise.Show that if{As} is a tower of finite groups, thenlim1 As is trivial
(possibly tricky). Conclude that if{Us} is a tower of pointed connected spaces with
finite homotopy groups then there are isomorphisms

πi holim Us
∼= limπiUs .

A tower ispro-constantif it is pro-isomorphic to a constant tower (one in which all of
the bonding maps are isomorphisms).

6.28 Exercise.(Finite type demystified) Suppose that{Vs} is a tower of finite-dimensional
vector spaces overFp. Let V #

s be theFp-dual of Vs. Show thatcolim V #
s is finite-

dimensional overFp if and only if {Vs} is pro-constant.

Now we can go on to the real problem: computing the cohomology of the homotopy
limit of a tower.

6.29 Exercise.(The simplest case) Consider the tower{Us}, whereUs
∼= K(Z/ps, n),

(n ≥ 1) a fixed integer, and the bonding maps are the the obvious onesK(Z/ps, n)→
K(Z/ps−1, n−1). (There’s a whole story about whether merely specifying the bonding
maps up to homotopy in this way actually determines the tower up to equivalence–the
answer is no [100] – but the issues don’t come up in our particular situation). Observe
thatholim Us ∼ K(Zp, n) and calculate that in this case the natural map

colim H∗Us → H∗ holim Us

is an isomorphism. (It’s probably a good idea to prove along the way thatH∗K(Zp, n)
is isomorphic toH∗K(Z, n); this is implicit in the discussion ofZ/p-homology local-
ization above.) Short of explicit calculation for eachn, it looks to me as if it might work
to prove this forn = 1 by calculation and then use an induction based on path-loop
fibrations and (colimits of) cohomology Serre spectral sequences.

6.30 Exercise.Suppose that{As} is a tower of finite abelianp-groups, and consider
the tower{As/pAs} obtained by reducing modp. Show that if{As/pAs} is pro-trivial
then the original tower is pro-trivial too. Now argue (tricky, but true, I think) that if
{As/pAs} is pro-constant, then{As} is pro-isomorphic to a finite direct sum of towers
of two types; the first type is a constant tower{Z/pn} and the second type is the “p-
adic integer” tower{Z/ps} from the previous exercise. Conclude that in this case too
there is an isomorphism

colim H∗K(As, n) ∼= H∗ holim K(As, n) anyn ≥ 1.
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6.31 Exercise.(The one-connected case) Suppose that{Us} is a tower of one-connected
pointedp-finite spaces such thatcolim H∗Us is of finite type. We would like to show
that the map

colim H∗Us → H∗ holim Us

is an isomorphism. Proceed (for instance) by showing, using induction onn, that

1. colim H∗PnUs is of finite type, and

2. colim H∗PnUs → H∗ holim PnUs is an isomorphism.

(HerePn denotes then’th Postnikov stage.) For the first case (n = 2) observe using
the above exercises that the assumption

colim H2Us is finite dimensional overFp

implies that
{π2(Us)⊗ Z/p} is pro-constant

and hence that the tower{P2Us} is well-behaved. Proceed from onen to the next by
using (colimits of) Serre spectral sequences.

6.32 Exercise.Explain how theN-conditions work, and invent some new ones
of your own.
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T and maps fromBV

H∗X, T (H∗X) of finite type

BK: CpX ∼ holim{Xs}, Xs p-finite, colim H∗Xs
∼= H∗X

Proof of Lannes Theorem
Us = Homh(BV, Xs)

1. U∞ ∼ Homh(BV, CpX)

2. H∗Us
∼= T (H∗Xs)

3. colim T (H∗Xs) = colim T (H∗Xs) ∼= TH∗X

4. Tower Theorem

T (H∗X)0 ∼= H0U∞
T (H∗X) ∼= H∗U∞ if any N-condition holds.

6.33 Exercise.Suppose thatX is a one-connected finite complex. Recall from 6.7 that
T (H∗X) → H∗X is an isomorphism. Conclude that that evaluation at the basepoint
gives an equivalenceHomh(BV,CpX) → CpX. Use the arithmetic square or other
arguments (6.10) to deduce that basepoint evaluationHomh(BV,X)→ X is an equiv-
alence. This is the Miller’s Theorem (formerly known as the Sullivan Conjecture) in
the one-connected case.
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? 6.34 Exercise.Extend the previous exercise to the case in whichBV is replaced by
BG for a finitep-groupG. Use induction on the size ofG, the fact that any nontrivial
G contains a central element of orderp, and the fact that ifK is a normal subgroup ofG
there is an equivalenceXhG ∼ (XhK)h(G/K). There’s a more general principle here:
if X is a space andF → E → B is a fibration sequence over a connected baseB, then
Homh(E,X) can be identified as the space of sections of an associated fibration over
B with Homh(F,X) as the fibre. (With some acrobatics, this could be derived from
the transitivity of homotopy right Kan extensions, but it’s easier to draw a picture.) If
the inclusionX → Homh(F,X) of the constant maps is an equivalence, it follows that
Homh(B,X) → Homh(E,X) is also an equivalence. This is another way to look at
the inductive step above.

6.35 Exercise.What are the obstacles to extending the previous exercise to the
case in whichG is an arbitrary finite group? Do homology decompositions help?
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In the presence of a volunteer. . .

Tower version {Us} as before
V-condition: ∃Y → {Ux} inducingH∗Y ∼= colim H∗Us.

Theorem: holim Us ∼ CpY

T -version H∗X, T (H∗X) as before
V-condition: ∃BV × Y → X inducingH∗Y ∼= T (H∗X).

Theorem: Homh(BV, CpX) ∼ CpY

Y is a (cohomological)volunteer.

This slide describes an assumption very different from theN-conditions under which
it is possible to useT to compute something about a function space. Suppose there
is a homological “volunteer” for the function complex, in the sense there is a spaceY
together with a map

BV × Y → X (i.e.,Y → Homh(BV,X))

which induces an isomorphism

H∗Y
∼=← T (H∗X)

(We’re still assuming thatH∗X is of finite type and thatTH∗X is of finite type.)
Then the discussion after slide 5–10, in conjunction with the tower machinery above,
produces an equivalenceCpY ∼ Homh(BV,CpX). Note that in this case there is
no claim thatT (H∗X) ∼= H∗ Homh(BV,CpX); whether or not this is true depends
entirely on whether or notY is p-good (5–11).
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Lecture 7.
Maps between classifying spaces

In this lecture, we’ll look at maps from classifying spaces of finitep-groups to various
other kinds of classifying spaces. The first step is to decipher what the functorT has
to say about the cohomology of homotopy fixed point sets. The lecture ends with
a question about whether the machinery can be used to give a simple combinatorial
description of the homotopy type ofCpBG for G a finite group.
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Cohomology of homotopy fixed point sets
V = Z/p, acts onX

XhV and a close relative

XhV

��
BV

99r
r

r
// BV

�� ��XhV

XhV //

��

Homh(BV, XhV )

��
∗ id // Homh(BV, BV )

XhV

��
BV

99r
r

r
///o/o/o BV

�� ��XHV

XHV //

��

Homh(BV, XhV )

��
Homh(BV, BV )1

id // Homh(BV, BV )

Definition & question (H ∼= identity piece ofTH)
F ix(X, V ) ≡ H⊗T H T (XhV ) → H∗XHV (iso?)

This slide defines a variant of the homotopy fixed point set, and poses the question of
how to calculate its cohomology. We’ve seen before (2.28 thatXhV is the space of
mapsBV → XhV which cover the identity map ofBV (in other words, the space of
sections ofXhV → BV ). The fattened up homotopy fixed point setXHV is defined to
be the space of mapsBV → XhV which cover the identity map ofBV up to homotopy.

As we’ve seen before,TH is naturally isomorphic toH∗ Homh(BV,BV ).

7.1 Exercise.Observe thatHomh(BV,BV ) is equivalent to a disjoint union of copies
of BV , one for each homomorphismV → V .

The heading of the definition block identifiesH as the summand ofTH corresponding
to the component ofHomh(BV,BV ) containing the identity map. In the definition of
F ix(X, V ), H is supposed to be treated as a module overTH via the restriction map
TH→ H.

7.2 Exercise.Show that constructionM 7→ H⊗TH T (M) is exact on the category of
object inU which are (compatibly) modules overH. (Hint: H is a summand ofTH.)

The question on the slide should be easy to answer, since it just asks whether a partic-
ular summand ofT (H∗XhV ) accurately calculates the cohomology of a component of
the mapping spaceHomh(BV,XhV ).
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7.3 Exercise. Show that for anyV -spaceX, XHV is equivalent in a natural way
to BV × XhV . What’s special about this situation? (Why isn’t the corresponding
statement true whenXhV → BV is replaced by some arbitrary fibrationE → B?)
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X a finite complex: setting the scene
V = Z/p, acts onX

F ix(X, V ) ≡ H⊗T H T (H∗XhV )
M anH-module: F ix(M) ≡ H⊗T H T (M)

F ix(M) ∼= 0 if M = H∗Sn

TH→ TM = H∗( Homh(BV, BV )← Homh(BV, Sn) )

F ix(M) ∼= 0 if M is finite
Exactness.

F ix(X, V ) ∼= H⊗H∗(XV ) (Smith Theory)
(finite) ← H∗(BV ×XV )← H∗(XhV )← (finite)

In the tensor products on the slide,H is made into a module overT (H) by the restric-
tion T (H) → H to the cohomology of the identity component ofHomh(BV,BV ).
The last slide constructed an algebraic objectF ix(X, V ) which is an approximation to
H∗XHV in the same way asTH∗X is an approximation toH∗ Homh(BV,X). This
slide computesF ix(X, V ) if X is a finite complex with a celluarV -action. There are
several steps:

1. Extend the construction ofF ix(X, V ) to giveF ix(M), whereM is an unstable
algebra(module) overAp which is a module overH. The connection is that
F ix(X, V ) ∼= F ix(H∗XhV ).

2. M 7→ F ix(M) is exact (7.2).

3. F ix(finite module) = 0.

4. By Smith theory to see that there is a map

H∗(BV ×XV )← H∗XhV

which is an isomorphism modulo finite modules.

The conclusion is that there is an isomorphism

F ix(X, V ) ∼= F ix(XV , V ) ∼= H⊗H∗(XV ) ,

where the last isomorphism comes from the fact thatT preserves⊗ and takes finite
modules to themselves.
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7.4 Exercise. In computingF ix(H∗Sn), H∗Sn is treated as a trivial module over
H, in other words, as a module in which the action factors through the unique ring
homomorphismH→ Fp. Verify thatF ix(H∗Sn) is zero, and show carefully how this
implies thatF ix(M) = 0 for any finite moduleM . (You may need to use a little bit of
interplay betweenT on the categoryK of unstable algebras andT on the categoryU
of unstable modules).
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X a finite complex (II)
V = Z/p, acts onX

BV ×XV is a volunteer for(CpX)HV !

Theorem
(CpX)HV ∼ BV × Cp(XV )

(CpX)hV ∼ Cp(XV )

Corollary ( T -free, V -free)
Q a finitep-group,X a finiteQ-complex =⇒

(CpX)hQ ∼ Cp(XQ)

7.5 Exercise.There is a little sleight of hand hidden behind the innocent slide. The
fact that(CpX)HV appears depends on the equivalence

Cp(XhV ) ∼ (CpX)hV

Show that this follows from the fibre lemma (slide 5–10).

7.6 Exercise.Prove the corollary on the slide, using induction on the size ofQ.
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Aside: sighting ofCp(p-bad space)

• Y = S1 ∨ S1

• X = Y ∗ S1 ∗ S1 ∗ · · · ∗ S1

• Q = Z/p

• Q-actions: trivial onY , rotation onS1, diagonal onX

Y has problems (CpY 6= LpY , CpCpY 6= CpY . . .)

p-bad news
(CpX)hQ ∼p CpY

You can run but you can’t hide.



Lecture 7: Maps between classifying spaces 71

7.7 Exercise.Prove that the news really is bad, by showing that

1. XQ ∼= Y , and

2. XhQ ∼p CpY

In particular, the homology of the relatively pathological spaceCpY comes up even
if you’re just interested in homotopy fixed point sets of finite groups acting on finite
simply-connected complexes. For the second item, it’s probably easiest to show that
if X is one-connected andQ is a finitep-group acting onX, thenXhQ ∼p (CpX)hQ

(compare with 6.10).
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Maps BQ→ BG: individual components

• G a connected compact Lie group,

• Q a finitep-group,ρ : Q→ G

• Z(Bρ) = Homh(BQ, BG)Bρ

Adjoint action and the free loop space

EG×G (Gad)
∼ //

��

BGS1

��
BQ

Bρ
//

λ2

99s
s

s
s

s
iiiiii

44iiiiii λ1

BG =
// BG

ΩZ(Bρ) ∼ {λ1’s} ∼ {λ2’s} ∼ GhQ

Theorem (Cp-free)
Z(Bρ) ∼p B(ZG(ρQ))

The results on this slide and the next one appear in a different form in [32]; there’s a
significant generalization (in which finitep-groups are replaced byp-toral groups) in
[80].

In this slide, the action ofQ onG is by conjugation via the homomorphismρ.

7.8 Exercise.Show that ifG is a compact Lie group (or any simplicial group or rea-
sonable topological group) the free loop space fibrationBGS1 → BG over BG is
equivalent in the category of objects overBG to the Borel construction associated to
the conjugation (adjoint) action ofG on itself.

7.9 Exercise.Show that ifL is a loop space thenCpL ∼p L. Generalize this to show
that if Q is a finitep-group acting onL by loop maps, thenCp(LhQ) ∼p (CpL)hQ. You
might want to assume without loss of generality thatL is connected (why is this OK?)
and pass to the classifying spaces using Bousfield and Kan’s fibre lemma (ΩCp ∼
CpΩ if the input space is1-connected) and something along the lines ofΩ((−)hQ) ∼
(Ω(−))hQ. (Compare with 6.10, where the action is trivial but the space involved is not
a loop space.)
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7.10 Exercise.Prove the theorem. This involves using the previous exercise to fool
around with∼p andCp, and illustrates how technicalities can sometimes disappear
from some final statement. The simple but notationally toxic argument which I barely
restrained myself from putting on the slide reads

Pf: GhQ ∼p (CpG)hQ ∼ Cp(GQ) = CpZG(ρQ) ∼p ZG(ρQ)
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Maps BQ→ BG: how many components?
G, Q as before

New ingredient (Q acts onX)
H∗X <∞ & χ(X) 6= 0 mod p =⇒ (CpX)hQ 6= ∅

Theorem: [BQ, BG] ∼= Hom(Q, G)/G (Sketch)
• OK if G is p-toral

• ∃K ⊂ G with K p-toral, χ(G/K) 6= 0 mod p

(G/K)Q ∼=

K

��
Q

???�
?�

?�
// G

(G/K)hQ ∼

BK

��
BQ

<<y
y

y
y

// BG

‘
〈ρ〉 BZG(ρ) ∼p Homh(BQ, BG) ⇔ CCQ

G ∼p C
hCQ

G

The “new ingredient” comes from an algebraic study ofF ix(–), which we’ll talk about
later on in more detail on slide 9–3. It’s clear that the non-emptiness statement is true
if X is a genuine finite complex with a cellular action ofQ, since counting cells shows
that thatχ(XQ) = χ(X) mod p, and soχ(X) 6= 0 mod p implies that(CpX)hQ ∼
Cp(XQ) is nonempty. The problem is that here we have to handle a case in which
the “action” of Q on X (= G/K) arises from a fibration overBQ with X as fibre,
and so corresponds to a geometric action ofQ on an infinite complex equivalent toX.
The Smith theory arguments above depend on actual finiteness of the action, and so the
arguments need to be replaced.

In the statement of the Theorem,Hom(Q,G)/G stands for the set ofG-conjugacy
classes of group homomorphismsQ → G. The p-toral compact Lie groups which
appear in the proof are groups which fit into an exact sequence

1→ T → K → P → 1

in whichT is a torus (a finite product of copies of the circle group) andP is a finitep-
group. The squiggly arrow in the left-hand commutative diagram is supposed to convey
that the diagram is supposed to commute only up to conjugacy inG

7.11 Exercise.Prove that ifG p-toral andQ is a finitep-group, then homotopy classes
of mapsBQ → BG correspond bijectively to conjugacy classes of mapsQ → G.
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One way to do this is by inspecting the extension in whichG by definition sits (the
statement is pretty clear ifG is a torus or a finitep-group). Here’s another approach.
Show that it is possible to find a commutative diagram

1 // (Z/p∞)r //

��

G′ //

��

P //

��

1

1 // (S1)r // G // P // 1

in which the left vertical arrow is the inclusion of thep-primary torsion subgroup of
(S1)r. (Don’t make the mistake of takingG′ to be the set ofp-primary torsion elements
in G; this isn’t necessarily a subgroup.) Now show that there is a fibration sequence

(BZ[1/p])r // BG′ // BG

and use this to compareHomh(BQ, BG′) to Homh(BQ, BG), as well as to compare
Hom(Q,G′)/G′ to Hom(Q,G)/G.

The subgroupK of G which appears on the slide is the “p-normalizer” NpT of a
maximal torusT in G. This is the inverse image in the normalizerNT of T of a
Sylowp-subgroup of the Weyl groupW = (NT )/T . Note that the Euler characteristic
χ(G/NT ) is 1.

7.12 Exercise.Try to make some sense of the “proof” which is sketched for the the-
orem. The argument has something to do with the fact that in light of the previous
discussion there is a connection (involving occasional insertion and/or deletion ofCp)
between(G/K)Q and(G/K)hQ. But the space(G/K)Q only makes sense if there
is a homomorphismQ → G to look at. How does the “new ingredient” contribute to
showing that any mapBQ→ BG is obtained from a homomorphismQ→ G?

The last statement on the slide is an interpretation of the calculation we’ve made on this
slide and the previous one; the interpretation is in the language of homotopy theories.
The statement is that ifQ andG are interpreted as categories enriched over topological
spaces, i.e., homotopy theories, then the category of functors fromQ to G is Z/p-
equivalent, as an enriched category, to the derived or homotopy-invariant category of
functors fromQ to G.

7.13 Exercise.(see 1.2) A functorCQ → CG is just a group homomorphismρ : Q →
G. A morphism between two such functors is an elementg ∈ G with gρg−1 = ρ′.
What does this have to do with

∐
〈ρ〉 BZG(ρ)?

The following exercise shows that maps from the classifying space of a finite group
into the classifying space of a compact connected Lie group are not directly related to
group homomorphisms if more than one prime divides the order of the finite group.

7.14 Exercise.Produce a mapBΣ3 → BS3 which is not realized by any ho-
momorphismΣ3 → S3. HereΣ3 is the symmetric group on3 letters (or equiva-

lently the unique nontrivial semidirect productZ/2nZ/3) andS3 is the multiplicative
group of unit quaternions (or equivalently the special unitary groupSU(2)). It might
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help to observe thatBS3 is HZ-local (since it is simply connected) and that there is an
integral homology equivalence

BΣ3 ∼Z L2(BΣ3) ∨ L3(BΣ3) ∼ RP∞ ∨ L3(BΣ3) .

In constructing the map toBS3, it’s good to notice thatL3(BΣ3) is equivalent to
L3(B(Z/4 n Z/3)).
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Maps into CpBG for G finite
Q a finitep-group,G compact Lie

G connected =⇒ Homh(BQ, BG) ∼p Homh(BQ, Cp(BG))

Theorem
G finite =⇒ Homh(BQ, BG) ∼p Homh(BQ, Cp(BG))

1. find a faithfulρ : G→ U(n) = K

2. K/G //

��

BG //

��

BK

��
Cp(K/G) // Cp(BG) // Cp(BK)

3. Apply Homh(BQ,−), compare bases and fibres.

On this slide,Q is a finitep-group andG is a compact Lie group. The first statement,
involving connectedG, is low-tech, in the sense that it does not depend on anything
beyond obstruction theory; the statement has already come up a couple of times in the
exercises for this lecture. On the other hand, the statement doesn’t have that much
force, since neitherHomh(BQ, BG) nor Homh(BQ, Cp(BG)) is easy to compute.
The statement in the theorem looks the similar, but it’s really worlds different. IfG
is finite, Homh(BQ, BG) is very easy to compute in terms of homomorphisms and
centralizers (1.2, 7.13), butHomh(BQ, Cp(BG)) is a priori inaccessible. The first
results like this were due to Mislin [74].

The theorem actually doesn’t requireG to be finite (it works for a general compact
Lie G); it’s just that we will mostly be interested in the finite case. There are several
technicalities to deal with in the proof of the theorem, and these are either irritating
or fun, depending on your feelings aboutCp! The comments from this point on give
advice on how to wrestle with the technicalities, and can safely be ignored by the weary,
the bored, and the otherwise occupied. But look at the starred remark.

7.15 Exercise.Why is the sequence on the slide involving the completed classifying
spaces a fibration sequence?

7.16 Exercise.(Compare bases.) Once more, convince yourself that

Homh(BQ, BK)→ Homh(BQ, Cp(BK))
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is aZ/p-homology equivalence. In particular, the map is a bijection on components.
Don’t forget about this map; we’ll have to come back to it.

7.17 Exercise. (Compare fibres.) Any mapBQ → BK is represented by a ho-
momorphismρ : Q → K (as above). The homotopy fibre ofHomh(BQ, BG) →
Homh(BQ, BK) overBρ is (K/G)hQ, while the homotopy fibre over the image point
in Homh(BQ, B(CpBK) is (Cp(K/G))hQ. (In each caseQ is acting from the left on
K/G via the homomorphismρ.) We would like to argue that the map

(K/G)hQ → (Cp(K/G))hQ

is a Z/p-homology equivalence. This seems tricky; the target isZ/p-equivalent to
Cp((K/G)Q), but the source is hard to identify. Solve the problem by taking(K/G)hQ

seriously as a homotopy fibre of mapping spaces and (using the previous slides) inter-
preting it as a spacep-equivalent to∐

σ

ZK(Q)/ZG(Q)

(whereσ ranges overG-conjugacy classes of homomorphismsQ → G which up to
K-conjugacy liftρ). Observe that this coproduct is exactly(K/G)Q. Now prove that
(K/G)Q is p-good.

7.18 Exercise.(Add base to fibre, carefully.) Observe that, given a map

F //

��

E //

��

B

��
F ′ // E′ // B′

in which the outer vertical arrows areZ/p-homology equivalences, the center vertical
arrow isnot necessarily aZ/p-homology equivalence. Explain why such weirdness
will not take place ifπq(B′) is a finitep-group. Show thatπ1(Homh(BQ, Cp(BK)Bρ

is a finitep-group. One way is to argue as follows:

1. Ω Homh(BQ, Cp(BK)Bρ ∼p ZK(ρ(Q)). This implies thatπ0 of this loop
space (or equivalentlyπ1 of the mapping space) is a finite group.

2. Homh(BQ, Cp(BK)Bρ is HZ/p-local. (Why?)

3. if X is anHZ/p-local space with a finite fundamental group, then the funda-
mental group is a finitep-group. (Why?)

? Remark. Something really interesting has happened here: you’ve just proved that
if Q is a finitep-subgroup of the connected compact Lie groupK, then the group of
components of the centralizer inK of Q is also a finitep-group.
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7.19 Exercise.Whew! Assemble the above pieces into a proof of the theorem.
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Fusion functors
G a finite group

P = {finite p-groups}
P̄ = {finite p-groups} + {monomorphisms} I : P̄ → P

Fusion functor (X a space)
ΦX : Pop→ Set, ΦX(Q) = [BQ, X]

ΦBG ∼ ΦCp BG

DoesΦBG determineCp BG ?

Frugal fusion functor
ΨG : P̄op→ Set, ΨG(Q) = {Q � � ///o/o/o G}

ΦBG
∼= LKanIop ΨG

DoesΨG determineCpBG ?

The basic question here is what sort of algebraic data determines the homotopy type
of CpBG; this is interesting because of the idea thatCpBG captures “the finite group
G at the primep”. Of courseG itself (which is certainly algebraic!) determines the
homotopy type ofCpBG, butG contains too much information. The groupG can not
usually be reconstructed fromCpBG, and in fact there are many examples of finite
groupsG, G′ such thatG is not isomorphic toG′ butCpG ∼ CpG

′.

? 7.20 Exercise.Find examples of such pairs, the more complicated the better.

7.21 Exercise.Are there examples of finite groupsG, G′ such thatCpBG ∼
CpBG′ for every primep, but G is not isomorphic toG′? Can there be such a

pair in which the equivalences are induced by mapG→ G′?

The funny notation forΨG(Q) is meant to denote thatΨG(Q) is the set of conjugacy
classes of monomorphismsQ→ G.

7.22 Exercise.Recall thatΦBG(Q) can be indentified with the set of conjugacy classes
of homomorphismsQ → G. Verify thatΦBG is isomorphic to the left Kan extension
of ΨG alongIop: P̄ → P.

7.23 Exercise.The fusion functors are defined in terms of conjugacy classes of
mapsQ→ G, or in other words homotopy classes[BQ, BG] of unpointed maps

BQ→ BG; previous slides have shown that[BQ, BG] is isomorphic to[BQ, CpBG].
What happens if you decide that you don’t like working up to conjugacy, and you would
like to look at genuine homomorphismsQ → G, or in other words homotopy classes
of pointed mapsBQ → BG. What’s the relationship between such homotopy classes
and the homotopy classes of pointed mapsBQ→ CpBG?
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Fusion systems
G a finite group,P̄ = p-groups+ monos

ΨGoP̄n∗ =

Q

���
�
�

� u
〈f〉

''
G

Q′
* 
 〈f ′〉
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G

Q′
* 


f ′
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Fusion systemF = Fp(G)

• P ⊂ G a Sylowp-sugroup

• F = {Q ⊂ P}
• Q→F Q′ = f : Q→ Q s.t.∃g : f = g(−)g−1

F ∼ ΨGoP̄n∗
DoesF determineCpBG?

The diagrammatic description of the transport category (Grothendieck construction)
ΨGoP̄n∗ is meant to indicate that this category consists of pairs(Q, 〈f〉) whereQ is
a finitep-group and〈f〉 is a conjugacy class of monomorphismsQ→ G. A morphism
(Q, 〈f〉)→ (Q′, 〈f ′〉) is a mapQ→ Q′ such that the indicated diagram commutes in
the only way it can. This category is equivalent to the category whose objects consist
of pairs (Q, f), whereQ is a finitep-group andf is a monomorphismQ → G; a
morphism(Q, f) → (Q′, f ′) is a homomorphismQ → Q′ such that the indicated
diagram commutesup to conjugacy(this is what the little circledc means).

? 7.24 Exercise.Show that these two categories at the top of the slide are in fact
equivalent.

The objects ofF are the subgroupsQ of P ; a morphismQ→ Q′ is a homomorphism
of groups which is realized by conjugation with some elementg ∈ G. (The mor-
phism data does not include the choice of a particular elementg realizingQ → Q′).
SometimesF is taken to have as its objects all of thep-subgroups ofG; this gives an
equivalent category.

? 7.25 Exercise.Verify thatF is equivalent as a category toΨGoP̄n∗.

? 7.26 Exercise.The categoryF comes supplied with a faithful functorF → P̄
(whereP̄ as above is the category of finitep-groups and monomorphisms). Find an
explicit way to reconstruct the fusion functorΨG fromF andF → P̄.

The question of whether the fusion data determines the homotopy type ofCp(BG) is
sometimes called the “Martino-Priddy” problem. It’s a question of whether the con-
verse to one of the main results in [74] is true.
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Lecture 8.

Linking systems andp-local classifying spaces

Slide 8-1 Slide 8-1

DoesF determineCpBG?
G a finite group,F = Fp(G)

F ∼ {Q � � 〈f〉 //G}

Centralizer diagram=⇒ something missing (C = {Q ⊂ G})
CpBG ∼p hocolimF J J : 〈f〉 7→ BZG(fQ)

Troubling questions
1. NeedF and J (better,CpJ) to getCpBG?

2. J too fancy? CpBZG(fQ) not “algebraic”

3. Circular scam? J(1→ G) = BG ∼p CpBG

Solution to (2) and (3):find better C

Let C be the collection of allp-subgroups ofBG (4–3). The categoryF is equivalent
to the category which parametrizes the centralizer decomposition forBG which is
associated to the collectionC. We continue to look at the question of whetherF
determines the homotopy type ofCpBG.

8.1 Exercise.Verify that the collectionC of all nontrivial p-subgroups ofG satisfies
the condition from 4–5, i.e.

(KC)hG ∼p BG .

(In fact, show thatKC is contractible.) This implies that the homotopy colimit of the
centralizer diagram associated toC is Z/p-equivalent toBG.

The slide points out that we should not expectF itself to giveCpBG, since (according
to the lore of the centralizer decomposition) theZ/p-homology type ofBG is given by
the homotopy colimit of a highly nontrivial functorJ onF . So what should we do?
Accepting the functorJ or evenCpJ as part of the structure is not an attractive option,
since the values ofCpJ are complicated, and in fact one of these values is the very
object,CpBG, which we would like to understand. Remember, the goal here is to find
a some sort of data which

1. is reasonably simple and combinatorial,

2. determines the homotopy type ofCpBG, and

3. can be derived from the homotopy type ofCpBG.
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The functorJ satisfies (1) and (2), but to an embarrassing degree, sinceJ determines
G itself (J({1}) ∼ BG). The functorCpJ satisfies (2) and (3), but again in a pointless
circular way (CpJ({1}) ∼ CpBG). So we need a new idea.

Slide 8-2 Slide 8-2

Switch to thep-centric collection

A more economical approach

Definition: Q ⊂ G p-centric (Q a p-group)
Z(Q) = Sylowp-subgroup inZG(Q)

Theorem C = {p-centric Q ⊂ G}
BG ∼p (KC)hG

∼p hocolim I I(−) ∼ BQ

∼p hocolim J J(−) ∼ BZG(Q)

Fewer subgroups, smaller(?) centralizers, rarelyG = ZG(Q). . .

The way in which the centralizers in thep-centric centralizer decomposition are ef-
fectively verymuch smaller than centralizers in general will become clear on the next
slide. The theorem on the slide appears in [33].

8.2 Exercise.Check that the theorem is true (and pretty tame) ifp does not divide the
order ofG.

8.3 Exercise. If p divides the order ofG, show that any Sylowp-subgroup ofG is
p-centric.

? 8.4 Exercise.The theorem implies something particularly interesting if a Sylow
p-subgroup ofG is abelian. What is this?

? 8.5 Exercise.Show that ap-subgroupQ of G is p-centric if and only if the cen-
tralizerZG(Q) is isomorphic to the product of the centerZ(Q) of Q with a group of
order prime top.

8.6 Exercise.Use the previous exercise to give necessary and sufficient conditions for
G itself to appear as the centralizer of ap-centric subgroup. What can you say about
CpBG in this case?

8.7 Exercise.Show that ifQ, Q′ arep-centric subgroups ofG with Q ⊂ Q′, thenQ is
also ap-centric subgroup ofQ′.

A mapf : Q → G is p-centric if f is a monomorphism andf(Q) is ap-centric sub-
group ofG.

8.8 Exercise.Given a mapf : Q → G, consider the induced mapf ′ : BQ →
CpBG. Give a homotopical condition onf ′ which is equivalent to the statement

that the mapf is p-centric.
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The p-centric centralizer diagram
C = {p-centricQ ⊂ G}

Fc ∼ {Q
� � 〈f〉 //G, f(Q) ⊂ G p-centric}

Centralizer decomposition
CpBG ∼p hocolim J J : 〈f〉 7→ BZG(fQ)

Centralizers: simplify at p to centers
Q p-centric =⇒ ZG(Q) ∼= Z(Q)× p′-group

=⇒ CpBZG(Q) ∼ BZ(Q)

CpBG ∼ hocolim BZ(fQ)

Centers: algebraic, and easily extracted fromCpBG
BZ(fQ) ∼p Map(BQ, CpBG)f

8.9 Exercise. There’s something that has been taken for granted for a while. Show
that if D is a category andF → G is a natural transformation between two functors
D → Sp which induces aZ/p-equivalenceF (d) ∼p G(d) for eachd ∈ D, thenF
induceshocolim F ∼p hocolim d. (cf. 2.20)

8.10 Exercise. Give an example to show that the above conclusion no longer
holds if hocolim is replaced byholim. Does it help to assume that the values

of F andG are highly connected? Find some cases in which you can say something
positive.

? 8.11 Exercise.Suppose thatQ andQ′ arep-centric subgroups ofG. Show that if
gGg−1 ⊂ Q′ then conjugation withg−1 induces a mapZ(Q′)→ Z(Q)
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The categoricalp-centric centralizer model
Fc = {〈f〉 : f : Q ↪→ G p-centric}

FunctorZ : Fc→ Grpd, Z(〈f〉) ∼ Z(Q)

Grothendieck construction
CpBG ∼p hocolim BZ

∼p N(Z o Fc)

F vs.Z o Fc

F ∼

Q

���
�
�

� � // G

gZG(Q)

���
�
�

Q′
� � // G

Z o Fc ∼

Q

���
�
�

� � p.-c // G

gZ′G(Q)

���
�
�

Q′
� � p.-c // G

ZG(Q) ∼= Z(Q)× Z′
G(Q)

The slide claims thatZoFc is equivalent to the category whose objects consist of pairs
(Q, f), wheref is a monomorphismQ→ G with p-centric image. A homomorphism
(Q, f) → (Q′, f ′) is a homomorphismQ → Q′ together with a cosetgZ ′

G(Q) such
that the mapQ→ Q′ is realized inside ofG by g(−)g−1.

8.12 Exercise.Verify that these morphisms really can be composed.

8.13 Exercise.DescribeZ oFc up to equivalence as a category whose objects are the
subgroups of a given Sylowp-subgroup ofG,

Probably the easiest way to represent the functorZ is by the following formula

Z(〈f〉) = Π(p)
1 Homh(BQ, BG)〈f〉 .

The right-had side denotes thep-primary part of the fundamental groupoid of the com-
ponent of the space of mapsBQ → BG corresponding to the conjugacy class〈f〉
of homomorphismsQ → G. This is also thep-primary part of the component of the
category of functorsCQ → CG corresponding tof .

8.14 Exercise.Suppose thatH is a connected groupoid with the property that each
vertex group is the product of a finite abelianp-group and a finite group of order prime
to p. Convince yourself that the “p-primary part” of this groupoid makes functorial
sense (as a groupoid with the same objects aH). If in doubt, think aboutΠ1Cp N(H).

? 8.15 Exercise.Check that the assertions on the slide are correct.

1. The functorZ makes sense,

2. there is a natural transformation from the centralizer decomposition functorJ
for thep-centric collection (slide 8–1) into the functorBZ which gives aZ/p-
homology equivalenceJ → BZ, and
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3. the Grothendieck constructionZoFc is (at least up to equivalence) the category
described by the picture on the slide.

8.16 Exercise.Suppose thatA is a connected abelian groupoid (i.e., each
vertex group is abelian), thatG is a group, and thatI : CG → Grpd is a

functor whose unique valueI(∗) isA. Consider the functorJ : CG → Grp obtained
by composingF with the functor from groupoids to abelian groups which assigns to
A the abelian groupH1 N(A). Is there a morphismJ → I (in the category of functors
CG → Grpd) which gives a categorical equivalenceJ(∗) → I(∗)? How about a
zigzag of such morphisms? It is more or less the same thing to ask whetherN(I) is
equivalent toN(J) in the homotopy theory of functorsCG → Sp. Either prove that the
answer is yes or give a counterexample.

Slide 8-5 Slide 8-5

The linking system

Linking systemLc :=Z o Fc

RecoveringLc from CpBG X = CpBG

Fc ∼

Q, BQ

h

���
�
�

Bh

���
�
� 〈f〉:p.c.

**
X

Q′, BQ′
〈f ′〉:p.c.

44 Z〈f〉 = Π1 Homh(BQ, X)f

Now just formZ o Fc

Theorem
CpBG ∼ CpBG′ ⇐⇒ Lc(G) ∼ Lc(G′)

In the diagram formula forFc above, the objects of the category are the pairs(Q, 〈f〉),
whereQ is a finitep-group and〈f〉 is a homotopy class ofp-centric (8.8) mapsBQ→
CpBG; a homomorphism(Q, 〈f〉) → (Q′, 〈f ′〉) is a homomorphismQ → Q′ which
makes the obvious diagram commute (in the homotopy category). The functorZ as-
signs to(Q, 〈f〉) the fundamental groupoid of the indicated mapping space component.

8.17 Exercise.Check that this construction forLc = Z o Fc, which takesCpBG as
input, gives a category equivalent to the one from slide 8–4.

In the statement of the theorem, the∼ on the left is equivalence between spaces and
the∼ on the right is equivalence of categories.

8.18 Exercise. Let A be the full subcategory of the category of (unpointed)
spaces consisting of spaces equivalent toBQ, Q a finitep-group. LetB be the

category with the single objectCpBG and only the identity map. Construct a category
C by taking the disjoint union ofA andB. There are no maps inC from the object in
B to objects inA, but if BQ ∈ A the mapsBQ → CpBG are the ordinaryp-centric
maps of spacesBQ → CpBG (8.8). Calculate the homotopy left Kan extension over
C of the inclusion mapA → Sp.



Lecture 8: Linking systems and p-local classifying spaces 83
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Lc vs.Fc – the orbit picture
ZG(Q) ∼= Z(Q)× Z′G(Q)

Three categories X = BG, CpBG
Category Object Morphism

Lc Q + fp.c. : BQ→ X h : Q→ Q′∗ + ω

Fc Q + 〈fp.c.〉 ∈ [BQ, X] h : Q→ Q′

Ōc Q + 〈fp.c.〉 ∈ [BQ, X] 〈h〉 ∈ [BQ, BQ′]

Three categories

Q

�� �O
�O
�O

f :p.c. // G�� ��
���
�
�

Q′
f ′:p.c.

// G

Lc :
�� ��gZ′G(Q)

Fc :
�� ��gZG(Q)

Ōc :
�� ��Q′gZG(Q)

Lc

��

// {Q}

��
Fc

��

α // {Q}

��
Ōc

�

−nQ

>>

β // Ho{BQ}

Conclusions

Q =

{BQ}

��
Ōc

λ 77o
o

o
β

// Ho{BQ}

Fc + α = Ōc + β

Lc = Fc + u + λ

This is quite a complicated slide. It gives descriptions for each of three categories;
two of these categories we have already run into. The first description is geometric,
the second is algebraic; the two descriptions give equivalent categories, not necessarily
isomorphic ones. In part, this systematizes what has appeared before. The symbolX
stands for eitherBG or CpBG.

The (p-centric) linking category Lc. From the geometric point of view, an object of
Lc is a pair(Q, f), whereQ is a finitep-group andf is ap-centric mapBQ → X. A
map(Q, f)→ (Q′, f ′) is a homomorphismh : Q→ Q′ together with an equivalence
class of pathsω in Homh(BQ, X) connectingf ′ ·Bh to f . If X = CpBG ths is simply
a homotopy class of paths.

8.19 Exercise.How can you describe the equivalence relation on the class of paths if
X = BG? (Remember thatπ1 Homh(BQ, BG)f ∼ BZG(fQ).)

From the algebraic point of view, an object inLc is a pair(Q, f), whereQ is a finite
p-group andf : Q → G is a homomorphism. A map(Q, f) → (Q′, f ′) is a homo-
morphismh : Q → Q′ together with a cosetgZ ′

G(fQ) of Z ′
G(fQ) in G such that

gfg−1 = f ′h.

8.20 Exercise.Convince yourself that these two descriptions give the same category.

The (p-centric) fusion systemFc. From the geometric point of view, an object ofFc

consists of a pair(Q, 〈f〉), whereQ is a finitep-group and〈f〉 is a homotopy class
of p-centric mapsBQ → X. A map (Q, 〈f〉) → (Q′, 〈f ′〉) is a homomorphism
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h : Q→ Q′ such thatf ′ ·Bh is homotopic tof . Algebraically, an object consists of a
pair (Q, f) whereQ is a finitep-group andf : Q → G is ap-centric homomorphism.
A map(Q, f)→ (Q′, f ′) is a cosetgZG(fQ) of ZG(fQ) in G such thatgfg−1 = f ′h.

8.21 Exercise.Convince yourself (if you haven’t before, see the remarks after slide
7–9) that the two descriptions give equivalent categories.

The (reduced,p-centric) orbit category Ōc. In the geometric interpretation, the ob-
jects inŌc are pairs(Q, 〈f〉), whereQ is a finitep-group and〈f〉 is a homotopy class
of p-centric mapsBQ→ X. A map(Q, 〈f〉)→ (Q′, 〈f ′〉) is a homotopy class〈h〉 of
mapsBQ→ BQ′ such that〈f ′〉 · 〈h〉 = 〈f〉. (Note thath amounts to aQ′-conjugacy
class of mapsQ → Q′.) Algebraically, an object consists of a pair(Q, f) whereQ
is a finitep-group andf : Q → G is ap-centric map. A map(Q, f) → (Q′, f ′) is
a Q′-conjugacy class of maps〈h〉 : Q → Q′ together with a(Q′, ZG(Q) double coset
Q′gZG(Q) in G such thatf ′ · 〈h〉 containsgfg−1.

8.22 Exercise.Again, check that these two descriptions give equivalent categories.

8.23 Exercise.Show that thep-centric orbit category ofG (suitably defined) can be
represented by the picture

Q

�� �O
�O
�O

f :p.c. // G�� ��Q′g
���
�
�

Q′
f ′:p.c.

// G

All three categories come with reference maps, the first two into the category of fi-
nite p-groups (andp-centric maps), the third into the category of finitep-groups and
conjugacy classes of (p-centric) maps between them. (This is denoted on the slide
as homotopy classes of maps between their classifying spaces.) See 8.7 for the fact
that the reference functors take morphisms in the domain categories to appropriately
p-centric maps in the target categories.

The mapsLc → Fc → Ōc are pretty clear. There is a functorQ : Ōc → Grpd which
sends an objectm = (f : Q → G) of Ōc to the groupoid consisting of all objects of
Lc which project tom and all morphisms between these objects which project to the
identity map ofm.

8.24 Exercise.Check thatQ can be made into a functor in a natural way (why this
should be true will become clear in the next exercise).

8.25 Exercise.Show thatLc is equivalent to the Grothendieck constructionŌc nQ.

8.26 Exercise.Show thatQ(Q → G) is naturally isomorphic toQ in the category of
groupoids and natural isomorphism classes of functors between them. (This is isomor-
phic to the category of groupoids and homotopy classes of maps between their nerves.)

8.27 Exercise.Conclude that giving the categoryLc provides a liftλ of the functor
β, a lift which takes values in the categorySp rather than (asβ does) in the category
Ho(Sp).
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8.28 Exercise.Conversely, given a liftλ of β to Sp, show show that some sort of a
plausible candidateL′c for Lc can be constructed by the formulaL′c = Ōc n Π1λ.

8.29 Exercise. Explain how giving the pair(Fc, α) is equivalent to giving the pair
(Ōc, β).

At last!!

8.30 Exercise.Prove that ifG andG’ are two groups with the property thatFc(G) ∼
Fc(G′) butCp(B) 6∼ Cp(G′), then the functorβ : Ōc(G)→ Ho(Sp) has two inequiv-
alent liftsλ, λ′ : Ōc(G)→ Sp.

Slide 8-7 Slide 8-7

Lifting from Ho(Sp) to Sp

An example (K a group)

{BQ}

��
CK //

λ
88qqqq

Ho{BQ}

=

B Auth(BQ)

��
BK //

λ
77oooo
B Out(Q)

Obstruction∈ H3(BK; Z(Q)), 〈λ〉 ↔ H2(BK, Z(Q))

A generalization

{BQ}

��
β : D //

λ
77nnnn

Ho{BQ}p.-c

Obstruction∈ lim3
Dop Z, 〈λ〉 ↔ lim2

Dop Z, Z(d) = Z(π1β(d))

This slide looks at the question of taking a diagram in the homotopy category of spaces
and rigidifying it to a diagram in the category of spaces itself (lifting a diagram from
Ho(Sp) toSp). The focus is on a particular special case, but it might be worth pointing
out why this case is special and particularly tractable. The general problem is to con-
struct a functorλ : D → Sp which covers a given functorβ : D → π0Sp = Ho(Sp).
The global approach is to construct the space of such functors; the components of
this space give equivalence classes of the sought-for lifts, and each component is the
classifying space of the space of self-equivalences of its personal lift (where self-
equivalences are to be taken over the base functorD → Ho(Sp)). Of course the
space of such functors might be empty, which would signify that no lift exists.

In general the lifting space can be written as a massive homotopy limit; this is the
homotopy limit, over a category of simplices inND, of a functor which assigns to any
simplex

σ = d0 → d1 → · · · dn

the space of lifts of the restriction ofβ to σ. This can be calculated without too much
trouble as an iterated homotopy coend (iterated Borel construction)

∗ ×h
A0

M0 ×h
A1
· · · ×h

An−1
Mn−1 ×h

An
∗
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whereXi = β(di), Ai = Auth
1(Xi) is the identity component of the space of self-

equivalences ofXi, andMi = Homh(Xi, Xi+1)fi is the component of the space of
mapsXi → Xi+1 corresponding tofi = β(di → di+1).

Now for the punch line.

? 8.31 Exercise.Show that if eachXi above is the classifying space of a finitep-
groupQi, and each mapfi is ap-centric map, then the above iterated homotopy coend
collapses into

B2ZQn) = K(Z(Qn), 2)

It follows from this and a cofinality argument that the desired space of lifts can be writ-
ten as the homotopy limit overD itself of a functor onDop which assigns tod a space
equivalent toB2Z(d), whereZ(d) = Z(π1β(d)). According to general principles,
there is an obstruction inlim3Z which is zero if and only if the space of lifts is non
empty; if this obstruction vanishes, the set of components corresponds bijectively to
lim2Z.

8.32 Exercise. Work out these general principles. Here’s one statement.
Suppose thatD is a category,A is a functor fromD to abelian groups, and

n ≥ 1 is an integer. Give a classification up to equivalence all functorsF : D →
Sp such thatπiF ∼= ∗, i 6= n, andπnF ∼= A; the functors should be in bijective
correspondence with elements oflimn+1 A. The classification should be along the
lines of the theory ofk-invariants. For instance, the functor has a section, in the sense
thatholim F is nonempty, if and only if it corresponds to the zero element oflimn+1 A.
If the functordoeshave a section, then the components of the space of sections (i.e., the
holim) correspond bijectively tolimn A. (Note thatF is not assumed to be a functor
into pointed spaces, so applyingπnF is probably best interpreted asHn(F ; Z).) If D
is the category of a groupG, what have you recovered?

This explains the bottom half of the slide. The top half describes a simpler problem
which is meant to put above machinery in a more familiar context. If the categoryD
is the category of the groupK, the problem is one of taking an action ofK on BQ
up to homotopy and rigidifying it to an ordinary action, i.e., lifting a mapBK →
P1B Auth(BQ) to a mapBK → B Auth(BQ) or, equivalently, turning an abstract
kernel into a group extension. The neatest way to solve this is to analyze the homotopy
groups ofB Auth(BQ) and use obstruction theory.

? 8.33 Exercise. Review the obstruction theory. It has already come up, at least
implicitly, that the only nonvanishing homotopy groups ofB Auth(BQ) (for Q any
discrete group) are

πi =

{
Out(Q) i = 1
Z(Q) i = 2
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Fusion relations suffice!
Fc makes a spectacular comeback.

G = finite group

Z : Ōop
c → Ho(Sp),Z(Q→ G) = Z(Q)

Oliver’s Theorem
lim2 Z = 0

Consequences
There is only one way to enrichFc toLc.

Fc(G) ∼{Q} Fc(G′) ⇔ Cp(G) ∼ Cp(G′)

Oliver proves this by a miraculous calculation, in some sense case-by-case, that de-
pends on the classification of finite simple groups. The odd primary case is in [81], the
two-primary case in [82]

The notationFc(G) ∼{Q} Fc(G′) signifies that these two categories are equivalent
in a way which respects the reference maps to the category of finitep-groups.

Slide 8-9 Slide 8-9

p-local finite group X

I. Fusion data (many versions) (+ Axioms. . .)
• (Frugal) fusion functor (Ψ) Φ, fusion categorȳP n Ψ

• Fusion systemF based on “Sylow” groupP

II. p-centric fusion data (two versions)

• p-centric subcategoryFc ⊂ F
• p-centric orbit categorȳOc, β : Ōc→ Ho{BQ}

III. Linking system

• Lc = Π1λ o Ōc, λ : Ōc→ {BQ} a lift of β

CpBG sansG!
BX ∼ Cp N(Lc) ∼ Cp(hocolim λ )

This slide describes various ways of presenting ap-local finite group; the idea is to take
exactly the same kind of data which determinesCpBG for G a finite group, without
insisting that the data come from someG. Some references are [20], [21], and [22].

Thefusion datacan be presented in various ways, either as a fusion functorΦ,Ψ, (slide
7–8) or as a fusion systemF (slide 7–9) based on a finitep-groupP . (P serves as a
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Sylow “p-subgroup” for thep-local finite groups. There are various axioms that imply
in particular that it is possible to go back and forth among these presentations.

Thep-centric fusion datasits inside the fusion data. For instance, ifF is described as a
category whose objects are the subgroups ofP and whose morphisms are certain maps
between them, thenFc is the subcategory consisting of subgroupsQ such that every
object inF isomorphic toQ is ap-centric subgroup ofP .

The linking systemis specified in the same way as when a groupG is present. One
way to do this (not mentioned on the slide) is to describeLc directly as a suitable
extension ofFc. Another way is to construct the “orbit category”̄Oc as a quotient
of Fc, notice that the axioms give a functorβ from Ōc to the homotopy category of
spaces (actually the homotopy category of classifying spaces of finitep-groups and
p-centric maps between these classifying spaces) and then describeLc in terms of a lift
λ : Ōc → Sp of β. (Of course,λ might not exist if a certain characteristic element in
lim3

Ōc
Z refuses to vanish!)
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Lecture 9.

p-compact groups

A p-compact group is meant to be homotopical a analogues of a compact Lie group. In
this lecture I’ll definep-compact groups and describe how to prove at least some things
about them. This is just an introduction to the theory, which has recently produced a
complete classification of the objects [4] [77] [78] [3]. For basic information about
p-compact groups see [42], [65], or [76].

Slide 9-1 Slide 9-1

Definition of a p-compact group
Not quite likep-local finite groups

Dictionary
Compact Lie group p-compact group

groupG loop spaceX

compact, smooth H∗X <∞, BX ∼ CpBX

ρ : G→ H Bρ : BX → BY

ker ρ = {1} H∗fibre(BX → BY ) <∞

H/G Y/X =fibreBX → BY

ZH(ρG) ZY (ρX) = ΩHomh(BX, BY )Bρ

abelian ZX(X) ∼ X

torusT = (S1)r p-complete toruŝT = CpT

. . . . . .

For p-local finite groups, part of the problem is coming up with the definition; you
analyze thep-completionCpBG for G a finite group and abstract what seem to be its
essential features. The upshot is thatp-local finite groups come with an explicit way
of building them up out of finitep-groups. The case ofp-compact groups is different.
The definition is simple:X is ap-compact group ifX is a loop space,H∗X is finite
(written on the slide asH∗X < ∞), andBX is p-complete. This is a straightforward
stab at capturing something that looks like a finite loop space(H∗X <∞) but whose
homotopy theory is concentrated at the primep (BX ∼ CpBX). The trick is to extract
any structure at all from these objects. The approach is to reinterpret as many group-
theoretic constructions as possible in homotopy language and then follow your nose.

9.1 Exercise. Show that ifG is a compact Lie group andπ0G is a p-group, then
ΩCpBG ∼ CpG is ap-compact group.

Remark. If G is a finite group, thenCpBG gives ap-local finite group. IfG is a
compact Lie group withπ0G ap-group, thenCpBG gives ap-compact group. There’s
clearly [22] some kind of common generalization here!
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9.2 Exercise.Show that ifρ : G→ H is a homomorphism of finitep groups, thenρ is
a monomorphism if and only if the homotopy fibre ofBρ is HZ/p-finite.

9.3 Exercise. Exhibit a homomorphismρ : G → H of discrete groups which is not
a monomorphism but such that the homotopy fibre ofBρ is HZ/p-finite for every
primep. (This suggests that the above dictionary has limits to its applicability.)

At this point, it’s natural to ask “why thep in p-compact?” It seems much more ap-
pealing to study finite loop spaces, in other words, loop spacesX such thatH∗X is
(totally) finitely generated (so thatX looks homologically like a finite complex). You
might even be willing to assume thatX is connected.

Why concentrate at a primep?

The answer is that the integral theory is more complicated than the one-prime-at-a-time
theories.

Consider, for instance, the humble case of the3-sphereS3; this sphere can be identified
with the group of unit quaternions and so has a finite loop space structure. Rector
proved the following disturbing theorem.

Theorem. [88] There are uncountably many homotopically distinct spacesZ with
ΩZ ∼ S3.

The proof consists of takingBS3 apart into pieces via the arithmetic square, and then
reattaching the pieces to one another by adjusting the maps in the square. All of Rec-
tor’s exoticZ ’s are obtained in this way. But in fact, it turns out that this is theonly
way to obtain suchZ ’s. First, an exercise.

9.4 Exercise.Show that up to homotopy there is a unique spaceZ such thatΩZ ∼
LQS3.

The following also turns out to be true, for any primep. This lecture is just a bit too
short to get to a proof.

Theorem [45] Up to homotopy there is a unique spaceZ with ΩZ ∼ Lp(S3) (∼
CpS

3).

This implies that the pathology Rector discovered disappears if you work one prime at
a time; it arises only because there are many possible choices involved in gluing up the
primary information with the arithmetic square.

So why not leave the integers for later1 and work one prime at a time? This is the
philosophy ofp-compact groups.

9.5 Exercise. Rector’s exoticZ ’s can actually be distinguished from one
another by using the action of the Steenrod algebra. Explain how this can

possibly be true, since eachZ hasCp(Z) ∼ Cp(BS3) ∼ CpHP∞.

1But AD 2008 is already later [5] [75].
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Slide 9-2 Slide 9-2

Some basic properties ofp-compact groups
X ap-compact group,V = Z/p, ρ : V → X

ZX(ρV )→ X (eval at∗)

Theorem: centralizer is ap-compact group.
ZX(ρV ) is ap-compact group.

Theorem: centralizer is a “subgroup” of X.
ZX(ρV )→ X is a monomorphism.

Theorem: there exist nontrivial ρ’s.
X 6∼ ∗ =⇒ ∃ nontrivialρ : V → X

This slide gives three statements aboutp-compact groups which we’ll try to prove. The
statements have to be interpreted according to the dictionary on the previous slide; here
are the interpretations.

• ρ : V → X is reallyBρ : BV → BX.

• ZX(ρV ) is really the loop spaceΩ Homh(BV,BX)Bρ.

• Evaluating at the basepoint ofBQ gives a mapHomh(BV, BX) → BX, i.e. a
homomorphismZX(ρV )→ X.

• The mapZX(ρV )→ X is a monomorphism ifX/ZX(ρV ) is HZ/p-finite, i.e.,
if the homotopy fibre ofHomh(BV,BX)→ BX is HZ/p-finite.

• A nontrivial homomorphismρ : V → X is really anon-nullmapBV → BX.

Slide 9-3 Slide 9-3

More cohomology of homotopy fixed point sets
V = Z/p, acts onX, H∗X < ∞, X ∼ CpX

H∗XhV
∼= finitely generated module overH = H∗BV

Algebraic Smith theory (no need forXV )
• (finite)← H⊗ (finite)← H∗XhV ← (finite)

• F ix(X, V ) ∼= H⊗ (finite)

Consequences
If any N-condition holds

• H∗XhV <∞
• H∗(X, XhV )hV <∞
• χ(XhV ) = χ(X) mod p
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This slide deals with the situation in whichX is a p-complete space (X ∼ CpX),
H∗X is finite (denotedH∗X < ∞), andV ∼= Z/p acts onX. The main references
are [46] [47] and [64]. The first remark is that the cohomology of the homotopy orbit
spaceXhV is in this case a finitely generated module overH.

? 9.6 Exercise. Prove this (probably by using the Serre spectral sequence and the
fact thatH is a noetherian ring).

Of course,H∗XhV is also a module over the Steenrod algebra in a way that’s com-
patible with theH-module structure. Algebraic Smith theory says that in this situation
there is always a finite algebraR overAp, and a map

H∗XhV → H⊗R

with finite kernel and cokernel. As in slides 7–2 and 7–3, this implies that if some
N-condition holds,H∗XhV ∼= R. By naturality the mapH∗XhV → H∗(XhV )hV is
then the above mapH∗XhV → H⊗ R, and so the relative homologyH∗(X, XhV )hV

is finite.

Remark. Algebraic Smith theory is actually a little more explicit. LetS ⊂ H be
the multiplicative subset generated by a nonzero element in degree2 (if p = 2, let S
be the multiplicative subset generated by the unique non-zero element of degree 1).
Then S−1H∗XhV admits a natural action ofAp which is not necessarily unstable.
Let Un(S−1H∗XhV ) be the maximal unstable submodule. Algebraic Smith theory
guarantees that this object splits as a tensor product

Un(S−1H∗XhV ) ∼= H⊗R

for somefiniteAp-algebraR, and the natural map

H∗XhV → H⊗R

becomes an isomorphism whenS−1(−) is applied. IfX is a genuine finite complex
with a cellular action ofV , thenR ∼= H∗XV . So in geometric situationsR is the
cohomology of the fixed point set, and in homotopy theoretic situations a candidate
for the cohomology of the homotopy fixed point set. In the geometric settingXV is
a volunteer forXhV (6–11), hence giving result at the bottom of 7–3. In the purely
homotopy theoretic setting of the current slide there are usually no volunteers, and we
have to rely onN-conditions to extract information fromT .

Suppose that(X, A) is a pair of spaces, thatf : Y → X is a principalV -covering, and
thatB = f−1A. Suppose in addition thatH∗(X, A) andH∗(Y, B) are finite.

? 9.7 Exercise.Prove thatχ(Y, B) = pχ(X, A). Hereχ(X, A) for instance is the
alternating sum of the ranks of the modp homology groups of(X, A). (Use the fact that
if I is the augmentation ideal of the group ringFp[V ], thenIp = 0 andIk/Ik+1 ∼= Z/p
for k < p. Stitch together many long exact twisted cohomology sequences.) Deduce
the final congruence on the slide.
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Slide 9-4 Slide 9-4

The centralizer of V in X is ap-compact group.
V = Z/p, ρ : V → X

Formula for ZX(ρV ) ΛBX = Homh(S1, BX)

ZX(ρV ) ∼

ΛBX

��
BV

Bρ
//

;;w
w

w
w

BX

∼

Bρ∗ΛBX

��
BV

]]




�
4

∼ XhV

Algebraic Smith theory N-condition: XhV is anH-space
H∗XhV <∞

End game Z = ZX(ρV )
BX p-complete =⇒ BX p-local =⇒ BZ p-local
+ π0Z finite =⇒ π1BZ a finitep-group
=⇒ BZ p-good,p-complete

The slide begins by describingZX(ρV ) = Ω Homh(BV,BZ)Bρ as the space of lifts
of Bρ into the free loop fibration overBX or equivalently the space of sections of a
pullback fibration overBV with X. This in turn can be interpreted the homotopy fixed
point set of a suitable action ofV onX. As in 7.8, this is a conjugation action.

It follows from algebraic Smith theory thatH∗XhV ∼= H∗ZX(ρV ) is finite. One of
the N-conditions is automatically satisfied, sinceXhV is anH-space, in fact a loop
space. In proving thatZX(ρV ) is a p-compact group, the end game is showing that
BZX(ρV ) is p-complete.

9.8 Exercise.Work out the “end game” reasoning sketched on the slide.

Slide 9-5 Slide 9-5

The centralizer of V in X is a subgroup
V = Z/p, ρ : V → X, Z = ZX(ρV )

Construction of X/Z: V acts onBXp by permutation.

Xp/X //
_

(−)hV

��

BX
diag //

_

(−)hV

��

BXp
_

(−)hV

��‘
ρ X/Zρ ∼ (Xp/X)hV // ‘

ρ BZρ // BX

H∗(
‘

ρX/Zρ) <∞ by algebraic Smith theory
N-condition:

X/Zρ // BZρ // BX =⇒
‘

ρ X/Zρ is p-complete
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In order to show that the centralizer ofV in X is a “subgroup” ofX, it’s necessary to
show that the homotopy fibre of the mape : BZ = Map(BV, BX)Bρ → BX has
finite modp cohomology. (Heree stands for evaluation at the basepoint.) The idea of
the argument is to expresse in terms of homotopy fixed point sets ofV -actions, and
then look at the information about the homotopy fibre ofe that this expression reveals.

The spaceBZ is one component ofHomh(BV, BX); in using the argument on the
slide, it’s handy to treat all of the components at once. In the coproducts

∐
ρ on the

slide,ρ runs over all conjugacy classes of homomorphismsV → X (homotopy classes
of mapsBV → BX), andZρ stands forZX(ρV ).

9.9 Exercise.Show thatHomh(BV,BX) is the homotopy fixed point set of the trivial
action ofV onX.

The spaceBX is slighly trickier. ButBX is the homotopy fixed point set of the trivial
action of{1} on X, and so, by transitivity of homotopy right Kan extensions,BX
is also the homotopy fixed point set of theV -space given by the homotopy right Kan
extension ofX from C{1} to CV . This is a complicated way of explaining something
that’s usually just called Shapiro’s lemma.

9.10 Exercise.Show that the above homotopy right Kan extension isBXp =
∏

V BX,
with the obvious permutation action ofV . Conclude that(BXp)hV ∼ BX.

9.11 Exercise. Show that the mape : BZ → BX is obtained up to homotopy by
taking a component of the map(BX)hV → (BXp)hV induced by the diagonal map
BX → BXp.

But taking homotopy fixed point sets, or any homotopy limit construction, preserves
fibration sequences (since homotopy limits commute with one another)

9.12 Exercise. The above statement is true, but is it actually relevant to this slide?
Given a fibrationE → B of V -spaces, how can you describe the fibre(s) of the induced
mapEhV → BhV ? Note that “fibres” might be appropriate, sinceBhV might not be
connected, and there’s no obvious reason that the fibres over different components of
BhV should be equivalent.

9.13 Exercise. Verify the N-condition on the slide by showing that
∐

ρ Z/Zρ is p-
complete.

9.14 Exercise.Show that the set of conjugacy classes of homomorphismsV → X is
finite.

? 9.15 Exercise.Suppose thatG is a discrete group, and letGp/G denote the quo-
tient ofGp by the diagonal action ofG on the right. The permutation action ofV onGp

induces an action ofV onGp/G. Show that the fixed point set(Gp/G)V corresponds
bijectively to the set of homomorphismsρ : V → G, and that under this correspon-
dence the left action ofG on (Gp/G)V (induced ultimately by the diagonal left action
of G onGp) gives the conjugation action ofG on the set of homomorphismsV → G.
It’s interesting even to look atV = Z/2.

9.16 Exercise.What adjustments can be made to the above arguments ifV is
replaced by an arbitrary finitep-groupQ?
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Slide 9-6 Slide 9-6

∃ non-trivial V → X
V = Z/p, X 6∼ ∗ ‘

ρ X/Zρ ∼ (Xp/X)hV

Existence of a nontrivialρ (ρ 6= 0)
Statement Reason

χ(X) = 0 mod p Milnor-Moore

χ(Xp/X) = 0 mod p Xp/X ∼ Xp−1

χ(
‘

ρ X/Zρ) = 0 mod p algebraic Smith theory

χ(X/Z0) = 1 Miller’s theorem

∴ ∃ρ 6= 0 such thatχ(X/Zρ) 6= 0 mod p

The slide begins by recalling the formula from the previous slide for the “space of
homomorphismsρ : V → X”, i.e. the space∐

〈ρ〉

X/ZX(ρV )

indexed by the set of conjugacy classes of homomorphismsρ : V → X, or equivalently
the spaceHomh

∗(BV, BX) of pointed mapsBV → BX. The space has a trivial
component, corresponding to the trivial homomorphismV → X.

9.17 Exercise.Show that the centralizerZ0 of the trivial homomorphismV → X is
equivalent toX. Conclude that the componentX/Z0 of

∐
〈ρ〉 X/ZX(ρV ) correspond-

ing toρ = 0 is contractible (cf. 6.33).

The problem here is to show that ifX is not contractible itself the above space has a
least one additional component; the proof actually shows a bit more. The first step is a
theorem of Milnor-Moore on the structure of Hopf algebras [73], which implies that a
nontrivial finite-dimensional connected cocommutative associative Hopf algebra over
Fp with antipode has an Euler characteristic which is divisible byp. Let X1 be the
identity component ofX. SinceX is a loop space all of its components are equivalent
to one another, and so

χ(X) = χ(X1)(#π0X)

By Milnor-Moore, χ(X1) is divisible byp if X1 is not contractible; by the definition
of p-compact group, the order ofπ0X is a power ofp. The conclusion is thatχ(X) is
divisible byp unlessX1 is contractible andπ0X = ∗, i.e., unlessX is contractible.

9.18 Exercise. Prove that ifX is a connectedp-compact group which is
not contractible thenχ(X) is actually zero on the nose, not just divisible

by p. One idea that would work ifX were a connected compact Lie group would
be to observe that the Euler characteristic can be computed with rational coefficients.
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Now X is compact, parallelizable, not contractible, and hence not rationally acyclic (it
has a fundamental class). It follows thatH∗(X; Q) is a nontrivial finite-dimensional
connected Hopf algebra over the rationals and thus, as a tensor product of exterior alge-
bras on odd-dimensional generators, has Euler characteristic zero. There are obstacles
in reasoning like this with a connectedp-compact groupX, starting with the fact that
the actual integral or rational homology of thep-complete spaceX is going to be much
too big to work with as it stands. Overcome the obstacles.

The next step on the slide is to observe that theχ(Xp/X) is divisible byp, which is
immediate, sinceXp/X is equivalent toXp−1. Algebraic Smith theory, as described
on slide 9–3 and applied on 9–5, guarantees thatχ(Xp/X)hV is divisible byp. Since
the componentX/X0 has Euler characteristic 1, there must other components, and in
fact at least one other component with Euler characteristic not divisible byp.

? 9.19 Exercise.Show that the argument on the slide can be used with essentially
no change to prove that ifp divides the order of the finite groupG, then there is an
element of orderp in G whose centralizer has index prime top.

Slide 9-7 Slide 9-7

Existence of a Sylowp-subgroup for finite G
G finite, V = Z/p

SeekP ⊂ G such thatp - #(G/P )

Induction on #(G) (Z = ZG(V ))

FindV ⊂ G with p - #(G/Z).

V
� � // P � � //

����

Z

����

� � prime top // G

Q
� � prime top

(induction)
// Z/V

This slide depicts a quick inductive proof of the existence of a Sylowp-subgroup in a
finite groupG (a Sylowp-subgroup is defined as ap-subgroupP such thatp does not
divide the order ofG/P ).

If p - #(G), the trivial subgroup works. Otherwise, use the argument on slide 9–6 to
show that there exists a subgroupZ/p ⊂ G such that the index inG of the centralizer
Z = ZG(Z/p) is prime top. By induction, the quotient groupZ/V possesses a Sylow
p-subgroupQ. The inverse imageP of Q in Z is then a Sylowp-subgroup ofG.
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Slide 9-8 Slide 9-8

Existence of a maximal torus inX

SeekT̂ ⊂ X such thatχ(X/T̂ ) 6= 0

Induction on size ofX (Z = ZX(V ))

FindV ⊂ X with χ(X/Z) 6= 0.

V
� � // T̂

� � //

����

Z

����

� � χ 6=0 // X

Ŝ
� � χ 6=0

(induction)
// Z/V

More or less OK ifZ/V “smaller” thanX

This slide describes how to prove the existence of a maximal torus in ap-compact
groupX; a maximal torus is defined to be ap-complete toral subgroup̂G (slide 9–1)
such thatχ(X/Ĝ) 6= 0. The idea is to use slide 9–6 to find a subgroupV ⊂ X such
thatχ(X/Z) 6= 0, whereZ = ZX(V ). Now construct the quotientp-compact group
Z/V and find a maximal toruŝS in Z/V ; the inverse imageT of Ŝ in Z should then
be a maximal torus inX.

There are several problems with this argument, some of which can be overcome di-
rectly.

9.20 Exercise.Why does the homomorphismV → X lift to a homomorphismV →
Z? Prove that this lift is a monomorphism.

9.21 Exercise. Figure out how to define the quotientp-compact groupZ/V ,
and prove that it is ap-compact group with the property that there is a fibration

sequence
BV → BZ toBZ/V .

(Hint. SinceV is presumably central inZ, it should be the case that the centralizer
of V in Z is Z itself. Prove this. This implies thatHomh(BV,BZ)Bi ∼ BZ, where
i : V → Z is the inclusion. Now note that the identity componentHomh(BV,BV )1 ∼
BV acts onHomh(BV, BZ)Bi ∼ BZ by composition, and defineB(Z/V ) by taking
the Borel construction of this action.)

9.22 Exercise.Observe that thep-compact groupĜ on the slide is not necessarily a
torus. Deduce from the fact thatBĜ lies in a fibration sequence

BV → BĜ→ BŜ

thatT̂ is either a torus itself or a productV × T̂ ′, whereT̂ ′ is a torus. Explain why this
second possibility really isn’t much of a problem.

The real problem here is the induction: it seems hard to guarantee thatZ/V is smaller
thanV in any sense. In fact:
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9.23 Exercise.Suppose thatX is a p-complete torus. Show thatZ ∼ X and (even
worse) thatZ/V ∼ X.

This problem seems like a secondary issue. . . after all, a maximal torus does exist ifX
itself is a torus. Here’s one way to proceed. Assume without loss thatX is connected.

9.24 Exercise.Use Smith theory arguments (as on slide 9–6) to show that
any homomorphismZ/p → X extends to a homomorphismZ/p∞ → X.

Prove that ifZ/p → X is a monomorphism, then so isZ/p∞ → X (in the sense that
H∗X/Z/p∞ is finite).

Note thatZ/p∞ is not ap-compact group.

9.25 Exercise.Suppose thati : Z/p∞ → X is a homomorphism. Observe that
Bi : BZ/p∞ → X extends overCp(BZ/p∞) → X and thatCp(BZ/p∞) ∼

K(Zp, 2) ∼ BCp(S1). Prove that ifZ/p∞ → X is a monomorphism in the sense
of the previous exercise, then the induced mapCp(S1) → X is a monomorphism of
p-compact groups.

Let S = Cp(S1). We can now consider a chain of monomorphisms

V → S → ZX(S)→ ZX(V )→ X .

whereV → X has been chosen so thatχ(X/ZX(V )) 6= 0.

9.26 Exercise.What isZX(S), why is it ap-compact group, and why is
ZX(S)→ X a monomorphism?

9.27 Exercise.Show thatdim(ZX(S)/S) < dim X, wheredim is modp
cohomological dimension. Proceed using an inductive argument to show

thatX possesses a maximal torus.
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Lecture 10.

Wrapping up

In this lecture I’ll give an overview of the first nine talks, and talk a little about some
related topics that might be interesting. The remarks in this lecture are sketchy and
incomplete. First, a short review of the material so far.

Slide 10-1 Slide 10-1

Another commutative diagram?

Homotopy
theories

xxqqqqqqqqqq

&&MMMMMMMMMMM

oo //_____
�� ��Model

categories

ho(co)lim
hoKan
cofinality

oo //_____

�� ��+algebra

��

�� ��Grothendieck
const.

localizations &
completions�� ��+algebra, towers

��
Homology
decompositions

��

p-compact
groups

FunctorT
H∗ Homh(BV,−)

oo

��
p-local finite
groups

BQ → BU(n)
BQ → CpBG

oo

This is a large-scale outline of the lecture series. Homotopy theories are the ba-
sic objects of study; these can be thought of as categories enriched over topological
spaces or over simplicial sets (and in other ways, too). Homotopy (co)limits, (co)ends,
and homotopy Kan extensions, as well as localizations, are defined and characterized
in terms of homotopy theories. Model categories are handy tools for showing that
these constructions exist and for figuring out what they give in particular cases. The
Grothendieck construction is a clever device for building categorical models for homo-
topy colimits and coends.

The algebra of theT functor combines with tower technology to give a strong hold
on theZ/p-cohomology of function spaces with domainBZ/p. With algebraic in-
put of another sort (slide 4–5), the machinery of homotopy colimits, as supplemented
by the Grothendieck construction, gives many homology decomposition formulas for
classifying spaces of finite groups.

Finally, study of mapsBQ → CpBG (Q a finite p-group) reveals that these maps
depend only on thep-subgroup structure ofG. This is especially interesting in light of
certain homology decompsitions ofBG involving p-centric subgroups. Contemplating
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these structures leads leads to a relatively simple algebraic model forCpBG. Other
spaces which can be modeled in the same way are calledp-local finite groups, and
thought of as finite-group-like objects whose structure is concentrated atp.

Note: BU(n) is used on the slide as shorthand for the classifying space of a generic
connected compact Lie group.

Slide 10-2 Slide 10-2

Homotopy theories

Homotopy
theories

xxqqqqqqqqqq

&&MMMMMMMMMMM

oo //_____
�� ��Model

categories

ho(co)lim
hoKan
cofinality

oo //_____

�� ��+algebra

��

�� ��Grothendieck
const.

localizations &
completions�� ��+algebra, towers

��
Homology
decompositions

��

p-compact
groups

FunctorT
H∗ Homh(BV,−)

oo

��
p-local finite
groups

BQ → BU(n)
BQ → CpBG

oo

Higher category theory

• Homotopy theoryT = (∞, 1)-category

• Category ofT’s = (∞, 2)-category(?)

• Conformal field theories↔ (∞, n)-categories(?)

Enriched morphisms

• Spectra, chain complexes,. . .

Accepting the notion of homotopy theory is just the first step on an long and apparently
still treacherous journey. A homotopy theory is an(∞, 1) category, a category-like ob-
ject in which the morphism between two objects form a space or (if you loop down) a
topological (simplicial) groupoid. The “1” in(∞, 1) refers to this groupoid quality: all
of the1-morphisms are invertible. IfA andB are two homotopy categories, the mor-
phism objectBhA can be constructed as a homotopy category in its own right. There’s
no need for all of the maps inBhA to be invertible, but each component of a map-
ping complex inBhA is an ordinary space, which via looping corresponds to groupoid
objects. To my mind (admittedly uninformed!) this signifies that the category of homo-
topy theories is an(∞, 2) category. Clearly it’s possible to continue this progression. It
turns out that there is even a reason to continue: for instance,(∞, n) categories are re-
lated to higher conformal field theories (think manifolds, bordisms, bordisms between
bordisms,. . .) John Baez and Aaron Lauda have written a terrific article about things
like this [8].

Another direction to take with homotopy theories is to introduce richer morphism ob-
jects, e.g. spectra instead of spaces. For instance, Dugger and Shipley have studied
enriched model categories [31].
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Slide 10-3 Slide 10-3

Localizations & completions

Homotopy
theories

xxqqqqqqqqqq

&&MMMMMMMMMMM

oo //_____
�� ��Model

categories

ho(co)lim
hoKan
cofinality

oo //_____

�� ��+algebra

��

�� ��Grothendieck
const.

localizations &
completions�� ��+algebra, towers

��
Homology
decompositions

��

p-compact
groups

FunctorT
H∗ Homh(BV,−)

oo

��
p-local finite
groups

BQ → BU(n)
BQ → CpBG

oo

Right Bousfield localization
I : (C, E)→ (C,F) a right Bousfield localizationif ∃J

J : (C,F)↔ (C, E) : I J full & faithful

Examples
• Cellularization

• Local cohomology (C = ChR)

• Fibre ofX → Lf
n(X)

• Homology approximations?

Here, as in slide 5–1(C, E) is a homotopy theory in the guise of a categorical pair, and
E ⊂ F . The localization mapI : (C, E)→ (C,F) is a right Bousfield localization if it
is a right adjoint and its left adjoint is full and faithful. This comes up in a particular
model category situation. LetA be an object in a model category(C, E). Call a mapf
in C anA-equivalence ifHomh(f) is an equivalence inSp, and letF be the class ofA-
equivalences. Then, under mild conditions on(C, E) the mapI : (C, E) → (C,F) is a
right Bousfield localization; see [56,§5]. The functorJI is sometimes called a colocal-
ization functor or cellularization functor, andJI(X), writtenCellA(X) or CWA(X),
is called the cellularization ofX with respect toA. The natural mapCellA(X) → X
is called theA-cellular approximation toX, and it’s characterized by two properties:

1. CellA(X) is built fromA by iterated homotopy colimits, and

2. CellA(X)→ X induces an equivalenceHomh(A,CellA(X))→ Homh(A,X).

In the topological setting this is studied by Farjoun [48]. IfR is a commutative ring
andI ⊂ R is a finitely generated ideal, then local cohomology with respect toI is cel-
lularization in the categoryChR of chain complexes overR with respect to⊕kΣkR/I
[35];

10.1 Exercise.Suppose thatX is a spectrum. Show that the homotopy fibre of
X → Lf

nX [71] is the cellularization ofX with respect to∨kΣkA, whereA is
any stable finite complex of type withK(i)∗X = 0 for i ≤ n andK(n)∗X 6= 0. Show
thatX → Lf

nX is localization with respect to the mapA→ ∗.
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10.2 Exercise.Suppose thatG is a finite group and thatC is a collection of sub-
groups ofG. Show that the cellularization of the trivialG-space∗ with respect to

A =
∐

H∈C G/H is equivalent asG-space to the universal spaceEC (and nonequiv-
ariantly equivalent to the nerve of the poset represented byC). More generally, show
that if X is aG-space, thenCellA(X) is equivalent to the homotopy coend

(G/H 7→ XH)×h
OC

(G/H 7→ G/H)

over the categoryOC = {G/H : H ∈ C} of C-orbits.

Slide 10-4 Slide 10-4

The functor T and H∗ Homh(BV,−)

Homotopy
theories

xxqqqqqqqqqq

&&MMMMMMMMMMM

oo //_____
�� ��Model

categories

ho(co)lim
hoKan
cofinality

oo //_____

�� ��+algebra

��

�� ��Grothendieck
const.

localizations &
completions�� ��+algebra, towers

��
Homology
decompositions

��

p-compact
groups

FunctorT
H∗ Homh(BV,−)

oo

��
p-local finite
groups

BQ → BU(n)
BQ → CpBG

oo

Applications of T

• Structure ofU andK
• Realization of unstable modules

• H∗(arithmetic groups)

• Cohomological uniqueness

Out with BV !

• BV ↔ B(abelian) via H∗ ↔MU∗

Henn, Lannes and Schwartz [53] have used the functorT to get some very detailed
information about the category of unstable modules overAp. For instance, it turns
out that if G is a compact Lie group thenH∗BG is determinedfunctorially by the
structure ofH∗BG in a possibly large but finite range of dimensions. Schwartz [90]
proved a conjecture of Kuhn about the nonrealizability of certain unstable modulesM
overAp by a beautiful inductive reduction argument usingT (and the Eilenberg-Moore
spectral sequence). Henn [52] has figured out how to applyT to get information about
the cohomology of some infinite discrete groups, specifically arithmetic groups.

There are many papers that useT to prove that various spaces, usually classifying
spaces, are uniquely determined by their cohomology (see below, in the discussion of
homology decompositions). But beware! Not all classifying spaces are determined by
their cohomology algebras: compareBZ/4 andBZ/8. Even connectivity won’t make
the problem better.



Lecture 10: Wrapping up 103

10.3 Exercise. Find two connected compact Lie groupsG, G′ such that
H∗BG is isomorphic toH∗BG′ as an algebra overAp but CpBG is not

equivalent toCpBG′. (Hint: Try taking quotients ofSU(pn) × S1 by various finite
central subgroups.)

The two papers [2] [66] are especially fun because they look at examples in which
more than one space (up to homotopy) realizes a given cohomology ring, and all such
realizing spaces can be enumerated.

Suppose thatA is an abelian compact Lie group. Lannes and Dehon [27] have obtained
T -type information aboutHomh(BA,CpX) by using unitary bordismMU∗ and peri-
odic complexK-theoryK∗.

Slide 10-5 Slide 10-5

Homology decompositions and maps toBG

Homotopy
theories
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oo //_____
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const.
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completions�� ��+algebra, towers

��
Homology
decompositions

��

p-compact
groups

FunctorT
H∗ Homh(BV,−)

oo

��
p-local finite
groups

BQ → BU(n)
BQ → CpBG

oo

Revealed
• Decompositions ofBG (compact Lie),BX, BF
• Auth(BG), Auth(BX), Auth(BF)

Hidden

• Homh(BG, BK), Homh(BX, BY ), Homh(BF , BF ′)

Homology decompositions can be constructed for compact Lie groups,p-compact
groups, andp-local finite groups, sometimes by using the functorT and sometimes
with other techniques. Examples are in [59], [95], [25], [67]. In some sense,p-local
finite groups aredefinedby the existence of a certain kind of homology decomposition
for them.

These decompositions can sometimes be used to prove that a classifying space is
uniquely determined by, say, itsZ/p-cohomology ring, taken as an algebra overFp.
Many papers deal with examples of this; the simplest nontrivial case isBS3 [45], but a
case likeBF4, for instance [98], places much heavier demands on the machinery (and
the machinists). All of the papers classifyingp-compact groups that are mentioned
before slide 9–1 depend in one way or another on decomposition ideas.

Decompositions can also be exploited to compute maps between classifying spaces and
related objects. The most spectacular example of this is Jackowski-McClure-Oliver’s
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calculation of the space of self maps ofBG for G a connected compact Lie group
[60]. This is not explicitly based on homology decomposition machinery, but there are
homology decompositions lurking in theG-spaces (just as homology decompositions
are derived fromG-spaces on slide 4–5). It’s possible to make similar self-equivalence
calculations forp-compact groups [6] and for fusion systems [19].

However, mapsBG → BK remain a real mystery in general; representation theory
isn’t much of a guide unlessG is a finitep-group or more generally ap-toral group.
Jackowski, McClure, and Oliver have worked out some examples that show how com-
plicated the situation can be [61].

10.4 Exercise.UseTV for various elementary abelian subgroupsV (not just
V = Z/p) to prove that ifG is a finite group andp | #(G) then the central-

izer diagram for the collection of nontrivial elementary abelian subgroups ofG does
in fact give a homology decomposition ofBG. Working backwards, use this to obtain
the algebraic formula at the bottom of slide 4–5. Hint: Show that there is no problem
with the cohomology decomposition ifG is a finitep-group, becauseG has a central
element of orderp and soBG itself appears in the decomposition diagram. Observe
that if P is a Sylowp-subgroup ofG, then the transfer expressesH∗BG as a retract of
H∗BP . Since the cohomology of the centralizer of an elementary abelian subgroupV
of G is obtained by applyingTV to H∗BG, it should follow that in some sense yet to
be determined the cohomology of the centralizer diagram forBG should be a retract of
the cohomology of the centralizer diagram forBP and so the putative cohomological
decomposition arrow forBG should be a retract of the arrow forBP . But the arrow
for BP is an isomorphism, and a retract of an isomorphism is an isomorphism. Ken
Brown’s algebra is easier! But this kind of argument does lead to homology decompo-
sitions for compact Lie groups,p-compact groups, andp-local finite groups.
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Slide 10-6 Slide 10-6

p-compact groups andp-local finite groups

Homotopy
theories

xxqqqqqqqqqq

&&MMMMMMMMMMM

oo //_____
�� ��Model

categories

ho(co)lim
hoKan
cofinality

oo //_____

�� ��+algebra

��

�� ��Grothendieck
const.

localizations &
completions�� ��+algebra, towers

��
Homology
decompositions

��

p-compact
groups

FunctorT
H∗ Homh(BV,−)

oo

��
p-local finite
groups

BQ → BU(n)
BQ → CpBG

oo

Common generalization
p-local compact groups?

Recently, Broto, Levi and Oliver have taken the first steps towards merging the theory
of p-compact groups and the theory ofp-local finite groups [22]. They consider fusion
systems which are based not on a finitep-group (thought of as a Sylowp-subgroup of
the object under consideration) but on a discrete model for ap-toral group (thought of
as thep-normalizer of the maximal torus in the object under consideration).

Slide 10-7 Slide 10-7

Conclusion

Many other directions
• Realization of polynomial algebras (Steenrod’s problem)

• Finite loop spaces

• etc. etc.,. . .

• ArXiv

• hopf.math.purdue.edu

• MathSciNet (review and reference crosslinks)

Happy Surfing!

Hmmm, are they stillother directions if I point to references? See [7] for Andersen
& Grodal’s solution of the Steenrod problem. Andersen, et. al. [5] produce a long-
sought-after example of a finite loop space which does not have the rational type of a
compact Lie group. (The example has dimension 1254!)
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Basel, 2001.

[44] W. G. Dwyer, P. S. Hirschhorn, D. M. Kan, and J. H. Smith,Homotopy limit
functors on model categories and homotopical categories, Mathematical Sur-
veys and Monographs, vol. 113, American Mathematical Society, Providence,
RI, 2004.



Lecture 10: Wrapping up 109

[45] W. G. Dwyer, H. R. Miller, and C. W. Wilkerson,The homotopic uniqueness of
BS3, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298,
Springer, Berlin, 1987, pp. 90–105.

[46] W. G. Dwyer and C. W. Wilkerson,Smith theory revisited, Ann. of Math. (2)
127(1988), no. 1, 191–198.

[47] , Smith theory and the functorT , Comment. Math. Helv.66 (1991),
no. 1, 1–17.

[48] E. D. Farjoun,Cellular spaces, null spaces and homotopy localization, Lecture
Notes in Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996.

[49] P. G. Goerss and J. F. Jardine,Simplicial homotopy theory, Progress in Mathe-
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