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Lecture 1.
Homotopy theories and model categories

@ These argough notes. Read at your own risk! The presentation is not

necessarily linear, complete, compact, locally connected, orthographically
defensible, grammatical, or, least of all, logically watertight. The author doesn’t always
tell the whole truth, sometimes even on purpose.

This first lecture is deep background: before getting to classifying spaces, I'd like to
describe some homotopy theoretic machinery. The first question to ask before trying
to understand this machinery isvarybasic one.

Slide 1-1 Slide 1-1

What is a homotopy theory T?
Equivalent answers
o Tpar categoryC with a subcategory of equivalences
e Ten categoryR enriched over spaces (simplicial sets)
e Tsc Segal category
e Tcss complete Segal space
e Tqc quasi-category
e T oo-category (ofoco, 1) category)

Just like categories
Internal function object¥'s = Cath('ﬂ‘l, Ty) = ’]1‘2Tl

The main message here is that there has been a remarkable convergence of opinion over
the last few years about what a homotopy theory is [11]. All formulations give notions
which are equivalent (in a homotopy theoretic sense, see slide 1-10 below), although
the objects involved look very different in detail.

A pair (C,€) is a relative category, and from the point of view Bfs homotopy
theory is relative category theory. This is the form under which homotopy theories
usually show up in nature is usually some collection of morphismsd@mwhich are

not isomorphisms but have some claim to be considered honorary isomorphisms (for
instance ifC = Top is the category of topological spacé&smight be the collection of
homotopy equivalences). But any categGrgives a homotopy theory: tak&to the
identity maps or (it turns out equivalently) the isomorphismé.inother possibility

is to takeE = C.

A categoryR enriched over topological spaces is an ordinary category furnished with a
topology on each morphism space [9]. From the point of vieW gfhomotopy theory

is a continuous form of category theory. (N continuous: notice that we don't
worry about topologies on sets of objects.) The transifigy, = Te, involves
inverting the arrows ir€ in a derived sense [38]. Alternatively, the function spaces
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in the simplicial category can be view as spaces of zigzags in the original category
where the backwards-point arrows lie§r{36].

A Segal category is a simplicial space which is discrete at level 0 and satisfies
some homotopical product conditions [89] [10]. The transiflan — Ty
amounts to taking the nerve, and treating it as a simplicial space.

@ A complete Segal space is simplicial space which is not necessarily discrete at
level 0 and satisfies some homotopy fibre product conditions and some other
homotopical conditions [89] [11]. The transitidh, = T¢ssrequires repackaging
group-like topological monoids of equivalences into their associated classifying spaces,
but leaving the non-invertible morphisms alone. This is an unusually transparent model
for a homotopy theory: an equivalence is just a map between simplicial spaces which
is a weak equivalence at each level. Internal function objects are also easy to come by
here.

A gquasi-categorydo-category) is a simplicial set, treated from what classically
would be a very peculiar point of view [62] [63]. In some sense this is the most
economical model for a homotopy theory.

@ @ 1.1 Exercise.Let C be a category and its subcategory of isomorphisms.
In this particular case, describe in detail each of the various models for the
homotopy theory off (C, £).

The notatiorCath(’H‘l, Ts) or Tng denotes the homotopy theory of functors from the
first homotopy theory to the second, but taken in the correct homotopy theoretic way.
The notatiori’}l‘gﬂrl is very similar to a notation for homotopy fixed point sets that will
come up later on (2.28), but I'll use it anyway. This same ambiguity comes up without
the “h™: if X andY are spacesy X is the space of maps frodf to Y, butif Y is a
space and- is a groupY © is the fixed-point set of the action 6fonY".

The above internal function objects for homotopy theories are tricky to define correctly
in some models, but can have a very familiar feel to thenfC |€) and(C’, £’) are two
category pairs in which all of the morphismgidrand€’ are invertible, then the function
objectCat™(T(C, &), T(C',£")) is equivalent in the sense of homotopy theories to the
category in which the objects are funct@ts— C’ and the morphisms are natural
transformations. (To promote this to a homotopy theory, pick natural isomorphisms
between functors as equivalences.)

* 1.2 Exercise.Let G andH be two discrete groups, treated as one-object categories
or as homotopy theories (the latter by designating all morphisms as equivalences). De-
scribe the groupoid of functols — H in terms of the group structures 6fand H.

How many components are there to the groupoid? What are the vertex groups?

1.3 Exercise.LetC be a category, and Ié&t= C. Let Top be the homotopy the-

ory of topological spaces, where the equivalences are taken to be weak homotopy
equivalences. What geometric structures do you think are described by the homotopy
theoryCat"(T(C, £), Top)?
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Slide 1-2 Slide 1-2

Examples of homotopy theories Tpair presentation)

Geometry

Notation ¢ &

Toppe Top homotopy equivalences

Top Top weak homotopy equivalences

Topp Top R-homology isomorphisms

Top.,, Top isoonm; fori <n

Algebra

Sp simplicial sets | f| an equivalence iTop

sGrp simplicial groups | | an equivalence iTop
simp. rings, Lie alg.,etc (same)

Chpr chain complexes oveR homology isomorphisms
DG algebras homology isomorphisms

The first four examples illustrate the fact that a category can be associated with many
different homotopy theories. For instanceTop_,, the (n + 1)-sphere is equivalent
to a point, but itTop it isn't.

1.4 Exercise.Give an example of a map which is an equivalenc&ap but not
in Toppe.

Simplicial sets. Simplicial sets [49] [70] are slightly more complicated analogs of
simplicial complexes. They have two advantages over simplicial complexes:

e Better colimit properties. In a simplicial complek a simplex is determined by
its set of vertices, so collapsing the vertices¥ofo a single point in the category
of simplicial complexes causes itself to collapse to a point. But it's hard not
to want to collapse the two endpoints of a one-simplex together to get a circle.
Simplicial sets possess monolithic simplices of various dimensions; these have
vertices but are not determined by them. Collapsing is easy.

e Better limit properties. The relationship between the geometric realization of
the (categorical) product of two simplicial complexes and the product of their
realizations is obscure. (At best these two spaces have the same homotopy type).
There is no such problem with simplicial sets.

There is a short discussion of how to get from simplicial complexes to simplicial sets
in [43, §3]. Simplicial complexes are based on the categhrwhich can be described

up to isomorphism in (at least) the following three ways. (Note that any (partially)
ordered set gives an associated category, in which there is a unique morphism

if x <wy.)

1. A is the category whose objects are the ordered sets {0,...,n}, n >
0, and whose maps are the weakly order-preserving maps between these sets
(“weakly’= preserves<).
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2. A is the category whose objects are the finite ordered simplicial complexes
n > 0 and whose maps are the simplicial complex maps between these objects
which are weakly order-preserving on the vertices. (H&eis the space of
convex linear combinations g, ..., n}.)

3. A is the category whose objects are the finite categarjes > 0, and whose
morphisms are the functors between them.

A simplicial setX is a contravariant functor from to Set, i.e., a functorX : A° —

Set; maps between simplicial sets are natural transformations of functors. For each
n >0, X hasaseX, = X(n) = X(A,) of n-simplices, and these sets are related by
various face maps, degeneracy maps, and their composites. For example, there are two
face (vertex) mapsx(; — X, corresponding to the two vertex inclusioAy — A,

and one degeneracy mafy — X, corresponding to the collapge;, — Ag.

1.5 Exercise.Any topological spac&” has an associated simplicial $8hg(Y'), the
singular complex ol”, given bySing(Y),, = Hom(A,,,Y). Given this and the usual
construction of singular homology, how would you define the homology of a simplicial
set?

The geometric realization functor for simplicial complexes extends to a geometric re-
alization functor|(—)| for simplicial sets; the realization functor is left adjoint to the
singular complex functor (1.5). The realization &f can be obtained explicitly as

|X| = X xaA,; the notation stands for the cartesian product avef the contravari-

ant functorX with the covariant functoA, (slide 2-2). Both of these are functors to
Top, where we think ofX as taking values in discrete spaces. More formaly, is

the coend of the functdih, m) — X,, x A,, on A x A.

1.6 Exercise.Draw an analogy betweefi x G, for (F' : C°° — Top, G : C — Top),
andM ®pr N, for (M aright R-module,N a left R-module). Check the formula

M ®r N = R®Qpog,r (M ®z N)

(which seems to relate g to Hochschild homology). What's the corresponding for-
mula if any forF' x¢ G?

* 1.7 Exercise.Observe that any categofyhas an associated simplicial $&{C),
the nerve ofC, with N(C),, = Hom(n,C) (hereHom denotes the set of functors).
Try to determine the homotopy type pN(C)| in some simple cases, e.g.dfis the
pushout category (three objectss, ¢, and mapsd — a andb — c), or if C is the
(co-)equalizer category (two objeatsb, and two distinct mapg — b).

* 1.8 Exercise.Let Z be the categorg — 1 (i.e., the category for n = 1). Verify

that N(Z) is the simplicial set which corresponds to the ordered simplicial complex
{{0}, {1}, {0, 1}}, its geometric realization is the interval. Observe that a fungtor

C — D givesamaiN(C) — N(D) of simplicial sets, and that a natural transformation
betweenF, G: C — D gives a homotopW(C x Z) 2 N(C) x N(Z) — D.

* 1.9 Exercise. Conclude that if a categorg has a terminal object or an initial
object, therlN(C) has a contractible geometric realization.
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1.10 Exercise. Convince yourself that i is a finite simplicial complex and is
the category determined by the poset of simpliceg(ofordered by inclusion), then

| N(C)| is homeomorphic toK|. Conclude that any finite complex is weakly homotopy
equivalent to the nerve of a category. What about any topological sp@c€an you
choose the category and the weak equivalence to be natuke? in

1.11 Exercise.If K is a simplicial complex, there is a simplicial s&hg(K) given

by letting Sing(K),, be the set of simplicial complex mags, — K (these maps
are not required to be monomorphisms on the vertex sets). CheckStinal( k)| is
not necessarily homeomorphic [&|. Are they homotopy equivalent? Check that the
situation is substantially nicer K is an ordered simplicial complex aring(K) is
defined in terms of (weakly) ordered simplicial set maps— K.

@ @ 1.12 Exercise.The process of passing from (ordered) simplicial complexes

to simplicial sets is not totally unrelated to the passage from varieties over a
field to objects inA-homotopy theory. A simplicial set is a contravariant functor from
finite ordered simplicial complexes to sets which takes whatever pushouts exist in the
domain category to pullbacks in the range. The first step in construgtifgpmotopy
theory is to consider contravariant functors from varieties to simplicial sets which take
certain pushout-like diagrams in the category of varieties to homotopy pullbacks of
simplicial sets. Are there any other examples of this kind of construction?

Simplicial objects. A simplicial object in a categorg is a functorA°? — C.

1.13 Exercise. Let R be a ring and consider an object in the categdod g of
R-modules. There is a normalization functdr: sModr — Chpg, which involves
dividing out by images of degeneracy maps and taking the alternating sum of the face
maps. The functoV establishes an equivalence of categories betwddnd and

the category of non-negatively graded object€dfr. Familiarize yourself with this

[70, Chap. 5] [49, I11.2]. What iV~ (R[n]), whereR|n] is the chain complex which

is zero except for a copy dt in degreen?

Non-abelian homological algebra. Simplicial objects can serve as substitutes for
chain complexes in categories which are not abelian. For instance, Quillen [84] defined
cohomology for a commutative ring by applying an “indecomposables” functor to a
simplicial resolution ofR, in much the same way as you might define higher Tor’s for
an R-module by applying a tensor product functor to a chain complex resolution of the
module.
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Slide 1-3

The homotopy categoryHo(T)

The most visible invariant of a homotopy theory
Tpair Ho(C,&) =€~1C
Ten Ho(R) = moR (i-e. mo(morphism spacey

Pluses and minuses
e Elegant (but only a small part of the structure)

o Can be hard to compute in thig,;r case.

FormingHo(C, £) involves taking seriously the idea that the mapg iare honorary
isomorphismsHo(C) is the category which results if the morphism<imre forcibly
declared to be isomorphisms.

1.14 Exercise.Let K be a finite simplicial complex; the poset of simplices ok
(ordered by inclusion) anfl = C. The categoryHo(C) is a groupoid (because every
morphism has been made invertible). Can you identify this groupoid in some simple
cases? In general?

1.15 Exercise.In the above situation, can you guess what the cate@ogn-

riched over spaces which correspond&t@, £) looks like? What is lost in this
case in passing frorfi(C, £) to Ho(T(C, £))? Is it always the case that something is
lost?

Slide 1-4

Examples of homotopy categories

Geometry

) MapsX — Y in Ho(C, &)

Toppe homotopy classeX — Y

Top homotopy classeEW(X) — Y
Topp homotopy classe€W(X) — Lr(Y)
Top«,, homotopy classeSW (X ) — P,(Y)
Algebra

Sp homotopy classesX| — |Y|

sGrp pointed homotopy class€3| X | — B|Y|
Chg chain homotopy classes Proj. Rgs) — Y

Note: CW(X) denotes a cell complex which is weakly equivalent to the spéce

There is a general theme in the above examples: méaps> Y in the homotopy
category of(C, £) are computed by finding some kind of a nice stand¢frfor X and
computing some sort of equivalence classes of magsfiom X to Y. Clearly, there
is extra structure in the categories which makes this possible.

Slide 1-3

Slide 1-4



Lecture 1: Homotopy theories and model categories 9

1.16 Exercise.Try to make one of the above calculations by hand, for instance, in the
Top case. First, construct a catega@yin which the objects are spaces and the maps
X — Y aregiven bjfCW(X), Y]. (Observe thaCW(X),Y] & [CW(X), CW(Y))).
Then build a functoffop — Q. Show that the functor sends weak equivalences to iso-
morphisms and that it is universal with respect to this property.

One of the most convenient frameworks in which it is possible to make calculations
like this is the framework of Quillen model categories.

Slide 1-5 Slide 1-5

Model category: (C, £) with extras

Routine axioms
e MCO equivalence$~), cofibrations(—), fibrations(—»)

e MC1-3 composites, retracts, 2 out of 3, limits, colimits

Lifting
e MC4
A— X
P 3nif forgis~
Floow g
7/
B——>Y

Factorization
e MCS5 any map factors < - — and — -5

For more information on model categories, see for instance [58], [49, Il], [41], or [54].
The ur-reference is Quillen [86].

Axioms MC1-3 guarantee thaf has limits and colimits, that all three distinguished
classes of maps are closed under composites and retracts, and that the class of equiv-
alences has the “2 out of 3" property (given composable arrpwendg, if two of

the three mapd, g, fg are equivalences, so is the third). In recent treatments the
factorizations fronMCS5 are usually assumed to be functorial.

1.17 Exercise.What does it mean to say, for instance, that the class of cofibrations is
closed under retracts?

A map which is a (co-)fibration and an equivalence is called an acyclic (co)fibration.
Axiom MC4 is reminiscent of the homotopy lifting property or the homotopy extension
property. This axiom is sometimes expressed as the statement that cofibrations have the
left lifting property (LLP) with respect to acyclic fibrations, while fibrations have the
right lifting property (RLP) with respect to acyclic cofibrations.

1.18 Exercise.Observe that the model category axioms are self-dudl;isfa model
category, so ig°P.
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1.19 Exercise.Use MC4 in combination with the retract property to show that in a
model category a mapf is a cofibration if and only iff has the LLP with respect to
acyclic fibrations, or an acyclic cofibration if and only if it has the LLP with respect
to fibrations. (By duality, there are parallel characterizations of fibrations and acyclic
fibrations.) Conclude that, given the equivalences, the fibrations and cofibrations de-
termine one another.

Suppose thaf is a model category with initial objeet and terminal objeck (why

do such objects always exist in a model category?). An objedf C is cofibrant

if ¢ — X andfibrantif X — x. A cofibrant replacemenk® for X is obtained
from the MC5 factorizationg — X¢ = X and a fibrant replacemer¥’ from the
factorizationX < X' — «. (More loosely, a cofibrant replacement is a cofibrant
object mapping taX by an equivalence, and a fibrant replacement is a fibrant object
receiving an equivalence froix.)

1.20 Exercise.If (C, &) is a model category, argue thHbmyy,c)(X,Y’) can

be computed as the set of “homotopy classes” of maps from X°¢ to Y.
The homotopy classes are constructed as follows. Défine A; (a notation, not a
product!) by factoring the fold mapX°¢II X¢ — X x A; = X. Now declare two
mapsf, g : X¢ — YT to be homotopic iff + ¢ : X¢II1 X¢ — Y’ extends oveX x A;.
(Hint: manipulate cofibrations and fibrations to show that homotopy is an equivalence
relation on maps¥¢ — Y’ and that homotopy respects compositions. Then construct
a categoryC’ with the same objects a3, but in which the mapsX — Y are the
homotopy classes of mapé® — Y, and argue that an appropriate funafor- C’ is
universal with respect to functors grwhich send equivalences to isomorphisms.)

@ 1.21 Exercise[37] Expand on the above idea to get objekts A, n > 0,

all equivalent taX, which fit into a cosimplicial objeck x A, in C. To
begin, X x Agis X®andX x A; is as above. Construgf x 0A, by gluing3 copies
of X x A; together along the “vertex” copies &f x Ay. Build X x A, by noticing
that there is a natural may x 0A, — M, where

M= (X x A1) Xxxa, (X X Ay),

and factoring this map into the a cofibration followed by an acyclic fibration. Where
did M come from? (Consider the two collapses of an ordered 2-simplex onto an ordered
1-simplex.) Proceed by inductioi

Remark. The simplicial seHom¢ (X x A,., YT) is equivalent tdlom (X, Y"), where
R is the category enriched over spaces (simplicial sets) representing the homotopy
theory(C, £).
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Slide 1-6

Examples of model categorie$C, )
Geometry
e Topy, Hurewicz fibrations, closed NDR-pair inclusions
e Top, Serre fibrations, retracts of relative cell inclusions
e Top?, objectwise Serre fibrations, retracts of relative diagram cell inclusions.

Algebra
e Sp, Kan fibrations, monomorphisms

. Ch;g, surjections in degrees 0, monomorphisms such that the cokernel in
each degree is projective

HereCh}, is the category of nonnegatively graded chain complexes Byexith ho-
mology isomorphisms as equivalences.

1.22 Exercise Verify that the indicated choices produce a model category structure on
Chj% (this is one way to build up homological algebra).

1.23 Exercise.Produce another model category structure(ﬂnj; in which the cofi-
brations are the monomorphisms and the fibrations are maps which are surjective in
positive degrees and in each degree have an injeBtmedule as cokernel. Conclude

that there are sometimes options available when it comes to putting a model category
structure orn(C, £).

Remark. It's not too complicated to produce the model category structufBogn(and
actually pretty interesting, since the usual approach depends on a widely applicable
trick due to Quillen called the small object argument). The verifications I've seen for
the model category structure 8p are messier and less satisfying.

Diagrams give interesting model categories.

1.24 Exercise. Suppose thafC, &) has a model category structure. LBtbe the
pushout category (two-source categofy)« b — c}, and consider the catego@’
whose objects are the functols — C and whose morphisms are the natural trans-
formations; this provides a homotopy theory in which the equivalences are the natural
transformations which for each object Bf give a morphism ir€. Consider a mor-
phism

X Y Z
L
X’ Y’ A

in C? and call it

¢ afibration, if each of the vertical maps is a fibratiorCirand

e acofibration, ifY — Y’, X Iy Y’ — X" andZ [[, Y’ — Z’ are cofibrations
inC.

Slide 1-6
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Verify that these choices give a model category structuréon

1.25 Exercise Suppose thaD is the pullback category (two-sink category)
a— b+ c.

Use the previous exercisge duality to obtain for free a model category structure on
CP.

1.26 Exercise.Formulate the notion of a categofy in which the objects have
nonnegative integer gradings and in which the grading of the source of a mor-
phism is always strictly less than the grading of the target; call this, sagcesasing
category since the morphisms increase the nonnegative integer grading l%8tbe
a model category. Generalize the above to get model category structut€samu on
¢P”. (It would be tempting to calD° adecreasing category

As indicated on the slide, D is any category there is a model category structure on
Top” in which the fibrations are the maps of diagrams which give objectwise fibra-
tions in Top. The cofibrations are constructed as follows. L&t be then-disk and
Sn=1 = §D" its boundary For each € D, then-disk D based atr is the functor

D — Top given by

Dy (y) = HHomD('x,y)Dn = D" x Homp(z,y) .

Then — 1 sphereS?—! = 9D" is defined similarly. AmapX — Y in CP is a relative
diagram cell inclusion ifY” is obtained fromX by iteratively (perhaps transfinitely)
attaching cells of the formiD?, 9D™) for variousn, 2. The cofibrations iffop” are
the retracts of relative cell inclusions.

@ 1.27 Exercise Produce a model category structure as abov@hi (remember,
Sp = simplicial sets). How about something similar f@@h};)P? (These are
called projective model category structures.)

@ 1.28 Exercise[49, VII1.2.4] Produce a model category structureSy” in

which the cofibrations are the objectwise cofibrations. (This is much harder,
and requires a willingness to let go of any desire to describe the fibrations explicitly.)
This is called the injective model structure 8p”.

Remark. If C is a model category, it does not seem to be true in general that there
is a model category structure on the diagram categdty Such a model category
structure is known to exist only & is nice (cofibrantly generated) [56, 11.6] Dris

nice (above, see [56, Ch. 15] or [58, Ch. 5]). There are ways to work around this; one
of them (roughly) [26] is to construct another categ®yfrom D such thatD’ is nice
(i.e.C?' has a model category structure) and the homotopy thea? ofs equivalent

to the homotopy theory af”.
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Slide 1-7 Slide 1-7

Dividends from a model category structure on(C, &)

Calculate
e Ho(C) (or evenTen(C, £)) from (C, €)

e Diagrams:Theory of(C, £)(P-F)  ~  T(C, E)NT(D.F)

Construct
e Derived functors
e Homotopy limits & colimits

Identify
e Equivalenced'(C, &) ~ T(C',E")

The exercises above suggest how to com@itéC, £), or even the associated topo-
logically enriched category, from a model category structuré(®@). Equivalences
between homotopy theories are discussed below, while homotopy limits/colimits will
come up later. The diagram classification goes as follow., ) and(D, F) are two
relative categories, the relative category

Fun((D, F), (C,&)) = (C,&)PF)

has as objects the functafs— D which take& to F, has as morphisms the natural
transformations, and has as equivalences (i.e. distinguished subcategory) those natural
transformations which carry each objectCdb an equivalence i®. Thenif(C, £) has

a model category structure, the homotopy theory of this functor category is equivalent
to the mapping objecﬁjath(T(D,]-‘),T(C, £)). This has been worked out explicitly

for C = Sp but almost certainly holds in general.

1.29 Exercise.lt’s possible to view this diagram classification claim as a gener-
alization of bundle classification theory. How?

1.30 ExerciseLet C be the categorfLop (or, with appropriate adjustments, the
categorySp, if this seems more convenient). LBtbe the category = 0 — 1
(treated as a homotopy theory with only the identity maps as equivalences). Consider
as above the homotopy theory of funct@s— C. Show that ifX andY are CW-
complexes, the set of equivalence classes of fundfor® — C with F(0) ~ X and
F(1) ~ Y is in bijective correspondence with the set

mo Aut"(X)\ [X, Y] / o Aut"(Y) .

Here [X,Y] is the set of homotopy classes of maps framto Y, Aut"(Z) is the
group-like monoid of self-homotopy equivalencesffand the orbit sets are obtained
from the composition action of self-equivalences on maps.

@ 1.31 Exercise.Looking at the previous exercise with a homotopy theoretic
eye strongly suggests considering the double Borel construction

Aut"(X)\\ Map(X,Y)// Aut"(Y).
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What is the significance of this construction in terms of the funciors> C? (Note
that the above exercise amounts to the statementrthaf this construction classifies
certain functors.) What happendlif=n, n > 1?

1.32 Exercise.In the above situation, compute homotopy classes of mag¥ in
from X — Y to Z — W in terms of homotopy constructions ¢h (You're
computing the homotopy category of the homotopy the@wy" (Tp, T(C, £)).)

Slide 1-8

Equivalences between homotopy theories

Paradox

There is a homotopy theory of homotopy theories.

Equivalences vary with context
(Ten) F: R — R’ is an equivalence iHo(F) is an equivalence

of categories antlomg (z,y) ~ Homg, (Fz, Fy)
(Tes9 F': X« — Yi is an equivalence iK,, ~ Y, n >0
(Tpair) F: (C,€) — (C’,£’) is an equivalence if (??)

SpecialTp,ir case
Filling in (??) easier for model categories

There are set-theoretic problems with contemplating the homotopy thealy lo6-
motopy theories, but these are easy to evade by sticking to homotopy theories whose
objects and morphisms are sets in some chosen Grothendieck universg@Jé4lhe

slide refers to the fact that determining whether or not a map between homotopy theo-
ries is an equivalence can be tricky, but there are some easy ways to check this in the
model category case.

The simplest context in which to characterize equivalences between homotopy theories
is Ten: the category of topologically (respectively, simplicially) enriched categories. A
functor F' : R — R’ between two of these objects is an equivalence if

e moF : myR — myR’ is an ordinary equivalence of categories (in other wdrds
induces an equivalence of categorigs(R) — Ho(R')), and

o for any two objects:, y of R, the map
Hompg (x,y) — Homp/ (Fx, Fy)

induced byF is an equivalence iffop, i.e., a weak homotopy equivalence (resp.
an equivalence iSp).

Slide 1-8
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Slide 1-9 Slide 1-9

T(C,E&) ~ T(C', &) for model categories
Conditions on adjoint functors F: C < C’ : G
1 F(=)=(=) and G(=)= (=)
2. f: A3 GBY o fbFAY) S B
Definition 1. (1) = Quillen pair, (1) 4+ (2) = Quillen equivalence
Theorem 2. A Quillen equivalencéF, G) inducesT(C, &) ~ T(C',E’)

In a Quillen pair,F' preserves cofibrations artd preserves fibrations. The condition
on a Quillen equivalence is that in addition,4fis a cofibrant object of and B is a
fibrant object ofC’, then a magf: A — G(B) is a equivalence i@ if and only if the
adjoint mapf®: F(A) — B is an equivalence i@’

1.33 Exercise. Show that if ¥ and G form a Quillen pair, therF" preserves acyclic
cofibrations and- preserves acyclic fibrations. (Use the fact that these kinds of maps
are characterized by lifting properties; see 1.19.)

It may be unclear how a Quillen pdiF, G) induces an equivalence of homotopy the-
ories, since the functors in the pair do not necessarily preserve equivalences, and so do
not directly induce morphisms of homotopy theories. The key observation is due to K.
Brown [58, 1.1.12].

1.34 Exercise.Let F' be a functor from a model category into some other category. If
F takes all acyclic cofibrations to isomorphisms, tiétakes all equivalences between
cofibrant objects to isomorphisms.

There is also a dual form involving fibrations and fibrant objects. It's known tt@t if

is a model category, then the morphism<ofvhich become isomorphisms Hio(C)

are exactly the equivalences (no additional morphisms are inverted). It follows that
if (F,G) is a Quillen pair, therF' preserves equivalences between cofibrant objects
and so induces a map of paiic®, £¢) — (C', '), whereC¢ is the full subcategory of
cofibrant objects i€ and£¢ = £NCC. Now it is necessary to observe that the inclusion
(C% &%) — (C, &) induces an equivalence of homotopy theories. The zigzag

T(C,E) & T(CS,E%) — T(C, ')

is the map which if F, G) is a Quillen equivalence induces the equivalefi¢g, £) ~
T(C',&).
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Slide 1-10

Examples of equivalences between homotopy theories
Examples

e Top andSp

e Sp, andsGrp

e Simplicial algebras and D& algebras

e Chain complexes anf# Z-module spectra

Meta-examples
® Ten, Tsc, Tess @andTqc (Tpair belong here?)

HereSp., is the category of pointed simplicial sets; a map in this context is an equiva-
lence if it induces an equivalence $p between the basepoint components.

Implicit above is the statement thiit., Tcss Ten, €tC. have model category structures.

So it's important to be careful in thinking about “maps” between homotopy theories;
such a map will necessarily be represented by an actual morphism only if the source
homotopy theory is cofibrant in the appropriate sense and the target homotopy theory
is fibrant.

Remark. It is almosttrue that a magC,&) — (C’,£’) of homotopy theories is an
equivalence if and only if the induced map of diagram theories

Cat"(T(C’,£"),Sp) — Cat"(T(C, ), Sp)

is an equivalence [40]. But not quite; the problem is an interesting one that arises even
for discrete homotopy theories, i.e., ordinary categories.

@ 1.35 Exercise Give an example of a functdr: C — C’ between (ordinary)

categories such that (15 induces an equivalence of categormcl —
Set®, but (2) F itself is not an equivalence of categories. (Himétracts) Go on to
characterize the functos— C’ which have property (1).

Slide 1-10
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Lecture 2.
Homotopy limits and colimits

Slide 2-1 Slide 2-1

Colimits and related constructions
Colimitfor X: C — S
colim: S¢ - S : A
Homge (X, A(Y)) = Homgs (colim X, Y)

LKang for X: C - Sand F:C — D
LKang: S¢ < 8P . F*
Homge (X, F*Y) = Homgp (LKanp X,Y)

CoendforX:C® xC — S

a 3

AT |
| coend X = colimyc)(f — X(a,b))
A

I
I
G/Hb/

This slide describes colimits (left adjoints to diagonal functors), left Kan extensions
(left adjoints to restriction functors) and coends (not described directly, but asserted to
be given by some funny associated colimits).

The pictorial description ofA(C) signifies that an object of(C) is a solid arrowf :

a — bin C, while a morphism from the top solid arrow to the bottom one is the
indicated peculiar type of commuting square. Note that taking left and right endpoints
of the object arrows gives a functd(C) — C°P x C. The categon/(C) is sometimes
called thearrow categoryof C, and sometimes thgvisted arrow categoryl prefer the
second name because it's a reminder that one of the vertical arrows in a morphism is
twisted backwards.

2.1 Exercise.Check that the colimit description of the coend [68, IX.6] is correct.

2.2 Exercise.If G is a (discrete) group, |l denote the category associatedip

this is the category with one object in which the maps from the object to itself are
given byG. A functorCs — S amounts to an object & with an action ofG. Let

H be a subgroup of7, andF': Cy — Cg the natural functor. Compute the left Kan
extension functoS¢# — S¢ if (a) S is the category of sets, or (1) is the category

of R-modules for a ringR. In both cases, compute the colimit functéts — S.

2.3 Exercise. It's clear that a colimit is an example of a Kan extension. It is also
possible to compute Kan extensions in terms of colimitsl & D, theover category
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(also called comma categor¥)| d can be described pictorially as follows:

Show thafLKanr(X) is the functor which assigns tbe D the colimit, overF'|d, of
the functor which assigns (@, F'(¢) — d) the objectX (¢) [56, 11.8]. Symbolically,

LKang(X)(d) = colimp 4 [(c, F(c) = d) — X (c)]

This is sometimes expressed by saying that left Kan extensions can be computed point-
wise.

2.4 Exercise. Show that if F': C — D is the inclusion of a full subcategory, then
LKang(X) actually is an extension oK to D (in other words, the restriction of

LKang(X) to C is isomorphic toX). Show by example that this is not necessarily
the case in other situations.

Slide 2-2 Slide 2-2

Aside: notation for special coends
Monoidal category S
e Bifunctor®: S xS — S
e Usually associative, unital (commutative) up.to

® overC of functorsC — S
X:C® =S, Y:C—S

X ®c Y := coend of (a,b) — X(a) ® Y(b)

Usually ® = x
S=Sp, ®=x
Mapg, (X xc Y, Z) = Homg,c (X,Map(Y, 2))

This slide establishes a notation for “balanced products” of functors with values in a
(symmetric) monoidal category in terms of an associated coend. The functors are both
defined on some catego@y but one of them is required to be contravariant and one
covariant. We'll be mostly in the case in which the monoidal structure is given by
cartesian product ifop or Sp.

Note that the last displayed isomorphism does in fact make s&hisea contravariant
functorC — Sp, and so the functoMap(Y, Z), sendinga to Map(Y (a), Z) is a
covariant functor.
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2.5 Exercise. Convince yourself that the last displayed isomorphism on the slide is
correct.

2.6 Exercise. Try to interpret the tensor product of a left module over a thgvith

a right module as a coend in the above sense. It may be necessary to deal with addi-
tive categories=€ morphisms are abelian groups, composition is bilinear) and additive
maps between them.

2.7 Exercise. Let G be a discrete group with associated categ@sy(2.2). Let
X: Cg — Sp be a contravariant functor (a right-space) and”: C¢ — Sp a co-
variant functor (a leftz-space). Show thaX x.. Y is the orbit space of action &
on X x Y obtained by converting the action dato a left action using — ¢~ and
then taking the diagonal action on the product.

Slide 2-3 Slide 2-3

Homotopy colimits and related constructions
C, S homotopy theories

Homotopy colimitfor X: C — S
hocolim: S¢ < S : A
Homgc (X, A(Y)) ~ Hom'y (hocolim X, Y)

LKan%fOrX:C—»SElhdF:C—»D
LKan®: ¢ « 8P . F*
Hom'}c (X, F*Y) 2 Hom',p, (LKan, X, V)

Homotopy coend forX: C? x C — S
hocoend X = hocolim 4(¢) 0f (a — b) — X(a,b)

Uelv= hocolim 4 ¢y of (a — b) — U(a) ® V(b)

Remark. Most of the time when homotopy colimits come up in these lectdtésan
ordinary discrete category, treated as a homotopy theory by taking the equivalences to
be the isomorphisms. The obje$§ andSP on this slide should really b§" and

S"P, but it seemed too cluttered to have an “h” decorating both the function categories
and thehom constructions.

This brings up the fact that the slide contains the first appearari¢eraf (U, V): this
stands for the function space of maps frbito V', wherelU andV" are objects in some
homotopy theoryl. The homotopy type OHomh(U, V') may be more or less deeply
buried, depending on how the homotopy theory is presented. If the theory is given as
a categoryR enriched ovelSp, thenHomh(U, V) is the space of map§ — V in

R. If T is given by a paiC, £), then in generaHom" (U, V) has to be computed as

a space of zigzags [36], though(if, £) has a model structure there is a more direct
approach (see 1.21, [58, 5.4], or [56, Ch. 17]Xdf£) has the structure of a simplicial
model category [58, 4.2] [56, Ch. 9], théh)mh(U, V') is equivalent to the simplicial
mapping spac@lap(U°, V), whereU?® is a cofibrant replacement fd@f and V' a
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fibrant replacement fov'. In practiceHomh(U7 V') is usually given by any reasonable
mapping space construction that respects equivalences in both variables.

The last displayed definition contains an underlying assumption that the pairing map
S xS — Sis amap of homotopy theories (orSfis a category with equivalences, can

be suitably adjusted to become a map of homotopy theories). This won'’t be an issue
for us, since in the monoidal categqi¥p, x ) the monoidal operation does preserve
equivalences.

2.8 Exercise.Explain whatX ®! Y should mean ifX andY are, respectively,
contravariant and covariant functors frahto the category of chain complexes
of modules over a commutative rirfgy

Note. The adjunctions above are in the appropriate enriched category sense; for in-
stance the second one asserts that the two functors

Hom' (X, F*Y) and Homf» (LKan'y. X, Y)
are explicitly equivalent as functors
(S€)°P x SP — Sp.

Depending on the model for homotopy theories that is currently on the workbench, this
explicit equivalence may or may not be realized by a direct morphism in the functor
category; it may well be specified as a zigzag of morphisms which are direct equiva-
lences.

Slide 2-4 Slide 2-4

Model category dividend
Theorem
If S admits a model category structure:

Existence
hocolim, LKan?,, hocoend exist for targetS.

Realizability
e hocolim ~ functorS¢ — S,

e LKan, ~ functorS¢ — SP, and

e hocoend ~ functorS€*x¢ — 8.

Remark. This theorem may or may not have been proved in the form in which it's
stated, but it's certainly true. The only issue is whether the various constructions avail-
able have been explicitly identified as homotopy colimits (etc.) in the sense of the
previous slide.
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Construction of hocolim, version |
Assumptions
e S admits a model structure

e S€ admits the projective model structure
(fibrations are objectwise)

The assumptions hold & is Sp, or Top.

Conclusion
hocolim X ~ colim X¢, X € s¢

The assumptions hold {f is an increasing category (1.26) orSfadmits a cofibrantly
generated model category structure. For instance, the above technique always works for
computing homotopy pushouts (1.24; see [€1Q]). Every object ifSp is cofibrant,

so a homotopy pushout 8p can be calculated by converting the two maps involved
into cofibrations (leaving the common domain unchanged) and then taking a pushout.

@ 2.9 Exercise. Give an example to show that ififopy,.). (the category

of pointed topological spaces with pointed homotopy equivalences as the
equivalences) the coproduct of two objects is not necessarily equivalent to the homo-
topy coproduct of the objects. (Even coproducts sometimes have to be derived.)

2.10 Exercise.Look ahead to slide 2—9. Can you think of an example in which the
product of a collection of objects in a model category is not equivalent to their homo-
topy product (the product of their fibrant replacements)?

g% 2.11 Exercise. How about an example different from the one you got by
applying the “opposite category” trick to 2.9.

Slide 2-6 Slide 2-6

Construction of hocolim, version |
Top, Sp. ...
(A) |Y|forY : A% — {Top or Sp}
|Y| _ Ay XpapY for Top
" | A[#] xa Y for Sp
(B) Repl (X):A® > Sfor X:C— S
Repl, (X)(n) = 11 £(0)

f:{0—1—--—n}—=C

hocolim = (A) + (B)
hocolim X ~ |Repl, (X)]
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Note. The functorA, is the functorA — Top which sends the set to the geometric
n-simplexA,, (the space of convex linear combinations of pointairBimilarly, A[«]
is the functorA — Sp which sendsa to the simplicial setA[n] corresponding to
the n-simplex, considered as an ordered simplicial complexpl, (X) is called the
simplicial replacementf the diagramX [18, XII].

2.12 Remark. This construction of the homotopy colimit works in many simplicial
model categories. Sometimes it's a good idea to insist that the values of the fithctor

are cofibrant objects in the base category; this guarantees the coproducts which enter
into the formation ofRepl, (X) have the correct equivalence type and that the gluing
involved in the realization construction is well-behaved. It is something of a surprise
that this cofibrancy condition is not necessaryliop [30]. It is necessary ifTop.,

(2.9).

Remark. In general, it is necessary to be careful in forming the realization of an
arbitrary simplicial object in a simplicial model category. (If yate careful, the re-
alization of the simplicial object should be equivalent to its homotopy colimit as a
functor A°° — S.) Being careful in this case means checking to see that the simplicial
object is Reedy cofibrant [58, 5.2] [49, VII]. Roughly, “Reedy cofibrant” means that
combined images of the degeneracy maps at each level sit cofibrantly inside the object
at that level, a request which is not unreasonable, since taking the realization involves
collapsing out the images of the degeneracy maps. Every simplicial obj8gi ia

Reedy cofibrant, but the same is not true of every simplicial obje@oip; this leads

to the tale of the thick realization of a simplicial topological space [91, Appendix].

2.13 Exercise. Check that the above simplicial construction does in fact give a ho-
motopy pushout iffop which agrees up to equivalence with the sort of homotopy
pushout from slide 2-5. (The outcome of the simplicial construction isn't nearly as
elaborate as it might look. Realizing a simplicial object involves collapsing the images
of degeneracy maps, and almost all of the pieces of the simplicial replacement for a
pushout diagram are degenerate.)

2.14 Exercise. Verify that the simplicial sefA[n] is the functorA° — Set which
sendsm to Homa (m, n). Conclude that for any simplicial séf, Homsp (A[n], X)
is naturally isomorphic toy,,.

* 2.15 Exercise.The following is not hard to prove, but it is completely implausible
at first sight. The coend formula for the realization of a simplicial objgctin Sp
exhibits| X.| as a quotient

] =TT (AlR] x X.) / ~

n

where in this case- is an equivalence relation generated by the morphismAdh
But X, is just a simplicial object in the category of simplicial sets, as such it amounts
to a functor

X: A% Set®” or X: :A%x A% . Set
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The second way of looking & leads to the definition of the diagondilg(X); this
is the simplicial set

diag(X) : A%P 229, AP AP X, Got .

Prove that for any simplicial object in Sp, | X| is isomorphic taliag(X).

2.16 Exercise.In Top, interpret the above simplicial homotopy colimit &f — Y

as the mapping cylinder of the map. What's the (simplicial ) homotopy colimit of
X —Y — Z? Interpret a homotopy colimit ifop indexed by an arbitrary category
in terms of building blocks of this kind [18, XII.2].

* 2.17 Exercise.Verify that the nerve (1.7) of a categofycan be identified as the
homotopy colimit of the constant functor which assigns to each obje€ttbé one-
point space. The constant functor is treated as taking valugp,iand the homotopy
colimitis in Sp.

2.18 Exercise.The above construction of the homotopy colimit works for the category
Sp. of pointed simplicial sets (and also in the categtiyp, of pointed spaces, as
long as the values of the functéf are assumed to be cofibrant, see 2.12). Verify that
the homotopy colimit in the pointed category is obtained by forming the homotopy
colimit in the unpointed category and collapsing out the nerve of the index category
(i.e., the unpointed homotopy colimit of the one-point basepoint functor).

2.19 Exercise Draw a picture of a homotopy coequalizerliop.

@ 2.20 Exercise. Filtering A, or A[x] by skeleta gives an increasing fil-
tration of hocolim X, which leads to a homology spectral sequence for
h.(hocolim X) (hereh, is any homology theory). Identify thE, page of the spectral
sequence as
EQ(Z,]) = COlimi hj (X)

wherecolim; is thei'th (classical) left derived functor of the colimit functaxb® —
Ab andh,;(X) is the functoiC — Ab obtained by applying; to X.

@ 2.21 ExerciselIn the above situation, show that this page can be identified
more explicitly as

Es(i,5) = HiN(hj(Repl,(X))) .

Hereh,;(Repl, (X)) is the simplicial abelian group obtained frdkepl, (X') by apply-
ing £;, N is normalization as in (1.13), and; is thes’th homology group of a chain
complex.

@ 2.22 Exercise. In an exercise that, in light of the above two, might seem
obscurely confusing, show that4f € Ab2"isa simplicial abelian group,
then
colim; A= H;N(A).

Resolve the confusion by observing thabif: C — Ab is any functorcolim.(B) can
be computed by a simplicial replacement formula.
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Homotopy limits and related constructions
C, S homotopy theories

Homotopy limitfor X: C — S
A: S « 8¢ : holim
Hom'l¢ (A(Y), X) ~ Hom' (Y, holim X)

RKanl}. for X: C — SandF: C — D
F*: 8P « &€ :RKan'};
Hom'}c (F*Y, X) 2 Hom{;, (Y, RKan'}, X)

Homotopy end for X : C®* x C — S
hoend X = holim 4(¢) of (¢ — b) — X (a,b)

Remark. The opposite of a homotopy theory is a homotopy theory, so a hapless lec-
turer who was pressed for time could point out that homotopy limits are just homotopy
colimits in the opposite category, and leave it at that

In this slide, as in 2-3S¢ andS™P should really bes"® andS"P

2.23 Exercise.Formulate the notion of right Kan extension, and show that right Kan
extensions can be computed pointwise (2.3). It will probably be necessary to consider
theunder categoried | F':

Identify some interesting right Kan extension.

2.24 Exerciself X,Y : C — S are two functors between ordinary categories, there is
afunctorHx y : C° x C — Set given by

Hxy(c,d') = Homg(X(c),Y(c)).

Check that the end of this functor is isomorphidfomgsc (X, Y).

Remark. Suppose thaf andS are homotopy theories. The mapping theSfy is
defined so that i\, Y : C — S are objects of the theory, then

Homfe x v ~ hoende [(c,¢) — Hom§ (X (c), Y(c))] .
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Another model category dividend
Theorem
If S admits a model category structure:

Existence
holim, RKan'}., hoend exist for targets.

Realizability
e holim ~ functorS¢ — S,

e RKan, ~ functorS¢ — SP, and

e hoend ~ functorS€™x¢ — .

Remark. This really does follow from the corresponding remark about homotopy
colimits, etc., because the notion of a model category is self-dual (1.18).
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Construction of holim, version |
Assumptions
e S admits a model structure

e SC admits the injective model structure
(cofibrations are objectwise)

The assumptions hold 8 is Sp (Top?)

Conclusion
holim X ~ lim Xf, X e &€

* 2.25 Exercise Determine what this says about homotopy pullback$pror Top.
What do you need to do to compute the homotopy limit of a tower

= Xy = X1 — - X1 — X

in a model category.
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Construction of holim, Version Il
Top, Sp. ...
(A) TotY forY : A — {Top or Sp}

Toty — J MaPTopa (Ax,Y) for Top
1\/[a’pSpA (A[*L Y) for Sp

(B) Repl*(X): A —-Sfor X:C— S
Repl”(X)(n) = 11 f(n)

f:{0—=1—--—n}—C

holim = (A) + (B)
holim X ~ Tot Repl* (¢ — X (c)")

Remark. The phrase: — X(c)' here stands for the functor that results from the
objectwise process of making every value of the funéfdibrant. InTop, this doesn't
require any action. The dual issue (replackidy ¢ — X (¢)€) does in fact come up in
forming homotopy colimits, but | didn't emphasize it because (1) every objegpas
cofibrant, and (2) by accident or good luck, depending on your point of view, the issue
is not important if the target categoryTop.

* 2.26 Exercise.Interpret this formula for holim more explicitly (at least Top).
A point in the holim is

e Foreachr € C, a pointinz. € X(c).
e Foreach arrowf : ¢ — ¢’ inC, a path inX (¢') betweenf (z.) andz. .
e For each composition— ¢ — ¢” in C, a2-simplex inX (¢’ with (?).

o (?)

* 2.27 Exercise. What construction does this give for the homotopy pullback in
Top?

2.28 Exercise. Let G be a discrete group, anil a G-space, treated as a functor
Ce — Sp (or C¢ — Top) (2.2). Show thahocolim X is the Borel construction
EG x¢ X; in other words, the bundle ové?G associated to the action 6f on X.
Check thaholim X is the space of sections of this bundle. There is special terminology
and notation for these homotopy limits and colimitelim X is called the homotopy
fixed point set of the action a on X and denoted{"“, while hocolim X is called

the homotopy orbit space of the action@®fon X and denoted .

@ 2.29 Exercise.Filtering A, or A[«] by skeleta gives in this case a second
quadrant homotopy spectral sequencerfpholim X. (Some problems do
come up. you need a basepoint to define homotopy groups, and there's no hope of
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choosing a basepoint if for instanbhelim X is empty. So assume that is a diagram
of pointed objects to guarantee a distinguished poirioiliim X.) Compare this with
2.20. Show that thé&? page of the spectral sequence is given by

Ey(—i,j) = lim" 7; X
wherelim’ is the i’th right derived functor oflim: Ab® — Ab. Or maybe not;

remember that is just a set, whiler; is a possibly nonabelian group. This spectral
sequence might occupy more second quadrant than you expect [14].
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Properties of homotopy (co)limits
for functorsC — S

Universal maps
hocolim X — colim X

lim X — holim X

Homotopy invariance
XS5y — hOC.Olim)i = h.ocolim Y
holim X = holim Y
Mapping adjointness
Hom!, (hocolim X, Y") ~ holimeop of ¢ — Hom"(X (c), Y)

Hom% (Y, holim X) ~ holime of ¢ — Hom"(Y, X (c))

Remark. The two homotopy limits on the right in the last display are homotopy limits
of functors intoSp (or Top).

Slide 2-12

Mysteries of (1) and (Il) revealed
for X: C — Sp

Homotopy colimit
Suppose thak takes on cofibrant values.

hocolim X ~ * xrc‘ X
| ~ * X Xe¢ .
¢ proj

D) ~ *g o Xe X

Homotopy limit
Suppose thak takes on fibrant values.

holimX ~ Hom"(
() ~ Map( , inj
(m ~ Map( X)

st

C
*proj»

Slide 2-11

Slide 2-12
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This is a lot like homological algebra: if you want to compute the derived tensor prod-
uct of two chain complexes, you can make either one or the other projective, it doesn’t
matter which.

Remark. In the first box,x is a contravariant constant functor, and in the second
box it's a covariant one. The simplicial formula fhbcolim X arises from takir(]pg the
following cofibrant model fox in the projective model category structure$p°

(*groj)(m) =N(z|C).

See 2.23 for a description of the under categgiy; for brevity, C here stands for the
identify functor onC.

2.30 Exercise.Check that this formula does provide a cofibrant modekfand that
(*proj) Xc X does in fact describe the simplicial model farcolim X

In the second boxylap stands for the simplicial mapping complex a#gl,; is a cofi-

brant model for in the projective model category structure®p°. The cosimplicial
formula forholim X arises from taking the cofibrant model given by

(pro) () = N(Clz) -
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Lecture 3.
Spaces from categories

In this section we’ll look at various constructions on categories which give interesting
results when the nerve functor is applied. At then end there’s a short discussion of
terminal functors and initial functors (generalization of terminal objects and initial ob-
jects). The basic properties of these functors don't directly involve nerves of categories,
but the functors are tied to nerves in a couple of different ways.

Slide 3-1 Slide 3-1
Categories vs. Spaces
Geometrization
N: Cat — Sp
Properties

e F:C—D +— NF:NC—ND
e 7: F5G +— H:NCxAl—-D

Advantages
e Categories more visible than spaces.
e Natural transformations more accessible than homotopies.

Can homotopy colimits (coends) be built in?
F:C — Cat = hocolim¢ N(F) ~ N(?)

Itis pretty clear that i’ is a category then the nerdeC of C, considered up to equiv-
alence inSp, does not capture a lot of the structure’in

3.1 Exercise.Give an example of two categori€sandD such thafN C andN D are
equivalent (i.e. weakly homotopy equivalent) as simplicial sets, but sucly tyadD
are not equivalent as categories.

But there is something to be said.

@ 3.2 Exercise. Show thatN C andN D are weakly equivalent as simplicial

sets if and only if the category pai(€,C) and (D, D) give equivalent ho-
motopy theories. (In other words, the neiN€, considered up to the usual notion of
equivalence for simplicial sets, exactly captures the homotopy theory that results from
inverting all of the arrows irg’.)

3.3 Exercise. Show thatN C, considered up to isomorphism of simplicial sets,
determineg up to isomorphism of categories. (Hint: look at the left adjoint to
N : Cat — Sp).

Trying to interpolate between the previous two exercises might well lead to the notion
of a quasicategory.
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Slide 3-2 Slide 3-2

The Grothendieck Construction
F:C— Cat — categoryC x I’

Object Morphism
| /\ ’ x/ \
| =z § [z X!{_i(]i)>f im(z) e §
|\ ° | | ° I .\ .// |
\
c c—————z————>c/

The Grothendieck constructighx F' is also denote@ F', fc F, orin general anything
else that somehow connotes adding up the valuésmferC. The slide is supposed to
indicate that an object of the categdty F' is a pair(c, z), wherec € C andz € F(c);

a morphism(c,z) — (¢, 2’) is then a paif f, g), wheref is a morphismc — ¢’ inC
andg is a morphism&(f)(x) — ' in F(¢).

3.4 Exercise.Suppose that’ is the constant functa@ — Cat with valueD. Show
thatCix F' is the product categor§ x D.

3.5 Exercise.Suppose that the grou acts on the groug/ by automorphisms, and
let ' : C; — Grp be the corresponding functor (2.2). Show tBatF is the category
corresponding to the semidirect product grabip< H. (The intent here is that the

x symbol is oriented so that the closed triangle points sideways towards the normal
subgroup.)

Slide 3-3 Slide 3-3
Thomason’s Theorem
F:C — Cat
Theorem
N(CxF) ~ hocolim¢ N(F)

Example
F : C — Set, CxF = Transport Category

e Object: (c,z), ceC,x € F(c)

e Morphism: fic— d with f(z) = o’

N(Transport Categody~ hocolim F'
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The reference for Thomason’s theorem is [97].

3.6 Exercise.In the above situation, show that the nerve of the transport category is
actually isomorphic tdocolim F', wherehocolim F' is formed according to the sim-
plicial formula.

@ 3.7 Exercise.Consider the possibility thatx F' might be the homotopy col-

imit of F' in the category of homotopy theories. Can you find any evidence
for or against this suggestion? Is there any reason to believe that the nerve functor from
categories to simplicial sets should commute with (homotopy) colimits?

Slide 3-4 Slide 3-4

Variations on Cx F' (all ~ onN)
F:C — Cat

C (F°P)

—

F(H) | im(a) /,I.
Sl I

(¢, x) (c',z")
Also have(C x F')P and (C x (F°P))°PI

This slide refers implicitly to the fact that for any categd®y the nerve of D is
naturally equivalent irSp to the nerve ofD. We’'ll see why in a minute. Meanwhile,
we've come up with four different categories whose nerves représentim N(F').

3.8 Exercise.Draw (Cx F')°P and (Cx (F°P))°P.

3.9 Exercise.Suppose that' : C — Dis a functor, and that € D. Show thalN(d| F')
is the homotopy colimit ovef of the functore — Homp(d, F(c)). Show thalN(F|d)
is the homotopy colimit ove€®P of the functorc — Homp (F(c), d).

Note thatCx F°P is quite weird, in that the two arrows that comprise a morphism in
some sense go in different directions.

For a functorF' : C — Cat, call the categorie$’(c), ¢ € C, thefibre categoriedor
the obvious projection functatx F* — C.
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3.10 Exercise Show that if all of these fibre categories have contractible nerve, then the
projectionN(Cx F') — N(C) is an equivalence of simplicial sets. (Use the homotopy
invariance of homotopy colimits, the fact that the nerv& @ hocolim *, and some

sort of functoriality which | haven't stated but which must be built into Thomason’s
theorem.)

3.11 Exercise.Show that adjoint functors
F:C—D:G

induce inverse equivalences (up to homotopy) betweéhand N D. Hint: natural
transformations give homotopies (1.8). Deduce (again 1.9) that any category with an
initial object or a terminal object has a contractible nerve.

Recall that ifC is a categoryA(C) stands for the twisted arrow category ®2.1).
There are natural functo$(C) — C and A(C) — C°P.

X 3.12 Exercise. Show thatA(C) — C can be identified a6x F' — C for some
functorC — Cat. Observe that all of the fibre categories have contractible nerves.
Show that the same is true dfC) — C°P. Conclude that in the diagram

C — A(C) — C%®

both of the functors induce equivalences on nerves [85, p. 94].

Slide 3-5 Slide 3-5

Extension to homotopy coends
F:C— Cat, G: C%® — Cat N(GHCKF) ~ N(G) x1 N(F)

Morphism

N

. F(f)
NS
GXCXF = {(c,z,y)}
/TN
G(f) y
f
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There’s a discussion of the Grothendieck construction model for homotopy coends
in [36, §9]. It's terse, and | don't thing the phrase “homotopy coend™ appears any-
where, but the argument does produce an equivalence between the nerve of a two-sided
Grothendieck construction and a simplicial model for the homotopy coend along the
lines of slide 2—6.

The slide signifies that an object6f<Cx F'is a triple(c, «, y) wherec € C, z € F(¢),
andy € G(c). Amorphism(c, z,y) — (¢, 2’,y') is itself a triple, consisting of a map
fie—cdinC,amapF(f)(z) — 2’ in F'(c) and a mapg7(f)(y') — yin G(c). It
should be pretty clear how to compose these triples.

The reader is left to ponder the multitudinous variafts®?) xCx F', GxCx (F°P),
...), all of which have equivalent nerves. One point that sometimes disorients me a bit
is the fact that the opposite category constructien” is acovariantfunctor onCat.

Working with Grothendieck constructions can be unexpectedly tricky. Here’s an exam-
ple (which when sorted out leads to yet larger collections of categories with equivalent
nerves). Suppose thétis category with equivalences(i.e. a homotopy theory) and
thatz andy are objects of. Consider the diagram categdiyZaZig(x, y) described

by the following picture:

The solid arrow zigzags are the objects of the category, and the pictured commuta-
tive diagram (which includes the dashed arrows) gives a morphism between the upper
zigzag and the lower one. The problem is to understand the homotopy type of the nerve
of this category. There are several ways to take this homotopy type apart; the most sym-
metrical one is to observe that an object consists of a t(ipl&’, h), whereU : A — z

is an object of the over catego8jx, V : y — B is an object of the under category
yl&, andh is an element of (U, V) = Hom¢ (A, B). The functorF is contravariant

in U, covariant inV, and takes values in sets (discrete categories). A morphism

(U, V,h) — (U, V' 1) in ZiZaZig(x,y) consists of a morphism : U — U’ in €|z

and a morphismy : V' — V”in y | € such that* (k') = v.(h) (this is the commutativ-

ity of the central square).

A first guess based on looking at the variances might have
ZiZaZig(x,y) 2 DxF for D= (Elx) x (yl&)

but this would be hasty.
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3.13 Exercise.Show that((£ )P x (y|£))x F is the diagram category

A——B
A

|

|

|

A better formula is this

ZiZaZig(z,y) = (y|1€) x F x (&Elx)

3.14 Exercise.Make sense of the above formula. In particularzifis a con-

travariant functoC — Cat, defineG x C and observe that its nerve is equiva-
lent tohocolimee N(G). Observe nevertheless th@tx C is not quite isomorphic to
(C°")x G, or even to the opposite of this last category. Observe further that the notation
(yl€) x F x (£]x) above now makes sense in two ways, either as

(&) x F] x (Elx)

or as
(yl€) x [Fx(Elz)]

Show that these two interpretations give isomorphic categories (thank goodness) and

that the nerve of this object (and hence the neniéiBaZig(x, y)) is in fact equivalent

to hOCOlim(glw)opX (yl€) H.

Slide 3-6

The parallel universe of Hom and ®

Setup
e R — Saug.k-algebras F': C — D categories
e gpM, sN cX,pY
Dictionary
o k®r M hocolichN*XgX
e Homp(k, M) holime X ~ Homl} (%, X)
e S®r M LKan/(X) ~ D xL X

e Homp(S, M) RKanl,(X) ~ Hom{ (D, X)

Slide 3-6
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At this point we're beginning to work our way towards some preliminary applications
of the Grothendieck construction; more applications will come up later on.

The notation: X on this slide denotes for short that is a covariant functor fron®
to, say,Sp. In the notationD x! X, D is shorthand for the contravariant functor
C — Set” given by

¢ — Homp(F(c),—).

(Note that the object on the right actually is a functor frémo Set.) The indicated
homotopy coend can be computed objectwis®jrin symbols

(D x! X)(d) = Homp (F(—),d) x} X .

The fact thatD stands for @0 Hom-functor which is contravariant o€ is silently
implied by the fact thaD appears on the left side of the homotopy coend.

Similarly, Hom (D, X) stands for the functdP — Sp which sendsi to
Hom (Homp(d, F(—)), X) .

The fact tha here represents a covaridhém-functor onC is necessitated by the fact
thatD appears inside of Hom" construction in which the second component, namely
X, is covariant.

The parallel universes here involve two constructions (restriction of a module along a
ring homomorphism, pullback of a diagram along a functor), each of which has both
left and right adjoints. In both cases there’s an underlying homotopy theory (at least if
you replace modules over the rings by chain complexes of modules) and both the left
adjoint and the right adjoint can be usefully derived (although the slide doesn’t refer to
the possibility of deriving the algebraic constructions). The main point of the slide is
psychological rather than mathematical: if you use notation for left and right homotopy
Kan extensions which is similar to familiar algebraic notation, you find yourself led to
correct conclusions.

3.15 Exercise.Find some reason to believe that the indicated formulas for the
right and left homotopy Kan extensions are correct.

For the material on the next few slides, see [57] or 8,



Lecture 3: Spaces from categories 36

Slide 3-7 Slide 3-7

Properties of Kan extensions

Transitivity (pushing forward over functors)

MR_—>S—=T XC—=>D—=>S5

On the left
Algebra TQr M 2T ®sS®r M

Topology S xf X ~ S x, D xh X

On the right
Algebra Hompg (T, M) = Homg (T, Hompg(S, M))

Topology Homf (S, X) ~ Homl}, (S, Hom (D, X))

3.16 Exercise What does this transitivity say about homotopy colimits?

3.17 Exercise.Check the transitivity properties by using adjointness properties of the
homotopy Kan extensions.

Slide 3-8 Slide 3-8

Does pulling back preservehocolim?
Cofinality (pulling back)

R— S, gN C—D, pY
On the left

Algebra VN : k®gr N ~ k®g N ?
Topology VY : hocolim F*(Y) ~ hocolimY ?
Topology VY : *x1Y ~ xxLY ?

Solution

Algebra k®r N =2 (k®r S)®s N, wantk®grS =k
Topology * xR Y ~ (x xB D) x ¥ want

In this slide,* x! Y stands for« x{} F*Y, where F denotes the functaf — D.
This notation makes the analogy with the ring context clearer. GNel® — D
the slide looks at the question of whether for ev&ry: D — Sp, the natural map
hocolim F*Y — hocolim Y is an equivalence.

3.18 Exercise.(for fun) Can you think of any augmentédalgebra map$ — S for
whichk ®g S = k? What about maps for which the analogous statement is true for
derived tensor products?
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Slide 3-9

Terminal functors
Definition 3. F : C — D terminalif  x, D ~ .

Theorem
F :C — Dterminal,pY = hocolim¢ Y ~ hocolimp Y

Interpretation (Grothendieck construction!)

|

/ |

(x x} D)(d) = N(@d|F) 4 :
|

\ !

This theorem guarantees that if for eathe D the under category| F' has a con-
tractible nerve, thetr’ : C — D preserves homotopy colimits (in other words, for each
Y : D — Sp, hocolim F*Y ~ hocolim Y.

3.19 Exercise Prove that this is an if and only if condition. Hint: consider the functors
onD given byHomp (d, —) for variousd. Show that each one has a contractible homo-
topy colimit (use the Grothendieck construction to interpret this in category theoretical
terms). Investigate what it means 8¢ Homp (d, —) to have a contractible homotopy
colimit.

3.20 Exercise(Sanity check.) Show that if is a terminal object of a categofy then
the inclusion{r} — C is a terminal functor.

3.21 Exercise.Given F': C — D, prove that if for eachl € D the nerve ofd| F' is
connectedthen F' preserves arbitrary colimits. Is this an if and only if statement?

3.22 Exercise Prove Quillen’s Theorem A, which states thaftif C — D is a functor
with the property that for eacth € D the under category| ' has nerve equivalent to
a point, thenF' induces an equivalence on nerves.

Somewhat trickier is Quillen’s Theorem B, which states the following. Suppose that
the nerve ofD is connected (to make the statement simpler) and that for each map
f :d — d' in D the (obvious) induced maN(d'| ') — N(d|F) is an equivalence.
Then the homotopy fibre of the map(C) — N(D) is equivalent taN(d] F) for any

d € D. Assume the following statement:

Theorem 3.23. Suppose thalN(D) is connected, and thdf : D — Sp is a functor
which takes each morphism Bfto an equivalence iSp. Then the homotopy fibre of
the natural maphocolimp F' — hocolimp * = N(D) is equivalent in a natural way
to F(d) for anyd € D.

Slide 3-9
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3.24 Exercise. Given Theorem 3.23, prove Quillen’s Theorem B. Do this by taking
the Grothendieck construction of the functbr— (d]F') on D°P and arguing that for
categorical reasons (natural transformations, adjoint functors, etc.) the nerve of this
category is equivalent iN(C).

3.25 Exercise Prove another version of Quillen’s Theorem B in which the under cate-

gories are replaced by over categories. (Notedhat (F'|d) gives a covariant functor
D — Cat.

@ 3.26 Exercise. This represents an attempt to calculate the homotopy fibre
of N(F): N(C) — N(D) when neither version of Quillen’s Theorem B
applies. The idea is that two directions competing with one another are bound to be
better than a single direction (and if something doesn’'t work the first time, try it again).

For eachd € D, letd | F be the category

doHF()

)

d ! F(f)

C

I

I

\

I

| I

\ | I
v v

/

d64>F(C)7

~

A<——-————-20o

The formulad — (d | F') gives a functord;: D — Cat. Use the argument in
3.24 to calculate the homotopy fibrelsf £') under the assumption thdt, sends each
morphism ofD to a functor which induces an equivalence on nerves. Now prove the
same thing withA, replaced byAs,,, whereAs,, (d) is the categoryl [*" F:

do d1 dQ dQn_Q —_— F(C), C
[ | | [ I
/ [ [ | [ I
[ [ [ [ I

d | I I \ F(f)yl If
[ [ | [ I
\ [ [ [ \ I
Y Y y i Yoy

dy dy dy dyp_g — F(c'),¢

Can you see the homotopy fibre taking shape? What happens in the colimit? (Another

question: is there any advantage to using patterns with two adjacent arrows pointing in
the same direction?)
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Slide 3-10 Slide 3-10

Does pulling back preserveholim?
Cofinality (pulling back)

R— S, gN C—D, pY
On the right

Algebra VN : Hompg(k,N) >~ Homg(k,N) ?
Topology VY : holim F*(Y) ~ holimY ?

Topology VY : Hom'L.(x,Y) ~ Homfp (x,Y) ?
Solution

Algebra Hompg(k, N) 2 Homg(S ®r k,N) |S®rk =k
Topology Homl. (+.Y) = Hom'y,, (D xJ} *,Y")

Here, givenF': C — D, the question is whether for every functér: D — Sp, the
natural magholim Y — holim F*Y" is an equivalence.

Slide 3-11 Slide 3-11

Initial functors
Definition 4. F : C — Dinitial if D x * ~ .

Theorem
F :C — Dinitial, pY = holim¢ Y ~ holimp Y

Interpretation (Grothendieck construction again!)

(D x %)(d) = N(Fd) ho FR) d

3.27 Exercise (Another sanity check.) Verify that ifis an initial object ofD, then the
inclusion{:} — D is an initial functor.

3.28 Exercise. Does the converse of the theorem on the slide hold? (In other
words, if a functorF' preserves all homotopy limits, & initial?)

The theorem on the slide is Bousfield and Kan'’s cofinality theorem for homotopy limits
[18, X1.9.2], which they use [18, XI.10.6] to identify thie-completion as what in our
terms would be called a homotopy right Kan extension (slide 5-9).
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Lecture 4.
Homology decompositions

In this lecture, we'll use the machinery of homotopy colimits and Grothendieck con-
structions to construct homology approximations for classifying spaces of finite groups.

Slide 4-1 Slide 4-1

Approximation data for BG
Approximating BG by B(subgroups)

e FF:D— Sp

e Vd,F(d)~ BHy, HgqCG

e Approximation:hocolim F' — BG

\B@ e

Homology decomposition < hocolim F' ~,, BG

The slide is a bit vague. The idea is that there is a natural transformationHrton
the constant functor with valuBG which induces a mahocolim F' — BG. For each
d € D the mapF(d) — BG is supposed to be equivalent B, — BG for some
subgroupH, C G. The symbok-, denotes & /p-homology isomorphism.

Slide 4-2 Slide 4-2

Approximation data from G-orbits

G-orbit < B(subgroup)
(XEOG) < (XthBGz,IEX)

S:D—0Og = Shg isapproximation data
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HereOg is the category of7-orbits, i.e., transitive7-sets. The slide points out that if
you have a diagram daf-orbits, it's easy to take homotopy orbit spaces and construct
a diagram of classifying spaces. Since the orbits all map to the trivial orbit, their
homotopy orbit spaces all map BG. (The slide does not ask the question of whether
this last map is a mog homology isomorphism.)

4.1 Exercise.Given a transitives-set X, considered as a funct6¢; — Set, use the
Grothendieck construction (in this case the transport category construction) to construct
a category with nerv&,. Why is this nerve equivalent tBG,, for z € X?

4.2 Exercise. [28] Let (C, &) be the homotopy theory aff-spaces, wheré

is the class of7-maps which are ordinary weak homotopy equivalences. Let
(D, F) be the homotopy theory given by the categ&y|BG of spaces oveBG
with equivalencesF the maps of spaces ov&G which are ordinary weak homotopy

equivalences of spaces. Show that these two homotopy theories are equivalent. Hint:

(C,€) has a projective model category structure, wifile F) has a model category
structure inherited fror$p (same fibrations and cofibrations).

@ @ 4.3 Exercise. What happens with the above exercise if you replp¢ BG
by Sp| B for an arbitrary spac8? Don't ignore the possibility thad might
not be connected.

Slide 4-3

Obtaining alternative approximation data

Collection C': set of subgroups af closed under conjugation

Subgroup diagram ofC (H; € C)
G/Hy
I(G/H)=G/H
Ic =

v
G/ Ha Ing(G/H) ~ BH

Centralizer diagram of C' (im(H;) € C)
H
m JH, ) =%
Jo = G
Y
Hoo ™ T2 Jhg(H,S) ~ BZ(im H)

Given a collection of subgroups 6f closed under conjugation, this slide describes two
ways of obtaining an associated diagram of transifiveets.

In the subgroup diagram far', the categoryZ¢ is the category otz-orbits G/ H for
H < C. The approximation functo$ assigns t@7/H the transitiveG-setG/H itself.

In the centralizer diagram far, the category/c has as objects the pait®, X), where
H is a group and is a conjugacy class of monomorphisiis— G with image an

Slide 4-3
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element ofC. (X is a orbit for the action ofs by conjugation on the set of group
monomorphismd? — G.) A morphism(Hy,%,) — (Hz,X2) is a group homomor-
phism H;, — H, such that the obvious diagram commutes ug-taonjugacy. The
decomposition functof assigns to H, ¥) the G-orbit . On the slide,Zq (im H)
denotes the centralizer @ of the image of under any of the homomorphisms con-
tained inX

4.4 Exercise.Suppose that' consists of only a single conjugacy class of subgroup, so
that up to equivalence of categories béghand, 7~ have only a single object. Describe
the approximation diagramé,: Jo — Sp andly¢: Zc — Sp and calculate their
homotopy colimits directly.

Slide 4-4 Slide 4-4

Six Z /p-homology decompositions

Collections | #(Q@))
e (1 = {non-trivial p-subgroup$
e (5 = {non-trivial elementary abeligp-subgroup$
o (3 = {V € Coy | V= pZ(ZG(V))}

Z/p-homology decompositions?
C

Subgroup decomposition Centralizer decomposition
Ch Yes Yes
Co Yes Yes
Cs Yes Yes

Finally, here’s a claim that specific nontrivial homology decompositions actually exist,
six of them in fact. For each of the three specified collections of subgroups, there are
two associated decompositions.

Some references for this material and what follows later on in this lecture are [33],
[34] and, holding the world record for the number of decompositions and the detail
in which they're studied, [50]. Many of the ideas go back to Webb (e.g. [99]) and
Jackowski-McClure [59], or even further.

4.5 Exercise.What happens with the above six decompositionsdbesn’t divide the
order of G?

4.6 Exercise [33, 1.21] LetC be the collection consisting only of the trivial subgroup,
andCj the collection consisting only dF itself. Show that these two collections also
give homology decompositions. Are they interesting?

@ @ 4.7 Exercise.If the subgroup decomposition f@r gives aZ/p-homology
decomposition for7, does the same hold true for any collectiGhstrictly
containingC?
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Slide 4-5 Slide 4-5

How to obtain the six decompositions

K¢ = {posetC under inclusiof}, Ko = N(K¢)

Identify hocolims

I: Zc — Sp hocolim Ing ~ (K¢ )na (subgroup diagram)
J: Jo — Sp hocolim Jhg ~ (Kc)hg (centlizer diagram)

Relate posets
Ko, ~ Kcy ~ Kgy (via G-maps)

Start here

(K¢, )hg ~p BG .1_L

The aim of this slide is to describe an economical way to study various decomposi-
tions. Given a collectio of subgroups of~, the subgroup and centralizer decom-
positions associated @ provide two approximations t8G. It turns out that these
approximations are essentially the same, and can be identified with the natural map
(K¢)ne — BG, whereK( is the nerve of the poset (under inclusion) of the given by
the subgroups contained @ (G acts on this poset by conjugation.) Thus one of these
approximations gives a homology decompoasition if and only if the other one does.

We're thrown back on studying'¢,, K¢, and K¢, but it turns out that they are alll
equivalent to one another, by maps which respect the actios 8b we either have

six homology decompositions to look at (two for each collection) or none. Ken Brown
breaks the suspense [1, V.3.1] with the equivalence at the bottom of the slide.

Slide 4-6 Slide 4-6

Identify hocolim for subgroup diagram
Ihg: Zc — Sp I(G/H)=G/H

Reduction to hocolim I

Want: hocolim(lhg) ~ (Kc¢)hg
Have: hocolim(Ihg) ~  (hocolim I)pg
Need: hocolimI ~ K¢

Grothendieck construction
(r1 € G/H1) ——> Gy
Texl = - Ko
' v
(z2 € G/Ha) ——=> Gy

Equivalence of categories(z-equivariant
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The problem is to show that the homotopy colimit of the subgroup diagram associated
to a collectionC, is equivalent to the Borel construction of the actiorzobn the nerve

of the poset given by'. The proof technique is to express both the homotopy colimit
and the Borel construction in categorical terms using Grothendieck Constructions and
then observe that the two categories which come out of the process are equivalent.

4.8 Exercise. Actually, this isn't quite the argument which the slide pretends to de-
scribe. Can you carry out the argument in the above deceptive paragraph?

Slide 4-7

Identify hocolim for centralizer diagram
Jhag: Jo — Sp JH,X) =%

Reduction tohocolim J

Want: hocolim(Jhg) ~ (K¢)na
Have: hocolim(Jhg) ~  (hocolim J)ng
Need: hocolimJ ~ K¢

Grothendieck construction

Hl\ P im(;ﬁ)

JeXxJ = : G : = K¢

'

Ho b im(H2)
Equivalence of categories(z-equivariant

An object of the Grothendieck constructigfa: x J consists of a conjugacy clagsof
monomorphismég{ — G with image inC together with an element &f; this amounts
to a monomorphisni{ — G with image inC. The morphisms in the Grothendieck
construction are commutative diagrams@mp) of the indicated type.

Slide 4-8

Relate posets K¢, ~ K¢,

Kc, = {nontrivial p-subgroup} Ky =
{nontrivial elementary abeliaprsubgroup$

Aninitial functor  ¢: K¢g, — K¢,

\% Identity functor
v
(LlP) ~ % V.-pZ(P)——=P Middle functor
pZ(P) Constant functor

/Ccz — /Ccl initial — K02 ~ Kcl

Slide 4-7

Slide 4-8
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Slide 4-9 Slide 4-9

Relate posets K¢, ~ K¢,

Kc, = {nontrivial elementary abelign-subgroup$ Kc, = {V € Co | V =
pZ(ZG(V))}

Adjoint functors 3 : K¢, < Koy @ ¢
(Bt —id, id—8)

W<~—"—w
B
Vi————pZ(Zc(V))

(3 and. give inverse~ on nerves.
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Lecture 5.
Localizations

This lecture discusses localizations of homotopy theories, more particularly homol-
ogy localizations of the homotopy theory of spaces, and even more partictilgrly
homology localizationZ,. It concludes with a discussion of the Bousfield-Kgn
completion functoC,,, which is a type of approximation tb,. The functorC,, comes

up in an essential way in the study of the cohomology of function spaces.

First, the general setup.

Slide 5-1 Slide 5-1
Left Bousfield localization
Setup
(C, &) ahomotopy theong ¢ F C C (& =~, F=r)

Definition 5. I: (C,&) — (C, F) aleft Bousfield localizatioif 3.J
I:(C,E)« (C,F):J Jfull&faithful

Properties
e L = JI (localization functor),X local < X € im(L)
o I2~ L
e X 5 [(X) terminal amongX = Y

e X — L(X) initial amongX — (local)

Remark. A functor F': U/ — V between homotopy theories is “full and faithful” if for
every pair(z, y) of objects o/ the natural maiom}) (z,y) — Hom?,(Fz, Fy) is an
equivalence irBp. In the homotopical situation this is an indivisible concept; as far as
| can see, there’s no good way to break “full” and “faithful” apart.

The process of localizing a homotopy theory involves adding new equivalences to the
ones that were there before (just as localizing a ring involves adding new units). From
the Tpair point of view, this is passing from a pdit, £) to (C, F) where€ C F. There

is always a map (C,€) — (C,F), and[ is called a left Bousfield localization if

is a left homotopy adjoint, i.e] has a right homotopy adjoint such that/ is full

and faithful [16], [56, 3.3]. This means that the homotopy the@hyF) is essentially
embedded iniC, £) as, well, the image of .

Recall that the notion of homotopy adjoint is easiest to express frorii ¢hpoint of
view (2-3).

5.1 Exercise.Show thatl. converts a morphism if to a morphism ir€.

5.2 Exercise. What exactly do the termtgrminal andinitial mean as they are
used on the slide?
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Slide 5-2 Slide 5-2

Example with discrete categories

Context
e C=ADb
o R=1Z[1/p)

o £=(isos),F={f|R® fanisc
e (C,€) ~ Mody, (C,F) ~ Modpg

Properties
e L=R® (—), X local < X an R-module
o 2~ L
e X 5 L(X) terminal amongX = Y

« X2 L(X) initial amongX — (local)

This is in fact a legitimate example: the homotopy the@fody, F) is equivalent

to the discrete categoylodr. Usually the process of inverting morphisms creates
higher homotopy groups in the morphism spaHemEf(—, —), but not in this case
[36, 7.3].

Slide 5-3 Slide 5-3

Another model category dividend
ECFcC

Definition (f a morphism of C, X an object)

o fLXIif Hom?c’g)(f, X)) is an equivalence iSp.
o [<={g:fLlX = gl X}

Assume
e (C,€&)is amodel category™
e there is a maff such thatF = f<

Theorem
1. (C,€) — (C,F)is aleft Bousfield localization.
2. (C,F) is amodel category witld% = Cg.
3. Lis the fibrant replacement functor (@, F).

This slide describes a common situation in which it's possible to construct and identify
a left Bousfield localization. (Maybe [24] it's thenly situation!) Say that a map

f looks invisible to an objecX in a model categoryC, ) (or X can't seef) if
Hom"(f, X) is an equivalence. The idea is to start with a nfapnd letF = f<

be the class of all maps which look look invisible to all spaces which can’tfsee
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Then, under relatively mild conditions (the"), (C,&) — (C,F) is a left Bousfield
localization [56, ch.4] [48].

This is calledlocalization with respect to the mafs Under the relatively mild con-
ditions mentioned above, it turns out that the class of newly inverted rhaps (up

to £) the class of maps which can be built frofrby homotopy colimit constructions.
(This is not quite true: one direction is OK [56, 4.2.9] but the other one is bogus [56,
2.1.6]. But it's not far off.)

5.3 Exercise.Show that the localization on slide 5-2 is localization with respect to the
mapZ — Z given by multiplication byp.

5.4 Exercise.Show that in the above situation an objétis local (i.e.L(X) ~ X) if
andonly if f 1 X. (Recall thatiff L X theng L X forall ¢ € F.) Conclude that
the class of local objects is closed under homotopy limits.

Slide 5-4 Slide 5-4

Examples of model category localizations (1)

Localization with respect to a map
Pick your favorite magf and letF = f<

C=Sp, f= (Sn+1 N *)
o f<={g:mi(g)isofori <n}
o L = P, (n'th Postnikov stage)
o (local) = (; vanishes foi > n)

C = Chyg, f = ®;(ZZ[1/p] — 0)
o f<={g:7%/p&"gisan equivalence
e [ = derivedp-completion
e (local)=homology groups are Exg-complete

Remark. An abelian groupA is Extp-completg18, VI] [51] if the natural map4A —
Exty(Z/p>, A) is an isomorphism. Here “the natural map” is the map induced by the
connecting homomorphism in the exact sequence

0—-Z—Z1l/p| = Z/p> — 0.

5.5 Exercise.Show that ifA is a finitely generated abelian group, tHextz(Z/p>, A)
is isomorphic to the-completionA, = lim A/p™ A, and that4, is Extp-complete.

@ @ 5.6 Exercise. Show thatA — Extz(Z/p>, A) is the zero'th left derived
functor (in the classical sense of Cartan and Eilenberg) of the furcter

A, on the category of abelian groups [18, VI.2]. This is an unusual situation in which

it turns out to be interesting to take the left derived functors of a functor which itself

is not left exact, so the zero'th left derived functor does not coincide with the original

functor. What'’s the first left derived functor in this case?
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Slide 5-5

Examples of model category localizations (II)

Localization with respect to a homology theoryFE..
Pick your favoriteE,, let F = { E.-isos}, and follow Bousfield.

Theorem (Bousfield)
There exists a magic morphisfrwith f< = F.

Widely applicable
e Spaces

e Spectra
e Chpg (€.0,B+(X) = H.(A 3N, X))
e simplicial universal algebras

The original references for localization with respect to homology are [12] (for the space
case) and [13] (for the spectrum case). It's worth thinking about the construction of the
magic morphismy and about why the construction works; the lemma to look for is [12,
11.2] or [49, X.2.8]. Don’t make the mistake of thinking that the nfaip necessarily
subject to human comprehension. For instancey.if= H.(;Z/p), the f can be
taken to be the coproduct of all monomorpBi@ /p..-equivalences between countable
simplicial sets (actually, for set theoretic reasons, in forming the coproduct thatfgives
you would only take one representative from esdmorphism clasef monomorphic
HZ/p.-equivalence).

5.7 Exercise. Show that a spac&’ is local with respect tcF, (i.e. L(X) ~ X) if
and only if anyF,-isomorphismA — B induces an equivalendéomh(B,X) —
Hom"(A, X) (cf. 5.4).

Slide 5-6

Localization with respect to R-homology,R C Q

Properties
L = localization inSp with respect toH . (—; R)
e L preserves components, connectivity, nilpotency.
e X 1-connected—> m;Lp(X) 2 R® m;(X)
e X 1-connected—> H,;(LrX;Z) 2 R® H;(X;Z)
e Ly preserves fibrations of connected nilpotent spaces.

Algebraization if R = Q
Sp, = 1-connected spaces, F = {H«(—;Q) isos}
Lieg = {0-connected DG Lie aj@},

(SPL.F) ~ (Lieo,H)]

{H, isos}.

Slide 5-5

Slide 5-6
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If R C Q, localization with respect t&-homology is relatively simple, at least for
1-connected spaces. The statement that the homotopy theory of simply-connected ra-
tional spaces is equivalent to the homotopy theory of connected differential graded Lie
algebras ovef) is due to Quillen [83]; this was one of the first applications of model
category machinery. Sullivan came up with a dual approach [96] that works in the
finite-type case and includes the theory of minimal models (see also [17]). See [55] for
an up-to-date survey of rational homotopy theory.

5.8 Exercise.Prove that any simply-connected spates HZ-local, i.e.,L; X ~ X.

5.9 Exercise.As remarked above, homology localization can also be done in the
category of spectra [13]. Give an example of a nontrivial spectkisuch that
LzX ~ X,

A connected spac¥ is nilpotentif 7 (X) is a nilpotent group and, for ea¢h> 2 the
natural action ofr, (X) on m;(X) is nilpotent & trivial up to a finite filtration or in
loose terms “upper triangular”).

* 5.10 Exercise.Show that a connected spa&eis nilpotent if and only ifr; (X)

is a nilpotent group and for eagh> 2 the natural action ofr, (X) on H;(X;Z) is
nilpotent. (HereX is the universal cover ak, and the action is induced by covering
transformations.)

* 5.11 Exercise. Show that a connected spad&eis nilpotent if and only if each
Postnikov stage oK can be built from Eilenberg-Mac Lane spaces by a finite number
of principal fibrations with connected fibre.

@ 5.12 Exercisels “connected” necessary in the previous exercise?

Slide 5-7 Slide 5-7

Localization with respect to Z/p-homology

Properties (Completion?)
L, = localization inSp with respect taH . (—; Z/p)
e L, preserves components, connectivity, nilpotency.
e X 1-connected, fin. type=> m; Lp(X) = Zp @ m;(X)
e X 1-connected— H;(LpX;Z) = 77
o L, preserves fibrations of connected nilpotent spaces.

General formula for homotopy groups of L, X
X 1-connected—

0 — Hom(Z/p*°,mi—1X) — miLp X — Ext(Z/p>°,m;X) — 0

The slide points out that from the point of view of the homotopy groups, localizing a
1-connected space with respectH&./p looks like a type of completion.
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* 5.13 Exercise Verify that the description on the slide of ti&Z /p-localization of

a 1-connected spac& of finite type is correct. One approach is to calculate the lo-
calization of an Eilenberg-MacLane space directly, and then use the fact that the class
of HZ/p-local spaces is closed under homotopy limits, together with various homol-
ogy arguments, to climb up the Postnikov tower’f (Note that in order to compute
the localization of a spack, it's enough to produce a local spa¥é and anHZ/p-
equivalenc&” — Y".) Start by showing thak'(Z/p, n) is local with respect tdiZ/p

(5.4). . Extend this tp-GEMSs (i.e., products ok (Z/p.n)’s for variousn, also known

as modp Generalized Eilenberg-Mac Lane spaces) Using homotopy limit arguments
(pullback, towers) show that (products &Y Z/p’, n) andK (Z,, n) (variousj, n) are

also HZ/p-local. Show thatk' (Z,n) — K(Z,,n) gives an isomorphism oHZ/p,

and conclude that this is a localization map. Now go Postnikov.

5.14 Exercise.Show that ifX is one-connected, theh,(Lg(X)) ~ *. What about
L@(LP(X))?
* 5.15 Exercise.The short exact sequence
0—>Z—Z]1/p|—=7Z/p>® —0

leads to a fibration sequence

BZ/p> — K(Z,2) — K(Z[1/p],2)
Use this or any other technique to show that the By p> — K(Z,2)isanHZ/p-
equivalence, and so induces an equivalebg@BZ/p>) — K(Z,,2) ~ L,(BS').

5.16 Exercise.ComputeH*(BZ/p*>°;Z) and H*(BZ/p*;Q). How can this
be? It's enough to make a person reread [93, 5.4] with a big cup of coffee.

@ 5.17 Exercise.If A is any direct sum of copies &, show thatK (A,,n)

is HZ/p-local (5.5). Be careful. Calculate that(A,n) — K(A,,n)is an
H7/p-isomorphism, and conclude that this map isFAg /p-localization map. Using
various Postnikov and fibration arguments in conjunction with 5.6, derive the short
exact sequence at the bottom of the last slide.

Slide 5-8 Slide 5-8

Mixing Lg(X) with the L, (X)’s to recover X

The Arithmetic Square (Sullivan)
X nilpotent = homotopy fibre square

x T, Ln(X)

L

LoX —— Lo(I1, Lp(X))
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* 5.18 Exercise. If X is 1-connected, use a direct homology calculation to show
that the arithmetic square is a homotopy fibre square. The right vertical map is an
HQ-equivalence, and the lower horizontal map isf#/p-equivalence (5.14). Let

P be the homotopy pullback of the square. Argue tRatnaps toLq(X) by an
HQ-equivalence, and that for any pringethe mapP — Hp L,(X)isanHZ/q-
equivalence. Observe that for apyhe projection[ [, L,,(X) — Lq(X) is anHZ/q-
equivalence (tricky!). Conclude thaf — P induces an isomorphism on integral
homology, and finish the argument by using the fact that both spaced &#ecal

(5.8).

@ 5.19 Exercise.The trickiness mentioned above is relatively minor and has

to do with avoiding the temptation to invoke an imaginary infiniténiketh
formula. Find an example of a sequence of spakgssuch that eaclX,, has, say,
the rational cohomology of a point, blif,, X,, does not. How about an example with
integral homology?

5.20 ExerciseLet A andB be sets of primes, and wrifes, for instance, fol.;,1.,¢ 4]
Show that if X is 1-connected there is a homotopy fibre square

Lanp(X) ——= La(X)

l |

Lp(X)—— Laup(X)

Many people have studied a number of problems of the following type (under the gen-
eral heading of genus problems): given a sp&céow many space¥ are there (up

to equivalence) with the property thayY ~ LoX andL,(Y) ~ L,(X) for all p.

If such aY exists, call it aremixingof X, since it's obtained by taking’ apart into
p-complete and rational pieces, and then mixing them together in some way.

5.21 Exercisel et X be a sphere. Produce a remixingXfnot equivalent toX .

(Cheap trick?) Most of the time, X has finitely generated integral homology groups
the interesting remixings ok are those which also have finitely generated integral
homology. Call these theiceremixings.

5.22 Exercise.Let X be a sphere. Show that any nice remixingX6fis equivalent
to X.

5.23 Exercise.Can you produce a 2-cell complex with a nontrivial nice remix-
ing?

@ 5.24 Exercise.In theory, all remixings ofX can be constructed by taking
the maps[[, L,(X) — Lo([T, L,(X)) and Lo(X) — Lo(IT, Ly(X))

in the arithmetic square foK and adjusting them. What adjustments are possible?

Which adjustments give nice remixings? See [101] for a proof that a firstmnected

complex has only a finite number of homotopically distinct nice remixings.
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Slide 5-9

An approximation to L,

HZ/p-localization functor L,

H7/p-local I H7Z/p-local
spaces spaces

J

i /@4 (I)~Lp

spaces

Bousfield-Kan p-completion functor Cy, (Lp — Cp)
—{Spatte
spaces

J
l RKan' (i)~Cp

spaces

Recall that @-GEM is a product of copies d (Z/p, n)’s for variousn. The category
of p-GEMs is to be taken as a full subcategory of spaces.

The fact thatRKan'y(I) ~ L, follows from the fact that homotopy Kan extensions
can be computed pointwise (cf. 2.3 and 2.23) and the fact that for any 3pake J
hasX — L,(X) has a (homotopically) initial object (slide 5-1). The functgy,
denoted(Z/p)~ in [18], is defined by an explicit cosimplicial construction [18, 1.4];
the expression as a homotopy right Kan extension is from [18, X1.10.6].

@ @ 5.25 Exercise (This is probably very hard, or impossible.) For functétrs
C — DandX : C — Sp, observe that the right homotopy Kan extension
RKan'.(X) can be computed by the formula

RKan'L(X)(d) ~ Homgpc (¢ — Hom!(d, ¢), X) .

(This is the formula for the right homotopy Kan extension from slide 3—7.) Now for any
spaceX, let K (X) be the functor op-GEMs given byA — Hom"(X, A). Thisis a
kind of cochain functor; the homotopy groupskm"(X, A) are various cohomology
groups of X with coefficients in the homotopy groups df (in other words, various
products of modg cohomology groups oK). Applied to the case of’,, the above
formula states that', (X) is the space of natural maps, Asanges through-GEMs,

of K(X,A) to A. In other words(C),(X) is some sort of double-dual of over the
category ofp-GEMs. The problem is to find some interesting relationship between

this remark and Mandell's theorem [69] that (under certain finiteness and nilpotency

assumptionsy’,, (X) is the space of., F,-algebra maps fron0* (X, F,) to F,,.

Slide 5-9
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The Bousfield-Kanp-completion C,,
Properties
o (), preserves disjoint unions, connectivity
o (), preservediZ/p.-nilpotent fibrations
o Cp(~p) =r~
e X nilpotent = L, (X) ~ Cp(X).

Computability
Unstable Adams spectral sequerser,Cp(X)

Building Cp X if H. X has finite type
X — {Xs}, Xs pfinite, H* X 2 colim H* X:

Cp(X) ~ holim X

The properties o€”, are mostly worked out in [18]; for instance, preservation of dis-
joint unions is I.7.1 and preservation of connectivity is 1.6.1. Tibee lemma[18,
I1.5.1] states that, preserves fibrations in which the monodromy actiomrpfbase

on each homology grouf;(fibre; Z/p) is nilpotent. The fact thaf’, takesHZ /p-
equivalences to equivalences follows from the previous slide, or from [18, 1.6.2]. The
statement thak,,(X) ~ C,(X) if X is nilpotent is from [12§4].

The following piece of information will prove absolutely indispensable later on.

* 5.26 Exercise Show that ifQ is a finitep-group, theranyaction of@Q on a vector
space oveF, is nilpotent.

The last box on the slide refers to a tower of spacEs} underX, spaces which are
p-finite in the sense that each space has a finite number of components, each homotopy
group of each component is a finitegroup, and each component has only a finite
number of non-trivial homotopy groups. The last condition on the tower is that the
natural map

colimg H*(X4;Z/p) — H*(X;Z/p)

is an isomorphism. The statement is thaHif(X; Z/p) is of finite type then such a
tower exists and, given any such tow€},(X) is equivalent to its homotopy limit. This
is a combination of [18, 111.6.4] and 6.28.

Remark. There’s a very interesting alternative approach to the constructich @)

in [18, IV]. Suppose without loss thaX is pointed and connected, and 81X be
Kan’s group model [70] [49, V.5] fof2.X . ThenC, X is equivalent ta3(G X)), where
(GX), = lim GX/F?’) G X is the (dimensionwise)-lower-central-series completion
of GX.
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Slide 5-11

The Bousfield-Kanp-completion C,: good & bad
Definition

o L, X ~ CpX = X p-good

o L,X o CpX =X p-bad

p-good examples
e X nilpotent (e.gr1 X trivial)
o 1 X finite

p-bad examples
o Sly gt
o Slygn

News flash
Cp(p-bad X) sighted in the wild!

The space”, (X) is alwaysHZ/p-local (it's a homotopy limit ofp-GEMs, cf. 5-9),
andsoCp X ~ L,X ifand only if X — C, X is anHZ/p-equivalence. This last is the
definition of “Z/p-good” in [18, I.5]. Thep-good examples are from [18]. Bousfield
[15] provides the indicateg-bad examples.

The last statement promises that in the near future we will encountpradbmpletion
of ap-bad space in a relatively simple geometric setting that doesn’'t seem to deserve
such a visitation.

Slide 5-11
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Lecture 6.
Cohomology of function spaces

In this section we'll look at how algebra can be combined with homotopy theory to
compute the cohomology of mapping spaces with doni#np. The machinery only
works sometimes (we'll try to figure out why this is true) but it works amazingly often.

Slide 6-1 Slide 6-1
The Steenrod algebra4,,
p = fixed prime,H* = H*(—;Z/p)
p odd Structure of A, p=2

o {3,P"i>0} {Sq‘,i > 0}

e PO=1 Sq° =1,8¢" =

e Adem relationsPPJ = ... Sq'Sqf =---

o A, — A, ® A Sq™ — ZH_J:n Sq* ® Sq’

o Bl =1,|P"| =2i(p—1) 1Sq’| =i
Allin all

Ap = cocommutative Hopf algebra ovEy,

The traditional place to learn about the Steenrod operations is in Steenrod and Epstein
[94]; the best place to learn about the Steeenrod algebra is in Milnor [72], and the most
enigmatic source for the Adem relations is Bullett-Macdonald [23]. Here’s a question
that Quillen tossed out as a throwaway during a lecture | was at years ago, and that
many other people have probably thought of since. The answer says everything there
is to say about the Steenrod algebra (short of compuitid) in veryfew words.

6.1 Exercise.Milnor identifies the dual of the mo2l Steenrod algebra as a commuta-
tive Hopf algebra ovelf,; with antipode. A Hopf algebra like this is exactly a cogroup
object in the category of commutatii&-algebras, sdom(As, —) gives a functor
which assigns a group to every commutafisealgebra. Givingd, as a Hopf algebra
is exactly the same as specifying this functor. What's the functor?

@ 6.2 Exercise. What's the above functor in the odd primary case?
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Modules and algebras over4,,

Modules over A,
e Gradedmodules Sq* : Mk — Mkt
e U/ = unstable modules Sqtx =0, i > |z|
e M, N (unstable) modules—=- M ® N (unstable) module

Algebra over A,
e Graded algebrag,: M ® M — M respectsA,
e K = unstable algebras Sql*l & = z2
e R, S (unstable) algebras= R ® S (unstable) algebra

Geometry
e H*(suspension spectrune U
e H*(space¢ € K

The slide glosses over the fact thatis the category of unstabraded-commutative
algebras oved,,.

6.3 Exercise. What kind of geometric object would give rise to an algebra otgpr
which isnotunstable?

6.4 Exercise.Give an example of an object &f which is not isomorphic tdd* X for
any spaceX.

6.5 Exercise. Why are objects inC andi/ necessarily concentrated in non-negative
degrees?

Slide 6-3 Slide 6-3
The functor T’
V=Vi=Z/p,H= H*BV
Left adjoint(s) to H ® —
TM:UHUZ(H®7) TMZT)C(ZT) T)C:/CHKJ:(H®7)

Kk

forgeti \L forget
Tu
u—u

Crucial properties
e Tisexact

e T preservesd
e Same properties with;, — V,, = (Z/p)™
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The functorT is left adjoint to tensoring withH, and, incredibly enough, you get
the same result (to the extent that this makes any sense) whether you cdmipute
the category/ of unstable modules or in the categdtyof unstable algebras. The
universal reference for all things is [64].

6.6 Exercise. Let IF,, be the trivial object oflC concentrated in degrée Show that
there are natural maps
T(R) - H®R— R

(the second one induced by the unidGenapH — F),).

6.7 Exercise.Calculate directly thaf’(F,) — F,, is an isomorphism. Now try
T(¥F,) = XF,. (This probably requires looking a little more carefully at the
Steenrod algebra action @fi) Use this last calculation and the fact tlfapreserves
® to conclude thaf” commutes with suspension. Go on to show that/ifs any finite
object oft/ or K (i.e. an object of finite type which is concentrated in a finite number
of degrees) then the natural m&pA/) — M is an isomorphism.

6.8 Exercise. If R be an object ofC, we’'ll use the phrasenodule overR to

denote a graded module over R (in the usual sense) with the property that the
multiplication mapR ® M — M is a morphism iri{. If M and N are modules over
R, observe thaffor*(M, N) is naturally an object of/ (and also a module oveR).
Prove that there are natural isomorphisms

T(Tor®(M.N)) = Tor! ®(TM,TN).
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The functor T' «— function spaces out ofBV

X € Sp, want to understanHom"(BV, X).

Consequence of adjointness
X — BV x Hom"(BV, X)

H*X — H® H* Hom"(BV, X)
Ax: T(H*X) — H* Hom"(BV, X)

Question
How often isA x an isomorphism?

Assume:H* X of finite type,T'(H* X) of finite type.

Whenever we work witll" H* X, we will always assume tha&f * X is of finite type and
thatT H* X is of finite type.

Remark. Morel [79] works out the entire theory @f without any of these finite

type conditions, at the price of replacing the category of spaces by the category of
pro-p-finite spaces. There’s a philosophical point here. The pbdmology of X €
Sp is naturally expressed as a filtered colimitim,, H.(X,;Z/p), whereX, ranges
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over the finite subcomplexes of. The dual cohomology?* X is thenlim, H* X,

so the cohomology has a natural profinite structure. The furittdoesn't see this
structure, and so is vulnerable to becoming geometrically irrelevant in some situations.
There are three ways to evade this problem:

1. modify T' (which might damage it beyond repair),
2. stay within the finite type world, so the profinite structuref@h is trivial
3. modify the notion of “space” in order to get rid of the profinite topologyiéh.

We choose alternative (2), while Morel works out.(3) conceptually more satisfying
but a little more abstract. (Note that the cohomology of ajpfnite space doerot
have a profinite structure, although its homology does.)

6.9 Exercise What's the geometric significance of the natural iigpi* X ) — H*X

(see 6.6). In other words, what's the relationship between this map and the above
natural magl'(H*X) — H*Hom"(BV, X)? What is suggested by the fact that the
map of 6.6 is an equivalence i * X is finite (6.7)?
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Lannes works his magic

Tweak of the question
XS : T(H*X) — H* Hom"(BV, Cp X)

N-conditions on (T (H* X ), Hom"(BV, C;, X))
1. T(H*X)' =0
2. Hom"(BV, C}, X) is an H-space, is nilpotent, is-complete
3. B:T(H*X)' — T(H*X)? is injective
4. 7 Hom"(BV, C,, X) is finite
Lannes Theorem

T(H*X)? 2 HO Hom"(BV, Cp X).
X is an isomorphism if anil-condition holds.

The next few slides will sketch the proof of the theorem. This might makeNthe
conditions a little easier to understand.

At this point even the map°© is a little mysterious. Somewhere in here is a claim that
if H*X has finite type (and’H* X has finite type?) there exists a dashed lift in the
diagram

Acpx h
H*(CPX) —— H* Hom (BV, OPX)

7z
—
c
—
>‘X/
~
~
—

T(H*X) —> > F* Hom"(BV, X)
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It's probably unclear why anything lik€’, X should show up here. One useful remark
is that H*X only depends on th&/p-homology type ofX, and so anything that's
constructed out off * X, such as’H* X, can at the very best only give information
aboutL, X. This would explain an appearanceofX in the theorem, but there you
are, itsC, X, not L, X. We'll see what's going on in a minute.

X 6.10 Exercise Show that ifX is one-connected, the natural mapHom"(BV, X) —
Homh(BV, C,X) induces is &/p-homology equivalence. (Show that the homotopy
fibre F of X — C,X has uniquely-divisible homotopy groups. Argue that the ho-
motopy fibre ofx over a mapf : BV — C,X is the space of sections of a bundle
over BV with fibre F' induced fromf. If it helps, interpret this space of sections as a
homotopy fixed point seF"" for an action of” on F' depending orf. Show that the
homotopy groups of such a space of sections (=homotopy fixed point set) are uniquely
p-divisible, and thus (careful with,!) that the space i€ /p-acyclic.)

6.11 Exercise How far beyondl-connected spaces does the above result extend?
What happens ifr; X is finite? What ifX is a connected loop space (careful: the
homotopy fibref” might not be connected)?

6.12 Exercise.The slide is a bit cavalier; produce an example offarspace which
is not nilpotent. (Presumably, the author of the slide mtdi mean to allow this as a
possibility.)

6.13 Exercise Show that the statement abdlitH * X )° is equivalent to the statement
that there is an isomorphispBV, C;, X] = Homy (H* X, H).
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Outlining the proof

X p-finite
o moX finite
e m; X finite p-group
e m;, X =0fori>> 0.

One step at a time
1. Ax anisoifX = K(Z/p,n)
2. Ax aniso ifX is p-finite
3. Atour of towers
4. )% exists, iso if anyN-condition holds

We’ll approach the proof in three steps, with a digression on towers of spaces between
the second and the third. The line of argument is from [29], augmented by [92].

In the definition ofp-finite, the conditions omr; X are supposed to hold for all possible
choices of a basepoint ii. A spaceX is p-finite if and only if X has a finite number
of components and each componeni-finite.
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6.14 Exercise.Given a fibrationf” — E — B (with connected basB), show that if
B andF arep-finite, so isk. Show that ifE and B arep-finite, so isF’. On the other
hand, give an example in whidh and E' arep-finite, but B isn't.

6.15 Exercisel et C be the smallest class of spaces with the following properties:
1. Cis closed under equivalences,

2. C containsK (Z/p,n) foralln > 1, and

3.if XinCandf: X — K(Z/p,n) is a map for some > 1, then the homotopy
fibre of f belongs taC.

Show that a spacé is p-finite if and only 7y X is finite and each component &f
belongs taC'.
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The caseX = K = K(Z/p,n)
This slide:Y* = H*Y, Y™ offinite type
Ty = leftadjointto(Y* ® —) onK
M =Hom"(Y, K) ~ [] K(Z/p,m;)

Theorem
Ty (K*) = H* Hom"(Y, K)

Proof (Yoneda,Hom = Homy)

1) Hom(Ty (K*), Z*) % Hom(K*,Y* ® Z*)

(2) Hom(M*,Z*) = [Z,M] = [Y x Z, K]
~ Hom(K*,Y* ® Z*)

T(H*K) ~ H* Hom"(BV, K)

This proof relies on the fact thadf * K (Z/p, n) is a free object ofC on a generator of
degreen; choosing a generator " K (Z/p, n) leads to a natural isomorphism

Homy(H*K(Z/p,n),R) = R".
Since such a choice also leads to a natural isomorphism
[Z,K(Z/p,n)| = H"Z
it follows that there is a natural isomorphism

Homy(H* K (Z/p,n), H* Z) = [Z, K (Z/p,n)]

This isomorphism is independent of any choice of generator. A similar natural iso-

morphism arises ik (Z/p, n) is replaced by a product of mgdEilenberg-MacLane
spaces (such &om" (Y, K (Z/p,n))).

Slide 6-7
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6.16 Exercise.Prove that ifY is any space, theHom" (Y, K (Z/p,n)) is equivalent
to a product of mogb Eilenberg-MacLane spaces. (This is probably a lot easier in the
simplicial world.)

6.17 Exercise. The application of Yoneda’s lemma above seems to be questionable,
because the argument shows only that the two objects in queStqi(*) and M *)
represent the same functor on the subcategoly given by objectsZ* which can be
realized as the cohomology of a space. What saves the day?

6.18 Exercise. An argument identical to the one on the slide shows that the
Lannes map
Ax: T(H*X) — H*Hom"(BV, X)

is an equivalence iX is a finite product of mog Eilenberg-MacLane spaces. What
happens ifX is an infinite product of such Eilenberg-MacLane spaces? What about if
Xisjusttall (X = [[;2, K(Z/p,i)) or just wide X =[], K(Z/p,n))?
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The case in whichX is p-finite.
X—->Y—>K=K(Z/p,n)

H*X < Tor? " K (H*Y,F)) EMSS
Ay aniso (Ex. 6.15)
Mapping side (EMSS+ Hom" preserves fibrations)

H* Hom"(BV, X) < TorTH K (TH*Y,F,)

Space side T is nice)
TH*X < TorTH K (TH*Y,F,)

T(H*X) =~ H* Hom"(BV, X)

The argument with the Eilenberg-Moore spectral sequence is from [29].

The point here is to work by induction on the complexity6f By Exercise 6.15 we
can get any connectedfinite X by starting from a point and repeatedly taking fibres
of maps into mog Eilenberg-MacLane spaces.

6.19 Exercise.Why is it clear that ifA; is an isomorphism for each componénof
X, then\x is an isomorphism?

6.20 Exercise.Suppose that’ — E — B is a fibration and that both/*B and H* FE

are of finite type. The mogd cohomology Eilenberg-Moore spectral sequence for this
fibration converges strongly (i.e. with finite filtrations in each degree) if and only if the
monodromy action ofr; B on each one of the cohomology groul$F is nilpotent
(trivial up to a finite filtration). So why does the mapping side spectral sequence on the
slide converge?
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@ 6.21 Exercise.The “T"is nice” tag is a little bit too glib. The nice properties
of T"do lead to a formula

TorTH K (TH*Y,F,) = T {TorH*K(H*Y, Fp)}

but this a formula in the category of graded object¥i(oneTor; for each:). Follow-

ing the spectral sequence through is no problem, sihieexact and commutes with
colimits (why?), but there’s some geometric work to be done in the limit in order to
stitch the graded pieces together. Figure out what this work is, and explain how to do
it. It may help to look at Rector’s paper [87].
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Tower {U.} = {- — Uy — Up_y — - — U}

colim H*Uy £ H* holim U
Assume: eachU,, p-finite, colim H*Us of finite type

N-conditions on (HZ, = colim H*Us, Us = holim Uy)
1. HL, =0
2. U is anH-space, is nilpotent, is-complete
3. 8: HL, — HZ isinjective
4. mUx is finite
Tower Theorem

HY =~ HOU, always.
H*, = H*Us if any N-condition holds.

See [92] for general background about towers.

The exercises below are meant to set up some of the machinery that's used in working
with towers. They more or less lead to a proof of the above theorem, at least in some
cases.N-condition (3) is a list of three successively more general alternatives: either
U is an H-space, or more generally.. is nilpotent, or even more generallj, is
p-complete (here and later on, a spacas p-complete ifX ~ C,X). Shipley [92]
proves the tower theorem under the assumptionlthais p-complete.

6.22 Exercise. Prove that if each component 6f,, has a finite fundamental

group, or if HL = 0, or if the stated Bockstein injectivity holds, thén,, is
p-complete. (Hint: Show that if a component @f, has a finite fundamental group,
then this group is a finitg-group; show that if the Bockstein injectivity holds then each
component ot/ has a finite mog vector space as fundamental group; and show that
if H1 = 0then each component 6f,, is simply connected.)

First, there is the general problem of understanding homotopy limits of towers and their
homotopy groups. Note that it is possible to talk about towers in any cat€gtmgse

are just functors from the poset of nonpositive integers ¢hté map between towers

is a natural transformation of functors.
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6.23 Exercise.(Homotopy limit of a tower) Lef{ U, } be a tower inSp. Show that
holim U, can be computed in either of two ways:

e replace{U;} up to equivalence by a tower of fibrations, and take the limit of this
replacement tower, or

o take the space of tuplésg,wg, u1, w1, .. .), whereu; € U; andw; is a path in
U, betweenu; and the image of;; ;.

(It's worth it to try to make simplicial sense of the second description.plef[ U, —
[1Us be the shift map, which sendsg, u1, . . .) to (ug, v}, .. .), whereu; is the image
of u;4 1 in U;. Conclude thaholim U, can be interpreted as the homotopy pullback

holimUs; — — — = > [[Us
[
| J{(id,o’)
A diag
[1U; (I1Us) x (I1Us)

or as the homotopy equalizer

id
holimU, — — > [[Us ____T[Us

or even as the homotopy fixed point setoficting on] [ Us (i.e., the homotopy fixed
point set of the action ofy] U; of the free monoid on one generator, where the generator
acts byo).

If {A,} is a tower of abelian group, the shift map [[ As — [] As is defined in the
same way as above. The kernel(of— o) : [] As — [] A4s is the limitlim A, (check
this); the cokernel is denotédn’ A,.

6.24 Exercise. (Milnor sequences) [49, VI.2.15] Show that {{/,} is a tower of
pointed one-connected spaces, there are short exact (Milnor) sequences

0 — lim! Ti+1Us — m; holim Uy — limm;Ugs — 0

Definelim' for a tower of nonabelian groups in such a way that these sequences can
be extended to handtg.

6.25 Exercise Show that a short exact sequence
0— {As} = {Bs} = {Cs} =0
of towers of (abelian) groups leads to a six-term exact sequence

0 — lim A, — lim B, — lim Cy — lim' 4, — lim' By — lim' C, — 0.
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6.26 Exercise.(Pro-isomorphisms) A towefA;} of abelian groups (groups, pointed
sets) ispro-trivial if for any s > 0 there is at > s such that the tower mag; —
As is trivial. Show that if{A,} is pro-trivial thenlim A; is trivial andlim'® A, (if
applicable) is trivial. A mapf: {As} — {Bs} of towers is apro-isomorphisnmif
ker(f) andcoker( f) are protrivial. Show that if is a pro-isomorphism thefiinduces
isomorphisms otim and onlim' (if applicable).

6.27 Exercise. Show that if{ A,} is a tower of finite groups, thelim' A, is trivial
(possibly tricky). Conclude that ifUs} is a tower of pointed connected spaces with
finite homotopy groups then there are isomorphisms

m; holim Ug =& lim ;U .

A tower ispro-constantf it is pro-isomorphic to a constant tower (one in which all of
the bonding maps are isomorphisms).

6.28 Exercise (Finite type demystified) Suppose tHaf, } is a tower of finite-dimensional
vector spaces ovéf,. Let V¥ be theF,-dual of V. Show thatcolim V7 is finite-
dimensional oveF,, if and only if {V,} is pro-constant.

Now we can go on to the real problem: computing the cohomology of the homotopy
limit of a tower.

6.29 Exercise(The simplest case) Consider the toWéf; }, whereU, = K(Z/p®, n),

(n > 1) afixed integer, and the bonding maps are the the obviousE(&gp®, n) —
K(Z/ps—1,n—1). (There’s awhole story about whether merely specifying the bonding
maps up to homotopy in this way actually determines the tower up to equivalence—the
answer is no [100] — but the issues don’t come up in our particular situation). Observe
thatholim Us; ~ K(Z,,n) and calculate that in this case the natural map

colim H*Uy; — H™* holim U,

is an isomorphism. (It's probably a good idea to prove along the wayHtaf (Z,,, n)

is isomoarphic toH* K (Z, n); this is implicit in the discussion d&/p-homology local-
ization above.) Short of explicit calculation for eacht looks to me as if it might work

to prove this forn = 1 by calculation and then use an induction based on path-loop
fibrations and (colimits of) cohomology Serre spectral sequences.

6.30 Exercise.Suppose thaf A, } is a tower of finite abeliap-groups, and consider
the tower{ A; /pA;} obtained by reducing mgd Show thatif{ A;/pA,} is pro-trivial
then the original tower is pro-trivial too. Now argue (tricky, but true, | think) that if
{A;/pA,} is pro-constant, thefid, } is pro-isomorphic to a finite direct sum of towers
of two types; the first type is a constant towef/p™} and the second type is the-*
adic integer” towekZ/p*} from the previous exercise. Conclude that in this case too
there is an isomorphism

colim H*K (Ag,n) = H* holim K (A, n) anyn > 1.
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6.31 Exercise(The one-connected case) Suppose{hat is a tower of one-connected
pointedp-finite spaces such thablim H*U; is of finite type. We would like to show
that the map

colim H*U, — H* holim U,

is an isomorphism. Proceed (for instance) by showing, using inductien trat

1. colim H* P, Uy is of finite type, and
2. colim H*P,U, — H* holim P,U, is an isomorphism.

(Here P, denotes they'th Postnikov stage.) For the first case £ 2) observe using
the above exercises that the assumption

colim H?Uj is finite dimensional oveF,

implies that
{m2(Us) ® Z/p} is pro-constant

and hence that the tow¢P, U, } is well-behaved. Proceed from oneo the next by
using (colimits of) Serre spectral sequences.

6.32 Exercise.Explain how theN-conditions work, and invent some new ones
of your own.
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T and maps from BV
H*X,T(H*X) of finite type

BK: CpX ~ holim{X;}, X p-finite, colim H* X, =~ H*X

Proof of Lannes Theorem
Us = Hom"(BV, X;)
1. Uss ~ Hom"(BV, CpX)
H*Us = T(H*X5)
. colimT(H*X,) =colimT(H*Xs) XTH*X
. Tower Theorem

5w N

T(H*X)% = HOU,
T(H*X) = H*U if any N-condition holds.

6.33 Exercise Suppose thak is a one-connected finite complex. Recall from 6.7 that

T(H*X) — H*X is an isomorphism. Conclude that that evaluation at the basepoint

gives an equivalencHomh(BV, CpX) — CpX. Use the arithmetic square or other
arguments (6.10) to deduce that basepoint evaluaﬂnnh(BV, X) — X is an equiv-

alence. This is the Miller's Theorem (formerly known as the Sullivan Conjecture) in

the one-connected case.

Slide 6-10
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* 6.34 Exercise Extend the previous exercise to the case in wiiidhis replaced by
BG for a finite p-groupG. Use induction on the size @f, the fact that any nontrivial

G contains a central element of orgeiand the fact that if( is a normal subgroup a@¥
there is an equivalencE"® ~ (XNK)NG/K)  There’'s a more general principle here:

if X isaspaceand' — E — B is afibration sequence over a connected dasten
Hom"(E, X) can be identified as the space of sections of an associated fibration over
B with Hom"(F, X) as the fibre. (With some acrobatics, this could be derived from
the transitivity of homotopy right Kan extensions, but it's easier to draw a picture.) If
the inclusionX — Hom"(F, X) of the constant maps is an equivalence, it follows that
Homh(B,X) — Homh(E, X) is also an equivalence. This is another way to look at
the inductive step above.

6.35 Exercise.What are the obstacles to extending the previous exercise to the
case in whichG is an arbitrary finite group? Do homology decompositions help?
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In the presence of a volunteer. .

Tower version {Us} as before
V-condition: 3Y — {U,} inducing H*Y 2 colim H*Us.

Theorem: holim Us ~ CpY

T-version H*X,T(H*X) as before
V-condition: 3BV XY — X inducingH*Y =~ T(H*X).

Theorem: Hom"(BV, Cp,X) ~ CpY

Y is a (cohomologicalyolunteer

This slide describes an assumption very different fromNkheonditions under which

it is possible to usd’ to compute something about a function space. Suppose there
is a homological “volunteer” for the function complex, in the sense there is a §pace
together with a map

BV xY — X (ie,Y — Hom"(BV, X))
which induces an isomorphism
H*Y & T(H*X)

(We're still assuming thaff* X is of finite type and tha’ H*X is of finite type.)
Then the discussion after slide 5-10, in conjunction with the tower machinery above,
produces an equivaleneg,Y ~ Hom"(BV,C,X). Note that in this case there is

no claim thatT'(H* X) = H* Hom"(BV,C,X); whether or not this is true depends
entirely on whether or ndt” is p-good (5-11).
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Lecture 7.
Maps between classifying spaces

In this lecture, we’'ll look at maps from classifying spaces of fipigroups to various

other kinds of classifying spaces. The first step is to decipher what the fufid¢tas

to say about the cohomology of homotopy fixed point sets. The lecture ends with
a question about whether the machinery can be used to give a simple combinatorial
description of the homotopy type 6f, BG for G a finite group.
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Cohomology of homotopy fixed point sets
V =1Z/p, acts onX

X"V and a close relative

Xhv X" —— Hom"(BV, Xpv)
7
h
S I v R
BV — BV * ——> Hom"(BV, BV)
Xy XMV ————> Hom"(BV, Xnv)
_ 7 i/ XHV \L \L
- id
BV ~~s BV HomM(BV, BV); — Hom"(BV, BV)
Definition & question (H = identity piece of T'H)

Fix(X, V) =H@ry T(Xny) — H* XMV (is0?)

This slide defines a variant of the homotopy fixed point set, and poses the question of
how to calculate its cohomology. We've seen before (2.28 ¥t is the space of
mapsBV — Xpy which cover the identity map @BV (in other words, the space of
sections ofX,,y — BV). The fattened up homotopy fixed point S&ttV is defined to

be the space of magsl” — Xy which cover the identity map g8V up to homotopy.

As we've seen befordH is naturally isomorphic td* Hom"(BV, BV).

7.1 Exercise.Observe thaHomh(BV, BYV) is equivalent to a disjoint union of copies
of BV, one for each homomorphiskh — V.

The heading of the definition block identifilsas the summand &fH corresponding
to the component dfilom"(BV, BV) containing the identity map. In the definition of
Fix(X,V), H is supposed to be treated as a module @V#rvia the restriction map
TH — H.

7.2 Exercise.Show that constructiod! — H @7y T'(M) is exact on the category of
object ini/ which are (compatibly) modules ovEr. (Hint: H is a summand of 'H.)

The question on the slide should be easy to answer, since it just asks whether a partic-
ular summand of (H* X},/) accurately calculates the cohomology of a component of
the mapping spaclom"(BV, Xpy ).
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7.3 Exercise. Show that for anyl’-spaceX, X7V is equivalent in a natural way
to BV x X"V. What's special about this situation? (Why isn't the corresponding
statement true wheXyy, — BV is replaced by some arbitrary fibratiégh— B?)
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X afinite complex: setting the scene
V =1Z/p, acts onX

.FiX(X, V) =H Q71n T(H*th)
M anH-module: Fix(M) = HQpy T(M)

Fix(M) = 0if M = H*S"
TH — TM = H*( Hom"(BV, BV) — Hom"(BV, S™) )

Fix(M) = 0if M is finite
Exactness.

Fix(X,V)=2H® H*(XV) (Smith Theory)
(finite) «— H*(BV x XV) « H*(Xny) « (finite)

In the tensor products on the slidé,is made into a module ovéi(H) by the restric-
tion T(H) — H to the cohomology of the identity component idbm"(BV, BV).
The last slide constructed an algebraic objgnt(.X, V') which is an approximation to
H*X™V in the same way a& H* X is an approximation td7* Hom"(BV, X). This
slide computesFix(X, V) if X is a finite complex with a celludr-action. There are
several steps:

1. Extend the construction ofix (X, V') to give Fix(M), whereM is an unstable
algebra(module) over,, which is a module oveH. The connection is that
Fix(X,V) = Fix(H* Xpy).

2. M — Fix(M) is exact (7.2).

3. Fix(finite modulg = 0.

4. By Smith theory to see that there is a map
H*(BV x XV) « H* Xny

which is an isomorphism modulo finite modules.

The conclusion is that there is an isomorphism
Fix(X, V)= Fix(XV,V)=2He H(XY),

where the last isomorphism comes from the fact fhgireservesz and takes finite
modules to themselves.

Slide 7-2
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7.4 Exercise. In computingFix(H*S™), H*S™ is treated as a trivial module over
H, in other words, as a module in which the action factors through the unique ring
homomorphisntl — F,,. Verify that Fix(H*S™) is zero, and show carefully how this
implies thatFix (M) = 0 for any finite modulelM . (You may need to use a little bit of
interplay betweerT’ on the categoryC of unstable algebras arid on the category/

of unstable modules).

Slide 7-3 Slide 7-3
X afinite complex (II)
V =Z/p, acts onX
BV x XV is a volunteer fo(Cj, X) V1
Theorem
(CpX)MV ~ BV x Cp(XV)
(CPX)hV ~ CP(XV)
Corollary (T-free, V-free)
Q afinitep-group, X a finite Q-complex —
(CrX)"Q ~ Cp(X9)

7.5 Exercise. There is a little sleight of hand hidden behind the innocent slide. The
fact that(C, X )"V appears depends on the equivalence

Cp(Xhv) ~ (CpX)nv

Show that this follows from the fibre lemma (slide 5-10).

7.6 Exercise.Prove the corollary on the slide, using induction on the siz@.of
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Aside: sighting of C,,(p-bad space

e Y=5Slvst
e X =Y +S51%xSlx...x8°
e Q=1Z/p

e (Q-actions: trivial onY’, rotation onS', diagonal onX

Y has problems@,Y # L,Y, C,CLY # CpY ...)

p-bad news
(CpX)hQ ~p CpY

You can run but you can’t hide.
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7.7 Exercise.Prove that the news really is bad, by showing that

1. X9 ~Y, and
2. X" ~, CY

In particular, the homology of the relatively pathological spat&” comes up even

if you're just interested in homotopy fixed point sets of finite groups acting on finite
simply-connected complexes. For the second item, it's probably easiest to show that
if X is one-connected ang is a finitep-group acting onX, thenX"? ~, (C,X )"
(compare with 6.10).
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Maps B@ — BG: individual components

e (G aconnected compact Lie group,
e ( afinitep-group,p: Q — G
e Z(Bp) = Hom"(BQ, BG) s,

Adjoint action and the free loop space

Bp =

QZ(Bp) ~ {A1's} ~ {A2’s} ~ GO

Theorem (Cp-free)
Z(Bp) ~p B(Za(pQ))

The results on this slide and the next one appear in a different form in [32]; there’s a
significant generalization (in which finitegroups are replaced kytoral groups) in
[80].

In this slide, the action of) on G is by conjugation via the homomorphism

7.8 Exercise.Show that ifG is a compact Lie group (or any simplicial group or rea-
sonable topological group) the free loop space fibraft®@*' — BG over BG is
equivalent in the category of objects oue¢: to the Borel construction associated to
the conjugation (adjoint) action @F on itself.

7.9 Exercise.Show that ifL is a loop space the@, L ~,, L. Generalize this to show
that if Q is a finitep-group acting orl. by loop maps, thet, (L"?) ~,, (C,L)"?. You
might want to assume without loss of generality thas connected (why is this OK?)
and pass to the classifying spaces using Bousfield and Kan's fibre lefa@a £

C,Q if the input space ig-connected) and something along the line§6f—)"¢) ~
(Q(—))"?. (Compare with 6.10, where the action is trivial but the space involved is not
a loop space.)



Lecture 7: Maps between classifying spaces 72

7.10 Exercise.Prove the theorem. This involves using the previous exercise to fool
around with~,, and C,,, and illustrates how technicalities can sometimes disappear
from some final statement. The simple but notationally toxic argument which | barely
restrained myself from putting on the slide reads

Pf: G"? ~p (CPG)hQ ~ CP(GQ) = CpZa(pQ) ~p Za(pQ)

Slide 7-6 Slide 7-6

Maps B@Q — BG: how many components?
G, Q as before
New ingredient (2 acts onX)
H*X < o0 & x(X) #0 mod p = (CpX )@ £

Theorem: [BQ,BG| = Hom(Q,G)/G (Sketch)
e OKif Gis p-toral

e JK C G with K p-toral, x(G/K) # 0 mod p

K BK
1% 7
G/ER = i G/EW~ l
~ v
Q——a BQ —— BG
11,y BZc(p) ~p Hom"(BQ, BG) & el ~p Cs

The “new ingredient” comes from an algebraic studyraf (—), which we’ll talk about

later on in more detail on slide 9-3. It's clear that the non-emptiness statement is true
if X is a genuine finite complex with a cellular action@f since counting cells shows

that thaty (X ?) = x(X) mod p, and soy(X) # 0 mod p implies that(C}, X )@ ~
Cp(X?) is nonempty. The problem is that here we have to handle a case in which
the “action” of @ on X (= G/K) arises from a fibration oveBQ@ with X as fibre,

and so corresponds to a geometric actio@adn an infinite complex equivalent t&.

The Smith theory arguments above depend on actual finiteness of the action, and so the
arguments need to be replaced.

In the statement of the Theoreipm(Q, G)/G stands for the set off-conjugacy
classes of group homomorphisrgs — G. The p-toral compact Lie groups which
appear in the proof are groups which fit into an exact sequence

1-T—-K-—->P—1

in which T is a torus (a finite product of copies of the circle group) &hig a finitep-
group. The squiggly arrow in the left-hand commutative diagram is supposed to convey
that the diagram is supposed to commute only up to conjugaGy in

7.11 Exercise Prove that ifG p-toral and(@ is a finitep-group, then homotopy classes
of mapsB(@Q — BG correspond bijectively to conjugacy classes of mgps— G.
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One way to do this is by inspecting the extension in whi¢tby definition sits (the
statement is pretty clear @ is a torus or a finite-group). Here’s another approach.
Show that it is possible to find a commutative diagram

1— (Z/p>®)" Cj I 1
1 (SHr G P 1

in which the left vertical arrow is the inclusion of theprimary torsion subgroup of
(S1)". (Don’'t make the mistake of taking’ to be the set of-primary torsion elements
in G; this isn’t necessarily a subgroup.) Now show that there is a fibration sequence

(BZ[1/p])" BG&' BG

and use this to compai®om"(BQ, BG') to Hom"(BQ, BG), as well as to compare
Hom(Q,G")/G" toHom(Q, G)/G.

The subgroupk” of G which appears on the slide is the-hormalizer” N, T" of a
maximal torusT' in G. This is the inverse image in the normaliz&f" of T' of a
Sylow p-subgroup of the Weyl grouy’ = (NT')/T'. Note that the Euler characteristic
x(G/NT)is 1.

7.12 Exercise.Try to make some sense of the “proof” which is sketched for the the-
orem. The argument has something to do with the fact that in light of the previous
discussion there is a connection (involving occasional insertion and/or deletidy) of
between(G/K)® and (G/K)"?. But the spacéG/K)® only makes sense if there

is a homomorphisnd) — G to look at. How does the “new ingredient” contribute to
showing that any map(@) — BG is obtained from a homomorphiséh — G?

The last statement on the slide is an interpretation of the calculation we've made on this
slide and the previous one; the interpretation is in the language of homotopy theories.
The statement is that @) andG are interpreted as categories enriched over topological
spaces, i.e., homotopy theories, then the category of functors @dmG is Z/p-
equivalent, as an enriched category, to the derived or homotopy-invariant category of
functors from@ to G.

7.13 Exercise.(see 1.2) A functo€, — Cg is just a group homomorphism: @ —
G. A morphism between two such functors is an elemem G with gpg=! = p'.
What does this have to do wi]‘[{<p> BZg(p)?

The following exercise shows that maps from the classifying space of a finite group
into the classifying space of a compact connected Lie group are not directly related to
group homomorphisms if more than one prime divides the order of the finite group.

7.14 Exercise.Produce a maB~; — BS? which is not realized by any ho-

momorphisn®; — 52, HereX; is the symmetric group oBiletters (or equiva-
lently the unique nontrivial semidirect produt?2 x Z/3) andS? is the multiplicative
group of unit quaternions (or equivalently the special unitary gr8U§2)). It might
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help to observe thaBS2 is HZ-local (since it is simply connected) and that there is an
integral homology equivalence

BY3 ~z Ly(BY3) V Ly(BEs) ~ RP™ V Ly(BS3).

In constructing the map t&S3, it's good to notice thatl;(BY3) is equivalent to
L3(B(Z/4x Z/3)).

Slide 7-7

Maps into C, BG for G finite
Q a finite p-group,G compact Lie

G connected @ —> Hom"(BQ,BG) ~, Hom"(BQ,C,(BG))

Theorem
G finite = Hom"(BQ,BG) ~,  Hom"(BQ,C,(BGQ))

1. find afaithfulp: G — U(n) = K

2. K/G BG BK

S

Cp(K/G) —— Cp(BG) — Cp(BK)

3. Apply Hom"(BQ, —), compare bases and fibres.

On this slideQ is a finitep-group and= is a compact Lie group. The first statement,
involving connected>, is low-tech, in the sense that it does not depend on anything
beyond obstruction theory; the statement has already come up a couple of times in the
exercises for this lecture. On the other hand, the statement doesn’t have that much
force, since neitheHom"(BQ, BG) nor Hom"(BQ, C,(BG)) is easy to compute.

The statement in the theorem looks the similar, but it's really worlds different: If

is finite, Homh(BQ, BG@) is very easy to compute in terms of homomorphisms and
centralizers (1.2, 7.13), biom"(BQ, C,(B@)) is a priori inaccessible. The first
results like this were due to Mislin [74].

The theorem actually doesn't requi€eto be finite (it works for a general compact

Lie G); it's just that we will mostly be interested in the finite case. There are several
technicalities to deal with in the proof of the theorem, and these are either irritating
or fun, depending on your feelings abdati! The comments from this point on give
advice on how to wrestle with the technicalities, and can safely be ignored by the weary,
the bored, and the otherwise occupied. But look at the starred remark.

7.15 Exercise.Why is the sequence on the slide involving the completed classifying
spaces a fibration sequence?

7.16 Exercise (Compare bases.) Once more, convince yourself that

Hom"(BQ, BK) — Hom"(BQ, C,(BK))

Slide 7-7
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is aZ/p-homology equivalence. In particular, the map is a bijection on components.
Don't forget about this map; we’ll have to come back to it.

7.17 Exercise. (Compare fibres.) Any ma@@ — BK is represented by a ho-
momorphismp : Q — K (as above). The homotopy fibre Bom"(BQ, BG) —
Hom"(BQ, BK) overBpis (K/G)"?, while the homotopy fibre over the image point
in Hom"(BQ, B(C,BK) is (C,(K/G))'?. (In each cas€) is acting from the left on
K /G via the homomorphism.) We would like to argue that the map

(K/G)"? — (Cp(K/G))™

is aZ/p-homology equivalence. This seems tricky; the targéefg-equivalent to
C,((K/G)?), butthe source is hard to identify. Solve the problem by takibgG)"?
seriously as a homotopy fibre of mapping spaces and (using the previous slides) inter-
preting it as a spage-equivalent to

11 2x(@)/2a(Q)

(whereo ranges overz-conjugacy classes of homomorphisis— G which up to
K-conjugacy liftp). Observe that this coproduct is exactlliy/G)?. Now prove that
(K/G)? is p-good.

7.18 Exercise (Add base to fibre, carefully.) Observe that, given a map

F——F——2B

N

F'——F —Dp

in which the outer vertical arrows a#%/p-homology equivalences, the center vertical
arrow isnot necessarily & /p-homology equivalence. Explain why such weirdness
will not take place ifr,(B’) is a finitep-group. Show that; (Hom"(BQ, Cp(BK)p,

is a finitep-group. One way is to argue as follows:

1. QHom"(BQ, C,(BK) B, ~p Zr(p(Q)). This implies thatr, of this loop
space (or equivalenthy; of the mapping space) is a finite group.

2. Hom"(BQ, C,(BK) g, is HZ/p-local. (Why?)

3. if X is an HZ/p-local space with a finite fundamental group, then the funda-

mental group is a finite-group. (Why?)

* Remark. Something really interesting has happened here: you've just proved that
if @ is a finite p-subgroup of the connected compact Lie grdipthen the group of
components of the centralizer i of ) is also a finitep-group.
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7.19 Exercise Whew! Assemble the above pieces into a proof of the theorem.

Slide 7-8 Slide 7-8
Fusion functors
G afinite group
P = {finite p-groupg B
P = {finite p-groupg + {monomorphisms} I:P—P
Fusion functor (X aspace)

Bx: PP —Set, Dx(Q)=[BQ,X]
®pc ~ Pc, BG
Does® g determineC, BG ?

Frugal fusion functor
\I/G : POp — Set, ‘IJG(Q) = {Q(W\>G}

(DBG = LKaHIOP \I/G
DoesV  determineC, BG ?

The basic question here is what sort of algebraic data determines the homotopy type
of C, BG, this is interesting because of the idea thgiBG captures “the finite group

G at the primep”. Of course( itself (which is certainly algebraic!) determines the
homotopy type of”, BG, butG contains too much information. The groGpcan not
usually be reconstructed frofl, BG, and in fact there are many examples of finite
groupsG, G’ such that? is not isomorphic ta>’ but C,G ~ C,G'.

* 7.20 Exercise Find examples of such pairs, the more complicated the better.

7.21 Exercise. Are there examples of finite grous, G’ such thatC, BG ~
C,BG' for every primep, but G is not isomorphic taz’? Can there be such a
pair in which the equivalences are induced by rdags G'?

The funny notation fofl (Q) is meant to denote thdt;(Q) is the set of conjugacy
classes of monomorphisnis — G.

7.22 Exercise Recall that? 5 (Q) can be indentified with the set of conjugacy classes
of homomorphisms) — G. Verify that® 5 is isomorphic to the left Kan extension
of U alongI®P: P — P.

7.23 Exercise.The fusion functors are defined in terms of conjugacy classes of

maps) — G, or in other words homotopy classg3@, BG] of unpointed maps
BQ@ — BG; previous slides have shown th&t(Q), BG] is isomorphic tdBQ, C, BG].
What happens if you decide that you don't like working up to conjugacy, and you would
like to look at genuine homomorphisms — G, or in other words homotopy classes
of pointed map€B@Q — BG. What's the relationship between such homotopy classes
and the homotopy classes of pointed majgg — C, BG?
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Slide 7-9

Fusion systems
G afinite group;P = p-groups+ monos

0C_ C‘?X
W XP x* = I jG ~ [
v(_ B v
Q' " Q'

Fusion systemF = F,(G)
e P C G a Sylowp-sugroup
e 7F={QCPr}
e Q—rQ = f:Q—Qst3g: f=9g(—)g™!

F ~ WUexPxx
DoesF determineCy, BG?

The diagrammatic description of the transport category (Grothendieck construction)
U xPxx is meant to indicate that this category consists of pais(f)) whereQ is

a finitep-group and f) is a conjugacy class of monomorphisfs— G. A morphism
(Q,{f)) = (@', {f")) isamapl — Q' such that the indicated diagram commutes in

the only way it can. This category is equivalent to the category whose objects consist

of pairs (Q, f), where@ is a finite p-group andf is a monomorphisn®) — G; a
morphism(Q, f) — (Q’, f') is a homomorphisn® — @’ such that the indicated
diagram commutesp to conjugacythis is what the little circled means).

* 7.24 Exercise. Show that these two categories at the top of the slide are in fact
equivalent.

The objects ofF are the subgroup® of P; a morphism? — Q' is a homomaorphism
of groups which is realized by conjugation with some elemer¢ G. (The mor-
phism data does not include the choice of a particular elemesalizing@Q — Q’).
SometimesF is taken to have as its objects all of thesubgroups of7; this gives an
equivalent category.

* 7.25 Exercise Verify that F is equivalent as a category a; x P x *.

* 7.26 Exercise. The categoryF comes supplied with a faithful functof — P
(whereP as above is the category of finitegroups and monomorphisms). Find an
explicit way to reconstruct the fusion functi; from F andF — P.

The question of whether the fusion data determines the homotopy typg( 8G) is
sometimes called the “Martino-Priddy” problem. It's a question of whether the con-
verse to one of the main results in [74] is true.

Slide 7-9
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Lecture 8.
Linking systems andp-local classifying spaces

Slide 8-1

DoesF determine C, BG?
G afinite group,F = F,(G)

Fri@ 0y

Centralizer diagram —> something missing ¢ = {Q C G})
CpBG ~p hocolimx J J: {f) — BZa(fQ)

Troubling questions
1. NeedF and J (better,C, J) to getC, BG?

2. Jtoofancy? CpBZa(fQ) not“algebraic”
3. Circular scam? J(1 — G) = BG ~, Cp, BG

Solution to (2) and (3)find better C

Let C be the collection of alp-subgroups oBG (4—3). The categoryF is equivalent
to the category which parametrizes the centralizer decompositio®¢dwwhich is
associated to the collectiofi. We continue to look at the question of whethEr
determines the homotopy type 6f BG.

8.1 Exercise. Verify that the collectionC' of all nontrivial p-subgroups of> satisfies
the condition from 4-5, i.e.
(Kc)na ~p BG.

(In fact, show that¢ is contractible.) This implies that the homotopy colimit of the
centralizer diagram associateddds Z /p-equivalent taBG.

The slide points out that we should not exp&ditself to giveC, BG, since (according

to the lore of the centralizer decomposition) fhé&-homology type ofBG is given by

the homotopy colimit of a highly nontrivial functof on F. So what should we do?
Accepting the functod or evenC,J as part of the structure is not an attractive option,
since the values of,J are complicated, and in fact one of these values is the very
object,C, BG, which we would like to understand. Remember, the goal here is to find
a some sort of data which

1. is reasonably simple and combinatorial,
2. determines the homotopy type 6f BG, and
3. can be derived from the homotopy type@f5G.

Slide 8-1
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The functorJ satisfies (1) and (2), but to an embarrassing degree, dinttermines
Gitself (J({1}) ~ BG). The functorC), J satisfies (2) and (3), but again in a pointless
circular way C,J({1}) ~ C, BG). So we need a new idea.

Slide 8-2 Slide 8-2

Switch to the p-centric collection

A more economical approach

Definition: @ C G p-centric (Q ap-group)
Z(Q) = Sylow p-subgroup inZ¢ (Q)

Theorem C = {p-centric Q C G}
BG ~p (KC)hG
~p hocolim I I(—) ~ BQ
~yp hocolim J J(=) ~BZz(Q)

Fewer subgroups, smaller(?) centralizers, ra€ély Z5 (Q). ..

The way in which the centralizers in thecentric centralizer decomposition are ef-
fectively verymuch smaller than centralizers in general will become clear on the next
slide. The theorem on the slide appears in [33].

8.2 Exercise.Check that the theorem is true (and pretty tame)dbes not divide the
order ofG.

8.3 Exercise. If p divides the order of~7, show that any Sylow-subgroup ofG is
p-centric.

* 8.4 Exercise. The theorem implies something particularly interesting if a Sylow
p-subgroup of is abelian. What is this?

* 8.5 Exercise.Show that g-subgroup of G is p-centric if and only if the cen-
tralizer Z¢(Q) is isomorphic to the product of the centg(Q) of @ with a group of
order prime to.

8.6 Exercise.Use the previous exercise to give necessary and sufficient conditions for
G itself to appear as the centralizer op&entric subgroup. What can you say about
CpBG in this case?

8.7 Exercise.Show that ifQ, Q" arep-centric subgroups af with Q C @Q’, thenQ is
also ap-centric subgroup of)’.

Amap f: Q — G is p-centric if f is a monomorphism andl(Q) is ap-centric sub-
group ofG.

8.8 Exercise.Given a mapf: @ — G, consider the induced mafj: BQ —
C,BG. Give a homotopical condition off which is equivalent to the statement
that the mayy is p-centric.
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Slide 8-3 Slide 8-3
The p-centric centralizer diagram
C = {p-centricQ C G}

Fe~r {QC ——<J—£—>——>G, f(Q) C G p-centrict

Centralizer decomposition
CpBG ~p hocolim J J:{f)— BZa(fQ)

Centralizers: simplify at p to centers
Q p-centric = Zg(Q) = Z(Q) x p’-group

= CpBZa(Q) ~ BZ(Q)

CpBG ~ hocolim BZ(fQ)

Centers: algebraic, and easily extracted fro@l, BG
BZ(fQ) ~p Map(BQ,CpBG)s

8.9 Exercise. There’s something that has been taken for granted for a while. Show
that if D is a category and” — G is a natural transformation between two functors
D — Sp which induces &/p-equivalencer’(d) ~, G(d) for eachd € D, thenF
induceshocolim F' ~,, hocolim d. (cf. 2.20)

8.10 Exercise. Give an example to show that the above conclusion no longer
holds if hocolim is replaced byholim. Does it help to assume that the values
of F'andG are highly connected? Find some cases in which you can say something
positive.

* 8.11 Exercise.Suppose thaf) and@’ arep-centric subgroups aff. Show that if
gGg~—! C Q' then conjugation witly~! induces a mag (Q') — Z(Q)
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Slide 8-4

The categoricalp-centric centralizer model
Fe={{f): f: Q — G p-centric}
Functorz: . — Grpd, Z({(f)) ~Z(Q)

Grothendieck construction
CpBG ~yp hocolim BZ

~p N(Z X ]'—c)
Fvs. Z X Fe
~C
Q——a Q" sg¢
| I | |
F o~ l 9Zc(Q) ZXFe ~ 1 925(Q)
A \i v p.-C v
Q' (G Q' " s

The slide claims thaE x F. is equivalent to the category whose objects consist of pairs
(Q, f), wheref is a monomorphisng — G with p-centric image. A homomorphism
(@Q, f) — (@', f") is a homomorphisng) — Q' together with a cosefZ/,(Q) such
that the mag) — Q' is realized inside o+ by g(—)g~*.

8.12 Exercise Verify that these morphisms really can be composed.

8.13 Exercise DescribeZ x F. up to equivalence as a category whose objects are the
subgroups of a given Sylop+subgroup of7,

Probably the easiest way to represent the fungtas by the following formula
Z((f)) = 1% Hom"(BQ, BG) ) -

The right-had side denotes thgrimary part of the fundamental groupoid of the com-
ponent of the space of mafg3Q — BG corresponding to the conjugacy clagd

of homomorphismg&) — G. This is also thep-primary part of the component of the
category of functor€g — C¢ corresponding tg.

8.14 Exercise. Suppose that{ is a connected groupoid with the property that each
vertex group is the product of a finite abelipagroup and a finite group of order prime
to p. Convince yourself that thep*primary part” of this groupoid makes functorial
sense (as a groupoid with the same objed8 alf in doubt, think aboull; C), N(H).

* 8.15 Exercise Check that the assertions on the slide are correct.
1. The functorZ makes sense,

2. there is a natural transformation from the centralizer decomposition fudctor
for the p-centric collection (slide 8-1) into the funct@Z which gives aZ/p-
homology equivalencd — BZ, and

Slide 8-4
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3. the Grothendieck constructiafi x F is (at least up to equivalence) the category
described by the picture on the slide.

g% 8.16 Exercise.Suppose tha# is a connected abelian groupoid (i.e., each
vertex group is abelian), thét is a group, and thaf: Co; — Grpd is a
functor whose unique valuEx) is .A. Consider the functoy : C¢ — Grp obtained
by composingF' with the functor from groupoids to abelian groups which assigns to
A the abelian groupi; N(A). Is there a morphisni — I (in the category of functors
Cc — Grpd) which gives a categorical equivalendéx) — I(x)? How about a
zigzag of such morphisms? It is more or less the same thing to ask whéthgrs
equivalent taN(J) in the homotopy theory of functotg; — Sp. Either prove that the
answer is yes or give a counterexample.

Slide 8-5

The linking system
Linking systeml¢:= Z x F¢

RecoveringLc from C, BG X =CpBG
Ql’ B‘Q . —-<f>:p‘c'
Bh | ey
Fe ~ NhiBR > Z(f) = II; Hom"(BQ, X)

| A
Q/> BQ/ (f")pc.
Now just formZ x F¢

Theorem
CpBG ~ CpBG' <= Lc(G) ~ Lc(G)

In the diagram formula fof~; above, the objects of the category are the p@irs(f)),
whereQ is a finitep-group and f) is a homotopy class gi-centric (8.8) mapBQ —
C,BG; a homomorphisni@, (f)) — (@', (f’)) is a homomorphisn® — @’ which
makes the obvious diagram commute (in the homotopy category). The fuficer
signs to(Q, (f)) the fundamental groupoid of the indicated mapping space component.

8.17 Exercise.Check that this construction fai; = Z x F¢, which takesC, BG as
input, gives a category equivalent to the one from slide 8—4.

In the statement of the theorem, tkeon the left is equivalence between spaces and
the~ on the right is equivalence of categories.

8.18 Exercise. Let A be the full subcategory of the category of (unpointed)
spaces consisting of spaces equivalenBt, () a finite p-group. LetB be the
category with the single object, BG and only the identity map. Construct a category
C by taking the disjoint union of4 and5. There are no maps it from the object in
B to objects inA, but if BQ) € Athe mapsB() — C,BG are the ordinary-centric
maps of spaceB() — C,BG (8.8). Calculate the homotopy left Kan extension over
C of the inclusion mapd — Sp.

Slide 8-5
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Slide 8-6 Slide 8-6

L¢ vs. Fc — the orbit picture
Z6(Q) = Z(Q) x Zg(Q)

Three categories X =BG, CpBG

Category Object Morphism

Lc Q+ fpe: BQ—X h:Q— Q. +w
Fe Q@+ (fpe) € [BQ, X] h:Q—Q

Oc Q@+ (fpe) € [BQ, X] (h) € [BQ, BQ']

Three categories

Q fip-c. G Le: E\LC —{Q}
| v
3 [ 7 e F—>{Q)
, v | |
Q@ ﬁ G Oc: |Q'9Za (Q) @c B S HO{BQ}
Conclusions
{BQ} Feta=0c+p
Q= A7 v

@CT)HO{BQ} Lo=Fetu+A

This is quite a complicated slide. It gives descriptions for each of three categories;
two of these categories we have already run into. The first description is geometric,
the second is algebraic; the two descriptions give equivalent categories, not necessarily
isomorphic ones. In part, this systematizes what has appeared before. The $ymbol
stands for eitheBG or C), BG.

The (p-centric) linking category L.. From the geometric point of view, an object of
Lcis apair(Q, f), whereQ is a finitep-group andf is ap-centric mapBQ@ — X. A
map(Q, f) — (@', f') is a homomorphism : Q — Q' together with an equivalence
class of paths in Homh(BQ, X) connectingf’- Bhto f. If X = C, BG thsis simply

a homotopy class of paths.

8.19 Exercise.How can you describe the equivalence relation on the class of paths if
X = BG? (Remember that, Hom"(BQ, BG); ~ BZa(fQ).)

From the algebraic point of view, an object4h is a pair(Q, f), where@ is a finite
p-group andf : @ — G is a homomorphism. A maf®, /) — (@', f’) is a homo-
morphismh : @ — Q' together with a cosejZ/,(fQ) of Z,(fQ) in G such that
gfg~"t = f'h.

8.20 Exercise Convince yourself that these two descriptions give the same category.

The (p-centric) fusion systemZ.. From the geometric point of view, an object 6§
consists of a paifQ, (f)), where@ is a finite p-group and(f) is a homotopy class
of p-centric mapsBQ — X. A map(Q,(f)) — (@, (f")) is a homomorphism
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h: Q@ — Q' such thatf’ - Bh is homotopic tof. Algebraically, an object consists of a
pair (@, f) whereq is a finitep-group andf : @ — G is ap-centric homomorphism.
Amap(Q, f) — (Q', f') isacoseyZq(fQ) of Za(fQ) in G suchthayfg~' = f'h.

8.21 Exercise.Convince yourself (if you haven't before, see the remarks after slide
7-9) that the two descriptions give equivalent categories.

The (reduced, p-centric) orbit category Oc. In the geometric interpretation, the ob-
jects inO; are pairQ, (f)), whereQ is a finitep-group and(f) is a homotopy class
of p-centric mapsBQ — X. Amap(Q, (f)) — (@, {f’")) is a homotopy clas&) of
mapsBQ — BQ' such that{f’) - (h) = (f). (Note thath amounts to &)’-conjugacy
class of maps) — Q’.) Algebraically, an object consists of a pa®, /) whereQ

is a finitep-group andf : @ — G is ap-centric map. A mafQ, /) — (Q’, ') is
aQ’-conjugacy class of map#): Q@ — Q' together with &Q’, Z¢(Q) double coset
Q'9Zc(Q) in G such thatf’ - (h) containsgfg—!.

8.22 Exercise Again, check that these two descriptions give equivalent categories.

8.23 Exercise.Show that thep-centric orbit category ofF (suitably defined) can be
represented by the picture

Q f:p.c. a
) |
L@
Y
!/
Q f:p.c. G

All three categories come with reference maps, the first two into the category of fi-
nite p-groups (antp-centric maps), the third into the category of finitegroups and
conjugacy classes op{centric) maps between them. (This is denoted on the slide
as homotopy classes of maps between their classifying spaces.) See 8.7 for the fact
that the reference functors take morphisms in the domain categories to appropriately
p-centric maps in the target categories.

The mapsC. — F. — O are pretty clear. There is a funct®: O, — Grpd which
sends an objeehr = (f: Q — G) of O, to the groupoid consisting of all objects of
L which project tom and all morphisms between these objects which project to the
identity map ofm.

8.24 Exercise.Check thatQ can be made into a functor in a natural way (why this
should be true will become clear in the next exercise).

8.25 Exercise Show that’. is equivalent to the Grothendieck constructi@px Q.

8.26 Exercise.Show thatQ(Q — G) is naturally isomorphic t@) in the category of
groupoids and natural isomorphism classes of functors between them. (This is isomor-
phic to the category of groupoids and homotopy classes of maps between their nerves.)

8.27 Exercise.Conclude that giving the categoi§ provides a liftA of the functor
0, a lift which takes values in the categd8yp rather than (ag does) in the category
Ho(Sp).
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8.28 Exercise.Conversely, given a lifi of 3 to Sp, show show that some sort of a
plausible candidaté;, for £ can be constructed by the formula = O; x II; \.

8.29 Exercise. Explain how giving the pai(F¢, «) is equivalent to giving the pair
(007 6)
At last!!

8.30 Exercise.Prove that ifG andG’ are two groups with the property tha(G) ~
Fe(G") butCy(B) # Cp(G'), then the functop : O¢(G) — Ho(Sp) has two inequiv-

alent lifts\, ) : Oc(G) — Sp.

Slide 8-7 Slide 8-7
Lifting from Ho(Sp) to Sp
An example (K a group)
{BQ} B Aut"(BQ)
A7 J/ _ AT i
Cx > Ho{BQ} BK > BOw(Q)

Obstructione H3(BK; Z(Q)),  {()\) < H?(BK, Z(Q))

A generalization
{BQ}
xX_ 7 i/
B: D —— Ho{BQ}p.c
Obstructione limbep 2, (A < limke 2, Z(d) = Z(m16(d))

This slide looks at the question of taking a diagram in the homotopy category of spaces
and rigidifying it to a diagram in the category of spaces itself (lifting a diagram from
Ho(Sp) to Sp). The focus is on a particular special case, but it might be worth pointing
out why this case is special and particularly tractable. The general problem is to con-
struct a functor\ : D — Sp which covers a given functg?: D — mSp = Ho(Sp).

The global approach is to construct the space of such functors; the components of
this space give equivalence classes of the sought-for lifts, and each component is the
classifying space of the space of self-equivalences of its personal lift (where self-
equivalences are to be taken over the base furibtor» Ho(Sp)). Of course the
space of such functors might be empty, which would signify that no lift exists.

In general the lifting space can be written as a massive homotopy limit; this is the
homotopy limit, over a category of simplicesiD, of a functor which assigns to any
simplex

oc=dy—dy —---d,

the space of lifts of the restriction gfto o. This can be calculated without too much
trouble as an iterated homotopy coend (iterated Borel construction)

h h h h
k Xoqo Mo X, oo Xq Mp_q X4 %
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whereX; = f(d;), A; = Aut"(X,) is the identity component of the space of self-
equivalences of;, and M; = HOmh(Xi,Xi+1)fi is the component of the space of
mapsX; — X, corresponding tg; = 5(d; — d;11).

Now for the punch line.

* 8.31 Exercise.Show that if eachX; above is the classifying space of a finjte
group@;, and each mayp; is ap-centric map, then the above iterated homotopy coend
collapses into

BQZQn) = K(Z(Qn)’ 2)

It follows from this and a cofinality argument that the desired space of lifts can be writ-
ten as the homotopy limit ovép itself of a functor oriD°P which assigns td a space
equivalent toB%Z(d), whereZ(d) = Z(m13(d)). According to general principles,
there is an obstruction iim® Z which is zero if and only if the space of lifts is non
emzpty; if this obstruction vanishes, the set of components corresponds bijectively to
lim® Z.

@ 8.32 Exercise. Work out these general principles. Here’s one statement.
Suppose thab is a categoryA is a functor fromD to abelian groups, and

n > 1is an integer. Give a classification up to equivalence all functorsD —

Sp such thatr; I & %, i # n, andnw, F = A; the functors should be in bijective

correspondence with elements lafh" ! A. The classification should be along the

lines of the theory of-invariants. For instance, the functor has a section, in the sense

thatholim F is nonempty, if and only if it corresponds to the zero elemetitof ™ A.

If the functordoeshave a section, then the components of the space of sections (i.e., the

holim) correspond bijectively ttim™ A. (Note thatF is not assumed to be a functor

into pointed spaces, so applying F' is probably best interpreted &5, (F;Z).) If D

is the category of a grou@¥, what have you recovered?

This explains the bottom half of the slide. The top half describes a simpler problem
which is meant to put above machinery in a more familiar context. If the catégory

is the category of the grouft’, the problem is one of taking an action &f on BQ

up to homotopy and rigidifying it to an ordinary action, i.e., lifing a mBgK —

P,B Aut"(BQ) to a mapBK — B Aut"(BQ) or, equivalently, turning an abstract
kernel into a group extension. The neatest way to solve this is to analyze the homotopy
groups ofB Auth(BQ) and use obstruction theory.

* 8.33 Exercise. Review the obstruction theory. It has already come up, at least
implicitly, that the only nonvanishing homotopy groups BfAut"(BQ) (for Q any
discrete group) are

o ow(Q) i=1
Tz i=2
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Slide 8-8

Fusion relations suffice!
F. makes a spectacular comeback.

G = finite group
Z: 0" — Ho(Sp), Z(Q — G) = Z(Q)

Oliver's Theorem
lim?>Z=0

Consequences
There is only one way to enrichg to Lc.

Fe(G) ~qy FolG) & Cp(G) ~ Cp(G)

87

Slide 8-8

Oliver proves this by a miraculous calculation, in some sense case-by-case, that de-
pends on the classification of finite simple groups. The odd primary case is in [81], the

two-primary case in [82]

The notation¢(G) ~yq; Fc(G') signifies that these two categories are equivalent

in a way which respects the reference maps to the category ofgigiteups.

Slide 8-9

p-local finite group X

I. Fusion data (many versions) ¢ Axioms. . .)
o (Frugal) fusion functor¥) ®, fusion category? x ¥
e Fusion systenf based on “Sylow” groug®

Il. p-centric fusion data (two versions)
e p-centric subcategorfe C F
e p-centric orbit categoryd;, 3 : Oc — Ho{BQ}

IIl. Linking system
o Lo=TI1) x O, \: Oc — {BQ} alift of 3

CpBG sansG!
BX ~ Cp N(Lc) ~ Cp(hocolim A )

Slide 8-9

This slide describes various ways of presentipglacal finite group; the idea is to take
exactly the same kind of data which determidgs3G for G a finite group, without
insisting that the data come from soifie Some references are [20], [21], and [22].

Thefusion datacan be presented in various ways, either as a fusion fudctar, (slide
7-8) or as a fusion systerfi (slide 7—9) based on a finifegroup P. (P serves as a
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Sylow “p-subgroup” for thep-local finite groups. There are various axioms that imply
in particular that it is possible to go back and forth among these presentations.

Thep-centric fusion dataits inside the fusion data. For instanceFifs described as a
category whose objects are the subgroupB ahd whose morphisms are certain maps
between them, thefk. is the subcategory consisting of subgrodpsuch that every
object inF isomorphic toQ is ap-centric subgroup oP.

The linking systenis specified in the same way as when a gréus present. One
way to do this (not mentioned on the slide) is to desculedirectly as a suitable
extension of7,. Another way is to construct the “orbit categor. as a quotient
of F., notice that the axioms give a funct@rfrom O, to the homotopy category of
spaces (actually the homotopy category of classifying spaces of figteups and
p-centric maps between these classifying spaces) and then deSgitbeerms of a lift

X: O, — Sp of 5. (Of course \ might not exist if a certain characteristic element in
lim},_ Z refuses to vanish!)
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Lecture 9.
p-compact groups

A p-compact group is meant to be homotopical a analogues of a compact Lie group. In
this lecture I'll definep-compact groups and describe how to prove at least some things
about them. This is just an introduction to the theory, which has recently produced a
complete classification of the objects [4] [77] [78] [3]. For basic information about
p-compact groups see [42], [65], or [76].

Slide 9-1

Definition of a p-compact group
Not quite likep-local finite groups

Dictionary

Compact Lie group p-compact group

groupG loop spaceX

compact, smooth H*X < oo, BX ~CpBX
p:G—H Bp: BX — BY

ker p = {1} H*fibre(BX — BY) < o0

H/G Y/X =fiore BX — BY

Z1(p@G) Zy (pX) = QHom"(BX, BY) 5,
abelian Zx(X)~X

torusT = (S1)" p-complete toru§” = C,T

For p-local finite groups, part of the problem is coming up with the definition; you
analyze the»-completionC), BG for G a finite group and abstract what seem to be its
essential features. The upshot is thdocal finite groups come with an explicit way

of building them up out of finite-groups. The case gFcompact groups is different.

The definition is simpleX is ap-compact group ifX is a loop spaceld* X is finite
(written on the slide a#l* X < o0), andBX is p-complete. This is a straightforward

stab at capturing something that looks like a finite loop sgateX < oo) but whose
homotopy theory is concentrated at the prig@ X ~ Cp, BX). The trick is to extract

any structure at all from these objects. The approach is to reinterpret as many group-
theoretic constructions as possible in homotopy language and then follow your nose.

9.1 Exercise. Show that if G is a compact Lie group andyG is a p-group, then
QC,BG ~ CpG is ap-compact group.

Remark. If G is a finite group, therC’, BG' gives ap-local finite group. IfG is a
compact Lie group withro G ap-group, therC), BG gives ap-compact group. There’s
clearly [22] some kind of common generalization here!

Slide 9-1
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9.2 Exercise.Show that ifp: G — H is a homomorphism of finitg groups, them is
a monomorphism if and only if the homotopy fibre Bp is HZ/p-finite.

9.3 Exercise. Exhibit a homomorphismp: G — H of discrete groups which is not
a monomorphism but such that the homotopy fibreBaf is HZ/p-finite for every
primep. (This suggests that the above dictionary has limits to its applicability.)

At this point, it's natural to ask “why the in p-compact?” It seems much more ap-
pealing to study finite loop spaces, in other words, loop spatasich thatH, X is
(totally) finitely generated (so thé looks homologically like a finite complex). You
might even be willing to assume that is connected.

Why concentrate at a prirm?.

The answer is that the integral theory is more complicated than the one-prime-at-a-time
theories.

Consider, for instance, the humble case oftsphereS?; this sphere can be identified
with the group of unit quaternions and so has a finite loop space structure. Rector
proved the following disturbing theorem.

Theorem. [88] There are uncountably many homotopically distinct spacesith
07 ~ S3.

The proof consists of taking S apart into pieces via the arithmetic square, and then
reattaching the pieces to one another by adjusting the maps in the square. All of Rec-
tor's exotic Z’s are obtained in this way. But in fact, it turns out that this is diméy

way to obtain suct’s. First, an exercise.

9.4 Exercise. Show that up to homotopy there is a unique spcguch thatQZ ~
LgS3.

The following also turns out to be true, for any primeThis lecture is just a bit too
short to get to a proof.

Theorem [45] Up to homotopy there is a unique spagewith QZ ~ L,(S3) (~
CpS3).

This implies that the pathology Rector discovered disappears if you work one prime at
atime; it arises only because there are many possible choices involved in gluing up the
primary information with the arithmetic square.

So why not leave the integers for lateand work one prime at a time? This is the
philosophy ofp-compact groups.

@ 9.5 Exercise. Rector’s exoticZ’s can actually be distinguished from one
another by using the action of the Steenrod algebra. Explain how this can
possibly be true, since ea¢hhasC,,(Z) ~ C,(BS?) ~ C,HP>.

1But AD 2008 is already later [5] [75].
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Slide 9-2 Slide 9-2

Some basic properties op-compact groups
X ap-compact groupy =Z/p, p: V — X

Zx(pV) — X (eval atx)

Theorem: centralizer is ap-compact group.
Zx (pV) is ap-compact group.

Theorem: centralizer is a “subgroup” of X.
Zx (pV) — X is amonomorphism.

Theorem: there exist nontrivial p’s.
X A x = Fnontrivialp: V — X

This slide gives three statements abpuwompact groups which we'll try to prove. The
statements have to be interpreted according to the dictionary on the previous slide; here
are the interpretations.

e p:V — XisreallyBp: BV — BX.

Zx (pV) is really the loop spac@ Hom"(BV, BX)z,,.

Evaluating at the basepoint & gives a mafHom"(BV, BX) — BX, i.e. a
homomorphisnZx (pV) — X.

The mapZx (pV) — X is amonomorphism iX/Zx (pV') is HZ /p-finite, i.e.,
if the homotopy fibre oHom"(BV, BX) — BX is HZ/p-finite.

A nontrivial homomorphism : V' — X is really anon-nullmapBV — BX.

Slide 9-3 Slide 9-3

More cohomology of homotopy fixed point sets
V =2Z/p,actsonX, H*X < 00, X ~ Cp X

H* Xy = finitely generated module ovét = H* BV

Algebraic Smith theory (no need for XV)
e (finite) — H ® (finite) — H* Xpy « (finite)
o Fix(X,V) == H® (finite)

Consequences
If any N-condition holds

o H*X"W < o
o H*(X,X")hy < oo
o X(X") = x(X) modp
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This slide deals with the situation in whick is a p-complete spaceX ~ C,X),
H*X is finite (denotedd* X < o), andV = Z/p acts onX. The main references
are [46] [47] and [64]. The first remark is that the cohomology of the homotopy orbit
spaceXyy is in this case a finitely generated module olfer

* 9.6 Exercise. Prove this (probably by using the Serre spectral sequence and the
fact thatH is a noetherian ring).

Of course,H* X} is also a module over the Steenrod algebra in a way that's com-
patible with theH-module structure. Algebraic Smith theory says that in this situation
there is always a finite algebfaover A, and a map

H*th—>H®R

with finite kernel and cokernel. As in slides 7-2 and 7-3, this implies that if some
N-condition holds,H* X"V = R. By naturality the mapgZ* X, — H*(X™ )ny is

then the above maf* X,v — H ® R, and so the relative homology™* (X, X"V

is finite.

Remark. Algebraic Smith theory is actually a little more explicit. L&t C H be

the multiplicative subset generated by a nonzero element in dediee = 2, let .S

be the multiplicative subset generated by the unique non-zero element of degree 1).
Then S—!H* Xy, admits a natural action aft, which is not necessarily unstable.

Let Un(S—1H* X ) be the maximal unstable submodule. Algebraic Smith theory
guarantees that this object splits as a tensor product

Un(S™'H*Xpy) 2 H® R
for somefinite A,-algebrak, and the natural map
H*Xyw —H®R

becomes an isomorphism whéin!(—) is applied. IfX is a genuine finite complex

with a cellular action ofi, thenR = H*XV. So in geometric situation® is the
cohomology of the fixed point set, and in homotopy theoretic situations a candidate
for the cohomology of the homotopy fixed point set. In the geometric seXilds

a volunteer forX"V (6—11), hence giving result at the bottom of 7-3. In the purely
homotopy theoretic setting of the current slide there are usually no volunteers, and we
have to rely orN-conditions to extract information froff.

Suppose thatX, A) is a pair of spaces, thét: Y — X is a principalV/-covering, and
that B = f~1 A. Suppose in addition thdf* (X, A) and H*(Y, B) are finite.

* 9.7 Exercise.Prove thaty (Y, B) = px(X, A). Herex(X, A) for instance is the
alternating sum of the ranks of the mptiomology groups of X, A). (Use the fact that

if I is the augmentation ideal of the group riig V'], thenI? = 0 andI* /1" > 7Z/p

for k < p. Stitch together many long exact twisted cohomology sequences.) Deduce
the final congruence on the slide.
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Slide 9-4 Slide 9-4

The centralizer of V in X is ap-compact group.
V=Z/pp:V—-X

Formula for Zx (pV) ABX = Hom"(5!, BX)
ABX Bp*ABX
7 »
Zx(pV) ~ e l ~ i o~ X"V
e /
BV — BX BV
Bp
Algebraic Smith theory N-condition: X"V is an H-space
H*X"V < o
End game Z =Zx(pV)
BX p-complete — BX p-local = BZ p-local
+ mo Z finite — m BZ afinitep-group

= BZ p-good,p-complete

The slide begins by describingy (pV) = QHom"(BV, BZ)p, as the space of lifts
of Bp into the free loop fibration oveB X or equivalently the space of sections of a
pullback fibration oveBV with X. This in turn can be interpreted the homotopy fixed
point set of a suitable action & on X. As in 7.8, this is a conjugation action.

It follows from algebraic Smith theory thadi* X"V = H*Zy (pV) is finite. One of
the N-conditions is automatically satisfied, sind€'"" is an H-space, in fact a loop
space. In proving thaZx (pV) is ap-compact group, the end game is showing that
BZx(pV) is p-complete.

9.8 Exercise.Work out the “end game” reasoning sketched on the slide.

Slide 9-5 Slide 9-5

The centralizer of V' in X is a subgroup
V=2Z/pp:V—X,Z=27Zx(pV)

Construction of X/Z: V acts onBXP? by permutation.

diag
XP/X BX BX?

I(_)hv I(_)hv l(_)hv

LI, X/Zp ~(xP/X)"V ——]1,BZp — BX

H*(U,X/Zp) < oo by algebraic Smith theory
N-condition:

X/Zp —— BZp —> BX —> ]_IpX/Zp is p-complete
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In order to show that the centralizer Bfin X is a “subgroup” ofX, it's necessary to
show that the homotopy fibre of the map BZ = Map(BV,BX)p, — BX has
finite modp cohomology. (Here stands for evaluation at the basepoint.) The idea of
the argument is to expressin terms of homotopy fixed point sets bf-actions, and
then look at the information about the homotopy fibre diiat this expression reveals.

The spaceBZ is one component offom"(BV, BX); in using the argument on the
slide, it's handy to treat all of the components at once. In the coproqjgten the
slide, p runs over all conjugacy classes of homomorphi$ms> X (homotopy classes
of mapsBV — BX), andZp stands forZx (pV).

9.9 Exercise.Show thaIHomh(BV, BX) is the homotopy fixed point set of the trivial
action ofV on X.

The spaceB X is slighly trickier. ButBX is the homotopy fixed point set of the trivial

action of {1} on X, and so, by transitivity of homotopy right Kan extensiofisX

is also the homotopy fixed point set of thespace given by the homotopy right Kan
extension ofX from Cy;, to Cy. This is a complicated way of explaining something
that’s usually just called Shapiro’s lemma.

9.10 Exercise Show that the above homotopy right Kan extensiois” = [[,, BX,
with the obvious permutation action &f. Conclude thatBX?)" ~ BX.

9.11 Exercise. Show that the map: BZ — BX is obtained up to homotopy by
taking a component of the maBX)" — (BXP?)" induced by the diagonal map
BX — BXP,

But taking homotopy fixed point sets, or any homotopy limit construction, preserves
fibration sequences (since homotopy limits commute with one another)

9.12 Exercise. The above statement is true, but is it actually relevant to this slide?
Given afibration®? — B of V-spaces, how can you describe the fibre(s) of the induced
map E"V — B"Y? Note that “fibres” might be appropriate, sinB8” might not be
connected, and there’s no obvious reason that the fibres over different components of
B" should be equivalent.

9.13 Exercise. Verify the N-condition on the slide by showing thﬂp Z|Zpis p-
complete.

9.14 Exercise.Show that the set of conjugacy classes of homomorphigms X is
finite.

* 9.15 Exercise.Suppose thaf? is a discrete group, and I /G denote the quo-
tient of G? by the diagonal action @ on the right. The permutation action Bfon G?
induces an action df on G?/G. Show that the fixed point séG? /G)Y corresponds
bijectively to the set of homomorphisms V' — G, and that under this correspon-
dence the left action af on (G?/G)V (induced ultimately by the diagonal left action
of G on GP) gives the conjugation action &f on the set of homomorphisms — G.
It's interesting even to look at = Z/2.

9.16 Exercise.What adjustments can be made to the above argumehtssf
replaced by an arbitrary finitegroupQ?
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Slide 9-6 Slide 9-6

3 non-trivial V — X
V=2Z/p, X #

11, X/Zp ~ (X7 /X)MV

Existence of a nontrivial p (p # 0)

Statement Reason

x(X) =0 mod p Milnor-Moore
x(XP/X) =0 mod p XP/X ~ XxP~1

x(, X/Zp) =0 mod p algebraic Smith theory
x(X/Zo) =1 Miller's theorem

..3dp # 0 such thaty(X/Zp) # 0 mod p

The slide begins by recalling the formula from the previous slide for the “space of
homomorphismg: V' — X", i.e. the space

H X/Zx(pV)
(p)

indexed by the set of conjugacy classes of homomorphism& — X, or equivalently
the spaceHomQ(BV, BX) of pointed mapsBV — BX. The space has a trivial
component, corresponding to the trivial homomorphism- X.

9.17 Exercise.Show that the centralizef, of the trivial homomorphisnt/ — X is
equivalent taX. Conclude that the componeh/Z, of | [, X/Zx (pV) correspond-
ing to p = 0 is contractible (cf. 6.33).

The problem here is to show thatXf is not contractible itself the above space has a
least one additional component; the proof actually shows a bit more. The first step is a
theorem of Milnor-Moore on the structure of Hopf algebras [73], which implies that a
nontrivial finite-dimensional connected cocommutative associative Hopf algebra over
F, with antipode has an Euler characteristic which is divisiblepbyLet X, be the
identity component of. SinceX is a loop space all of its components are equivalent
to one another, and so

X(X) = x(X1) (#m0X)

By Milnor-Moore, x(X1) is divisible byp if X; is not contractible; by the definition
of p-compact group, the order af X is a power ofp. The conclusion is that(X) is
divisible byp unlessX is contractible and( X = x, i.e., unlessX is contractible.

@ 9.18 Exercise. Prove that ifX is a connecteg-compact group which is
not contractible theny(X) is actually zero on the nose, not just divisible
by p. One idea that would work i\ were a connected compact Lie group would
be to observe that the Euler characteristic can be computed with rational coefficients.
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Now X is compact, parallelizable, not contractible, and hence not rationally acyclic (it
has a fundamental class). It follows thdt(X; Q) is a nontrivial finite-dimensional
connected Hopf algebra over the rationals and thus, as a tensor product of exterior alge-
bras on odd-dimensional generators, has Euler characteristic zero. There are obstacles
in reasoning like this with a connecteecompact groupX, starting with the fact that

the actual integral or rational homology of theeomplete spac4 is going to be much

too big to work with as it stands. Overcome the obstacles.

The next step on the slide is to observe that¥&?/X) is divisible byp, which is
immediate, sinceX?/X is equivalent taX?—!. Algebraic Smith theory, as described
on slide 9-3 and applied on 9-5, guarantees #iaf? / X )" is divisible byp. Since

the componenk /X, has Euler characteristic 1, there must other components, and in
fact at least one other component with Euler characteristic not divisible by

* 9.19 Exercise.Show that the argument on the slide can be used with essentially
no change to prove that jf divides the order of the finite grou@, then there is an
element of ordep in G whose centralizer has index primepto

Slide 9-7 Slide 9-7
Existence of a Sylowp-subgroup for finite G
G finite, V. =Z/p
SeekP C G suchthap t #(G/P)
Induction on #(G) (Z=2c(V))
FindV C G with p { #(G/Z).

prime top

]

A%

prime top

(induction)

This slide depicts a quick inductive proof of the existence of a Syleubgroup in a
finite groupG (a Sylowp-subgroup is defined aspasubgroupP such thap does not
divide the order of7/P).

If p ¥ #(G), the trivial subgroup works. Otherwise, use the argument on slide 9-6 to
show that there exists a subgrofipp C G such that the index i of the centralizer

Z = Zg(Z/p) is prime top. By induction, the quotient grouf/V' possesses a Sylow
p-subgroup?). The inverse imag® of @ in Z is then a Sylow-subgroup ofG.
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Slide 9-8

Existence of a maximal torus inX
Seekl' C X such thaty(X/T") # 0

Induction on size of X (Z=2Zx(V))
FindV C X with x(X/Z) # 0.

#0
e X

i

TC
[ %

(induction)

v C

More or less OK ifZ/V “smaller” thanX

This slide describes how to prove the existence of a maximal toruspHeanpact
group X ; a maximal torus is defined to bepacomplete toral subgroug (slide 9-1)
such thaty(X/G) # 0. The idea is to use slide 9-6 to find a subgréum X such
thatx(X/Z) # 0, whereZ = Zx (V). Now construct the quotieptcompact group
Z/V and find a maximal toru$' in Z/V; the inverse imagé of S in Z should then
be a maximal torus iX .

There are several problems with this argument, some of which can be overcome di-
rectly.

9.20 Exercise.Why does the homomorphisii — X lift to a homomorphisni/ —
Z7? Prove that this lift is a monomorphism.

9.21 Exercise. Figure out how to define the quotieptcompact groupZ/V,
and prove that it is @-compact group with the property that there is a fibration
sequence
BV — BZ toBZ]V .

(Hint. SinceV is presumably central itr, it should be the case that the centralizer
of Vin Z is Z itself. Prove this. This implies tha{omh(BV, BZ)p; ~ BZ, where

i: V — Zisthe inclusion. Now note that the identity componEbin™(BV, BV ); ~
BV acts onHom"(BV, BZ) ; ~ BZ by composition, and definB(Z/V') by taking
the Borel construction of this action.)

9.22 Exercise.Observe that the-compact groug on the slide is not necessarily a
torus. Deduce from the fact th&tG lies in a fibration sequence

BV — BG — BS

that7' is either a torus itself or a produkt x 7", wherel” is a torus. Explain why this
second possibility really isn't much of a problem.

The real problem here is the induction: it seems hard to guaranteg thais smaller
thanV in any sense. In fact:

Slide 9-8
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9.23 Exercise.Suppose thak is ap-complete torus. Show tha ~ X and (even
worse) thatZ/V ~ X.

This problem seems like a secondary issuafter all, a maximal torus does existif
itself is a torus. Here’s one way to proceed. Assume without lossXhatconnected.

@ 9.24 Exercise.Use Smith theory arguments (as on slide 9-6) to show that

any homomorphisnZ./p — X extends to a homomorphis#yp> — X.
Prove that ifZ/p — X is a monomorphism, then soZ/p>= — X (in the sense that
H*X/Z/p> is finite).

Note thatZ/p> is notap-compact group.

9.25 Exercise.Suppose that: Z/p> — X is a homomorphism. Observe that

Bi: BZ/p>* — X extends oveC,(BZ/p>*) — X and thatC,(BZ/p>) ~
K(Z,,2) ~ BC,(S'). Prove that ifZ/p> — X is a monomorphism in the sense
of the previous exercise, then the induced nmig§s!') — X is a monomorphism of
p-compact groups.

Let S = C,(S'). We can now consider a chain of monomorphisms
V—-8S—2Zx(S) —2Zx(V)— X.

wherelV” — X has been chosen so thgtX/Zx (V) # 0.

@ 9.26 Exercise.What is Zx (S), why is it ap-compact group, and why is
Zx(S) — X amonomorphism?

@ 9.27 Exercise.Show thatdim(Zx (S)/S) < dim X, wheredim is modp
cohomological dimension. Proceed using an inductive argument to show
that X possesses a maximal torus.
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Lecture 10.
Wrapping up

In this lecture I'll give an overview of the first nine talks, and talk a little about some
related topics that might be interesting. The remarks in this lecture are sketchy and
incomplete. First, a short review of the material so far.

Slide 10-1 Slide 10-1

Another commutative diagram?

HomOtopy Model
theories < — = = > categories

N

ho(co)lim localizations &
o Grothendieck
Eg;?r?a::ity = . completions
Homology p-compact FunctorT
decompositions groups H* Hom"(BV, —)
p-local finite BQ — BU(n)
groups BQ — Cp,BG

This is a large-scale outline of the lecture series. Homotopy theories are the ba-
sic objects of study; these can be thought of as categories enriched over topological
spaces or over simplicial sets (and in other ways, too). Homotopy (co)limits, (co)ends,
and homotopy Kan extensions, as well as localizations, are defined and characterized
in terms of homotopy theories. Model categories are handy tools for showing that
these constructions exist and for figuring out what they give in particular cases. The
Grothendieck construction is a clever device for building categorical models for homo-
topy colimits and coends.

The algebra of thd" functor combines with tower technology to give a strong hold
on theZ/p-cohomology of function spaces with domaB?Z/p. With algebraic in-

put of another sort (slide 4-5), the machinery of homotopy colimits, as supplemented
by the Grothendieck construction, gives many homology decomposition formulas for
classifying spaces of finite groups.

Finally, study of mapsBQ — C,BG (Q a finite p-group) reveals that these maps
depend only on the-subgroup structure a@f. This is especially interesting in light of
certain homology decompsitions BfG involving p-centric subgroups. Contemplating
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these structures leads leads to a relatively simple algebraic modél,#8¢:. Other
spaces which can be modeled in the same way are cadledal finite groups, and
thought of as finite-group-like objects whose structure is concentrajed at

Note: BU(n) is used on the slide as shorthand for the classifying space of a generic
connected compact Lie group.

Homotopy theories

Homotopy
theories

Higher category theory

Homotopy theoryT' = (oo, 1)-category

Category ofl's = (o0, 2)-category(?)

Conformal field theories~ (0o, n)-categories(?)

Enriched morphisms

e Spectra, chain complexes,.

Accepting the notion of homotopy theory is just the first step on an long and apparently
still treacherous journey. A homotopy theory is(an, 1) category, a category-like ob-
ject in which the morphism between two objects form a space or (if you loop down) a
topological (simplicial) groupoid. The “1” ifico, 1) refers to this groupoid quality: all

of the 1-morphisms are invertible. |4 and5 are two homotopy categories, the mor-
phism object3™ can be constructed as a homotopy category in its own right. There’s
no need for all of the maps iB™ to be invertible, but each component of a map-
ping complex inB™ is an ordinary space, which via looping corresponds to groupoid
objects. To my mind (admittedly uninformed!) this signifies that the category of homo-
topy theories is afioo, 2) category. Clearly it's possible to continue this progression. It
turns out that there is even a reason to continue: for instdncgp) categories are re-
lated to higher conformal field theories (think manifolds, bordisms, bordisms between
bordisms,...) John Baez and Aaron Lauda have written a terrific article about things
like this [8].

Another direction to take with homotopy theories is to introduce richer morphism ob-
jects, e.g. spectra instead of spaces. For instance, Dugger and Shipley have studied
enriched model categories [31].

Slide 10-2 Slide 10-2
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Slide 10-3

Localizations & completions

Right Bousfield localization
I: (C,&) — (C,F) aright Bousfield localizatiornf 3.J
J: (C,F) < (C,&) : I Jfull&faithful

localizations &
completions

Examples
Cellularization

Local cohomology¢ = Chp)

e Fibre of X — LfL(X)
e Homology approximations?

Here, as in slide 5-(C, &) is a homotopy theory in the guise of a categorical pair, and
&€ C F. The localization mag: (C,€) — (C, F) is a right Bousfield localization if it

is a right adjoint and its left adjoint is full and faithful. This comes up in a particular
model category situation. Let be an object in a model categai, £). Call a mapf

in C an A-equivalence itlom"(f) is an equivalence iSp, and letF be the class ofi-
equivalences. Then, under mild conditions(6n&) the mapl: (C,€) — (C,F)isa
right Bousfield localization; see [565]. The functor/! is sometimes called a colocal-
ization functor or cellularization functor, antl (X), written Cell 4 (X) or CW4(X),

is called the cellularization oX with respect tad. The natural mafell4(X) — X

is called theA-cellular approximation td(, and it's characterized by two properties:

1. Cell4(X) is built from A by iterated homotopy colimits, and
2. Cell4(X) — X induces an equivalend®om"(A, Cell 4 (X)) — Hom"(4, X).

In the topological setting this is studied by Farjoun [48].Rlfis a commutative ring
and! C Ris afinitely generated ideal, then local cohomology with respetiscel-
lularization in the categor€h  of chain complexes ovek with respect tab, X* R/ T
[35];

10.1 Exercise.Suppose thak is a spectrum. Show that the homotopy fibre of

X — LI X [71] is the cellularization ofX with respect tov;, %% A, whereA is
any stable finite complex of type with (i), X = 0 fori < nandK(n).X # 0. Show
that X — L] X is localization with respect to the map— .

Slide 10-3
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10.2 Exercise Suppose that is a finite group and that' is a collection of sub-

groups ofGG. Show that the cellularization of the triviél-spacer with respect to
A =[] ycc G/H is equivalent ags-space to the universal spag&’ (and nonequiv-
ariantly equivalent to the nerve of the poset represente@)byMore generally, show
that if X is aG-space, theCell 4 (X) is equivalent to the homotopy coend

(G/H — X"y x}, (G/H — G/H)

over the categorc = {G/H : H € C} of C-orbits.

Slide 10-4

The functor 7" and H* Hom"(BV, —)

Applications of T’
e Structure ot/ and/C
e Realization of unstable modules
e H*(arithmetic groups

Cohomological uniqueness

FunctorT
H*Hom"(BV, —)

Out with BV'!
e BV — B(abeliar) via H* < MU,

Henn, Lannes and Schwartz [53] have used the furifttw get some very detailed
information about the category of unstable modules otgr For instance, it turns
out that if G is a compact Lie group theH* BG is determinedunctorially by the
structure of H* BG in a possibly large but finite range of dimensions. Schwartz [90]
proved a conjecture of Kuhn about the nonrealizability of certain unstable matiiles
over A4, by a beautiful inductive reduction argument usifigand the Eilenberg-Moore
spectral sequence). Henn [52] has figured out how to apptyget information about
the cohomology of some infinite discrete groups, specifically arithmetic groups.

There are many papers that useto prove that various spaces, usually classifying
spaces, are uniguely determined by their conomology (see below, in the discussion of
homology decompositions). But beware! Not all classifying spaces are determined by
their conomology algebras: compab& /4 and BZ /8. Even connectivity won't make

the problem better.

Slide 10-4
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gé} @ 10.3 Exercise. Find two connected compact Lie groups G’ such that

H*BG is isomorphic toH*BG' as an algebra ovet,, but C,, BG is not
equivalent toC, BG'. (Hint: Try taking quotients oSU (p™) x S! by various finite
central subgroups.)

The two papers [2] [66] are especially fun because they look at examples in which
more than one space (up to homotopy) realizes a given cohomology ring, and all such
realizing spaces can be enumerated.

Suppose thatl is an abelian compact Lie group. Lannes and Dehon [27] have obtained
T-type information abouHomh(BA, C,X) by using unitary bordismd/ U, and peri-
odic complexK -theory K.

Slide 10-5 Slide 10-5

Homology decompositions and maps t&G

Revealed
e Decompositions oBG (compact Lie),BX, BF

o Aut"(BG), Aut"(BX), Aut"(BF)
Hidden
e Hom"(BG, BK), Hom"(BX, BY), Hom"(BF, BF')

Homology p-compact FunctorT
decompositions groups H* Hom"(BV, —)
p-local finite BQ — BU(n)
groups BQ — C,BG

Homology decompositions can be constructed for compact Lie grgupsmpact
groups, ancp-local finite groups, sometimes by using the functoand sometimes
with other techniques. Examples are in [59], [95], [25], [67]. In some senkmal
finite groups arelefinedby the existence of a certain kind of homology decomposition
for them.

These decompositions can sometimes be used to prove that a classifying space is
uniquely determined by, say, iB/p-cohomology ring, taken as an algebra o¥gr

Many papers deal with examples of this; the simplest nontrivial caB&1s[45], but a

case likeBFy, for instance [98], places much heavier demands on the machinery (and
the machinists). All of the papers classifyipgcompact groups that are mentioned
before slide 9—1 depend in one way or another on decomposition ideas.

Decompositions can also be exploited to compute maps between classifying spaces and
related objects. The most spectacular example of this is Jackowski-McClure-Oliver's
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calculation of the space of self maps B+ for G a connected compact Lie group
[60]. This is not explicitly based on homology decomposition machinery, but there are
homology decompositions lurking in th&-spaces (just as homology decompositions
are derived frontz-spaces on slide 4-5). It's possible to make similar self-equivalence
calculations fop-compact groups [6] and for fusion systems [19].

However, mapsBG — BK remain a real mystery in general; representation theory
isn’t much of a guide unles§ is a finite p-group or more generally gtoral group.
Jackowski, McClure, and Oliver have worked out some examples that show how com-
plicated the situation can be [61].

@ @ 10.4 Exercise UseTy, for various elementary abelian subgrodpsgnot just

V = 7Z/p) to prove that ifG is a finite group ang | #(G) then the central-
izer diagram for the collection of nontrivial elementary abelian subgroups dbes
in fact give a homology decomposition 6fG. Working backwards, use this to obtain
the algebraic formula at the bottom of slide 4-5. Hint: Show that there is no problem
with the cohomology decompositiond is a finite p-group, becausé' has a central
element of ordep and soBG itself appears in the decomposition diagram. Observe
that if P is a Sylowp-subgroup of7, then the transfer expressBS BG as a retract of
H*BP. Since the cohomology of the centralizer of an elementary abelian subgroup
of G is obtained by applyindy to H*BG, it should follow that in some sense yet to
be determined the cohomology of the centralizer diagranif@rshould be a retract of
the cohomology of the centralizer diagram 8 and so the putative cohomological
decomposition arrow foBG should be a retract of the arrow f&tP. But the arrow
for BP is an isomorphism, and a retract of an isomorphism is an isomorphism. Ken
Brown'’s algebra is easier! But this kind of argument does lead to homology decompo-
sitions for compact Lie groupg;compact groups, angtlocal finite groups.
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Slide 10-6 Slide 10-6

p-compact groups andp-local finite groups

Common generalization
p-local compact groups?

p-compact
groups

p-local finite
groups

Recently, Broto, Levi and Oliver have taken the first steps towards merging the theory
of p-compact groups and the theoryefocal finite groups [22]. They consider fusion
systems which are based not on a finitgroup (thought of as a Syloy+subgroup of

the object under consideration) but on a discrete model fetcaal group (thought of

as thep-normalizer of the maximal torus in the object under consideration).

Slide 10-7 Slide 10-7

Conclusion

Many other directions
e Realization of polynomial algebras (Steenrod’s problem)
e Finite loop spaces
e efc. etc., ..

o ArXiv
e hopf.math.purdue.edu
e MathSciNet (review and reference crosslinks)

Happy Surfing!

Hmmm, are they stilbther directions if | point to references? See [7] for Andersen

& Grodal’s solution of the Steenrod problem. Andersen, et. al. [5] produce a long-
sought-after example of a finite loop space which does not have the rational type of a
compact Lie group. (The example has dimension 1254!)
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