TAG Lecture 4: Algebraic Stacks

Paul Goerss

17 June 2008

TAG 4

Stacks

Sheaves of groupoids

Let S be a scheme (usually Spec(R)). Stacks are built from sheaves of groupoids \mathcal{G} on S.

Example

Let (A, Γ) be Hopf algebroid over R. Then

$$\mathcal{G} = \{ \operatorname{Spec}(\Gamma) \Longrightarrow \operatorname{Spec}(A) \}$$

is a sheaf of groupoids in all our topologies.

Given $U \to S$ and $x \in \mathcal{G}(U)$, get a presheaf Aut_x

$$\operatorname{Aut}_{x}(V \to U) = \operatorname{Iso}_{\mathcal{G}(V)}(x|_{V}, x|_{V}).$$

 $\ensuremath{\mathcal{G}}$ is a prestack if this is sheaf. Hopf algebroids give prestacks.

Effective descent and stacks

Let $\mathcal G$ be a prestack on S and let $\mathcal N\mathcal G$ be its nerve; this is a presheaf of simplicial sets.

Definition

 \mathcal{G} is a **stack** if $\mathcal{N}\mathcal{G}$ is a fibrant presheaf of simplicial sets.

This is equivalent to G satisfying the following:

Effective Descent Condition: Given

- **1** a cover $V_i \rightarrow U$ and $x_i \in \mathcal{G}(U_i)$;
- **3** isomorphisms $\phi_{ij}: x_i|_{V_i \times_U V_i} \to x_j|_{V_i \times_U V_i}$;
- subject to the evident cocyle condition;

Then there exists $x \in \mathcal{G}(U)$ and isomorphisms $\psi_i : x_i \to x|_{V_i}$.

TAG 4

Stacks

Example: Principal G-bundles

Hopf algebroids hardly ever give stacks. Let's fix this. Let Λ be a Hopf algebra over a ring k and

$$G = \operatorname{Spec}(\Lambda) \to \operatorname{Spec}(k) = S$$

the associated group scheme.

Definition

A G-scheme $P \to U$ over U is a a G-torsor if it locally of the form $U \times_S G$.

The functor from schemes to groupoids

$$U \mapsto \{ G \text{-torsors over } U \text{ and their isos } \}$$

is a stack. This is the classifying stack BG.

TAG 4 Stacks

Example: Algebraic homotopy orbits

Let X be a G-scheme. Form a functor to groupoids

This is the **quotient stack** $X \times_G EG = [X/G/S]$.

If Λ is our Hopf algebra, A a comodule algebra, then $(A, \Gamma = A \otimes \Lambda)$ is a **split** Hopf algebroid and

$$Spec(A) \times_G EG$$

is the associated stack to the sheaf of groupoids we get from (A, Λ) .

> TAG 4 Stacks

Example: Projective space

Consider the action

$$\mathbb{A}^{n+1} \times \mathbb{G}_m \longrightarrow \mathbb{A}^{n+1}$$
$$(a_0, \dots, a_n) \times \lambda \mapsto (a_0 \lambda, \dots, a_n \lambda)$$

Define $\mathbb{P}^n \to \mathbb{A}^{n+1} \times_{\mathbb{G}_m} E\mathbb{G}_m$ by

$$\left\{\begin{array}{lll} N \to R^{n+1} \end{array}\right\} \mapsto \left\{\begin{array}{ccc} \operatorname{Iso}(R,N) & \longrightarrow & \mathbb{A}^{n+1} \\ \downarrow & & \\ \operatorname{Spec}(R) & & \end{array}\right\}$$

We get an isomorphism

$$\mathbb{P}^n \cong (\mathbb{A}^{n+1} - \{0\}) \times_{\mathbb{G}_m} E\mathbb{G}_m.$$

TAG 4 Stacks

Morphisms and pullbacks

A morphism of stack $\mathcal{M} \to \mathcal{N}$ is a morphism of sheaves of groupoids. A 2-commuting diagram

is specified natural isomorphism $\phi: pf \rightarrow g$.

Given $\mathcal{M}_1 \xrightarrow{f} \mathcal{N} \xleftarrow{g} \mathcal{M}_2$ the pull-back $\mathcal{M}_1 \times_{\mathcal{N}} \mathcal{M}_2$ has objects

$$(x \in \mathcal{M}_1, y \in \mathcal{M}_2, \phi : f(x) \to g(y) \in \mathcal{N}).$$

TAG 4 S

Stacks

Representable morphisms

Definition

A morphism $\mathcal{M} \to \mathcal{N}$ is representable if for all morphisms $U \to \mathcal{N}$ of schemes, the pull-back

$$U \times_{\mathcal{N}} \mathcal{M}$$

is equivalent to a scheme.

A representable morphism of stacks $\mathcal{N}\to\mathcal{M}$ is smooth or étale or quasi-compact or \cdots if

$$U \times_{\mathcal{N}} \mathcal{M} \longrightarrow U$$

has this property for all $U \to \mathcal{N}$.

Algebraic Stacks

Definition

A stack M is algebraic if

- **1** all morphisms from schemes $U \to \mathcal{M}$ are algebraic; and,
- ② there is a smooth surjective map $q: X \to \mathcal{M}$.

 \mathcal{M} is *Deligne-Mumford* if P can be chosen to be étale.

 $X \times_G EG$ is algebraic with presentation

$$X \longrightarrow X \times_G EG$$

if G is smooth. Deligne-Mumford if G is étale.

Stacks

Quasi-coherent sheaves

Definition

A quasi-coherent sheaf \mathcal{F} on an algebraic stack \mathcal{M} :

- for each smooth $x: U \to \mathcal{M}$, a quasi-coherent sheaf $\mathcal{F}(x)$;
- for 2-commuting diagrams

coherent isomorphisms $\mathcal{F}(\phi)$: $\mathcal{F}(y) \to f^*\mathcal{F}(x)$.

Descent: If $X \to \mathcal{M}$ is a presentation then

{ QC-sheaves on \mathcal{M} } \simeq { Cartesian sheaves on X_{\bullet} }

Example: Quasi-coherent sheaves and comodules

Suppose $\mathcal{M} = X \times_G EG$ where

- $G = \operatorname{Spec}(\Lambda)$ with Λ smooth over the base ring;
- $X = \operatorname{Spec}(A)$ where A is comodule algebra.

Then $X = \operatorname{Spec}(A) \to \mathcal{M}$ is a presentation and

$$\operatorname{Spec}(A) \times_{\mathcal{M}} \operatorname{Spec}(A) \cong \operatorname{Spec}(A \otimes \Lambda) = \operatorname{Spec}(\Gamma).$$

We have

{ Cartesian sheaves on X_{\bullet} } \simeq { (A, Γ) -comodules }.

AG 4

Stacks

Derived Deligne-Mumford stacks

Theorem (Lurie)

Let $\mathcal M$ be a stack and $\mathcal O$ a sheaf of ring spectra on $\mathcal M$. Then $(\mathcal M,\mathcal O)$ is a derived Deligne-Mumford stack if

- \bigcirc $(\mathcal{M}, \pi_0 \mathcal{O})$ is a Deligne-Mumford stack; and
- ② $\pi_i \mathcal{O}$ is a quasi-coherent sheaf on $(\mathcal{M}, \pi_0 \mathcal{O})$ for all i.

Again there is a technical condition on $\ensuremath{\mathcal{O}}$ which I am suppressing.

Exercise

Let \mathbb{G}_m be the multiplicative group and $B\mathbb{G}_m$ its classifying stack: this assigns to each commutative ring the groupoid of \mathbb{G}_m -torsors over A. Show that $B\mathbb{G}_m$ classifies locally free modules of rank 1; that is, the groupoid of \mathbb{G}_m -torsors is equivalent to the groupoid of locally free modules of rank 1.

The proof is essentially the same as that of equivalence between line bundles over a space X and the principle $\mathrm{Gl}_1(\mathbb{R})$ -bundles over X. Here are two points to consider:

- 1. If N is locally free of rank 1, then $Iso_A(A, N)$ is a \mathbb{G}_m -torsor;
- 2. If P is a \mathbb{G}_m torsor, choose a faithfully flat map $f:A\to B$ so that we can choose an isomorphism $\phi:f^*P\cong \mathbb{G}_m$. If $d_i:B\to B\otimes B$ are the two inclusions then ϕ determines an isomorphism $d_1^*\mathbb{G}_m\to d_0^*\mathbb{G}_m$ —which must be given by a $\mu\in (B\otimes_A)^\times$. Then (B,μ) is the descent data determining a locally free module of rank 1 over A.

TAG 4