TAG Lectures 9 and 10: p-divisible groups and Lurie's realization result

Paul Goerss

20 June 2008

TAG 9/10

p-divisible groups

p-divisible groups

Pick a prime p and work over $\mathrm{Spf}(\mathbb{Z}_p)$; that is, p is implicitly nilpotent in all rings. This has the implication that we will be working with p-complete spectra.

Definition

Let R be a ring and G a sheaf of abelian groups on R-algebras. Then G is a p-divisible group of height n if

- G(p^k) = Ker(p^k: G → G) is a finite and flat group scheme over R of rank p^{kn};
- o colim $G(p^k) \cong G$.

This definition is valid when R is an E_{∞} -ring spectrum.

Examples of *p*-divisible groups

Formal Example: A formal group over a field or complete local ring is p-divisible.

Warning: A formal group over an arbitrary ring may not be *p*-divisible as the height may vary "fiber-by-fiber".

Étale Example: $\mathbb{Z}/p^{\infty} = \operatorname{colim} \mathbb{Z}/p^k$ with

$$\mathbb{Z}/p^k = \operatorname{Spec}(\operatorname{map}(\mathbb{Z}/p^n, R)).$$

Fundamental Example: if C is a (smooth) elliptic curve then

$$C(p^{\infty}) \stackrel{\text{def}}{=} C(p^n)$$

is p-divisible of height 2.

TAG 9/10 p

p-divisible groups

A short exact sequence

Let G be p-divisible and G_{for} be the completion at e. Then G/G_{for} is étale; we get a natural short exact sequence

$$0 o G_{for} o G o G_{et} o 0$$

split over fields, but not in general.

Assumption: We will always have G_{for} of dimension 1.

Classification: Over a field $\mathbb{F} = \overline{\mathbb{F}}$ a *p*-divisible group of height n is isomorphic to one of

$$\Gamma_k \times (\mathbb{Z}/p^{\infty})^{n-k}$$

where Γ_k is the unique formal group of height k. Also

$$\operatorname{Aut}(G) \cong \operatorname{Aut}(\Gamma_k) \times \operatorname{Gl}_{n-k}(\mathbb{Z}_p).$$

Ordinary vs supersingular elliptic curves

Over \mathbb{F} , $\operatorname{char}(\mathbb{F}) = p$, an elliptic curve C is **ordinary** if $C_{\operatorname{for}}(p^{\infty})$ has height 1. If it has height 2, C is **supersingular**.

Theorem

Over an algebraically closed field, there are only finitely many isomorphism classes of supersingular curves and they are all smooth.

If p > 3, there is a modular form of A of weight p - 1 so that C is supersingular if and only if A(C) = 0.

TAG 9/10

p-divisible groups

p-divisible groups in stable homotopy theory

Let E be a K(n)-local periodic homology theory with associated formal group

$$\operatorname{Spf}(E^0\mathbb{C}\mathrm{P}^\infty)) = \operatorname{Spf}(\pi_0 F(\mathbb{C}\mathrm{P}^\infty, E)).$$

We have

$$F(\mathbb{C}\mathrm{P}^{\infty},C)\cong \lim F(BC_{p^n},E).$$

Then

$$G = \operatorname{colim} \operatorname{Spec}(\pi_0 L_{K(n-1)} F(BC_{p^n}, E))$$

is a p-divisible group with formal part

$$G_{\text{for}} = \text{Spf}(\pi_0 F(\mathbb{C}P^{\infty}, L_{K(n-1)}E)).$$

TAG 9/10

Moduli stacks

Define $\mathcal{M}_p(n)$ to be the moduli stack of *p*-divisible groups

- of height n and
- ② with dim $G_{for} = 1$.

There is a morphism

$$\mathcal{M}_p(n) \longrightarrow \mathcal{M}_{fg}$$
 $G \mapsto G_{for}$

Remark

- ① The stack $\mathcal{M}_p(n)$ is not algebraic, just as \mathcal{M}_{fa} is not. Both are "pro-algebraic".
- ② Indeed, since we are working over \mathbb{Z}_p we have to take some care about what we mean by an algebraic stack at all.

TAG 9/10 p-divisible groups

Some geometry

Let $\mathcal{V}(k) \subseteq \mathcal{M}_p(n)$ be the open substack of p-divisible groups with formal part of height k. We have a diagram

$$\begin{array}{cccc} \mathcal{V}(k-1) & \longrightarrow \mathcal{V}(k) & \longrightarrow \mathcal{M}_{\rho}(n) \\ & & \downarrow & & \downarrow \\ \mathcal{U}(k-1) & \longrightarrow \mathcal{U}(k) & \longrightarrow \mathcal{U}(n) & \longrightarrow \mathcal{M}_{fg} \end{array}$$

- the squares are pull backs;
- $\mathcal{V}(k) \mathcal{V}(k-1)$ and $\mathcal{U}(k) \mathcal{U}(k-1)$ each have one geometric point;
- in fact, these differences are respectively

$$B\operatorname{Aut}(\Gamma_k)\times B\operatorname{Gl}_{n-k}(\mathbb{Z}_p)$$
 and $B\operatorname{Aut}(\Gamma_k)$.

Theorem (Lurie)

Let $\mathcal M$ be a Deligne-Mumford stack of abelian group schemes. Suppose $G\mapsto G(p^\infty)$ gives a representable and formally étale morphism

$$\mathcal{M} \longrightarrow \mathcal{M}_{p}(n)$$
.

Then the realization problem for the composition

$$\mathcal{M} \longrightarrow \mathcal{M}_p(n) \longrightarrow \mathcal{M}_{fq}$$

has a canonical solution. In particular, $\mathcal M$ is the underlying algebraic stack of derived stack.

Remark: This is an application of a more general representability result, also due to Lurie.

TAG 9/10

p-divisible groups

Serre-Tate and elliptic curves

Let $\mathcal{M}_{e\ell\ell}$ be the moduli stack of elliptic curves. Then

$$\mathcal{M}_{e\ell\ell} \longrightarrow \mathcal{M}_{p}(2) \qquad C \mapsto C(p^{\infty})$$

is formally étale by the Serre-Tate theorem.

Let C_0 be an \mathcal{M} -object over a field \mathbb{F} , with $\mathrm{char}(\mathbb{F})=p$. Let $q:A\to\mathbb{F}$ be a ring homomorphism with nilpotent kernel. A **deformation** of C_0 to B is an \mathcal{M} -object over A and an isomorphism $C_0\to q^*C$. Deformations form a category $\mathbf{Def}_{\mathcal{M}}(\mathbb{F},C_0)$.

Theorem (Serre-Tate)

We have an equivalence:

$$\mathsf{Def}_{e\ell\ell}(\mathbb{F}, C_0) \to \mathsf{Def}_{\mathcal{M}_n(2)}(\mathbb{F}, C_0(p^\infty))$$

Topological modular forms

If *C* is a singular elliptic curve, then $C_{\rm sm} \cong \mathbb{G}_m$ or

 $C_{\rm sm}(p^{\infty})=$ multiplicative formal group

which has height 1, not 2. Thus

$$\mathcal{M}_{e\ell\ell} \longrightarrow \mathcal{M}_p(2)$$

doesn't extend over $\bar{\mathcal{M}}_{e\ell\ell}$; that is, the approach just outlined constructs $\mathbf{tmf}[\Delta^{-1}]$ rather than \mathbf{tmf} .

To complete the construction we could

- handle the singular locus separately: "Tate K-theory is E_m"; and
- 2 glue the two pieces together.

TAG 9/10

p-divisible groups

Higher heights

There are very few families of group schemes smooth of dimension 1. Thus we look for stackifiable families of abelian group schemes A of higher dimension so that

- There is a natural splitting A(p[∞]) ≅ A₀ × A₁ where A₀ is a p-divisible group with formal part of dimension 1; and
- Serre-Tate holds for such A: $\mathbf{Def}_{A/\mathbb{F}} \simeq \mathbf{Def}_{A_0/\mathbb{F}}$.

This requires that A support a great deal of structure; very roughly:

- (E) End(A) should have idempotents; there is a ring homomorphism B → End(A) from a certain central simple algebra;
- (P) Deformations of $A(p^{\infty})$ must depend only on deformations of A_0 ; there is a duality on A-a polarization.

Shimura varieties

Such abelian schemes have played a very important role in number theory.

Theorem (Behrens-Lawson)

For each n>0 there is a moduli stack Sh_n (a **Shimura variety**) classifying appropriate abelian schemes equipped with a formally étale morphism

$$Sh_n \longrightarrow \mathcal{M}_n(n)$$
.

In particular, the realization problem for the surjective morphism

$$\operatorname{Sh}_n \to \mathcal{U}(n) \subseteq \mathcal{M}_{\mathsf{fq}}$$

has a canonical solution.

The homotopy global sections of the resulting sheaf of E_{∞} -ring spectra is called **taf**: topological automorphic forms.

TAG 9/10

p-divisible groups