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EXTENSIONS OF p-LOCAL FINITE GROUPS

C. BROTO, N. CASTELLANA, J. GRODAL, R. LEVI, AND B. OLIVER

Abstract. A p-local finite group consists of a finite p-group S, together with
a pair of categories which encode “conjugacy” relations among subgroups of
S, and which are modelled on the fusion in a Sylow p-subgroup of a finite
group. It contains enough information to define a classifying space which has
many of the same properties as p-completed classifying spaces of finite groups.
In this paper, we study and classify extensions of p-local finite groups, and
also compute the fundamental group of the classifying space of a p-local finite
group.

A p-local finite group consists of a finite p-group S, together with a pair of
categories (F ,L), of which F is modeled on the conjugacy (or fusion) in a Sylow
subgroup of a finite group. The category L is essentially an extension of F and
contains just enough extra information so that its p-completed nerve has many of
the same properties as p-completed classifying spaces of finite groups. We recall
the precise definitions of these objects in Section 1, and refer to [BLO2] and [5A1]
for motivation for their study.

In this paper, we study extensions of saturated fusion systems and of p-local finite
groups. This is in continuation of our more general program of trying to understand
to what extent properties of finite groups can be extended to properties of p-local
finite groups, and to shed light on the question of how many (exotic) p-local finite
groups there are. While we do not get a completely general theory of extensions
of one p-local finite group by another, we do show how certain types of extensions
can be described in a manner very similar to the situation for finite groups.

From the point of view of group theory, developing an extension theory for p-
local finite groups is related to the question of to what extent the extension problem
for groups is a local problem, i.e., a problem purely described in terms of a Sylow
p-subgroup and conjugacy relations inside it. In complete generality this is not
the case. For example, strongly closed subgroups of a Sylow p-subgroup S of G
need not correspond to normal subgroups of G. However, special cases where this
does happen include the case of existence of p-group quotients (the focal subgroup
theorems; see [Go, §§7.3–7.4]) and central subgroups (described via the Z∗-theorem
of Glauberman [Gl]).
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From the point of view of homotopy theory, one of the problems which comes
up when looking for a general theory of extensions of p-local finite groups is that
while an extension of groups 1 → K → Γ → G → 1 always induces a (homotopy)
fibration sequence of classifying spaces, it does not in general induce a fibration
sequence of p-completed classifying spaces. Two cases where this does happen are
those where G is a p-group, and where the extension is central. In both of these
cases, BH∧

p is the homotopy fiber of the map BΓ∧
p −−−→ BG∧

p . Thus, also from
the point of view of homotopy theory, it is natural to study extensions of p-local
finite groups with a p-group quotient, and to study central extensions of p-local
finite groups. The third case we study is that of extensions with a quotient of
order prime to p; and the case of p and p′-group quotients to some extent unify to
give a theory of extensions with p-solvable quotient. Recall in this connection that
by a previous result of ours [5A1, Proposition C], solvable p-local finite groups all
come from p-solvable groups. In all three of these situations, we develop a theory
of extensions which parallels the situation for finite groups.

We now describe the contents of this paper in more detail, stating simplified
versions of our main results on extensions. Stronger and more precise versions of
some of these theorems will be stated and proven later.

In Section 3, we construct a very general theory of fusion subsystems (Proposi-
tion 3.8) and linking subsystems (Theorem 3.9) with quotient a p-group or a group
of order prime to p. As a result we get the following theorem (Corollary 3.10),
which for a p-local finite group (S,F ,L), describes a correspondence between cov-
ering spaces of the geometric realization |L| and certain p-local finite subgroups of
(S,F ,L).

Theorem A. Suppose that (S,F ,L) is a p-local finite group. Then there is a
normal subgroup H � π1(|L|) which is minimal among all those whose quotient
is finite and p-solvable. Any covering space of the geometric realization |L| whose
fundamental group contains H is homotopy equivalent to |L′| for some p-local finite
group (S′,F ′,L′), where S′ ≤ S and F ′ ⊆ F .

Moreover, the p-local finite group (S′,F ′,L′) of Theorem A can be explicitly
described in terms of L, as we will explain in Section 3.

In order to use this theorem, it is useful to have ways of finding the finite p-
solvable quotients of π1(|L|). This can be done by iteration, using the next two
theorems. In them, the maximal p-group quotient of π1(|L|), and the maximal
quotient of order prime to p, are described solely in terms of the fusion system F .

When G is an infinite group, we define Op(G) and Op′
(G) to be the intersection

of all normal subgroups of G of p-power index, or index prime to p, respectively.
These clearly generalize the usual definitions for finite G (but are not the only
possible generalizations).

Theorem B (Hyperfocal subgroup theorem for p-local finite groups). For a p-local
finite group (S,F ,L), the natural homomorphism

S −−−−−→ π1(|L|)/Op(π1(|L|)) ∼= π1(|L|∧p )

is surjective, with kernel equal to

Op
F (S) def=

〈
g−1α(g) ∈ S

∣∣ g ∈ P ≤ S, α ∈ Op(AutF (P ))
〉
.

When G is a finite group with Sylow p-subgroup S, then we have π1(|Lp(G)|∧p ) ∼=
π1(BG∧

p ) ∼= G/Op(G), and Theorem B becomes the hyperfocal subgroup theorem
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of Puig [Pu2, §1.1], which describes S ∩ Op(G) in terms of G fusion in S. This
in turn was motivated by the classical focal subgroup theorem (cf. [Go, Theorem
7.3.4]), which describes S ∩ [G, G] in a similar way.

For any saturated fusion system F over a p-group S, we let Op′

∗ (F) ⊆ F be
the smallest fusion subsystem of F (in the sense of Definition 1.1) which contains
all automorphism groups Op′

(AutF (P )) for P ≤ S. Equivalently, Op′

∗ (F) is the
smallest subcategory of F with the same objects, and which contains all restrictions
of all automorphisms in F of p-power order. This subcategory is needed in the
statement of the next theorem.

Theorem C. For a p-local finite group (S,F ,L), the natural map

OutF (S) −−−−−→ π1(|L|)/Op′
(π1(|L|))

is surjective, with kernel equal to

Out0F (S) def=
〈
α ∈ OutF (S)

∣∣α|P ∈ Mor
Op′

∗ (F)
(P, S), some F-centric P ≤ S

〉
.

Theorem C is analogous to the result that for a finite group G with Sylow p-
subgroup S, the quotient NG(S)/S surjects onto G/Op′

(G). Theorem B is proved
as Theorem 2.5, and Theorem C is proved as Theorem 5.5.

In fact, we give a purely algebraic description of these subsystems of “p-power
index” or of “index prime to p” (Definition 3.1), and then show in Sections 4.1 and
5.1 that they in fact all arise as finite covering spaces of |L| (see Theorems 4.4 and
5.5). Subsystems of fusion systems of index prime to p were earlier studied by Puig
[Pu1], using somewhat different arguments and terminology. He showed that there
is a minimal such subsystem (which he calls the “adjoint” subsystem), and gave
an algebraic construction of intermediate ones. Much later, subsystems of p-power
index were also studied by Puig [Pu3], independently of us, under the assumption
that there is an associated linking system.

Afterwards, in Sections 4.2 and 5.2, we establish converses to these concerning
the extensions of a p-local finite group, which include the following theorem.

Theorem D. Let (S,F ,L) be a p-local finite group. Suppose we are given a fibra-
tion sequence |L|∧p → E → BG, where G is a finite p-group or has order prime to
p. Then there exists a p-local finite group (S′,F ′,L′) containing (S,F ,L) such that
|L′|∧p � E∧

p .

This is shown as Theorems 4.7 and 5.8. Moreover, when G is a p-group, we
give in Theorem 4.7 an explicit algebraic construction of the p-local finite group
(S′,F ′,L′). In the setting of saturated fusion systems, extensions by finite groups
of order prime to p were earlier constructed by Puig in [Pu1, Theorem 2.17].

Finally, in Section 6, we develop the theory of central extensions of p-local finite
groups. Our main results there (Theorems 6.8 and 6.13) give a more elaborate
version of the following theorem. Here, the center of a p-local finite group (S,F ,L)
is defined to be the subgroup of elements x ∈ Z(S) such that α(x) = x for all
α ∈ Mor(Fc).

Theorem E. Suppose that A is a central subgroup of a p-local finite group (S,F ,L).
Then there exists a canonical quotient p-local finite group (S/A,F/A,L/A), and the
canonical projection of |L| onto |L/A| is a principal fibration with fiber BA.
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Conversely, for any principal fibration E → |L| with fiber BA, where A is a finite
abelian p-group, there exists a p-local finite group (S̃, F̃ , L̃) such that |L̃| � E.
Furthermore, this correspondence sets up a 1 − 1 correspondence between central
extensions of L by A and elements in H2(|L|; A).

One motivation for this study was the question of whether extensions of p-local
finite groups coming from finite groups can produce exotic p-local finite groups. In
the case of central extensions, we are able to show that (S,F ,L) comes from a finite
group if and only if (S/A,F/A,L/A) comes from a group (Corollary 6.14). For the
other types of extensions studied in this paper, this is still an open question. We
have so far failed to produce exotic examples in this way, and yet we have also
been unable to show that exotic examples cannot occur. This question seems to be
related to some rather subtle and interesting group theoretic issues relating local
to global structure; see Corollary 4.8 for one partial result in this direction.

This paper builds on the earlier paper [5A1] by the same authors, and many of
the results in that paper were originally motivated by this work on extensions.

The authors would like to thank the University of Aberdeen, Universitat Autò-
noma de Barcelona, Université Paris 13, and Aarhus Universitet for their hospital-
ity. In particular, the origin of this project, and many of the results, go back to a
three week period in the spring of 2001, when four of the authors met in Aberdeen.

1. A quick review of p-local finite groups

We first recall the definitions of a fusion system and a saturated fusion system, in
the form given in [BLO2]. For any group G, and any pair of subgroups H, K ≤ G,
we set

NG(H, K) = {x ∈ G |xHx−1 ≤ K},
let cx denote conjugation by x (cx(g) = xgx−1), and set

HomG(H, K) =
{
cx ∈ Hom(H, K)

∣∣x ∈ NG(H, K)
} ∼= NG(H, K)/CG(H).

By analogy, we also write

AutG(H) = HomG(H, H) =
{
cx ∈ Aut(H)

∣∣ x ∈ NG(H)
} ∼= NG(H)/CG(H).

Definition 1.1 ([Pu1] and [BLO2, Definition 1.1]). A fusion system over a finite
p-group S is a category F , where Ob(F) is the set of all subgroups of S, and which
satisfies the following two properties for all P, Q ≤ S:

• HomS(P, Q) ⊆ HomF (P, Q) ⊆ Inj(P, Q); and
• each ϕ ∈ HomF (P, Q) is the composite of an isomorphism in F followed by

an inclusion.

The following additional definitions and conditions are needed in order for these
systems to be very useful. If F is a fusion system over a finite p-subgroup S, then
two subgroups P, Q ≤ S are said to be F-conjugate if they are isomorphic as objects
of the category F .

Definition 1.2 ([Pu1]; see [BLO2, Def. 1.2]). Let F be a fusion system over a
p-group S.

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P ′)| for all
P ′ ≤ S which is F-conjugate to P .
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• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P ′)| for all
P ′ ≤ S which is F-conjugate to P .

• F is a saturated fusion system if the following two conditions hold:
(I) For all P ≤ S which is fully normalized in F , P is fully centralized in

F and AutS(P ) ∈ Sylp(AutF (P )).
(II) If P ≤ S and ϕ ∈ HomF (P, S) are such that ϕP is fully centralized,

and if we set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕP )},

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

If G is a finite group and S ∈ Sylp(G), then by [BLO2, Proposition 1.3], the
category FS(G) defined by letting Ob(FS(G)) be the set of all subgroups of S and
setting MorFS(G)(P, Q) = HomG(P, Q) is a saturated fusion system.

An alternative pair of axioms for a fusion system being saturated have been given
by Radu Stancu [St]. He showed that axioms (I) and (II) above are equivalent to
the two axioms:

(I′) Inn(S) ∈ Sylp(AutF (S)).
(II′) If P ≤ S and ϕ ∈ HomF (P, S) are such that ϕP is fully normalized, and if

we set
Nϕ = {g ∈ NS(P ) |ϕcgϕ

−1 ∈ AutS(ϕP )},
then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

The following consequence of conditions (I) and (II) above will be needed several
times throughout the paper.

Lemma 1.3. Let F be a saturated fusion system over a p-group S. Let P, P ′ ≤ S
be a pair of F-conjugate subgroups such that P ′ is fully normalized in F . Then
there is a homomorphism α ∈ HomF (NS(P ), NS(P ′)) such that α(P ) = P ′.

Proof. This is shown in [BLO2, Proposition A.2(b)]. �

In this paper, it will sometimes be necessary to work with fusion systems which
are not saturated. This is why we have emphasized the difference between fusion
systems and saturated fusion systems, in the above definitions.

We next specify certain collections of subgroups relative to a given fusion system.

Definition 1.4. Let F be a fusion system over a finite p-subgroup S.
• A subgroup P ≤ S is F-centric if CS(P ′) = Z(P ′) for all P ′ ≤ S which is
F-conjugate to P .

• A subgroup P ≤ S is F-radical if OutF (P ) is p-reduced; i.e., if Op(OutF (P ))
= 1.

• For any P ≤ S which is fully centralized in F , the centralizer fusion system
CF (P ) is the fusion system over CS(P ) defined by setting

HomCF (P )(Q, Q′) =
{
α|Q

∣∣ α ∈ HomF (QP, Q′P ), α|P = IdP , α(Q) ≤ Q′}.

A subgroup P ≤ S is F-quasicentric if for all P ′ ≤ S which is F-conjugate
to P and fully centralized in F , CF (P ′) is the fusion system of the p-group
CS(P ′).

• Fc ⊆ Fq ⊆ F denote the full subcategories of F whose objects are the
F-centric subgroups, and F-quasicentric subgroups, respectively, of S.
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If F = FS(G) for some finite group G, then P ≤ S is F-centric if and only if
P is p-centric in G (i.e., Z(P ) ∈ Sylp(CG(P ))), and P is F-radical if and only if
NG(P )/(P ·CG(P )) is p-reduced. Also, P is F-quasicentric if and only if CG(P )
contains a normal subgroup of order prime to p and of p-power index.

In fact, when working with p-local finite groups, it suffices to have a fusion system
Fc defined on the centric subgroups of S, and which satisfies axioms (I) and (II)
above for those centric subgroups. In other words, fusion systems defined only on
the centric subgroups are equivalent to fusion systems defined on all subgroups, as
described in the following theorem.

Theorem 1.5. Fix a p-group S and a fusion system F over S.
(a) Assume F is saturated. Then each morphism in F is a composite of restric-

tions of morphisms between subgroups of S which are F-centric, F-radical,
and fully normalized in F . More precisely, for each P, P ′ ≤ S and each
ϕ ∈ IsoF (P, P ′), there are subgroups P = P0, P1, . . . , Pk = P ′, subgroups
Qi ≥ 〈Pi−1, Pi〉 (i = 1, . . . , k) which are F-centric, F-radical, and fully nor-
malized in F , and automorphisms ϕi ∈ AutF (Qi), such that ϕi(Pi−1) = Pi

for all i and ϕ = ϕk ◦ · · · ◦ ϕ1|P .
(b) Assume conditions (I) and (II) in Definition 1.2 are satisfied for all F-

centric subgroups P ≤ S. Assume also that each morphism in F is a com-
posite of restrictions of morphisms between F-centric subgroups of S. Then
F is saturated.

Proof. Part (a) is Alperin’s fusion theorem for saturated fusion systems, in the form
shown in [BLO2, Theorem A.10]. Part (b) is a special case of [5A1, Theorem 2.2]:
the case where H is the set of all F-centric subgroups of S. �

Theorem 1.5(a) will be used repeatedly throughout this paper. The following
lemma is a first easy application of the theorem, and provides a very useful criterion
for a subgroup to be quasicentric or not.

Lemma 1.6. Let F be a saturated fusion system over a p-group S. Then the
following hold for any P ≤ S:

(a) Assume that P ≤ Q ≤ P ·CS(P ) and Id �= α ∈ AutF (Q) are such that
α|P = IdP and α has order prime to p. Then P is not F-quasicentric.

(b) Assume that P is fully centralized in F , and is not F-quasicentric. Then
there are P ≤ Q ≤ P ·CS(P ) and Id �= α ∈ AutF (Q) such that Q is F-
centric, α|P = IdP , and α has order prime to p.

Proof. (a) Fix any P ′ which is F-conjugate to P and fully centralized in F . By
axiom (II), there is ϕ ∈ HomF (Q, S) such that ϕ(P ) = P ′; set Q′ = ϕ(Q). Thus
ϕαϕ−1|CQ′ (P ′) is an automorphism in CF (P ′) whose order is not a power of p, so
CF (P ′) is not the fusion system of CS(P ′), and P is not F-quasicentric.

(b) Assume that P is fully centralized in F and not F-quasicentric. Then
CF (P ) strictly contains the fusion system of CS(P ) (since CF (P ′) is isomorphic as
a category to CF (P ) for all P ′ which is F-conjugate to P and fully centralized in
F). Since CF (P ) is saturated by [BLO2, Proposition A.6], Theorem 1.5(a) implies
there is a subgroup Q ≤ CS(P ) which is CF (P )-centric and fully normalized in
CF (P ), and such that AutCF (P )(Q) � AutCS(P )(Q). Since Q is fully normalized,
AutCS(P )(Q) is a Sylow p-subgroup of AutCF (P )(Q), and hence this last group is
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not a p-group. Also, by [BLO2, Proposition 2.5(a)], PQ is F-centric since Q is
CF (P )-centric. �

Since orbit categories — both of fusion systems and of groups — will play a role
in certain proofs in the last three sections, we define them here.

Definition 1.7. (a) If F is a fusion system over a p-group S, then Oc(F) (the
centric orbit category of F) is the category whose objects are the F-centric
subgroups of S, and whose morphism sets are given by

MorOc(F)(P, Q) = RepF (P, Q) def= Q\HomF (P, Q).

Let ZF : Oc(F) → Z(p)-mod be the functor which sends P to Z(P ) and [ϕ]

(the class of ϕ ∈ HomF (P, Q)) to Z(Q)
ϕ−1

−−−−→ Z(P ).
(b) If G is a finite group and S ∈ Sylp(G), then Oc

S(G) (the centric orbit
category of G) is the category whose objects are the subgroups of S which
are p-centric in G, and where

MorOc
S(G)(P, Q) = Q\NG(P, Q) ∼= MapG(G/P, G/Q).

Let ZG : Oc
S(G) → Z(p)-mod be the functor which sends P to Z(P ) and [g]

(the class of g ∈ NG(P, Q)) to conjugation by g−1.

We now turn to linking systems associated to abstract fusion systems.

Definition 1.8 ([BLO2, Def. 1.7]). Let F be a fusion system over the p-group S.
A centric linking system associated to F is a category L whose objects are the F-
centric subgroups of S, together with a functor π : L −−−→ Fc, and “distinguished”
monomorphisms P

δP−−→ AutL(P ) for each F-centric subgroup P ≤ S, which satisfy
the following conditions:

(A) π is the identity on objects. For each pair of objects P, Q ∈ L, Z(P )
acts freely on MorL(P, Q) by composition (upon identifying Z(P ) with
δP (Z(P )) ≤ AutL(P )), and π induces a bijection

MorL(P, Q)/Z(P )
∼=−−−−−−→ HomF (P, Q).

(B) For each F-centric subgroup P ≤ S and each x ∈ P , π(δP (x)) = cx ∈
AutF (P ).

(C) For each f ∈ MorL(P, Q) and each x ∈ P , the following square commutes
in L:

P
f

��

δP (x)

��

Q

δQ(π(f)(x))

��

P
f

�� Q.

A p-local finite group is defined to be a triple (S,F ,L), where S is a finite p-
group, F is a saturated fusion system over S, and L is a centric linking system
associated to F . The classifying space of the triple (S,F ,L) is the p-completed
nerve |L|∧p .

For any finite group G with Sylow p-subgroup S, a category Lc
S(G) was defined

in [BLO1], whose objects are the p-centric subgroups of G, and whose morphism
sets are defined by

MorLc
S(G)(P, Q) = NG(P, Q)/Op(CG(P )).
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Since CG(P ) = Z(P ) × Op(CG(P )) when P is p-centric in G, Lc
S(G) is easily

seen to satisfy conditions (A), (B), and (C) above, and hence is a centric linking
system associated to FS(G). Thus (S,FS(G),Lc

S(G)) is a p-local finite group, with
classifying space |Lc

S(G)|∧p � BG∧
p (see [BLO1, Proposition 1.1]).

It will be of crucial importance in this paper that any centric linking system
associated to F can be extended to a quasicentric linking system; a linking system
with similar properties, whose objects are the F-quasicentric subgroups of S. We
first make more precise what this means.

Definition 1.9. Let F be any saturated fusion system over a p-group S. A qua-
sicentric linking system associated to F consists of a category Lq whose objects
are the F-quasicentric subgroups of S, together with a functor π : Lq −−−→ Fq, and
distinguished monomorphisms

P ·CS(P ) δP−−−−→ AutLq (P ),

which satisfy the following conditions:
(A)q π is the identity on objects and surjective on morphisms. For each pair of

objects P, Q ∈ Lq such that P is fully centralized, CS(P ) acts freely on
MorLq (P, Q) by composition (upon identifying CS(P ) with the subgroup
δP (CS(P )) ≤ AutLq(P )), and π induces a bijection

MorLq (P, Q)/CS(P )
∼=−−−−−−→ HomF (P, Q).

(B)q For each F-quasicentric subgroup P ≤ S and each g ∈ P , π sends δP (g) ∈
AutLq (P ) to cg ∈ AutF (P ).

(C)q For each f ∈ MorLq(P, Q) and each x ∈ P , f ◦ δP (x) = δQ(π(f)(x)) ◦ f in
MorLq (P, Q).

(D)q For each F-quasicentric subgroup P ≤ S, there is some ιP ∈ MorLq(P, S)
such that π(ιP ) = inclSP ∈ Hom(P, S), and such that for each g ∈ P ·CS(P ),
δS(g) ◦ ιP = ιP ◦ δP (g) in MorLq (P, S).

If P and P ′ are F-conjugate and F-quasicentric, then for any subgroup Q ≤ S,
MorLq (P, Q) ∼= MorLq (P ′, Q) and HomF (P, Q) ∼= HomF (P ′, Q), while the central-
izers CS(P ) and CS(P ′) need not have the same order. This is why condition (A)q

makes sense only if we assume that P is fully centralized; i.e., that CS(P ) is as large
as possible. When P is F-centric, then this condition is irrelevant, since every sub-
group P ′ which is F-conjugate to P is fully centralized (CS(P ′) = Z(P ′) ∼= Z(P )).

Note that (D)q is a special case of (C)q when P is F-centric; this is why the
axiom is not needed for centric linking systems. We also note the following relation
between these axioms:

Lemma 1.10. In the situation of Definition 1.9, axiom (C)q implies axiom (B)q.

Proof. Fix an F-quasicentric subgroup P ≤ S, and an element g ∈ P . We apply
(C)q with f = δP (g). For each x ∈ P , if we set y = π(δP (g))(x), then δP (g)◦δP (x) =
δP (y) ◦ δP (g). Since δP is an injective homomorphism, this implies that gx = yg,
and thus that y = cg(x). So π(δP (g)) = cg. �

When (S,F ,L) is a p-local finite group, and Lq is a quasicentric linking sys-
tem associated to F , then we say that Lq extends L if the full subcategory of Lq

with objects the F-centric subgroups of S is isomorphic to L via a functor which
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commutes with the projection functors to F and with the distinguished monomor-
phisms. In [5A1, Propositions 3.4 & 3.12], we constructed an explicit quasicentric
linking system Lq associated to F and extending L, and showed that it is unique
up to an isomorphism of categories which preserves all of these structures. So from
now on, we will simply refer to Lq as the quasicentric linking system associated to
(S,F ,L).

Condition (D)q above helps to motivate the following definition of inclusion
morphisms in a quasicentric linking system.

Definition 1.11. Fix a p-local finite group (S,F ,L), with associated quasicentric
linking system Lq.

(a) A morphism ιP ∈ MorLq(P, S) is an inclusion morphim if it satisfies the
hypotheses of axiom (D)q: if π(ιP ) = inclSP , and if δS(g) ◦ ιP = ιP ◦ δP (g)
in MorLq(P, S) for all g ∈ P ·CS(P ). If P = S, then we also require that
ιS = IdS .

(b) A compatible set of inclusions for Lq is a choice of morphisms {ιQP } for all
pairs of F-quasicentric subgroups P ≤ Q, such that ιQP ∈ MorLq(P, Q),
such that ιRP = ιRQ ◦ ιQP for all P ≤ Q ≤ R, and such that ιSP is an inclusion
morphism for each P .

The following properties of quasicentric linking systems were also proven in [5A1].

Proposition 1.12. The following hold for any p-local finite group (S,F ,L), with
associated quasicentric linking system Lq:

(a) The inclusion L ⊆ Lq induces a homotopy equivalence |L| � |Lq| between
geometric realizations. More generally, for any full subcategory L′ ⊆ Lq

which contains as objects all subgroups of S which are F-centric and F-
radical, the inclusion L′ ⊆ Lq induces a homotopy equivalence |L′| � |Lq|.

(b) Let ϕ ∈ MorLq(P, R) and ψ ∈ MorLq (Q, R) be any pair of morphisms in Lq

with the same target group such that Im(π(ϕ)) ≤ Im(π(ψ)). Then there is
a unique morphism χ ∈ MorLq (P, Q) such that ϕ = ψ ◦ χ.

Proof. The homotopy equivalences |Lq| � |L| � |L′| are shown in [5A1, Theorem
3.5]. Point (b) is shown in [5A1, Lemma 3.6]. �

Point (b) above will be frequently used throughout the paper. In particular, it
makes it possible to embed the linking system of S (or an appropriate full sub-
category) in Lq, depending on the choice of an inclusion morphisms ιP as defined
above, for each object P . Such inclusion morphisms always exist by axiom (D)q.
In the following proposition, LS(S)|Ob(Lq) denotes the full subcategory of LS(S)
whose objects are the F-quasicentric subgroups of S.

In general, for a functor F : C → C′, and objects c, d ∈ Ob(C), we let Fc,d denote
the map from MorC(c, d) to MorC′(F (c), F (d)) induced by F .

Proposition 1.13. Fix a p-local finite group (S,F ,L). Let Lq be its associated qua-
sicentric linking system, and let π : Lq −−→ Fq be the projection. Then any choice
of inclusion morphisms ιP = ιSP ∈ MorLq(P, S), for all F-quasicentric subgroups
P ≤ S, extends to a unique inclusion of categories

δ : LS(S)|Ob(Lq) −−−−−−→ Lq
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such that δP,S(1) = ιP for all P ; and such that
(a) δP,P (g) = δP (g) for all g ∈ P · CS(P ), and
(b) π(δP,Q(g)) = cg ∈ Hom(P, Q) for all g ∈ NS(P, Q).

In addition, the following hold:
(c) If we set ιQP = δP,Q(1) for all P ≤ Q, then {ιQP } is a compatible set of

inclusions for Lq.
(d) For any P � Q ≤ S, where P and Q are both F-quasicentric and P is

fully centralized in F , and any morphism ψ ∈ AutLq(P ) which normal-
izes δP,P (Q), there is a unique ψ̂ ∈ AutLq(Q) such that ψ̂ ◦ ιQP = ιQP ◦ ψ.
Furthermore, for any g ∈ Q, ψδP,P (g)ψ−1 = δP,P (π(ψ̂)(g)).

(e) Every morphism ϕ ∈ MorLq(P, Q) in Lq is a composite ϕ = ιQP ′ ◦ ϕ′ for a
unique morphism ϕ′ ∈ IsoLq(P, P ′), where P ′ = Im(π(ϕ)).

Proof. For each P and Q, and each g ∈ NS(P, Q), there is by Proposition 1.12(b)
a unique morphism δP,Q(g) such that

δS(g) ◦ ιP = ιQ ◦ δP,Q(g).

This defines δ on morphism sets, and also allows us to define ιQP = δP,Q(1). Then by
the axioms in Definition 1.9, {ιQP } is a compatible set of inclusions for Lq, and δ is
a functor which satisfies (a), (b), and (c). Point (e) is a special case of Proposition
1.12(b) (where P ′ = Im(π(ϕ))).

If δP,Q(g) = δP,Q(g′) for g, g′ ∈ NG(P, Q), then δS(g) ◦ ιP = δS(g′) ◦ ιP , and
hence g = g′ by [5A1, Lemma 3.9]. Thus each δP,Q is injective.

It remains to prove (d). Set ϕ = π(ψ) ∈ AutF (P ) for short. Since ψ normalizes
δP,P (Q), for all g ∈ Q there is h ∈ Q such that ψδP,P (g)ψ−1 = δP,P (h), and this
implies the relation ϕcgϕ

−1 = ch in AutF (P ). Thus Q is contained in Nϕ. So by
axiom (II) (and since P is fully centralized), ϕ extends to ϕ ∈ IsoF (Q, Q′) for some
P � Q′ ≤ S. Let ψ̂0 ∈ IsoLq (Q, Q′) be any lifting of ϕ to Lq.

By axiom (A)q (and since ψ is an isomorphism), there is x ∈ CS(P ) such that
ιQ

′

P ◦ δP (x) ◦ ψ = ψ̂0 ◦ ιQP . By (C)q, ψ̂0δQ(Q)ψ̂−1
0 = δQ′(Q′), and hence after

restriction, δP (x) ◦ψ conjugates δP,P (Q) to δP,P (Q′). Since ψ normalizes δP,P (Q),
this shows that δP (x) conjugates δP,P (Q) to δP,P (Q′), and hence (since δP,P is
injective) that xQx−1 = Q′. We thus have the following commutative diagram:

P

ιQ
P

��

ψ
�� P

δP (x)
�� P

ιQ′
P

��

δP (x)−1

�� P

ιQ
P

��

Q
ψ̂0 �� Q′ δQ,Q′ (x)−1

�� Q.

So if we set ψ̂ = δQ,Q′(x)−1 ◦ ψ̂0, then ψ̂ ∈ AutLq(Q) and ιQP ◦ ψ = ψ̂ ◦ ιQP .
The uniqueness of ψ̂ follows from [5A1, Lemma 3.9]. Finally, for any g ∈ Q,

ψ̂δQ(g)ψ̂−1 = δQ(π(ψ̂)(g)) by (C)q, and hence ψδP,P (g)ψ−1 = δP,P (π(ψ̂)(g)) since
morphisms have unique restrictions (Proposition 1.12(b) again). �

Once we have fixed a compatible set of inclusions {ιQP } in a linking system Lq,
then for any ϕ ∈ MorLq(P, Q), and any P ′ ≤ P and Q′ ≤ Q such that π(ϕ)(P ′) ≤
Q′, there is a unique morphism ϕ ∈ MorLq (P ′, Q′) such that ιQQ′ ◦ ϕ = ϕ ◦ ιPP ′ . We
think of ϕ as the restriction of ϕ.
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Note, however, that all of this depends on the choice of inclusion morphisms
ιP ∈ MorLq (P, S) which satisfy the hypotheses of axiom (D)q, and that not just
any lifting of the inclusion incl ∈ HomF (P, S) can be chosen. To see why, assume
for simplicity that P is also fully centralized. From the axioms in Definition 1.9
and Proposition 1.12(b), we see that if ιP , ι′P ∈ MorLq (P, S) are two liftings of
incl ∈ HomF (P, S), then ι′P = ιP ◦ δP (g) for some unique g ∈ CS(P ). But if
ιP satisfies the conditions of (D)q, then ι′P also satisfies those conditions only if
g ∈ Z(CS(P )).

One situation where the choice of inclusion morphisms is useful is when describ-
ing the fundamental group of |L| or of its p-completion. For any group Γ, we let
B(Γ) denote the category with one object, and with morphism monoid the group
Γ. Recall that |L| � |Lq| (Proposition 1.12(a)), so we can work with either of
these categories; we will mostly state the results for |Lq|. Let the vertex S be the
basepoint of |Lq|. For each morphism ϕ ∈ MorLq (P, Q), let J(ϕ) ∈ π1(|Lq|) denote
the homotopy class of the loop ιQ·ϕ·ιP −1 in |Lq| (where paths are composed from
right to left). This defines a functor

J : Lq −−−−−−→ B(π1(|Lq|)),

where all objects are sent to the unique object of B(π1(|Lq|)), and where all inclusion
morphisms are sent to the identity. Let j : S → π1(|Lq|) denote the composite of J
with the distinguished monomorphism δS : S → AutL(S).

The next proposition describes how J is universal among functors of this type,
and also includes some other technical results for later use about the structure of
π1(|L|).

Proposition 1.14. Let (S,F ,L) be a p-local finite group, and let Lq be the asso-
ciated quasicentric linking system. Assume a compatible set of inclusions {ιQP } has
been chosen for Lq. Then the following hold:

(a) For any group Γ, and any functor λ : Lq −−−−→ B(Γ) which sends inclusions
to the identity, there is a unique homomorphism λ̄ : π1(|Lq|) −−−−→ Γ such
that λ = B(λ̄) ◦ J .

(b) For g ∈ P ≤ S with P F-quasicentric, J(δP (g)) = J(δS(g)). In particular,
J(δP (g)) = 1 in π1(|Lq|) if and only if δP (g) is nulhomotopic as a loop
based at the vertex P of |Lq|.

(c) If α ∈ MorLq(P, Q), and π(α)(x) = y, then j(y) = J(α)j(x)J(α)−1 in
π1(|Lq|).

(d) If x and y are F-conjugate elements of S, then j(x) and j(y) are conjugate
in π1(|Lq|).

Proof. Clearly, any functor λ : Lq → B(Γ) induces a homomorphism λ̄ = π1(|λ|)
between the fundamental groups of their geometric realizations. If λ sends inclusion
morphisms to the identity, then λ = B(λ̄) ◦ J by definition of J .

The other points follow easily, using condition (C)q for quasicentric linking sys-
tems. Point (d) is shown by first reducing to a map between centric subgroups of
S which sends x to y. �

We finish this introductory section with two unrelated results which will be
needed later in the paper. The first is a standard, group theoretic lemma.
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Lemma 1.15. Let Q � P be p-groups. If α is a p′-automorphism of P which acts
as the identity on Q and on P/Q, then α = IdP . Equivalently, the group of all
automorphisms of P which restrict to the identity on Q and on P/Q is a p-group.

Proof. See [Go, Corollary 5.3.3]. �

The following proposition will only be used in Section 4, but we include it here
because it seems to be of wider interest. Note, for any fusion system F over S, any
subgroup P ≤ S fully normalized in F , and any P ′ which is S-conjugate to P , that
P ′ is also fully normalized in F since NS(P ′) is S-conjugate to NS(P ).

Proposition 1.16. Let F be a saturated fusion system over a p-group S. Then for
any subgroup P ≤ S, the set of S-conjugacy classes of subgroups F-conjugate to P
and fully normalized in F has order prime to p.

Proof. By [BLO2, Proposition 5.5], there is an (S, S)-biset Ω which, when regarded
as a set with (S × S)-action, satisfies the following three conditions:

(a) The isotropy subgroup of each point in Ω is of the form

Pϕ
def= {(x, ϕ(x)) |x ∈ P}

for some P ≤ S and some ϕ ∈ HomF (P, S).
(b) For each P ≤ S and each ϕ ∈ HomF (P, S), the two structures of (S×P )-set

on Ω obtained by restriction and by Id × ϕ are isomorphic.
(c) |Ω|/|S| ≡ 1 (mod p).

Note that by (a), the actions of S × 1 and 1 × S on Ω are both free.
Now fix a subgroup P ≤ S. Set S2 = 1 × S for short, and let Ω0 ⊆ Ω be the

subset such that Ω0/S2 = (Ω/S2)P . In other words, Ω0 is the set of all x ∈ Ω
such that for each g ∈ P , there is some h ∈ S satisfying (g, h)·x = x. Since the
action of S2 on Ω is free, this element h ∈ S is uniquely determined for each x ∈ Ω0

and g ∈ P . Let θ(x) : P → S denote the function such that for each g ∈ P ,
(g, θ(x)(g))·x = x. The isotropy subgroup at x of the (P × S)-action is thus the
subgroup Pθ(x) = {(g, θ(x)(g)) | g ∈ P}; and by (a), θ(x) ∈ HomF (P, S). This
defines a map

θ : Ω0 → HomF (P, S).
By definition, for each ϕ ∈ HomF (P, S), θ−1(ϕ) is the set of elements of Ω

fixed by Pϕ. By condition (b) above, the action of P × P on Ω induced by the
homomorphism 1 × ϕ ∈ Hom(P × P, S × S) is isomorphic to the action defined by
restriction, and thus |θ−1(ϕ)| = |θ−1(incl)|. This shows that the point inverses of
θ all have the same fixed order k.

Now let RepF (P, S) = HomF (P, S)/Inn(S): the set of S-conjugacy classes of
morphisms from P to S. Let P be the set of S-conjugacy classes of subgroups
F-conjugate to P , and let Pfn ⊆ P be the subset of classes of subgroups fully
normalized in F . If x ∈ Ω0 and θ(x) = ϕ, then for all s ∈ S and g ∈ P ,

(1, s)·x = (g, sϕ(g))·x = (g, cs ◦ ϕ(g))·(1, s)·x,

and this shows that θ((1, s)·x) = cs ◦ θ(x). Thus θ induces a map

θ̄ : (Ω/S2)P = Ω0/S2
θ/S2−−−−−−→ RepF (P, S)

Im(−)−−−−−−→ P,

where RepF (P, S) = HomF (P, S)/Inn(S). Furthermore, |Ω/S2| ≡ 1 (mod p) by
(c), and thus |(Ω/S2)P | ≡ 1 (mod p).
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For each P ′ which is F-conjugate to P , there are |S|/|NS(P ′)| distinct subgroups
in the S-conjugacy class [P ′]. Hence there are

|AutF (P )|·|S|/|NS(P ′)|
elements of HomF (P, S) whose image lies in [P ′]. Since each of these is the image
of k elements in Ω0, this shows that

|θ̄−1([P ′])| = k·|AutF (P )|/|NS(P ′)|.
Thus |NS(P ′)|

∣∣k·|AutF (P )| for all P ′ F-conjugate to P , and so θ̄−1([P ′]) has order
a multiple of p if P ′ is not fully normalized in F (if [P ′] ∈ P�Pfn). Hence

|θ̄−1(Pfn)| ≡ |(Ω/S2)P | ≡ 1 (mod p) .

So if we set m = |NS(P ′)| for [P ′] ∈ Pfn (i.e., the maximal value of |NS(P ′)| for P ′

F-conjugate to P ), then

|θ̄−1(Pfn)| = |Pfn|·
(k·|AutF (P )|

m

)
,

and thus |Pfn| is prime to p. �

Using a similar argument, one can also show that the set Repfc
F (P, S) of elements

of RepF (P, S) whose image is fully centralized also has order prime to p.

2. The fundamental group of L∧
p

The purpose of this section is to give a simple description of the fundamental
group of |L|∧p , for any p-local finite group (S,F ,L), purely in terms of the fusion
system F . The result is analogous to the (hyper-) focal subgroup theorem for finite
groups, as we explain below.

In Section 1, we defined a functor J : Lq → B(π1(|L|)), for any p-local finite group
(S,F ,L), and a homomorphism j = J ◦ δS from S to π1(|L|). Let τ : S → π1(|L|∧p )
be the composite of j with the natural homomorphism from π1(|L|) to π1(|L|∧p ).

In [BLO2, Proposition 1.12], we proved that τ : S → π1(|L|∧p ) is a surjection. In
this section, we will show that Ker(τ ) is the hyperfocal subgroup of F , defined by
Puig [Pu3] (see also [Pu2]).

Definition 2.1. For any saturated fusion system F over a p-group S, the hyperfocal
subgroup of F is the normal subgroup of S defined by

Op
F (S) =

〈
g−1α(g)

∣∣ g ∈ P ≤ S, α ∈ Op(AutF (P ))
〉
.

We will prove, for any p-local finite group (S,F ,L), that π1(|L|∧p ) ∼= S/Op
F (S).

This is motivated by Puig’s hyperfocal theorem, and we will also need that theorem
in order to prove it. Before stating Puig’s theorem, we first recall the standard focal
subgroup theorem. If G is a finite group and S ∈ Sylp(G), then this theorem says
that S∩ [G, G] (the focal subgroup) is the subgroup generated by all elements of the
form x−1y for x, y ∈ S which are G-conjugate (cf. [Go, Theorem 7.3.4] or [Suz2,
5.2.8]).

The quotient group S/(S∩ [G, G]) is isomorphic to the p-power torsion subgroup
of G/[G, G], and can thus be identified as a quotient group of the maximal p-
group quotient G/Op(G). Since G/Op(G) is a p-group, G = S·Op(G), and hence
G/Op(G) ∼= S/(S ∩ Op(G)). Hence S ∩ Op(G) ≤ S ∩ [G, G]. This subgroup
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S ∩ Op(G) is what Puig calls the hyperfocal subgroup, and is described by the
hyperfocal subgroup theorem in terms of S and fusion.

For S ∈ Sylp(G) as above, let Op
G(S) be the normal subgroup of S defined by

Op
G(S) = Op

FS(G)(S) =
〈
g−1α(g)

∣∣ g ∈ P ≤ S, α ∈ Op(AutG(P ))
〉

=
〈
[g, x]

∣∣ g ∈ P ≤ S, x ∈ NG(P ) of order prime to p
〉
.

Lemma 2.2 ([Pu2]). Fix a prime p, a finite group G, and a Sylow subgroup S ∈
Sylp(G). Then Op

G(S) = S ∩ Op(G).

Proof. This is stated in [Pu2, §1.1], but the proof is only sketched there, and so
we elaborate on it here. Following standard notation, for any P ≤ S and any A ≤
Aut(P ), we write [P, A] = 〈x−1α(x) |x ∈ P, α ∈ A〉. Thus Op

G(S) is generated by
the subgroups [P, Op(AutG(P ))] for all P ≤ S. It is clear that Op

G(S) ≤ S∩Op(G);
the problem is to prove the opposite inclusion.

Set G∗ = Op(G) and S∗ = S ∩ G∗ for short. Then [G∗, G∗] has index prime
to p in G∗, so it contains S∗. By the focal subgroup theorem (cf. [Go, Theo-
rem 7.3.4]), applied to S∗ ∈ Sylp(G∗), S∗ is generated by all elements of the form
x−1y for x, y ∈ S∗ which are G∗-conjugate. Combined with Alperin’s fusion the-
orem (in Alperin’s original version [Al] or in the version of Theorem 1.5(a)), this
implies that S∗ is generated by all subgroups [P, NG∗(P )] for P ≤ S∗ such that
NS∗(P ) ∈ Sylp(NG∗(P )). (This last condition is equivalent to P being fully nor-
malized in FS∗(G∗).) Also, NG∗(P ) is generated by Op(NG∗(P )) and the Sylow
subgroup NS∗(P ), so [P, NG∗(P )] is generated by [P, Op(NG∗(P ))] ≤ Op

G(S) and
[P, NS∗(P )] ≤ [S∗, S∗]. Thus S∗ = 〈Op

G(S), [S∗, S∗]〉. Since Op
G(S) is normal in S

(hence also normal in S∗), this shows that S∗/Op
G(S) is equal to its commutator

subgroup, which for a p-group is possible only if S∗/Op
G(S) is trivial, and hence

S∗ = Op
G(S). �

By Proposition 1.14, the key to getting information about π1(|L|) is to con-
struct functors from L or Lq to B(Γ), for a group Γ, which send inclusions to the
identity. The next lemma is our main inductive tool for doing this. Whenever
α ∈ MorLq(P, P ′) and β ∈ MorLq(Q, Q′) are such that P ≤ Q, P ′ ≤ Q′, we write
α = β|P to mean that α is the restriction of β in the sense defined in Section 1;
i.e., ιQ

′

P ′ ◦ α = β ◦ ιQP .

Lemma 2.3. Fix a p-local finite group (S,F ,L), and let Lq be its associated qua-
sicentric linking system. Assume that a compatible set of inclusions {ιQP } has been
chosen for Lq. Let H0 be a set of F-quasicentric subgroups of S which is closed un-
der F-conjugacy and overgroups. Let P be an F-conjugacy class of F-quasicentric
subgroups maximal among those not in H0, set H = H0∪P, and let LH0 ⊆ LH ⊆ Lq

be the full subcategories with these objects. Assume, for some group Γ, that

λ0 : LH0 −−−−−→ B(Γ)

is a functor which sends inclusions to the identity. Fix some P ∈ P which is fully
normalized in F , and fix a homomorphism λP : AutLq (P ) → Γ. Assume that

(∗) for all P � Q ≤ NS(P ) such that Q is fully normalized in NF (P ), and for
all α ∈ AutLq(P ) and β ∈ AutLq(Q) such that α = β|P , λP (α) = λ0(β).

Then there is a unique extension of λ0 to a functor λ : LH → B(Γ) which sends
inclusions to the identity, and such that λ(α) = λP (α) for all α ∈ AutF (P ).
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Proof. The uniqueness of the extension is an immediate consequence of Theorem
1.5(a) (Alperin’s fusion theorem).

To prove the existence of the extension λ, we first show that (∗) implies the
following (a prori stronger) statement:

(∗∗) for all Q, Q′ ≤ S which strictly contain P , and for all β ∈ MorLq (Q, Q′)
and α ∈ AutLq(P ) such that α = β|P , λP (α) = λ0(β).

To see this, note first that it suffices to consider the case where P is normal in Q
and Q′. By assumption, π(β)(P ) = π(α)(P ) = P , hence π(β)(NQ(P )) ≤ NQ′(P ),
and therefore β restricts to a morphism β ∈ MorLq(NQ(P ), NQ′(P )) by Proposition
1.12(b) (applied with ϕ = β ◦ ιQNQ(P ) and ψ = ιQ

′

NQ′ (P )). Since NQ(P ), NQ′(P ) � P ,

by the induction hypothesis, λ0(β) = λ0(β), so we are reduced to proving that
λP (α) = λ0(β).

Thus β ∈ MorNLq (P )(Q, Q′). We now apply Alperin’s fusion theorem (The-
orem 1.5(a)) to the morphism π(β) in the fusion system NF (P ) (which is sat-
urated by [BLO2, Proposition A.6]). Thus π(β) = ϕk ◦ · · · ◦ ϕ1, where each
ϕi ∈ HomNF (P )(Qi−1, Qi) is the restriction to Qi−1 of an automorphism ϕ̂i ∈
AutNF (P )(Ri), where Ri ≥ Qi−1, Qi is an NF (P )-centric subgroup of NS(P ) which
is fully normalized in NF (P ), and where Q = Q0 and Q′ = Qk. Each Ri contains P ,
and hence is F-centric by [BLO2, Lemma 6.2]. For each ϕ̂i, also regarded as an au-
tomorphism in F , we choose a lifting β̂i ∈ AutL(Ri), and let βi ∈ MorLq (Qi−1, Qi)
be its restriction. By (A)q, β = βk ◦ · · · ◦ β1 ◦ δQ(g) for some g ∈ CS(Q), and hence

λ0(β) = λ0(βk) · · ·λ0(β1) · λ0(δQ(g)) = λ0(β̂k) · · ·λ0(β̂1) · λ0(δNS(P )(g))

= λP (β̂k|P ) · · ·λP (β̂1|P ) · λP (IdP ) = λP (β|P ) = λP (α) ,

where the third equality follows from (∗). This finishes the proof of (∗∗).
We can now extend λ to be defined on all morphisms in LH not in LH0 . Fix

such a morphism ϕ ∈ MorLq (P1, Q). Set P2 = π(ϕ)(P1) ≤ Q; then P1, P2 ∈ P, and
ϕ = ιQP2

◦ ϕ′ for some unique ϕ′ ∈ IsoLq(P1, P2). By Lemma 1.3 (and then lifting
to the linking category), there are isomorphisms ϕi ∈ IsoLq(NS(Pi), Ni), for some
Ni ≤ NS(P ) containing P , which restrict to isomorphisms ϕi ∈ IsoLq(Pi, P ). Set
ψ = ϕ2 ◦ ϕ′ ◦ ϕ−1

1 ∈ AutLq(P ). We have thus decomposed ϕ′ as the composite
ϕ−1

2 ◦ ψ ◦ ϕ1, and can now define

λ(ϕ) = λ(ϕ′) = λ0(ϕ2)−1·λP (ψ)·λ0(ϕ1).

Now let ϕ′ = (ϕ′
2)

−1 ◦ ψ′ ◦ ϕ′
1 be another such decomposition, where ϕ′

i is the
restriction of ϕ′

i ∈ IsoLq(NS(Pi), N ′
i). We thus have a commutative diagram

P

ψ

��

P1
ϕ1��

ϕ′

��

ϕ′
1 �� P

ψ′

��

P P2
ϕ2��

ϕ′
2 �� P,

where for each i, ϕi and ϕ′
i are restrictions of isomorphisms ϕi and ϕ′

i defined on
NS(Pi). To see that the two decompositions give the same value of λ(ϕ), it remains
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to show that

λP (ψ′)·λ0(ϕ′
1 ◦ (ϕ1)−1) = λ0(ϕ′

2 ◦ (ϕ2)−1)·λP (ψ).

This holds since λ0(ϕ′
i ◦ (ϕi)−1) = λP (ϕ′

i ◦ (ϕi)−1) by (∗∗).
We have now defined λ on all morphisms in LH, and it sends inclusion morphisms

to the identity by construction. By construction, λ sends composites to products,
and thus the proof is complete. �

Lemma 2.3 provides the induction step when proving the following proposition,
which is the main result needed to compute π1(|L|∧p ).

Proposition 2.4. Fix a p-local finite group (S,F ,L), and let Lq be its associated
quasicentric linking system. Assume that a compatible set of inclusions {ιQP } has
been chosen for Lq. Then there is a unique functor

λ : Lq −−−−−−→ B(S/Op
F (S))

which sends inclusions to the identity, and such that λ(δS(g)) = g for all g ∈ S.

Proof. The functor λ will be constructed inductively, using Lemma 2.3. Let H0 ⊆
Ob(Lq) be a subset (possibly empty) which is closed under F-conjugacy and over-
groups. Let P be an F-conjugacy class of F-quasicentric subgroups maximal among
those not in H0, set H = H0 ∪P, and let LH0 ⊆ LH ⊆ Lq be the full subcategories
with these objects. Assume that

λ0 : LH0 −−−−−→ B(S/Op
F(S))

has already been constructed, such that λ0(δS(g)) = g for all g ∈ S (if S ∈ H0),
and such that λ0 sends inclusions to the identity.

Fix P ∈ P which is fully normalized in F , and let δP,P : NS(P ) −−−→ AutLq(P )
be the homomorphism of Proposition 1.13. Then Im(δP,P ) is a Sylow p-subgroup
of AutLq(P ), since AutS(P ) ∈ Sylp(AutF (P )) by axiom (I). We identify NS(P ) as
a subgroup of AutLq(P ) to simplify notation. Then

AutLq(P )/Op(AutLq(P )) ∼= NS(P )
/(

NS(P ) ∩ Op(AutLq (P ))
)

= NS(P )/N0,

where by Lemma 2.2, N0 is the subgroup generated by all commutators [g, x] for
g ∈ Q ≤ NS(P ), and x ∈ NAutLq (P )(Q) of order prime to p. In this situation, con-
jugation by x lies in AutF (Q) by Proposition 1.13(d), and thus [g, x] = g·cx(g)−1 ∈
Op

F (S). We conclude that N0 ≤ Op
F (S), and hence that the inclusion of NS(P ) into

S extends to a homomorphism

λP : AutLq (P ) −−−−−−→ S/Op
F (S).

We claim that condition (∗) in Lemma 2.3 holds for λ0 and λP . To see this,
fix P � Q ≤ S such that P � Q and Q is fully normalized in NF (P ), and fix
α ∈ AutLq (P ) and β ∈ AutLq (Q) such that α = β|P . We must show that λP (α) =
λ0(β). Upon replacing α by αk and β by βk for some appropriate k ≡ 1 (mod p),
we can assume that both automorphisms have order a power of p. Since Q is fully
normalized, AutNS(P )(Q) is a Sylow subgroup of AutNF (P )(Q). Hence (since any
two Sylow p-subgroups of a finite group G are conjugate by an element of Op(G)),
there is an automorphism γ ∈ Op(AutNLq (P )(Q)) such that γβγ−1 = δQ(g) for
some g ∈ NS(Q) ∩ NS(P ). In particular, λ0(γ) = 1 since it is a composite of
automorphisms of order prime to p. Set γ = γ|P ; then γ ∈ Op(AutLq(P )) and
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hence λP (γ) = 1. Using axiom (C)q and Lemma 1.12, we see that γαγ−1 = δP (g),
and thus (since λP (γ) = 1 and λ0(γ) = 1) that

λ0(β) = λ0(δQ(g)) = g = λP (δP (g)) = λP (α).

Thus, by Lemma 2.3, we can extend λ0 to a functor defined on LH. Upon
continuing this procedure, we obtain a functor λ defined on all of Lq. �

For any finite group G, π1(BG∧
p ) ∼= G/Op(G). (This is implicit in [BK, §VII.3],

and shown explicitly in [BLO1, Proposition A.2].) Hence our main result in this
section can be thought of as the hyperfocal theorem for p-local finite groups.

Theorem 2.5 (The hyperfocal subgroup theorem for p-local finite groups). Let
(S,F ,L) be a p-local finite group. Then

π1(|L|∧p ) ∼= S/Op
F (S).

More precisely, the natural map τ : S → π1(|L|∧p ) is surjective, and Ker(τ ) =
Op

F (S).

Proof. Let λ : L −−−→ B(S/Op
F (S)) be the functor of Proposition 2.4, and let |λ|

be the induced map between geometric realizations. Since |B(S/Op
F (S))| is the

classifying space of a finite p-group and hence p-complete, |λ| factors through the
p-completion |L|∧p . Consider the following commutative diagram:

S
j

��

τ
����������� π1(|L|)

(−)∧P
��

π1(|λ|)

����
��

��
��

��

π1(|L|∧P )
π1(|λ|∧P )

λ= �� S/Op
F (S).

Here, τ is surjective by [BLO2, Proposition 1.12]. Also, by construction, the com-
posite λ̄ ◦ τ = π1(|λ|) ◦ j is the natural projection. Thus Ker(τ ) ≤ Op

F (S), and it
remains to show the opposite inclusion.

Fix g ∈ P ≤ S and α ∈ AutF (P ) such that α has order prime to p; we want
to show that g−1α(g) ∈ Ker(τ ). Since Ker(τ ) is closed under F-conjugacy (Propo-
sition 1.14(d)), for any ϕ ∈ IsoF (P, P ′), g−1α(g) is in Ker(τ ) if ϕ(g−1α(g)) is in
Ker(τ ). In particular, since ϕ(g−1α(g)) = ϕ(g)−1·(ϕαϕ−1)(ϕ(g)), we can assume
that P is fully centralized in F . Then, upon extending α to an automorphism of
P ·CS(P ), which can also be assumed to have order prime to p (replace it by an
appropriate power if necessary), we can assume that P is F-centric. In this case,
by Proposition 1.14(c), j(g) and j(α(g)) are conjugate in π1(|L|) by an element
of order prime to p, and hence are equal in π1(|L|∧p ) since this is a p-group. This
shows that g−1α(g) ∈ Ker(τ ), and finishes the proof of the theorem. �

The following result, which will be useful in Section 5, is of a similar nature, but
much more elementary.

Proposition 2.6. Fix a p-local finite group (S,F ,L), and let Lq be its associated
quasicentric linking system. Then the induced maps

π1(|L|) −−−−−→ π1(|Fc|) and π1(|Lq|) −−−−−→ π1(|Fq|)
are surjective, and their kernels are generated by elements of p-power order.
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Proof. We prove this for |Lq| and |Fq|; a similar argument applies to |L| and |Fc|.
Recall from Section 1 that we can regard π1(|Lq|) as the group generated by the
loops J(α), for α ∈ Mor(Lq), with relations given by composition of morphisms
and making inclusion morphisms equal to 1. In a similar way, we regard π1(|Fq|)
as being generated by loops J(ϕ) for ϕ ∈ Mor(Fq). Since every morphism α ∈
HomFq(P, Q) has a lifting to a morphism of Lq, the map π# : π1(|Lq|) → π1(|Fq|)
induced by the projection functor π : Lq → Fq is an epimorphism.

Write JC for the normal subgroup of π1(|Lq|) generated by the loops j(g) =
J(δP (g)), for all F-quasicentric subgroups P ≤ S and all g ∈ CS(P ). In particular,
JC is generated by elements of p-power order. Since π#(j(g)) = 1, JC is contained
in the kernel of π#, and we have a factorization π̂# : π1(|Lq|)/JC → π1(|Fq|).

Define an inverse s : π1(|Fq|) → π1(|Lq|)/JC as follows. Given a morphism
α ∈ HomFq (P, Q), choose a lifting ᾱ in Lq, and set s(α) = [J(ᾱ)]. If ᾱ, ᾱ′ ∈
HomLq(P, Q) are two liftings of α, then there is an isomorphism χ : P ′ → P in
Lq where P ′ is fully centralized, and an element g ∈ CS(P ′), such that ᾱ′ =
ᾱ ◦ (χ ◦ δP ′(g) ◦ χ−1). Since χ ◦ δP ′(g) ◦ χ−1 represents a loop that belongs to
JC, [J(ᾱ)] = [J(ᾱ′)]. Thus the definition of s does not depend on the choice of
ᾱ. It remains to show that s preserves the relations among the generators. But
we clearly have that s([J(inclQP )]) = [J(ιQP )] = 1. Also, if α and β are composable
morphisms of Fq, and ᾱ and β̄ are liftings to Lq, then ᾱ ◦ β̄ is a lifting of α ◦ β,
and hence s(α)s(β) = [J(ᾱ)][J(β̄)] = [J(ᾱ ◦ β̄)] = s(α ◦ β).

This shows that π# induces an isomorphim π1(|Lq|)/JC ∼= π1(|Fq|). �

3. Subsystems with p-solvable quotient

In this section, we prove some general results about subsystems of saturated
fusion systems and p-local finite subgroups: subsystems with p-group quotient or
quotient of order prime to p. These will then be used in the next two sections to
prove some more specific theorems.

It will be convenient in this section to write “p′-group” for a finite group of
order prime to p. Recall that a p-solvable group is a group G with normal series
1 = H0 � H1 � · · · � Hk = G such that each Hi/Hi−1 is a p-group or a p′-group.
As one consequence of the results of this section, we show that for any p-local
finite group (S,F ,L), and any homomorphism θ from π1(|L|) to a finite p-solvable
group, there is another p-local finite group (S0,F0,L0) such that |L0| is homotopy
equivalent to the covering space of |L| with fundamental group Ker(θ).

We start with some definitions. Recall that for any finite group G, Op′
(G) and

Op(G) are the smallest normal subgroups of G of index prime to p and of p-power
index, respectively. Equivalently, Op′

(G) is the subgroup generated by elements
of p-power order in G, and Op(G) is the subgroup generated by elements of order
prime to p in G.

We want to identify the fusion subsystems of a given fusion system which are
analogous to subgroups of G which contain Op′

(G) or Op(G). This motivates the
following definitions.

Definition 3.1. Let F be a saturated fusion system over a p-group S. Let
(S′,F ′) ⊆ (S,F) be a saturated fusion subsystem; i.e., S′ ≤ S is a subgroup,
and F ′ ⊆ F is a subcategory which is a saturated fusion system over S′.
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(a) (S′,F ′) is of p-power index in (S,F) if

S′ ≥ Op
F (S) and AutF ′(P ) ≥ Op(AutF (P ))

for all P ≤ S′. Equivalently, a saturated fusion subsystem F ′ ⊆ F over
S′ ≥ Op

F (S) has p-power index if it contains all F-automorphisms of order
prime to p of subgroups of S′.

(b) (S′,F ′) is of index prime to p in (S,F) if

S′ = S and AutF ′(P ) ≥ Op′
(AutF (P ))

for all P ≤ S. Equivalently, a saturated fusion subsystem F ′ ⊆ F over S
has index prime to p if it contains all F-automorphisms of p-power order.

This terminology has been chosen for simplicity. Subsystems “of p-power index”
or “of index prime to p” are really analogous to subgroups H ≤ G which contain
normal subgroups of G of p-power index or index prime to p, respectively. For
example, if F is a saturated fusion system over S, and F ′ ⊆ F is the fusion system
of S itself (i.e., the minimal fusion system over S), then F ′ is not in general a
subsystem of index prime to p under the above definition, despite the inclusion
F ′ ⊆ F being analogous to the inclusion of a Sylow p-subgroup in a group.

Over the next three sections, we will classify all saturated fusion subsystems of
p-power index, or of index prime to p, in a given saturated fusion system. In both
cases, there will be a minimal such subsystem, denoted Op(F) or Op′

(F); and the
saturated fusion subsystems of the given type will be in bijective correspondence
with the subgroups of a given p-group or p′-group.

The following terminology will be useful for describing some of the categories we
have to work with.

Definition 3.2. Fix a finite p-group S.

(a) A restrictive category over S is a category F such that Ob(F) is the set of
subgroups of S, such that all morphisms in F are group monomorphisms
between the subgroups, and with the following additional property: for
each P ′ ≤ P ≤ S and Q′ ≤ Q ≤ S, and each ϕ ∈ HomF (P, Q) such that
ϕ(P ′) ≤ Q′, ϕ|P ′ ∈ HomF (P ′, Q′).

(b) A restrictive category F over S is normalized by an automorphism α ∈
AutF (S) if for each P, Q ≤ S, and each ϕ ∈ HomF (P, Q), αϕα−1 ∈
HomF (α(P ), α(Q)).

(c) For any restrictive category F over S and any subgroup A ≤ Aut(S), 〈F , A〉
is the smallest restrictive category over S which contains F together with
all automorphisms in A and their restrictions.

By definition, any restrictive category is required to contain all inclusion homo-
morphisms (restrictions of IdS). The main difference between a restrictive category
over S and a fusion system over S is that the restrictive subcategory need not
contain FS(S).

When F is a fusion system over S, then an automorphism α ∈ Aut(S) normalizes
F if and only if it is fusion preserving in the sense used in [BLO1]. For the purposes
of this paper, it will be convenient to use both terms, in different situations.

We next define the followingsubcategories of a given fusion system F .
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Definition 3.3. Let F be any fusion system over a p-group S.
(a) Op

∗(F) ⊆ F denotes the smallest restrictive subcategory of F whose mor-
phism set contains Op(AutF (P )) for all subgroups P ≤ S.

(b) Op′

∗ (F) ⊆ F denotes the smallest restrictive subcategory of F whose mor-
phism set contains Op′

(AutF (P )) for all subgroups P ≤ S.

By definition, for subgroups P, Q, a morphism ϕ ∈ HomF (P, Q) lies in Op′

∗ (F)
if and only if it is a composite of morphisms which are restrictions of elements
of Op′

(AutF (R)) for subgroups R ≤ S. Morphisms in Op
∗(F) are described in a

similar way.
The subcategory Op

∗(F) is not, in general, a fusion system — and this is why
we had to define restrictive categories. The subcategory Op′

∗ (F) is always a fusion
system (since AutS(P ) ≤ Op′

(AutF (P )) for all P ≤ S), but it is not, in general,
saturated. The subscripts “∗” have been put in as a reminder of these facts, and
as a contrast with the notation Op(F) and Op′

(F) which will be used to denote
certain minimal saturated fusion systems.

We now check some of the basic properties of the subcategories Op
∗(F) and

Op′

∗ (F), stated in terms of these definitions.

Lemma 3.4. The following hold for any fusion system F over a p-group S:

(a) Op
∗(F) and Op′

∗ (F) are normalized by AutF (S).
(b) If F is saturated, then F = 〈Op

∗(F), AutF (S)〉 = 〈Op′

∗ (F), AutF (S)〉.
(c) If F ′ ⊆ F is any restrictive subcategory normalized by AutF (S) and such

that F = 〈F ′, AutF (S)〉, then for each P, Q ≤ S and ϕ ∈ HomF (P, Q),
there are morphisms α ∈ AutF (S), ϕ′ ∈ HomF ′(α(P ), Q), and ϕ′′ ∈
HomF ′(P, α−1Q), such that ϕ = ϕ′ ◦ α|P = α ◦ ϕ′′.

Proof. To simplify notation in the following proofs, for α ∈ AutF (S), we write α
in composites of morphisms between subgroups of S, rather than specifying the
appropriate restriction each time.

(a) Set F ′ = Op
∗(F) or Op′

∗ (F). Let α ∈ AutF (S) and let ϕ ∈ HomF ′(P, Q).
We must show that αϕα−1 ∈ HomF ′(α(P ), α(Q)). By definition of F ′, there are
subgroups

P = P0, P1, . . . , Pk = ϕ(P ) ≤ Q,

subgroups P 1, . . . , P k, and automorphisms χi ∈ Op(AutF (P i)) (if F ′ = Op
∗(F)) or

χi ∈ Op′
(AutF (P i)) (if F ′ = Op′

∗ (F)), such that Pi−1, Pi ≤ P i, χi(Pi−1) = Pi, and

ϕ = inclQPk
◦(χk|Pk−1) ◦ · · · ◦ (χ2|P1) ◦ (χ1|P0).

Let P ′
i = α(Pi), P ′

i = α(P i), and χ′
i = αχiα

−1 ∈ Op(AutF (P ′
i)) or Op′

(AutF (P ′
i)).

Then
αϕα−1 = inclα(Q)

P ′
k

◦(χ′
k|P ′

k−1
) ◦ · · · ◦ (χ′

2|P ′
1
) ◦ (χ′

1|P ′
0
)

is in HomF ′(α(P ), α(Q)), as required.
(b1) Now assume that F is saturated. We show here that

F = 〈Op′

∗ (F), AutF (S)〉;

i.e., that each ϕ ∈ Mor(F) is a composite of morphisms in Op′

∗ (F) and in AutF (S).
By Alperin’s fusion theorem for saturated fusion systems (Theorem 1.5(a)), it suf-
fices to prove this when ϕ ∈ AutF (P ) for some P ≤ S which is F-centric and fully
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normalized. The result clearly holds if P = S. So we can assume that P � S,
and also assume inductively that the lemma holds for every automorphism of any
subgroup P ′ ≤ S such that |P ′| > |P |.

Consider the subgroup

K = ϕ AutS(P )ϕ−1 = {ϕcgϕ
−1 ∈ AutF (P ) | g ∈ NS(P )}.

Then K is a p-subgroup of AutF (P ), and hence K ≤ Aut
Op′

∗ (F)
(P ). Since P is

fully normalized in F , AutS(P ) ∈ Sylp(AutF (P )). Thus K and AutS(P ) are both
Sylow p-subgroups of Aut

Op′
∗ (F)

(P ), and there is some χ ∈ Aut
Op′

∗ (F)
(P ) such that

χKχ−1 ≤ AutS(P ). In other words,

Nχϕ
def= {g ∈ NS(P ) | (χϕ)cg(χϕ)−1 ∈ AutS(P )} = NS(P ).

So by condition (II) in Definition 1.2, χ ◦ ϕ can be extended to a homomorphism
ψ ∈ HomF (NS(P ), S). By the induction hypothesis (and since NS(P ) � P ), ψ,
and hence χ ◦ ϕ, are composites of morphisms in NF (S) and in Op′

∗ (F). Also,
χ ∈ Aut

Op′
∗ (F)

(P ) by assumption, and hence ϕ is a composite of morphisms in
these two subcategories.

(b2) To see that F = 〈Op
∗(F), AutF (S)〉 when F is saturated, it again suffices

to restrict to the case where ϕ ∈ AutF (P ) for some P ≤ S which is F-centric and
fully normalized. But in this case, AutF (P ) is generated by its Sylow p-subgroup
AutS(P ) ≤ AutNF (S)(P ), together with Op(AutF (P )) ≤ AutOp

∗(F)(P ).
(c) Since F = 〈F ′, AutF (S)〉, every morphism in F is a composite of morphisms

in F ′ and restrictions of automorphisms in AutF (S). Assume ϕ ∈ HomF (P, Q) is
the composite

P = P0
α0−−−→ Q0

ϕ1−−−→ P1
α1−−−→ Q1 −−−→ . . . −−−→ Pn

αn−−−→ Qn = Q,

where αi ∈ AutF (S), αi(Pi) = Qi, and ϕi ∈ HomF ′(Qi−1, Pi). Write αj,i =
αj · · ·αi for any i ≤ j, and set α = αn,0 = αn · · ·α0. Then

ϕ = α ◦ (αn−1,0
−1ϕnαn−1,0) · · · (α0,0

−1ϕ1α0,0)

= (αn,nϕnαn,n
−1) · · · (αn,1ϕ1αn,1

−1) ◦ α;

where each αn,iϕiαn,i
−1 and each αi,0

−1ϕi+1αi,0 is a morphism in F ′ since F ′ is
normalized by AutF (S). �

The following lemma will also be needed later.

Lemma 3.5. Let F be a saturated fusion system over a p-group S. Fix a normal
subgroup S0 � S which is strongly F-closed; i.e., no element of S0 is F-conjugate
to any element of S�S0. Let (S0,F0) be a saturated fusion subsystem of (S,F).
Then for any P ≤ S which is F-centric and F-radical, P ∩ S0 is F0-centric.

Proof. Assume P ≤ S is F-centric and F-radical, and set P0 = P ∩ S0 for short.
Choose a subgroup P ′

0 ≤ S0 which is F-conjugate to P0 and fully normalized in
F . In particular, by (I), P ′

0 is fully centralized in F . By Lemma 1.3, there is
ϕ ∈ HomF (NS(P0), NS(P ′

0)) such that ϕ(P0) = P ′
0. Set P ′ = ϕ(P ); thus P ′ is F-

conjugate to P (so P ′ is also F-centric and F-radical), and P ′
0 = P ′∩S0 since S0 is

strongly closed. For any P ′′
0 ≤ S0 which is F0-conjugate to P0 (hence F-conjugate to

P ′
0), there is a morphism ψ ∈ HomF (P ′′

0 ·CS(P ′′
0 ), P ′

0·CS(P ′
0)) such that ψ(P ′′

0 ) = P ′
0
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(by axiom (II)), and then ψ(CS0(P
′′
0 )) ≤ CS0(P

′
0). So if CS0(P

′
0) = Z(P ′

0), then
CS0(P

′′
0 ) = Z(P ′′

0 ) for all P ′′
0 which is F0-conjugate to P0, and P0 is F0-centric.

We are thus reduced to showing that CS0(P
′
0) = Z(P ′

0); and without loss of
generality, we can assume that P ′ = P and P ′

0 = P0. Since S0 is strongly closed,
every α ∈ AutF (P ) leaves P0 invariant. Let Aut0F (P ) ≤ AutF (P ) be the subgroup
of elements which induce the identity on P0 and on P/P0. This is a normal subgroup
of AutF (P ) since all elements of AutF (P ) leave P0 invariant, and is also a p-
subgroup by Lemma 1.15. Thus Aut0F (P ) ≤ Op(AutF (P )), and hence Aut0F (P ) ≤
Inn(P ) since P is F-radical.

We want to show that CS0(P0) = Z(P0). Fix any x ∈ CS0(P0), and assume
first that the coset x·Z(P0) ∈ CS0(P0)/Z(P0) is fixed by the conjugation action of
P . Thus x ∈ S0, [x, P0] = 1, and [x, P ] ≤ Z(P0), so cx ∈ Aut0F (P ) ≤ Inn(P ),
and xg ∈ CS(P ) for some g ∈ P . Since P is F-centric, this implies that xg ∈
P , so x ∈ CS0(P0) ∩ P = Z(P0). In other words, [CS0(P0)/Z(P0)]P = 1, so
CS0(P0)/Z(P0) = 1, and thus CS0(P0) = Z(P0). �

The motivation for the next definition comes from considering the situation
which arises when one is given a saturated fusion system F with an associated
quasicentric linking system Lq, and a functor Lq → B(Γ) which sends inclusions
to the identity (or equivalently a homomorphism from π1(|Lq|) to Γ) for some
group Γ. Such a functor is equivalent to a function Θ: Mor(Lq) → Γ which sends
composites to products and sends inclusions to the identity; and for any H ≤ Γ,
Θ−1(H) = Mor(Lq

H) for some subcategory Lq
H ⊆ Lq with the same objects. Let

Fq
H ⊆ Fq be the image of Lq

H under the canonical projection; then in some sense
(to be made precise later), Fq

H is a subsystem of Fq of index [Γ:H].
What we now need is to make sense of such “inverse image subcategories” of

the fusion system F , when we are not assuming that we have an associated linking
system. Let Sub(Γ) denote the set of nonempty subsets of Γ. Given a function Θ as
above, there is an obvious associated function Θ: Mor(Fq) → Sub(Γ), which sends
a morphism α ∈ Mor(Fq) to Θ(π−1(α)). Here, π denotes the natural projection
from Lq to Fq. Moreover, Θ also induces a homomorphism θ = Θ ◦ δS from S
to Γ. The maps Θ and θ are closely related to each other, and satisfy certain
properties, none of which depend on the existence (or choice) of a quasicentric
linking system associated to F . In fact, we will see that the data encoded in such
a pair of functions, if they satisfy the appropriate conditions, suffices to describe
precisely what is meant by “inverse image subcategories” of fusion systems; and to
show that under certain restrictions, these categories are (or generate) saturated
fusion subsystems.

Definition 3.6. Let F be a saturated fusion system over a p-group S, and let
F0 ⊆ Fq be any full subcategory such that Ob(F0) is closed under F-conjugacy.
A fusion mapping triple for F0 consists of a triple (Γ, θ, Θ), where Γ is a group,
θ : S −−→ Γ is a homomorphism, and

Θ: Mor(F0) −−−−−→ Sub(Γ)

is a map which satisfies the following conditions for all subgroups P, Q, R ≤ S which
lie in F0:

(i) For all P
ϕ−−→ Q

ψ−−→ R in F0, and all x ∈ Θ(ψ), Θ(ψϕ) = x·Θ(ϕ).
(ii) If P is fully centralized in F , then Θ(IdP ) = θ(CS(P )).
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(iii) If ϕ = cg ∈ HomF (P, Q), where g ∈ NS(P, Q), then θ(g) ∈ Θ(ϕ).
(iv) For all ϕ ∈ HomF (P, Q), all x ∈ Θ(ϕ), and all g ∈ P , xθ(g)x−1 = θ(ϕ(g)).

For any fusion mapping triple (Γ, θ, Θ) and any H ≤ Γ, we let F•
H ⊆ F be the

smallest restrictive subcategory which contains all ϕ ∈ Mor(Fq) such that Θ(ϕ) ∩
H �= ∅. Let FH ⊆ F•

H be the full subcategory whose objects are the subgroups of
θ−1(H).

When θ is the trivial homomorphism (which is always the case when Γ is a
p′-group), then a fusion mapping triple (Γ, θ, Θ) on a subcategory F0 ⊆ Fq is
equivalent to a functor from F0 to B(Γ); i.e., Θ(ϕ) contains just one element for
all ϕ ∈ Mor(F0). By (i), it suffices to show this for identity morphisms; and by
(ii), |Θ(IdP )| = 1 if P is fully centralized. For arbitrary P , it then follows from (i),
together with the assumption (included in the definition of Sub(Γ)) that Θ(ϕ) �= ∅
for all ϕ.

The following additional properties of fusion mapping triples will be needed.

Lemma 3.7. Fix a saturated fusion system F over a p-group S, let F0 be a full
subcategory such that Ob(F0) is closed under F-conjugacy, and let (Γ, Θ, θ) be a
fusion mapping triple for F0. Then the following hold for all P, Q, R ∈ Ob(F0):

(v) Θ(IdP ) is a subgroup of Γ, and Θ restricts to a homomorphism

ΘP : AutF (P ) → NΓ(Θ(IdP ))/Θ(IdP ).

Thus ΘP (α) = Θ(α) (as a coset of Θ(IdP )) for all α ∈ AutF (P ).

(vi) For all P
ϕ−−→ Q

ψ−−→ R in F0, and all x ∈ Θ(ϕ), Θ(ψϕ) ⊇ Θ(ψ)·x, with
equality if ϕ(P ) = Q. In particular, if P ≤ Q, then Θ(ψ|P ) ⊇ Θ(ψ).

(vii) Assume S ∈ Ob(F0). Then for any ϕ ∈ HomF (P, Q), any α ∈ AutF (S),
and any x ∈ Θ(α), Θ(αϕα−1) = xΘ(ϕ)x−1, where

αϕα−1 ∈ HomF (α(P ), α(Q)).

Proof. (v) By (i), for any α, β ∈ AutF (P ) and any x ∈ Θ(α), Θ(αβ) = x·Θ(β).
When applied with α = β = IdP , this shows that Θ(IdP ) is a subgroup of Γ. (Note
here that Θ(IdP ) �= ∅ by definition of Sub(Γ).) When applied with β = α−1,
this shows that x−1 ∈ Θ(α−1) if x ∈ Θ(α). Hence Θ(α) = x·Θ(IdP ) implies that
Θ(α−1) = Θ(IdP )·x−1 and Θ(α−1) = x−1·Θ(IdP ), and thus that each Θ(α) is a
right coset as well as a left coset. Thus Θ(α) ⊆ NΓ(Θ(IdP )) for all α ∈ AutF (P ),
and the induced map ΘP is clearly a homomorphism.

(vi) By (i), Θ(ψϕ) ⊇ Θ(ψ)·Θ(ϕ) for any pair of composable morphisms ϕ, ψ
in F0. In particular, Θ(ψϕ) ⊇ Θ(ψ)·x if x ∈ Θ(ϕ). If ϕ is an isomorphism, then
1 ∈ Θ(IdP ) = x·Θ(ϕ−1) by (v) and (i), so x−1 ∈ Θ(ϕ−1). This gives the inclusions

Θ(ψ) = Θ(ψϕϕ−1) ⊇ Θ(ψϕ)·x−1 ⊇ Θ(ψ)xx−1,

and hence these are both equalities. The last statement is the special case where
P ≤ Q and ϕ = inclQP ; 1 ∈ Θ(inclQP ) by (iii).

(vii) For x ∈ Θ(α), Θ(αϕ) = x·Θ(ϕ) = Θ(αϕα−1)·x by (i) and (vi). �
We are now ready to prove the main result about fusion mapping triples.

Proposition 3.8. Let F be a saturated fusion system over a finite p-group S. Let
(Γ, θ, Θ) be any fusion mapping triple on Fq, where Γ is a p-group or a p′-group,
and

θ : S −−−−→ Γ and Θ: Mor(Fq) −−−−→ Sub(Γ).
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Then the following hold for any subgroup H ≤ Γ, where we set SH = θ−1(H):

(a) FH is a saturated fusion system over SH .
(b) If Γ is a p-group, then a subgroup P ≤ SH is FH-quasicentric if and only

if it is F-quasicentric. Also, F•
1 ⊇ Op

∗(F).
(c) If Γ is a p′-group, then SH = S. A subgroup P ≤ S is FH-centric (fully

centralized in FH , fully normalized in FH) if and only if it is F-centric
(fully centralized in F , fully normalized in F). Also, F•

1 ⊇ Op′

∗ (F).

Proof. Throughout the proof, (i)–(vii) refer to the conditions in Definition 3.6 and
Lemma 3.7. If X is any set of morphisms of F , then we let Θ(X) be the union
of the sets Θ(α) for α ∈ X. Condition (v) implies that for any P ≤ S and any
subgroup A ≤ AutF (P ), Θ(A) is a subgroup of Γ.

We first prove the following two additional properties of these subcategories:

(1) For each pair of subgroups P, Q ≤ S, and each ϕ ∈ HomF (P, Q), there are
Q′ ≤ S, ϕ′ ∈ HomF•

1
(P, Q′), and α ∈ AutF (S) such that α(Q′) = Q and

ϕ = (α|Q′) ◦ ϕ′.
(2) For all P ≤ S there exists P ′ ≤ S which is fully normalized in F , and

ϕ ∈ HomF•
1
(NS(P ), NS(P ′)) such that ϕ(P ) = P ′.

By (vii), for any α ∈ AutF (S), any x ∈ Θ(α), and any ϕ ∈ HomF (P, Q),
Θ(αϕα−1) = xΘ(ϕ)x−1. In particular, Θ(αϕα−1) = 1 if and only if Θ(ϕ) = 1, and
thus F•

1 is normalized by AutF (S).
Let Op′

∗ (F)c ⊆ Op′

∗ (F) and Op
∗(F)c ⊆ Op

∗(F) be the full subcategories whose
objects are the F-centric subgroups of S. By (v), for each F-quasicentric subgroup
P ≤ S, AutF•

1
(P ) = Ker(ΘP ), where ΘP is a homomorphism to a subquotient of

Γ. Hence AutF•
1
(P ) contains Op′

(AutF (P )) if Γ is a p′-group or Op(AutF (P )) if
Γ is a p-group. This shows that F•

1 contains either Op′

∗ (F)c (if Γ is a p′-group)
or Op

∗(F)c (if Γ is a p-group). Thus Fc ⊆ 〈F•
1 , AutF (S)〉 by Lemma 3.4(b), and

so F = 〈F•
1 , AutF (S)〉 since F is the smallest restrictive category over S which

contains Fc by Theorem 1.5(a) (Alperin’s fusion theorem). Point (1) now follows
from Lemma 3.4(c).

To see (2), recall that by Lemma 1.3, if P ′′ is any subgroup F-conjugate to P
and fully normalized in F , then there is a morphism ϕ′ ∈ HomF (NS(P ), NS(P ′′))
such that ϕ′(P ) = P ′′. By (1), ϕ′ = α ◦ ϕ for some α ∈ AutF (S) and some
ϕ ∈ HomF•

1
(NS(P ), NS(α−1(P ′′))). Also, the subgroup P ′ = α−1(P ′′) is fully

normalized in F since P ′′ is.
(b) Assume Γ is a p-group, and fix H ≤ Γ. Consider the following set of

subgroups of SH :

QH =
{
P ≤ SH

∣∣ ∀P ′ FH -conjugate to P , ∀P ′ ≤ Q ≤ P ′·CSH
(P ′),

∀α ∈ AutFH
(Q) such that α|P ′ = Id, |α| is a power of p

}
.

This set clearly contains all FH -centric subgroups of SH . By Lemma 1.6, if FH is
saturated, then QH is precisely the set of FH -quasicentric subgroups. We prove
(b) here with “FH -quasicentric” replaced by “element of QH”. This is all that will
be needed for the proof that FH is saturated; and once that is shown then (b) (in
its original form) will follow.
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Assume P ≤ SH and P /∈ QH . Fix P ′ which is FH -conjugate to P , Q ≤
P ′·CSH

(P ′) which contains P ′, and IdQ �= α ∈ AutFH
(Q) of order prime to p, such

that α|P ′ = IdP ′ . Then P ′, and hence P , is not F-quasicentric by Lemma 1.6(a).
We have shown that if P is F-quasicentric, then P ∈ QH , and it remains to

check the converse. Assume P is not F-quasicentric: fix P ′ ≤ Q ≤ P ′·CS(P ′)
and α ∈ AutF (Q) as in Lemma 1.6(b). In particular, Q is F-centric, and hence
F-quasicentric. Set Q1 = Q∩ S1 (where S1 = θ−1(1)). Since 1 ∈ Θ(α) by (v) (and
since |α| is prime to p), θ(g) = θ(α(g)) for all g ∈ Q by (iv), and thus α(Q1) = Q1

and (since g−1α(g) ∈ Ker(θ) = S1 for g ∈ Q) α induces the identity on Q/Q1.
Since |α| is not a power of p, it cannot be the identity on both Q1 and Q/Q1

(Lemma 1.15), and hence α|Q1 �= IdQ1 . Thus P ′ ≤ P ′Q1 ≤ P ′·CSH
(P ′), α|P ′Q1 is

a nontrivial automorphism of P ′Q1 of order prime to p whose restriction to P ′ is
the identity.

Finally, by (1), P is FH -conjugate to a subgroup P ′′ for which there is some
ϕ ∈ IsoF (P ′, P ′′) which is the restriction of some ϕ ∈ AutF (S). Since P ≤ SH and
is FH -conjugate to P ′′, P ′′ ≤ SH by (iv) (applied with α ∈ IsoFH

(P, P ′′) and x ∈
Θ(α) ∩ H). Set Q′′ = ϕ(P ′Q1) = P ′′·ϕ(Q1) ≤ SH and α′′ = ϕαϕ−1 ∈ AutF (Q′′).
Since Γ is a p-group and |α′′| is prime to p, (v) implies that Θ(α′′) = Θ(IdQ), and
hence that 1 ∈ Θ(α′′) and hence α′′ ∈ AutFH

(Q′′). But then P ′′ /∈ QH , and hence
P /∈ QH .

It remains to show that F•
1 ⊇ Op

∗(F); i.e., to show that

(3) AutF•
1
(P ) ≥ Op(AutF (P ))

for each P ≤ S. If P ≤ S is F-quasicentric, then (3) holds by (v): AutF•
1
(P )

is the kernel of a homomorphism from AutF (P ) to a p-group. If P is not F-
quasicentric but is fully centralized in F , then every automorphism α ∈ AutF (P )
of order prime to p extends to an automorphism α ∈ AutF (P ·CS(P )), which (after
replacing it by an appropriate power) can also be assumed to have order prime to
p, and hence in Op(AutF (P ·CS(P ))). Thus (3) holds for P , since it holds for the
F-centric subgroup P ·CS(P ). Finally, by (1), every subgroup of S is F•

1 -conjugate
to a subgroup which is fully centralized in F , and thus (3) holds for all P ≤ S.

(c) This point holds, in fact, without assuming that the fusion system F be
saturated. Assume Γ is a p′-group; then θ is the trivial homomorphism, and so
SH = θ−1(H) = S for all H. Fix H ≤ Γ, and let P be any subgroup of S. Since
each FH -conjugacy class is contained in some F-conjugacy class, any subgroup
which is fully centralized (fully normalized) in F is also fully centralized (fully
normalized) in FH . By the same reasoning, any F-centric subgroup P ≤ S is also
FH -centric.

Conversely, assume P is not fully centralized in F , and let P ′ be a subgroup in the
F-conjugacy class of P such that |CS(P ′)| > |CS(P )|. Fix some ϕ ∈ IsoF (P, P ′).
By (1), there are a subgroup P ′′ ≤ S and isomorphisms α ∈ AutF (S) and ϕ′ ∈
IsoF1(P, P ′′), such that α−1(P ′′) = P ′ and ϕ = (α|P ′′) ◦ ϕ′. Thus P ′′ is FH -
conjugate to P , and is F-conjugate to P ′ via a restriction of an F-automorphism
of S. Hence |CS(P ′′)| = |CS(P ′)| > |CS(P )|, and this shows that P is not fully
centralized in FH . A similar argument shows that if P is not fully normalized in
F (or not F-centric), then it is not fully normalized in FH (or not FH -centric).

The proof that F•
1 ⊇ Op′

∗ (F) is identical to the proof of the corresponding result
in (b).
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(a) Fix H ≤ Γ. Clearly, FH is a fusion system over SH ; we must prove it is
saturated. By (b) or (c), each FH -centric subgroup of SH is F-quasicentric. Hence
by Theorem 1.5(b), it suffices to prove conditions (I) and (II) in Definition 1.2 for
F-quasicentric subgroups P ≤ SH . Thus we will be working only with subgroups
P ≤ SH for which Θ is defined on HomF (P, S).

Proof of (I). Assume Γ is a p′-group; thus SH = S. If P is fully normalized in FH ,
then by (c), P is fully normalized in F , hence it is fully centralized in F and in FH .
Also, AutS(P ) ∈ Sylp(AutF (P )), and hence AutS(P ) is also a Sylow p-subgroup of
AutFH

(P ). This proves (I) in this case.
Now assume Γ is a p-group. Fix P ≤ SH which is F-quasicentric and fully

normalized in FH , and let α ∈ HomF•
1
(NS(P ), NS(P ′)) be as in (2). In particular,

1 ∈ Θ(α) by definition of F•
1 ; so by (iv), θ(α(NSH

(P ))) = θ(NSH
(P )) ≤ H. Hence

α(NSH
(P )) ≤ SH ∩ NS(P ′) = NSH

(P ′), and this is an equality since P is fully
normalized in FH . In particular, this shows that P ′ ≤ SH . The conclusion of (I)
holds for P (i.e., P is fully centralized in FH and AutSH

(P ) ∈ Sylp(AutFH
(P ))) if

the conclusion of (I) holds for P ′. So we can assume that P = P ′ is fully normalized
in F and in FH .

Fix Q ≤ SH which is FH -conjugate to P and fully centralized in FH , and choose
an isomorphism ψ ∈ IsoFH

(P, Q). After applying (2) again, we can assume that
Q is also fully normalized in F , and hence also fully centralized. Hence ψ extends
to some ψ1 ∈ HomF (P ·CS(P ), Q·CS(Q)), which is an isomorphism since P and
Q are both fully centralized in F . Fix h ∈ Θ(ψ−1) ∩ H and g ∈ Θ(ψ1). Then
gh ∈ Θ(IdQ) = θ(CS(Q)) by (i) and (ii). Let a ∈ CS(Q) be such that θ(a) = gh,
and set

ψ2 = c−1
a ◦ ψ1 ∈ IsoF (P ·CS(P ), Q·CS(Q)).

Thus ψ2|P = ψ1|P = ψ since a ∈ CS(Q), and h−1 = θ(a)−1g ∈ Θ(ψ2) by (iii) and
(i). By (iv), for all g ∈ P ·CS(P ), θ(ψ2(g)) = h−1θ(g)h, and hence ψ2(g) ∈ H if and
only if g ∈ H. Thus ψ2 sends CSH

(P ) onto CSH
(Q). Since Q is fully centralized in

FH , so is P .
It remains to show that AutSH

(P ) ∈ Sylp(AutFH
(P )). Set PΘ = Θ(IdP ) =

θ(CS(P )) for short (see (ii)). By (v), Θ restricts to a homomorphism

ΘP : AutF (P ) −−−−−−→ NΓ(PΘ)/PΘ.

Set
Ĥ =

{
hPΘ

∣∣ h ∈ H ∩ NΓ(PΘ)
}
≤ NΓ(PΘ)/PΘ;

then AutFH
(P ) = ΘP

−1(Ĥ) by definition of FH . For any ϕ = ca ∈ AutS(P ) ∩
AutFH

(P ) (where a ∈ NS(P )), Θ(ϕ) = θ(a)·θ(CS(P )) by (ii) and (iii); and thus
Θ(ϕ) contains some h ∈ H where h = θ(b) for some b ∈ a·CS(P ). Hence b ∈ SH ,
and ϕ = cb ∈ AutSH

(P ). This shows that

AutSH
(P ) = AutS(P ) ∩ AutFH

(P ) = AutS(P ) ∩ Θ−1
P (Ĥ).

Also, ΘP (AutS(P )) = ΘP (AutF (P )), since AutS(P ) ∈ Sylp(AutF (P )) and Γ is a
p-group, and hence

[AutS(P ) : AutSH
(P )] = [Im(ΘP ) : Ĥ] = [AutF (P ) : AutFH

(P )].

Since AutS(P ) ∈ Sylp(AutF (P )) (i.e., [AutF (P ) : AutS(P )] is prime to p), this
implies that AutSH

(P ) ∈ Sylp(AutFH
(P )).
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Proof of (II). Fix a morphism ϕ ∈ IsoFH
(P, Q), for some F-quasicentric P, Q ≤ SH

such that Q = ϕ(P ) is fully centralized in FH , and set

Nϕ = {g ∈ NSH
(P ) |ϕcgϕ

−1 ∈ AutSH
(Q)}.

By (2), there is a subgroup Q′ fully normalized in F , and a morphism ψ ∈
HomF•

1
(NS(Q), NS(Q′)), such that ψ(Q) = Q′. By condition (II) for the satu-

rated fusion system F , there is ϕ1 ∈ HomF (Nϕ, NS(Q′)) such that ϕ1|P = ψ ◦ ϕ.
Fix some

x ∈ Θ(ϕ1) ⊆ Θ(ψϕ) = Θ(ϕ)

(where the last equality holds since 1 ∈ Θ(ψ)). Since ϕ ∈ Mor(FH), there is h ∈ H
such that h ∈ Θ(ϕ), and thus

hx−1 ∈ Θ(IdQ′) = θ(CS(Q′)).

Fix a ∈ CS(Q′) such that hx−1 = θ(a), and set

ϕ2 = ca ◦ ϕ1 ∈ HomF (Nϕ, NS(Q′)).

Then by (i), h ∈ Θ(ϕ2), so ϕ2 ∈ HomFH
(Nϕ, NSH

(Q′)); and ϕ2|P = ϕ1|P since
a ∈ CS(Q′). Since Q is fully centralized in FH , ψ sends CSH

(Q) isomorphically
onto CSH

(Q′); and hence (by definition of Nϕ) ϕ2(Nϕ) ≤ Im(ψ). So ϕ
def= ψ−1 ◦ϕ2

sends Nϕ into NSH
(Q) and extends ϕ. �

We next extend Proposition 3.8 to a result about linking systems and p-local
finite groups. The main point of the following theorem is that for any p-local finite

group (S,F ,L) and any epimorphism π1(|L|)
θ̂

−−� Γ, where Γ is a finite p-group
or p′-group, there is another p-local finite group (SH ,FH ,LH) for each subgroup
H ≤ Γ, such that |LH | is homotopy equivalent to the covering space of |L| whose
fundamental group is θ̂−1(H).

Recall that for any p-local finite group (S,F ,L) with associated quasicentric
linking system Lq, j : S → π1(|L|) ∼= π1(|Lq|) denotes the homomorphism induced
by the distinguished monomorphism δS : S → AutL(S), and J : Lq → B(π1(|Lq|))
is the functor which sends morphisms to loops as defined in Section 1. Let θ̂ be a
homomorphism from π1(|Lq|) to a group Γ, and set

θ = θ̂ ◦ j ∈ Hom(S, Γ) and Θ̂ = B(θ̂) ◦ J : Lq −−−−−−→ B(Γ).

Note that these depend on a choice of a compatible set of inclusions {ιQP } for Lq

(since J depends on such a choice). For any subgroup H ≤ Γ, let L•
H ⊆ Lq be

the subcategory with the same objects and with morphism set Θ̂−1(H); and let
Lq

H ⊆ L•
H be the full subcategory obtained by restricting to subgroups of SH

def=
θ−1(H). Finally, let FH be the fusion system over SH generated by π(Lq

H) ⊆ Fq

and restrictions of morphisms, and let LH ⊆ Lq
H be the full subcategory on those

objects which are FH -centric.

Theorem 3.9. Let (S,F ,L) be a p-local finite group, let Lq be its associated qua-
sicentric linking system, and let π : Lq → F be the projection. Assume that a
compatible set of inclusions {ιQP } has been chosen for Lq. Fix a finite group Γ
which is a p-group or a p′-group, and a surjective homomorphism

θ̂ : π1(|Lq|) −−−−−� Γ.
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Set θ = θ̂ ◦ j : S −−→ Γ. Fix H ≤ Γ, and set SH = θ−1(H). Then (SH ,FH ,LH) is
also a p-local finite group, and (via the inclusion of LH into Lq) |LH | is homotopy
equivalent to the covering space of |Lq| � |L| with fundamental group θ̂−1(H).

Proof. Define Θ: Mor(Fq) → Sub(Γ) by setting Θ(α) = Θ̂(π−1(α)), where Θ̂ =
B(θ̂)◦J as above. Then Θ and θ satisfy hypotheses (i)–(iv) of Definition 3.6: points
(i) and (ii) follow from (A)q, while (iii) follows from Proposition 1.13 and (iv) from
(C)q. Thus (Γ, θ, Θ) is a fusion mapping triple on Fq , and FH is a saturated fusion
system over SH by Proposition 3.8.

Let Op
∗(F) and Op′

∗ (F) be the categories of Definition 3.3, and let Op′

∗ (F)q ⊆
Op′

∗ (F) and Op
∗(F)q ⊆ Op

∗(F) be the full subcategories whose objects are the F-
quasicentric subgroups of S. By Proposition 3.8(b), (c), π(L•

1) contains Op′

∗ (F)q

(if Γ is a p′-group) or Op
∗(F)q (if Γ is a p-group). Hence in either case, by Lemma

3.4(b), all morphisms in Lq are composites of morphisms in L•
1 and restrictions of

morphisms in AutL(S). Since L•
1 = Θ̂−1(1), by definition, and since Θ̂(α) = Θ̂(β)

whenever α is a restriction of β, this shows that Θ̂ restricts to a surjection of
AutL(S) onto Γ. In particular, this implies that

(1) for all P ∈ Ob(Lq) and for all g ∈ Γ,

∃P ′ ≤ S and α ∈ IsoLq(P, P ′) where Θ̂(α) = g;

and in fact, α can always be chosen to be the restriction of an automorphism of S.
We start by proving that Lq

H is a linking system associated to FH (for its set
of objects), and hence that LH is a centric linking system. Let P ≤ SH be a
F-quasicentric subgroup, and choose g ∈ P ·CS(P ). By construction, Θ̂(δS(g)) =
θ(g), and Θ̂(ιP ) = 1. In particular, the inclusion morphisms are in LH . Also,
ιP ◦ δP (g) = δS(g) ◦ ιP by definition of an inclusion morphism (Definition 1.11).
Hence Θ̂(δP (g)) = θ(g) in this situation; and in particular δP (g) ∈ AutLq

H
(P ) if

and only if g ∈ SH . Thus δP restricts to a distinguished monomorphism

P ·CSH
(P ) −−→ AutLq

H
(P )

for Lq
H , and axiom (D)q is satisfied. Moreover, if f, f ′ ∈ MorLq

H
(P, Q) are such

that π(f) = π(f ′) in HomF (P, Q), and g ∈ CS(P ) is the unique element such that
f ′ = f ◦ δP (g) (using axiom (A)q for Lq), then Θ̂(δP (g)) = 1, and hence g ∈ SH .
This shows that axiom (A)q for Lq

H holds. Axioms (B)q and (C)q for Lq
H also follow

immediately from the same properties for Lq.
We have now shown that (SH ,FH ,LH) is a p-local finite group. It remains to

show that |LH | is homotopy equivalent to a certain covering space of |Lq| � |L|.
We show this by first choosing certain full subcategories Lx ⊆ Lq and Lx

H ⊆ Lq
H

such that |Lx| � |Lq| � |L| and |Lx
H | � |Lq

H | � |LH |, and then proving directly
that |Lx

H | is a covering space of |Lx|.
If Γ is a p′-group, then for any P ≤ SH = S, P is FH -centric if and only if it

is F-centric (Proposition 3.8(c)). By the above remarks, LH is a centric linking
system associated to FH . Set Lx = L and Lx

H = LH in this case.
If Γ is a p-group, then for any P ≤ SH , P is FH -quasicentric if and only if

it is F-quasicentric (Proposition 3.8(b)). So by what was just shown, Lq
H is a

quasicentric linking system associated to FH which extends LH . Let Lx ⊆ Lq be
the full subcategory whose objects are those subgroups P ≤ S such that P ∩ SH is
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F-quasicentric. Set S1 = Ker(θ), and let F1 ⊆ F be the saturated fusion system
over S1 defined in Proposition 3.8. The definition of θ as a restriction of Θ̂ ensures
that θ(g) and θ(g′) are Γ-conjugate whenever g, g′ are F-conjugate; in particular,
no element of S1 is F-conjugate to any element of S�S1. Hence by Lemma 3.5,
for each P ≤ S which is F-centric and F-radical, P ∩ S1 is F1-centric, hence F-
quasicentric, so P ∩ SH is F-quasicentric, and thus P ∈ Ob(Lx). So the inclusion
of |Lx| in |Lq| is a homotopy equivalence by Proposition 1.12.

Still assuming Γ is a p-group, let Lx
H ⊆ Lx be the subcategory with the same

objects, where Mor(Lx
H) = Θ̂−1(H). For each P ∈ Ob(Lx

H) = Ob(Lx), P ∩SH is F-
quasicentric by assumption, hence FH -quasicentric; and by Proposition 1.13, each
ϕ ∈ MorLx

H
(P, Q) restricts to a unique morphism ϕH ∈ MorLx

H
(P ∩ SH , Q ∩ SH).

These restrictions define a deformation retraction from |Lx
H | to |Lq

H |, and thus the
inclusion of categories induces a homotopy equivalence |Lx

H | � |Lq
H | � |LH |.

Thus in both cases, we have chosen categories Lx
H ⊆ Lx with the same objects,

where Lx is a full subcategory of Lq and Mor(Lx
H) = Mor(Lx)∩Θ̂−1(H), and where

|Lx| � |L| and |Lx
H | � |LH |. Let EΓ(Γ/H) be the category with object set Γ/H,

and with a morphism g from aH to gaH for each g ∈ Γ and aH ∈ Γ/H. Thus
AutEΓ(Γ/H)(1·H) ∼= H, and |EΓ(Γ/H)| = EG/H � BH.

Let L̃ be the pullback category in the following square:

L̃ ��

��

EΓ(Γ/H)

��

Lx �� B(Γ).

Thus Ob(L̃) = Ob(Lx) × Γ/H, and Mor(L̃) is the set of pairs of morphisms in
Lx and EΓ(Γ/H) which get sent to the same morphism in B(Γ). Then Lx

H can
be identified with the full subcategory of L̃ with objects the pairs (P, 1·H) for
P ∈ Ob(Lx). By (1), each object in L̃ is isomorphic to an object in Lx

H , and so
|Lx

H | � |L̃|. By construction, |L̃| is the covering space over |Lx| with fundamental
group θ−1(H). Since |L̃| � |LH | and |Lx| � |L|, this finishes the proof of the last
statement. �

The following is an immediate corollary to Theorem 3.9.

Corollary 3.10. For any p-local finite group (S,F ,L), any finite p-solvable group
Γ, and any homomorphism

θ̂ : π1(|L|) −−−−−−→ Γ,

there is a p-local finite group (S0,F0,L0) such that |L0| is homotopy equivalent to
the covering space of |L| with fundamental group Ker(θ̂). Furthermore, this can be
chosen such that S0 is a subgroup of S and F0 is a subcategory of F .

For any p-local finite group (S,F ,L), since F is a finite category, Corollary 3.10
implies that there is a unique maximal p-solvable quotient group of π1(|L|), which is
finite. In contrast, if we look at arbitrary finite quotient groups of the fundamental
group, they can be arbitrarily large.

As one example, consider the case where p = 2, S ∈ Syl2(A6) (so S ∼= D8),
F = FS(A6), and L = Lc

S(A6). It is not hard to show directly, using Van Kampen’s
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theorem, that π1(|L|) ∼= Σ4∗
S
Σ4: the amalgamated free product of two copies of Σ4

intersecting in S, where each of the two subgroups C2
2 in D8 is normalized by one

of the Σ4. Thus π1(|L|) surjects onto any finite group Γ which is generated by two
copies of Σ4 intersecting in the same way. This is the case when Γ = A6, and also
when Γ = PSL2(q) for any q ≡ ±9 (mod 16). However, the kernel of any such
homomorphism defined on π1(|L|) is torsion free (and infinite), and hence cannot
be the fundamental group of the geometric realization of any centric linking system.
In fact, in this case, there is no nontrivial homomorphism from π1(|L|) to a finite
2-solvable group.

4. Fusion subsystems and extensions of p-power index

Recall that for any saturated fusion system F over a p-group S, we defined
Op

F (S) � S to be the subgroup generated by all elements of the form g−1α(g), for
g ∈ P ≤ S, and α ∈ AutF (P ) of order prime to p. In this section, we classify all
saturated fusion subsystems of p-power index in a given saturated fusion system F
over S, and show that there is a one-to-one correspondence between such subsystems
and the subgroups of S which contain Op

F (S). In particular, there is a unique
minimal subsystem Op(F) of this type, which is a fusion system over Op

F(S). This
result has been shown independently by Puig [Pu3], when F is assumed to have an
associated linking system. We then look at extensions, and describe the procedure
for finding all larger saturated fusion systems of which F is a fusion subsystem of
p-power index.

4.1. Subsystems of p-power index. In this subsection, we classify all saturated
fusion subsystems of p-power index in a given saturated fusion system F , and show
that there is a unique minimal subsystem Op(F) of this type. We also show that
there is a bijective correspondence between subgroups T of the finite p-group

Γp(F) def= S/Op
F (S),

and fusion subsystems FT of p-power index in F . We have already seen that
Γp(F) = S/Op

F (S) is isomorphic to π1(|L|∧p ) for any centric linking system L asso-
ciated to F , and our result also shows that all (connected) covering spaces of |L|∧p
are realized as classifying spaces of subsystems of p-power index. The index of FT

in F can then be defined to be the index of T in Γp(F), or equivalently the covering
degree of the covering space.

The main step in doing this is to construct a fusion mapping triple (Γp(F), θ, Θ)
for Fq, where θ is the canonical surjection of S onto Γp(F). This construction
parallels very closely the construction in Proposition 2.4 of a functor from Lq to
B(Γp(F)), when L is a linking system associated to F . In fact, we could in principal
state and prove the two results simultaneously, but the extra terminology which
that would require seemed to add more complications than would be saved by
combining the two.

The following lemma provides a very general, inductive tool for constructing
explicit fusion mapping triples.

Lemma 4.1. Fix a saturated fusion system F over a p-group S. Let H0 be a set of
F-quasicentric subgroups of S which is closed under F-conjugacy and overgroups.
Let P be an F-conjugacy class of F-quasicentric subgroups maximal among those
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not in H0, set H = H0 ∪ P, and let FH0 ⊆ FH ⊆ Fq be the full subcategories with
these objects. Fix a group Γ and a homomorphism θ : S → Γ, and let

Θ0 : Mor(FH0) −−−−−→ Sub(Γ)

be such that (Γ, θ, Θ0) is a fusion mapping triple for FH0 . Let P ∈ P be fully
normalized in F , and fix a homomorphism

ΘP : AutF (P ) −−−−−−→ NΓ(θ(CS(P )))/θ(CS(P ))

such that the following two conditions hold:
(+) xθ(g)x−1 = θ(α(g)) for all g ∈ P , α ∈ AutF (P ), and x ∈ ΘP (α).
(∗) For all P � Q ≤ S such that P � Q and Q is fully normalized in NF (P ),

and for all α ∈ AutF (P ) and β ∈ AutF (Q) such that α = β|P , ΘP (α) ⊇
Θ0(β).

Then there is a unique extension of Θ0 to a fusion mapping triple (Γ, θ, Θ) for FH

such that Θ(α) = ΘP (α) for all α ∈ AutF (P ).

Proof. Note that (+) is just point (v) of Lemma 3.7 applied to the subgroup P ,
while (∗) is just point (vi) applied to restrictions to P . So both of these conditions
are necessary if we want to be able to extend Θ0 and ΘP to a fusion mapping triple
for FH.

The uniqueness of the extension is an immediate consequence of Alperin’s fusion
theorem, in the form of Theorem 1.5(a). The proof of existence is almost identical
to the proof of Lemma 2.3, so we just sketch it here briefly.

We first show that we can replace (∗) by the following (a priori stronger) state-
ment:

(∗∗) for all Q, Q′ ≤ S which strictly contain P , and for all β ∈ HomF (Q, Q′)
and α ∈ AutF (P ) such that α = β|P , ΘP (α) ⊇ Θ0(β).

It suffices to show this when P is normal in Q and Q′, since otherwise we can
replace Q and Q′ by NQ(P ) and NQ′(P ). In this case, β ∈ HomNF (P )(Q, Q′), and
by Theorem 1.5(a) (Alperin’s fusion theorem), it is a composite of restrictions of
automorphisms of subgroups fully normalized in NF (P ). So it suffices to prove (∗∗)
when β is such an automorphism, and this is what is assumed in (∗).

Now fix any morphism ϕ ∈ HomF (P1, Q) which lies in FH but not in FH0 ;
thus P1 ∈ P. Set P2 = ϕ(P1) ≤ Q, and let ϕ′ ∈ IsoF (P1, P2) be the “restriction”
of ϕ. By Lemma 1.3, there are isomorphisms ϕi ∈ IsoFq(NS(Pi), Ni), for some
Ni ≤ NS(P ) containing P , which restrict to isomorphisms ϕi ∈ IsoFq(Pi, P ). Fix
elements xi ∈ Θ0(ϕi). Set ψ = ϕ2 ◦ ϕ′ ◦ ϕ−1

1 ∈ AutFq(P ). Thus ϕ′ = ϕ−1
2 ◦ ψ ◦ ϕ1,

and we define
Θ(ϕ) = Θ(ϕ′) = x−1

2 ·ΘP (ψ)·x1.

This is independent of the choice of xi, since Θ0(ϕi) ⊆ θ(CS(P ))·xi by axioms (i)
and (ii) in the definition of a fusion mapping triple. It is independent of the choice
of ϕ1 and ϕ2 by the same argument as was used in the proof of Lemma 2.3 (and this
is where we need point (∗∗)). Conditions (i)–(iv) are easily checked. For example,
(iv) — the condition that xθ(g)x−1 = θ(α(g)) whenever g ∈ P1, ϕ ∈ HomF (P1, P2),
and x ∈ Θ(ϕ) — holds when ϕ can be extended to a larger subgroup since (Γ, θ, Θ0)
is already a fusion mapping triple, holds for ϕ ∈ AutF (P ) by (+), and thus holds
in the general case since Θ(ϕ) was defined via a composition of such morphisms.
Thus (Γ, θ, Θ) is a fusion mapping triple on FH. �
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The construction of a fusion mapping triple to Γp(F) in the following lemma
is a first application of Lemma 4.1. Another application will be given in the next
section.

Lemma 4.2. Let F be a saturated fusion system over a p-group S, and let

θ : S −−−−−−→ Γp(F) = S/Op
F (S)

be the projection. Then there is a fusion mapping triple (Γp(F), θ, Θ) on Fq.

Proof. The function Θ will be constructed inductively, using Lemma 4.1. Let
H0 ⊆ Ob(Fq) be a subset (possibly empty) which is closed under F-conjugacy
and overgroups. Let P be an F-conjugacy class of F-quasicentric subgroups max-
imal among those not in H0, set H = H0 ∪ P, and let FH0 ⊆ FH ⊆ Fq be the
full subcategories with these objects. Assume we have already constructed a fusion
mapping triple (Γp(F), θ, Θ0) for FH0 .

We recall the notation of Lemma 2.2. If G is any finite group, and S ∈ Sylp(G),
then

Op
G(S) def=

〈
[g, x]

∣∣ g ∈ P ≤ S, x ∈ NG(P ) of order prime to p
〉
.

By Lemma 2.2, Op
G(S) = S ∩ Op(G), and hence G/Op(G) ∼= S/Op

G(S).
Fix P ∈ P which is fully normalized in F . Let N0 be the subgroup generated

by commutators [g, x] for g ∈ NS(P ) and x ∈ NAutF (P )(NS(P )) of order prime to
p. Then AutS(P ) ∈ Sylp(AutF (P )) and AutN0(P ) = Op

AutF (P )(AutS(P )), and by
Lemma 2.2,

AutF (P )
/
Op(AutF (P )) ∼= AutS(P )/AutN0(P ) ∼= NS(P )

/
〈N0, CS(P )〉.

Also, N0 ≤ Op
F (S), and so the inclusion of NS(P ) into S induces a homomorphism

ΘP : AutF (P ) −−−� AutF (P )/Op(AutF (P ))
∼=NS(P )/〈N0,CS(P )〉

−−−−→ NΓp(F)(θ(CS(P )))/θ(CS(P ))
∼=NS(CS(P )·S0)/(CS(P )·S0)

.

Here, we write S0 = Op
F (S) for short; thus Γp(F) = S/S0 and θ(CS(P )) =

CS(P )·S0/S0.
Point (+) in Lemma 4.1 holds by the construction of ΘP . So it remains only to

prove that condition (∗) in Lemma 4.1 holds.
To see this, fix P � Q ≤ S such that P � Q and Q is fully normalized in NF (P ),

and fix α ∈ AutFq(P ) and β ∈ AutFq(Q) such that α = β|P . We must show that
ΘP (α) ⊇ Θ0(β). Upon replacing α by αk and β by βk for some appropriate k ≡ 1
(mod p), we can assume that both automorphisms have order a power of p. Since Q
is fully normalized, AutNS(P )(Q) is a Sylow subgroup of AutNF (P )(Q); and hence
there are automorphisms γ ∈ AutF (Q) and γ ∈ AutF (P ) of order prime to p such
that γ = γ|P and γβγ−1 = cg|Q for some g ∈ NS(Q)∩NS(P ). Then γαγ−1 = cg|P .
Also, 1 ∈ ΘP (γ) and 1 ∈ Θ0(γ), since both automorphisms have order prime to p.
So

Θ0(β) = Θ(cg|Q) = g·θ(CS(Q)) ⊆ g·θ(CS(P )) = ΘP (cg|P ) = ΘP (α).
Thus, by Lemma 2.3, we can extend Θ0 to a fusion mapping triple on FH.

Upon continuing this procedure, we obtain a fusion mapping triple defined on all
of Fq. �

We now apply Lemma 4.2 to classify fusion subsystems of p-power index. Recall
that by definition, if F is a saturated fusion system over S and F0 ⊆ F is a fusion
subsystem over S0 ≤ S, then F has p-power index if and only if S0 ≥ Op

F (S), and
AutF0(P ) ≥ Op(AutF (P )) for all P ≤ S0.
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Theorem 4.3. Fix a saturated fusion system F over a p-group S. Then for each
subgroup T ≤ S containing Op

F (S), there is a unique saturated fusion system FT ⊆
F over T with p-power index. For each such T , FT has the properties:

(a) a subgroup P ≤ T is FT -quasicentric if and only if it is F-quasicentric; and
(b) for each pair P, Q ≤ T of F-quasicentric subgroups,

HomFT
(P, Q) =

{
ϕ ∈ HomF (P, Q)

∣∣Θ(ϕ) ∩ (T/Op
F (S)) �= ∅

}
.

Here,
Θ: Mor(Fq) −−−−−−→ Sub(Γp(F)) = Sub(S/Op

F(S))
is the map of Lemma 4.2.

Proof. Let FT ⊆ F be the fusion system over T defined on F-quasicentric sub-
groups by the formula in (b), and then extended to arbitrary subgroups by taking
restrictions and composites. (This is the fusion system denoted FT/Op

F (S) in Propo-
sition 3.8, but we simplify the notation here.) By Proposition 3.8(a), (b) (applied
with Γ = Γp(F) and H = T/Op

F (S)), FT is saturated, a subgroup P ≤ T is FT -
quasicentric if and only if it is F-quasicentric, and AutFT

(P ) ≥ Op(AutF (P )) for
all P ≤ T .

Now let F ′
T ⊆ F be another saturated subsystem over the same subgroup T

which also has p-power index. We claim that F ′
T = FT , and thus that FT is

the unique subsystem with these properties. By assumption, for each P ≤ T ,
AutFT

(P ) and AutF ′
T
(P ) both contain Op(AutF (P )), and hence each is generated

by Op(AutF (P )) and any one of its Sylow p-subgroups. So if P is fully normalized
in both FT and F ′

T , then

(1) AutFT
(P ) = 〈Op(AutF (P )), AutT (P )〉 = AutF ′

T
(P ).

In particular, AutFT
(T ) = AutF ′

T
(T ). Set pk = |T |, fix 0 ≤ m < k, and assume

inductively that HomFT
(P, Q) = HomF ′

T
(P, Q) for all P, Q ≤ T of order > pm. By

Alperin’s fusion theorem for saturated fusion systems (Theorem 1.5(a)), if |P | = pm,
|Q| ≥ pm, and P �= Q, then all morphisms in HomFT

(P, Q) and HomF ′
T
(P, Q) are

composites of restrictions of morphisms between subgroups of order > pm, and
hence HomFT

(P, Q) = HomF ′
T
(P, Q) by the induction hypothesis. In particular,

two subgroups of order pm are FT -conjugate if and only if they are F ′
T -conjugate.

So for any P ≤ T of order pm, P is fully normalized in FT if and only if it is
fully normalized in F ′

T . In either case, AutFT
(P ) = AutF ′

T
(P ): by (1) if P is fully

normalized, and by Alperin’s fusion theorem again (and the induction hypothesis)
if it is not. �

We can now define Op(F) as the minimal fusion subsystem of F of p-power index:
the unique fusion subsystem over Op

F(S) of p-power index. The next theorem will
show that when F has an associated linking system L, then Op(F) has an associated
linking system Op(L), and that |Op(L)|∧p is the universal cover of |L|∧p .

Theorem 4.4. Fix a p-local finite group (S,F ,L). Then for each subgroup T ≤ S
containing Op

F(S), there is a unique p-local finite subgroup (T,FT ,LT ) such that FT

has p-power index in F , and such that Lq
T = π−1(Fq

T ) where π is the usual projection
of Lq onto Fq. Furthermore, |LT | is homotopy equivalent, via the inclusion of
|Lq

T | � |LT | into |Lq| � |L|, to a covering space of |L| of degree [S : T ]. Hence the
classifying space |LT |∧p of (T,FT ,LT ) is homotopy equivalent to the covering space
of |L|∧p with fundamental group T/Op

F (S).
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Proof. Assume a compatible set of inclusions {ιQP } has been chosen for Lq. By
Proposition 2.4, there is a functor λ : Lq → B(Γp(F)) which sends inclusions to
the identity, and such that λ(δS(g)) = g for all g ∈ S. Hence by Theorem 3.9,
(T,FT ,LT ) is a p-local finite group, and |LT | is a covering space of |L|. Also, if we
write L1 for the linking system over Op

F(S), then the fibration sequences

|L1| → |L| → BΓp(F) and |L1| → |LT | → B(T/Op
F (S))

are still fibration sequences after p-completion [BK, II.5.2(iv)], and hence |LT |∧p
is the covering space of |L|∧p with fundamental group T/Op

F (S). The uniqueness
follows from Theorem 4.3. �

Thus there is a bijective correspondence between fusion subsystems of (S,F), or
p-local finite subgroups of (S,F ,L), of p-power index, and subgroups of S/Op

F (S) ∼=
π1(|L|∧p ). The classifying spaces of the p-local finite subgroups of (S,F ,L) of p-
power index are (up to homotopy) just the covering spaces of the classifying space
of (S,F ,L).

4.2. Extensions of p-power index. We next consider the opposite problem: how
to construct extensions of p-power index of a given p-local finite group. In the course
of this construction, we will see that the linking system really is needed to construct
an extension of the fusion system. The following definition will be useful.

Definition 4.5. Fix a saturated fusion system F over a p-group S. An auto-
morphism α ∈ Aut(S) is fusion preserving if it normalizes F ; i.e., if it induces
an automorphism of the category F by sending P to α(P ) and ϕ ∈ Mor(F) to
αϕα−1 ∈ Mor(F). Let Autfus(S,F) ≤ Aut(S) denote the group of all fusion pre-
serving automorphisms, and set

Outfus(S,F) = Autfus(S,F)/ AutF (S).

We first describe the algebraic data needed to determine extensions of p-power
index. Fix a p-local finite group (S,F ,L), let Lq be the associated quasicentric
linking system, and let {ιQP } be a compatible set of inclusions. Then for any g ∈ S,
g acts on the set Mor(Lq) by composing on the left or right with δS(g) and its
restrictions. Thus for any ϕ ∈ MorLq(P, Q), we set

gϕ = δQ,gQg−1(g) ◦ ϕ ∈ MorLq(P, gQg−1)

and
ϕg = ϕ ◦ δg−1Pg,P (g) ∈ MorLq(g−1Pg, Q).

This defines natural left and right actions of S on the set Mor(Lq). The resulting
conjugation action ϕ �→ gϕg−1 extends to an action on the category, where g sends
an object P to gPg−1. The functor π : Lq → Fq is equivariant with respect to the
conjugation action of S on Lq and the action of Inn(S) ≤ Autfus(S,F) on F .

If (S0,F0,L0) is contained in (S,F ,L) with p-power index, and S0 � S, then
the S action on L clearly restricts to an S-action on L0. The following theorem
provides a converse to this. Given a p-local finite group (S0,F0,L0), an extension S
of S0, and an S-action on L which satisfies certain obvious compatibility conditions,
this data always determines a p-local finite group which contains (S0,F0,L0) with
p-power index.
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Theorem 4.6. Fix a p-local finite group (S0,F0,L0), and assume that a compatible
set of inclusions {ιQP } has been chosen for L0. Fix a p-group S such that S0 � S
and AutS(S0) ≤ Autfus(S0,F0), and an action of S on L0 which:

(a) extends the conjugation action of S0 on L0;
(b) makes the canonical monomorphism δS0 : S0 −−−→ AutL0(S0) S-equivariant;
(c) makes the projection π : L0 −−−→ F0 S-equivariant with respect to the

AutS(S0)-action on F0; and
(d) sends inclusion morphisms in L0 to inclusion morphisms.

Then there is a p-local finite group (S,F ,L) such that F ⊇ F0, Lq ⊇ L0, the
conjugation action of S on Lq restricts to the given S-action on L0, and (S0,F0,L0)
is a subgroup of p-power index in (S,F ,L).

Proof. Set

H0 = Ob(L0) = {P ≤ S0 |P is F0-centric} and H = {P ≤ S |P∩S0 ∈ H0}.
To simplify notation, for any P ≤ S, we write P0 = P ∩ S0. For g ∈ S and
ϕ ∈ MorL0(P, Q), we write gϕg−1 ∈ MorL0(gPg−1, gQg−1) for the given action of
g on ϕ. By (a), when g ∈ S0, this agrees with the morphism gϕg−1 already defined.

Step 1: We first define categories L1 ⊇ L0 and F1 ⊇ F0, where Ob(F1) =
Ob(F0) and Ob(L1) = H0. Set

Mor(L1) = S ×S0 Mor(L0) =
(
S × Mor(L0)

)/
∼,

where (gg0, ϕ) ∼ (g, g0ϕ) for g ∈ S, g0 ∈ S0, and ϕ ∈ Mor(L0). If ϕ ∈ MorL0(P, Q),
then [[g, ϕ]] ∈ MorL1(P, gQg−1) denotes the equivalence class of the pair (g, ϕ).
Composition is defined by

[[g, ϕ]] ◦ [[h, ψ]] = [[gh, h−1ϕh ◦ ψ]].

Note that if ϕ ∈ MorL0(P, Q), then h−1ϕh ∈ MorL0(h
−1Ph, h−1Qh). To show that

this is well defined, we note that for all g, h ∈ S, g0, h0 ∈ S0, and ϕ, ψ ∈ Mor(L0)
with appropriate domain and range,

[[gg0, ϕ]]◦ [[hh0, ψ]] = [[gg0hh0, h
−1
0 (h−1ϕh)h0 ◦ψ]] = [[gh·(h−1g0h), (h−1ϕh)◦h0ψ]]

= [[gh, (h−1g0h)·(h−1ϕh) ◦ h0ψ]] = [[gh, h−1(g0ϕ)h ◦ h0ψ]] = [[g, g0ϕ]] ◦ [[h, h0ψ]] .

Here, the second to last equality follows from assumptions (b) and (d).
Let F1 be the smallest fusion system over S0 which contains F0 and AutS(S0).

By assumption, AutS(S0) ≤ Autfus(S0,F0). Thus for each g ∈ S, cg normalizes
the fusion system F0: for each ϕ ∈ Mor(F0) there is ϕ′ ∈ Mor(F0) such that
ϕ ◦ cg = cg ◦ ϕ′. Hence each morphism in F1 has the form cg ◦ ϕ for some g ∈ S
and ϕ ∈ Aut(F0). Define

πL1 : L1 −−−−−→ F1

by sending πL1([[g, ϕ]]) = cg ◦ π0(ϕ), where π0 denotes the natural projection from
L0 to F0. This is a functor by (c).

For all P, Q ∈ H0, define

δ̂P,Q : NS(P, Q) −−−−−−→ MorL1(P, Q)

by setting δ̂P,Q(g) = [[g, ιg
−1Qg

P ]]. This extends the canonical monomorphism δP,Q

defined from NS0(P, Q) to MorL0(P, Q). To simplify the notation below, we some-
times write x̂ = δ̂P,Q(x) for x ∈ NS(P, Q).
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Step 2: We next construct categories L2 and F2, both of which have object sets
H, and which contain L1 and the restriction of F1 to H0, respectively. Afterwards,
we let F be the fusion system over S generated by F2 and restrictions of morphisms.

Before doing this, we need to know that the following holds for each P, Q ∈ H0

and each ψ ∈ MorL1(P, Q):

(1) ∀x ∈ NS(P ) there is at most one y ∈ NS(Q) such that ŷ ◦ ψ = ψ ◦ x̂.

Since ψ is the composite of an isomorphism and an inclusion (and the claim clearly
holds if ψ is an isomorphism), it suffices to prove this when P ≤ Q and ψ is the
inclusion. We will show that we must have y = x in that case. By definition,

ιQP ◦ x̂ = [[1, ιQP ]] ◦ [[x, IdP ]] = [[x, ιx
−1Qx

P ]] and ŷ ◦ ιQP = [[y, ιQP ]]

(since conjugation sends inclusions to inclusions). So if ŷ ◦ ιQP = ιQP ◦ x̂, then there
exists g0 ∈ S0 such that y = xg0 and ιQP = g−1

0 ιx
−1Qx

P , and thus

δP,Q(1) = ιQP = g−1
0 ιx

−1Qx
P = δx−1Qx,Q(g−1

0 ) ◦ δP,x−1Qx(1) = δP,Q(g−1
0 ).

Hence g0 = 1 by the injectivity of δP,Q in Proposition 1.13; and so ŷ ◦ ιQP = ιQP ◦ x̂
only if x = y ∈ NS(Q).

Now let L2 be the category with Ob(L2) = H, and where for all P, Q ∈ H,

MorL2(P, Q) =
{
ψ ∈ MorL1(P0, Q0)

∣∣∀x ∈ P ∃ y ∈ Q such that ψ ◦ x̂ = ŷ ◦ ψ
}
.

Let
δ̂P,Q : NS(P, Q)

⊆NS(P0,Q0)

−−−−−−→ MorL2(P, Q)
⊆MorL1 (P0,Q0)

be the restriction of δ̂P0,Q0 . Let F2 be the category with Ob(F2) = H, and where

MorF2(P, Q) =
{
ϕ ∈ Hom(P, Q)

∣∣∃ψ ∈ MorL2(P, Q) such that ψ ◦ x̂ = ϕ̂(x)◦ψ ∀x ∈ P
}
.

Let π : L2 → F2 be the functor which sends ψ ∈ MorL2(P, Q) to the homomorphism
π(ψ)(x) = y if ψ ◦ x̂ = ŷ ◦ ψ (uniquely defined by (1)). Let F be the fusion system
over S generated by F2 and restriction of homomorphisms.

Set Γ = S/S0. Let
θ̂ : L2 −−→ B(Γ)

be the functor defined by setting θ̂([[g, ϕ]]) = gS0. In particular,
(
θ−1(1)

)
|H0 = L0.

Step 3: We next show that each P ∈ H is F-conjugate to a subgroup P ′ such
that P ′

0 is fully normalized in F0. Moreover, we show that P ′ can be chosen so that
the following holds:

(2) ∀ g ∈ S such that gP0g
−1 is F0-conjugate to P0, g·S0 ∩ NS(P ′

0) �= ∅.
To see this, let Pfn be the set of all S0-conjugacy classes [P ′

0] of subgroups P ′
0 ≤ S0

which are F0-conjugate to P0 and fully normalized in F0. (If P ′
0 is fully normalized

in F0, then so is every subgroup in [P ′
0].) Let S′ ⊆ S be the subset of elements

g ∈ S such that gP0g
−1 is F0-conjugate to P0. In particular, S′ ≥ NS(P0) ≥ P .

Since each g ∈ S acts on F0 — two subgroups Q, Q′ ≤ S0 are F0-conjugate if and
only if gQg−1 and gQ′g−1 are F0-conjugate — S′ is a subgroup of S.

For all g ∈ S′ and [P ′
0] ∈ Pfn, gP ′

0g
−1 is F0-conjugate to gP0g

−1 and hence to P0,
and is fully normalized since g normalizes S0. Thus S′/S0 acts on Pfn, and this set
has order prime to p by Proposition 1.16. So we can thus choose a subgroup P ′

0 ≤ S0

such that [P ′
0] ∈ Pfn and is fixed by S′. In particular, P ′

0 is fully normalized in F0.
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Also, for each g ∈ S′, some element of g·S0 normalizes P ′
0 (since [P ′

0] = [gP ′
0g

−1])
— and this proves (2).

Now consider the set RepF0
(P0, S0) = HomF0(P0, S0)/Inn(S0). Since P ≤ S′,

the group P/P0 acts on this set by conjugation (i.e., gP0 ∈ P/P0 acts on [ϕ],
for ϕ ∈ HomF0(P0, S0), by sending it to [cgϕc−1

g ]). In particular, since the S0-
conjugacy class [P ′

0] is invariant under conjugation by P/P0, this group leaves
invariant the subset X ⊆ RepF0

(P0, S0) of all conjugacy classes [ϕ] of homomor-
phisms such that [Im(ϕ)] = [P ′

0]. Fix any ϕ ∈ IsoF0(P0, P
′
0) (recall that sub-

groups in Pfn are F0-conjugate to P0). Every element of X has the form [αϕ] for
some α ∈ AutF0(P

′
0), and [αϕ] = [βϕ] if and only if αβ−1 ∈ AutS0(P

′
0). Thus

|X| = |AutF0(P
′
0)|

/
|AutS0(P

′
0)|, and is prime to p since P ′

0 is fully normalized in
F0. We can thus choose ϕ0 ∈ HomF0(P0, S0) such that ϕ0(P0) = P ′

0 and [ϕ0] is
invariant under the P/P0-action.

Fix ψ ∈ IsoL0(P0, P
′
0) such that π(ψ) = ϕ0. Since [ϕ0] is P/P0-invariant, for

each x ∈ P , there is some y ∈ x·S0 such that cy ◦ ϕ0 = ϕ0 ◦ cx. By (A)q (and since
ψ is an isomorphism), there is y′ ∈ y·CS0(P

′
0) such that ŷ′ ◦ ψ = ψ ◦ x̂ in L1. This

element y′ is unique by (1); and upon setting ϕ(x) = y′ we get a homomorphism
ϕ ∈ HomF (P, S) which extends ϕ0. Set P ′ = ϕ(P ); then P ′ is F-conjugate to P
and P ′

0 = P ′ ∩ S0.
Step 4: In Step 5, we will prove that F is saturated, using [5A1, Theorem 2.2].

Before that theorem can be applied, a certain technical condition must be checked.
Assume that P is F-centric, but not in H. By Step 3, P is F-conjugate to some

P ′ such that P ′
0 is fully normalized in F0. Thus P ′

0 is fully centralized in F0 and
not F0-centric, which implies that CS0(P

′
0) � P ′

0. Then P ′ acts on CS0(P
′
0)·P ′

0/P ′
0

with fixed subgroup QP ′
0/P ′

0 �= 1 for some Q ≤ CS0(P
′
0), and [Q, P ′] ≤ P ′

0 since
P ′/P ′

0 centralizes QP ′
0/P ′

0. Hence Q � P ′
0, and Q ≤ NS(P ′) since [Q, P ′] ≤ P ′.

For any x ∈ Q�P ′
0, [cx] �= 1 ∈ Out(P ′) (CS(P ′) ≤ P ′ since P is F-centric), but

cx induces the identity on P ′
0 (since Q ≤ CS0(P

′
0)) and on P ′/P ′

0 (since x ∈ S0).
Hence [cx] ∈ Op(OutF (P ′)) by Lemma 1.15. This shows that
(3)
P F-centric, P /∈ H =⇒ ∃P ′ F-conjugate to P , OutS(P ′) ∩ Op(OutF (P ′)) �= 1.

Step 5: We next show that F is saturated, and also (since it will be needed in
the proof of (II)) that axiom (A)q holds for L2. By [5A1, Theorem 2.2] (the stronger
form of Theorem 1.5(b)), it suffices to prove that the subgroups in H satisfy the
axioms for saturation. Note in particular that condition (∗) in [5A1, Theorem 2.2]
is precisely what is shown in (3).

Proof of (I). Fix a subgroup P ∈ H which is fully normalized in F . Let S′/S0 ≤
S/S0 be the stabilizer of the F0-conjugacy class of P0. By Step 3, P is F-conjugate
to a subgroup P ′ such that P ′

0 is fully normalized in F0; and such that for each
g ∈ S′, some element of g·S0 normalizes P ′

0 (see (2)). Hence there are short exact
sequences

1 −−−−→ AutL0(P
′
0) −−−−−→ AutL1(P

′
0) −−−−−→ S′/S0 −−→ 1,

1 −−−−→ NS0(P
′
0) −−−−−→ NS(P ′

0) −−−−−→ S′/S0 −−→ 1.

We consider P ′ ≤ NS(P ′
0) as subgroups of AutL1(P

′
0) via δ̂P ′

0,P ′
0
. Then

[AutL1(P
′
0) : NS(P ′

0)] = [AutL0(P
′
0) : NS0(P

′
0)]
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is prime to p since P ′
0 is fully normalized in F0, and so NS(P ′

0) ∈ Sylp(AutL1(P
′
0)).

Fix ψ ∈ AutL1(P
′
0) such that ψ−1NS(P ′

0)ψ contains a Sylow p-subgroup of the
group NAutL1 (P ′

0)
(P ′) (in particular, P ′ ≤ ψ−1NS(P ′

0)ψ), and set P ′′ = ψP ′ψ−1 ≤
NS(P ′

0). Then ψ ∈ IsoL2(P
′, P ′′) by definition of L2. In particular, P ′′ is F-

conjugate to P , and P ′′
0 = P ′

0. Also, NS(P ′
0) contains a Sylow p-subgroup of

NAutL1 (P ′
0)

(P ′′),

AutL2(P
′′) = NAutL1 (P ′

0)
(P ′′) and NS(P ′′) = NNS(P ′

0)
(P ′′),

and it follows that NS(P ′′) ∈ Sylp(AutL2(P
′′)).

Now, AutL2(P ) ∼= AutL2(P
′′) since P and P ′′ are F-conjugate, and |NS(P )| ≥

|NS(P ′′)| since P is fully normalized. Thus NS(P ) ∈ Sylp(AutL2(P )), and hence
AutS(P ) ∈ Sylp(AutF (P )). Also, NS(P ) contains the kernel of the projection from
AutL2(P ) to AutF (P ); i.e., CS(P ) is isomorphic to this kernel. For all Q which
is F-conjugate to P , CS(Q) is isomorphic to a subgroup of the same kernel, so
|CS(Q)| ≤ |CS(P )|, and thus P is fully centralized in F .

Proof of (A)q for L2. It is clear from the construction that for any P, Q ∈ H,
CS(P ) acts freely on MorL2(P, Q) via δ̂P,P . So it remains to show that when P
is fully centralized in F , then for all ψ, ψ′ ∈ MorL2(P, Q) such that π(ψ) = π(ψ′),
there is some x ∈ CS(P ) such that ψ′ = ψ ◦ x̂. Since every morphism in L2 is the
composite of an isomorphism followed by an inclusion, it suffices to show this when
ψ and ψ′ are isomorphisms. But in this case, ψ−1ψ′ ∈ AutL2(P ) lies in the kernel
of the map to AutF (P ). We have just seen, in the proof of (I), that this implies
there is some x ∈ CS(P ) such that x̂ = ψ−1ψ′, so ψ′ = ψ ◦ x̂, and this is what we
wanted to prove.

Proof of (II). Fix ϕ ∈ HomF (P, S), where ϕ(P ) is fully centralized in F . Set
P ′ = ϕ(P ). By definition of F2 ⊆ F and of L2, there is some ψ ∈ IsoL2(P, P ′) ⊆
IsoL1(P0, P

′
0) such that ψ ◦ ĝ = ϕ̂(g) ◦ ψ for all g ∈ P . Upon replacing ψ by x̂ ◦ ψ

for some appropriate x ∈ S (and replacing ϕ by cx ◦ ϕ and P ′ by xP ′x−1), we can
assume that ψ ∈ IsoL0(P0, P

′
0) and ϕ|P0 ∈ HomF0(P0, S0).

Consider the subgroups

Nϕ = {x ∈ NS(P ) |ϕcxϕ−1 ∈ AutS(P ′)},
N ′ = Nϕ|P0 ∩ Nϕ =

{
x ∈ Nϕ ∩ S0

∣∣ (ϕcxϕ−1)|P0 ∈ AutS0(P
′
0)

}
.

We will see shortly that N ′ = Nϕ ∩ S0. By (II) applied to the saturated fusion
system F0, there is ϕ0 ∈ HomF0(N

′, S) which extends ϕ|P0 , and it lifts to ψ ∈
HomL0(N

′, S). By (A) (applied to L0), there is z ∈ Z(P0) such that ψ = (ψ|P0)◦ ẑ.
Upon replacing ψ by ψ ◦ ẑ (and ϕ0 by ϕ0 ◦ cz), we can assume that ψ = ψ|P0 .

For any x ∈ Nϕ ∩ S0, ϕcxϕ−1 = cy ∈ AutF (P ′) for some y ∈ NS(P ′). Hence
by (A)q (for L2), ψx̂ψ−1 = ŷz for some unique z ∈ CS(P ′). Thus ŷz ∈ AutL0(P

′
0),

and by definition of the distinguished monomorphisms for L1, this is possible only
if yz ∈ S0. Thus ϕcxϕ−1 = cyz where yz ∈ NS0(P

′), and so x ∈ N ′. This shows
that N ′ = Nϕ ∩ S0.

Define ϕ ∈ Hom(Nϕ, S) by the relation ϕ(x) = y if ψx̂ψ−1 = ŷ. In particular,
this implies that ŷx−1 = ψ ◦ (xψx−1)−1 is a morphism in L0, and hence that
yx−1 ∈ S0. Also, ϕ|P = ϕ by the original assumption on ψ. It remains to show
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that ϕ ∈ HomF (Nϕ, S). To do this, it suffices to show that ψ ◦ x̂ = ŷ ◦ ψ in
MorL2(N

′, S) for all x, where y = ϕ(x). Equivalently, we must show that

(4) ψ = ŷx−1 ◦ (xψx−1).

Since yx−1 ∈ S0, both sides in (4) are in L0, and they are equal after restriction to
P0. Hence they are equal as morphisms defined on Nϕ ∩ S0 by [5A1, Lemma 3.9],
and this finishes the proof.

Step 6: We next check that F0 has p-power index in F . For any P ≤ S
and any α ∈ AutF (P ) of order prime to P , α induces the identity on P/P0 by
construction, and hence x−1α(x) ∈ S0 for all x ∈ P . This shows that S0 ≥ Op

F (S)
(see Definition 2.1). Also, by construction, for all P ≤ S0, AutF0(P ) is normal of
p-power index in AutF (P ), and thus contains Op(AutF (P )). This proves that the
fusion subsystem F0 has p-power index in F in the sense of Definition 3.1.

Step 7: It remains to construct a quasicentric linking system Lq which contains
L2 as a full subcategory, and which is associated to F . Note first that the axioms
of Definition 1.9 are all satisfied by L2: axiom (A)q holds by Step 5, while axioms
(B)q, (C)q, and (D)q follow directly from the construction in Steps 1 and 2.

Let Lc
2 ⊆ L2 be the full subcategory whose objects are the set Hc ⊆ H of

subgroups in H which are F-centric. We first construct a centric linking system
L ⊇ Lc

2 associated to F . For any set K of F-centric subgroups of S, let Oc(F) be
the orbit category of F , let OK(F) ⊆ Oc(F) be the full subcategory with object set
K, and let ZK

F be the functor P �→ Z(P ) on OK(F) which sends (see Definition 1.7
for more detail). By [BLO2, Proposition 3.1], when K is closed under F-conjugacy
and overgroups, the obstruction to the existence of a linking system with object
set K lies in lim←−

3(ZK
F ), and the obstruction to its uniqueness lies in lim←−

2(ZK
F ).

Furthermore, by [BLO2, Proposition 3.2], if P is an F-conjugacy class of F-centric
subgroups maximal among those not in K, and K′ = K ∪ P, then the inclusion
of functors induces an isomorphism between the higher limits of ZK

F and ZK′

F if
certain groups Λ∗(OutF (P ); Z(P )) vanish for P ∈ P. By (3), Op(OutF (P )) �= 1
for any F0-centric subgroup P /∈ Hc, and hence Λ∗(OutF (P ); Z(P )) = 0 for such
P by [JMO, Proposition 6.1(ii)]. So these obstructions all vanish, and there is a
centric linking system L ⊇ Lc

2 associated to F .
Now let Lq be the quasicentric linking system associated to (S,F ,L). For each

P ∈ H = Ob(L2), P ∩ S0 is F0-centric by definition, hence is F-quasicentric by
Theorem 4.3(a), and thus P is also F-quasicentric. Also, H contains all F-centric
F-radical subgroups by (3), and H is closed under F-conjugacy and overgroups
(by definition of F and H). Hence by [5A1, Proposition 3.12], since Lc

2 is a full
subcategory of L by construction, L2 is isomorphic to a full subcategory of Lq in
a way which preserves the projection functors and distinguished monomorphisms.
So L0 can also be identified with a linking subsystem of Lq, and this finishes the
proof. �

We now prove a topological version of Theorem 4.6. By Theorem 4.4, for any
inclusion (S0,F0,L0) ⊆ (S,F ,L) of p-local finite groups of p-power index, where
S0 � S and Γ = S/S0, there is a fibration sequence |L0|∧p −−−→ |L|∧p −−−→ BΓ. So
it is natural to ask whether the opposite is true: given a fibration sequence whose
base is the classifying space of a finite p-group, and whose fiber is the classifying
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space of a p-local finite group, is the total space also the classifying space of a
p-local finite group? The next proposition shows that this is, in fact, the case.

Before stating the proposition, we first define some categories which will be
needed in its proof. Fix a space Y , a p-group S, and a map f : BS −−−→ Y . For
P ≤ S, we regard BP as a subspace of BS; all of these subspaces contain the
basepoint ∗ ∈ BS. We define three categories in this situation, FS,f (Y ), LS,f (Y ),
and MS,f (Y ), all of which have as objects the subgroups of S. Of these, the first
two are discrete categories, while MS,f (Y ) has a topology on its morphism sets.
Morphisms in FS,f (Y ) are defined by setting

MorFS,f (Y )(P, Q) =
{
ϕ ∈ Hom(P, Q)

∣∣ f |BP � f |BQ ◦ Bϕ
}
;

we think of this as the fusion category of Y (with respect to S and f).
Next define

MorMS,f (Y )(P, Q) =
{
(ϕ, H)

∣∣ϕ ∈ Hom(P, Q), H : BP × [0, t] → Y ,

t ≥ 0, H|BP×0 = f |BP , H|BP×t = f |BQ ◦ Bϕ
}

.

Thus a morphism in MS,f (Y ) has the form (ϕ, H) where H is a Moore homotopy
in Y . Composition is defined by

(ψ, K) ◦ (ϕ, H) = (ψϕ, (K ◦ (Bϕ × Id))·H),

where if H and K are homotopies parameterized by [0, t] and [0, s], respectively,
then (K ◦ (Bϕ × Id))·H is the composite homotopy parameterized by [0, t + s].

Let P(Y ) be the category of Moore paths in Y , and let Res∗ : MS,f (Y ) → P(Y )
be the functor which sends each object to f(∗), and sends a morphism (ϕ, H) to
the path obtained by restricting H to the basepoint ∗ ∈ BS. Define a map ev from
|P(Y )| to Y as follows. For any n-simplex ∆n in |P(Y )|, indexed by a composable
sequence of paths φ1, . . . , φn where φi is defined on the interval [0, ti], let ev|∆n be
the composite

∆n λ(t1,...,tn)−−−−−−−−→ [0, t1 + . . . + tn]
φn···φ1−−−−−−−−→ Y,

where λ(t0, . . . , tn) is the affine map which sends the i-th vertex to t1 + . . . + ti.
The category MS,f (Y ) thus comes equipped with an “evaluation function”

eval : |MS,f (Y )| |Res∗ |−−−−−→ |P(Y )| ev−−−−−→ Y.

Now set
MorLS,f (Y )(P, Q) = π0

(
MorMS,f (Y )(P, Q)

)
.

We think of LS,f (Y ) as the linking category of Y . Also, for any set H of subgroups
of S, we let LH

S,f (Y ) and MH
S,f (Y ) denote the full subcategories of LS,f (Y ) and

MS,f (Y ) with object set H. For more about the fusion and linking categories of a
space, see [BLO2, §7].

Theorem 4.7. Fix a p-local finite group (S0,F0,L0), a p-group Γ, and a fibration
X

v−−−→ BΓ with fiber X0 � |L0|∧p . Then there is a p-local finite group (S,F ,L)
such that S0 � S, F0 ⊆ F is a fusion subsystem of p-power index, S/S0

∼= Γ, and
X � |L|∧p .

Proof. Let ∗ denote the base point of BΓ, and assume X0 = v−1(∗). Fix a ho-
motopy equivalence f : |L0|∧p −−→ X0, regard BS0 as a subspace of |L0|, and set
f0 = f |BS0 : BS0 −−→ X0, also regarded as a map to X. Let H0 be the set of
F0-centric subgroups of S0.



EXTENSIONS OF p-LOCAL FINITE GROUPS 3831

Step 1: By [BLO2, Proposition 7.3],

F0
∼= FS0,f0(X0) and L0

∼= LH0
S0,f0

(X0).

We choose the inclusions ιQP ∈ MorL0(P, Q) (for P ≤ Q in H0) to correspond to the
morphisms (inclQP , [c]) in LS0,f0(X0), where c is the constant homotopy f0|BP . Set

F1 = FS0,f0(X) and L1 = LH0
S0,f0

(X),

where f0 is now being regarded as a map BS0 −−−→ X. The inclusion X0 ⊆ X
makes F0 into a subcategory of F1 and L0 into a subcategory of L1.

For all P ≤ S0 which is fully centralized in F0, Map(BP, X0)f0|BP � |CL0(P )|∧p
by [BLO2, Theorem 6.3], where CL0(P ) is a linking system over the centralizer
CS(P ). Since P ∈ H0 (i.e., P is F0-centric) if and only if it is fully centralized and
CS0(P ) = Z(P ), this shows that

(1) P ∈ H0 ⇐⇒ Map(BP, X0)f0|BP
� BZ(P ).

If P and P ′ are F1-conjugate, and ϕ ∈ IsoF1(P, P ′), then the homotopy between
f0|BP and f0|BP ′ ◦ Bϕ as maps from BP to X induces, using the homotopy lift-
ing property for the fibration v, a homotopy between w ◦ f0|BP and f0|BP ′ ◦ Bϕ
(as maps from BP to X0), where w : X0 →� X0 is the homotopy equivalence in-
duced by lifting some loop in BΓ. Since w is a homotopy equivalence and Bϕ
is a homeomorphism, this shows that the mapping spaces Map(BP, X0)f0|BP

and
Map(BP ′, X0)f0|BP ′ are homotopy equivalent, and hence (by (1)) that P ′ ∈ H0 if
P ′ ∈ H0. Thus for all P, P ′ ≤ S0,

(2) PF1-conjugate to P ′ and P ∈ H0 =⇒ P ′ ∈ H0.

Fix S ∈ Sylp(AutL1(S0)). We identify S0 as a subgroup of S via the distinguished
monomorphism δS0 from S0 to AutL0(S0) ≤ AutL1(S0).

Step 2: For all P ≤ S, and for Y = X0 or X, we define

Map(BP, Y )Φ =
{
f : BP → Y

∣∣ f � f0 ◦ Bϕ, ϕ ∈ Hom(P, S), ϕ(P ) ∈ H0

}
.

Using (2), we see that the fibration sequence X0 −−−→ X −−−→ BΓ induces a fibra-
tion sequence of mapping spaces

(3) Map(BP, X0)Φ −−−−−→ Map(BP, X)Φ −−−−−→ Map(BP, BΓ)ct � BΓ,

where Map(BP, BΓ)ct is the space of null homotopic maps, and the last equivalence
is induced by evaluation at the basepoint. By (1), each connected component of
Map(BP, X0)Φ is homotopy equivalent to BZ(P ), and hence the connected com-
ponents of Map(BP, X)Φ are also aspherical.

For any morphism (ϕ, [H]) ∈ MorL1(P, Q), where ϕ ∈ HomF1(P, Q) and [H]
is the homotopy class of the path H in Map(BP, X)Φ, restricting v ◦ H to the
basepoint of BP defines a loop in BΓ, and thus an element of Γ. This defines a
map from Mor(L1) to Γ which sends composites to products, and thus a functor

θ̂ : L1 −−−−−→ B(Γ).

By construction (and the fibration sequence (3)), for any ψ ∈ Mor(L1), we have
ψ ∈ Mor(L0) if and only if θ̂(ψ) = 1.

Using the homotopy lifting property in (3), we see that θ̂ restricts to a surjection
of AutL1(S0) onto Γ, with kernel AutL0(S0). Since S0 ∈ Sylp(AutL0(S0)), this
shows that θ̂ induces an isomorphism S/S0

∼= Γ, where S is a Sylow p-subgroup
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of AutL1(S0) which contains S0. Hence for any ψ ∈ Mor(L1), there is g ∈ S such
that θ̂(ψ) = θ̂(g); and for any such g there is a unique morphism ψ0 ∈ Mor(L0)
such that ψ = δ(g) ◦ ψ0 where δ(g) ∈ Mor(L1) denotes the appropriate restriction
of g ∈ AutL1(S0). In other words,

(4) Mor(L1) ∼= S ×S0 Mor(L0).

Step 3: The conjugation action of S on Mor(L0) ⊆ Mor(L1) defines an action
of S on L0, which satisfies the hypotheses of Theorem 4.6. (Note in particular that
this action sends inclusions to inclusions, since they are assumed to be represented
by constant homotopies.) So we can now apply that theorem to construct a p-local
finite group (S,F ,L) which contains (S0,F0,L0) with p-power index. Let Lq be
the quasicentric linking system associated to (S,F ,L). By (4), the category L1

defined here is equal to the category L1 defined in the proof of Theorem 4.6; i.e.,
the full subcategory of Lq with object set H0.

Let H be the set of subgroups P ≤ S such that P ∩S0 ∈ H0, and let L2 ⊆ Lq be
the full subcategory with object set H. By Step 4 in the proof of Theorem 4.6, all
F-centric F-radical subgroups of S lie in H, and so |L| � |Lq| � |L2| by Proposition
1.12(a). Also, |L1| is a deformation retract of |L2|, where the retraction is defined
by sending P ∈ H to P ∩ S0 ∈ H0 (and morphisms are sent to their restrictions,
uniquely defined by Proposition 1.12(b)). Thus |L| � |L1|. So by Theorem 4.4, we
have a homotopy fibration sequence |L0|∧p → |L1|∧p → BΓ.

Step 4: It remains to construct a homotopy equivalence |L1|∧p −−→ X, which
extends to a homotopy equivalence between the fibration sequences. This is where
we need to use the topological linking categories defined above. Set

M0 = MH0
S0,f0

(X0) and M1 = MH0
S0,f0

(X)

for short, and consider the following commutative diagram:

|L0|∧p

��

|M0|∧p
proj0

�
��

��

eval0 �� X0

��
|L1|∧p |M1|∧p

proj1

�
��

eval1 �� X.

The vertical maps in the diagram are all inclusions. Also, X0 is p-complete by
definition and X by [BK, II.5.2(iv)], so the evaluation maps defined above extend
to the p-completed nerves |Mi|∧p . The maps proj1 and eval1 both commute up to
homotopy with the projections to BΓ. The projection maps proj0 and proj1 are
both homotopy equivalences: the connected components of the morphism spaces in
Mi are contractible since the connected components of the fiber and total space in
(3) are aspherical (see Step 2).

We claim that eval0 is homotopic to f ◦ proj0 as maps to X0. By naturality,
it suffices to check this on the uncompleted nerve |M0|, and in the case where
X0 = |L|∧p and f = Id. But in this case, the only real difference between the maps
is that eval0 sends all vertices of |M0| to the base point of X0 = |L|∧p , while proj0
sends the vertex for a subgroup P ≤ S to the corresponding vertex in |L|∧p . So the
maps are homotopic via a homotopy which sends vertices to the base point along
the edges of |L| corresponding to the inclusion morphisms. In particular, this shows
that eval0 is also a homotopy equivalence. We thus have an equivalence between
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the fibration sequences

|L0|∧p

�
��

�� |L1|∧p

��

�� BΓ

|L0|∧p �� X �� BΓ,

and this proves that the two sequences are equivalent. �
Recall (Definition 4.5) that for any saturated fusion system F over a p-group S,

Autfus(S,F) denotes the group of all fusion preserving automorphisms of S. The
following corollary to Theorem 4.6 describes how “exotic” fusion systems could
potentially arise as extensions of p-power index; we still do not know whether the
situation it describes can occur.

Corollary 4.8. Fix a finite group G, with Sylow subgroup S ∈ Sylp(G). Assume
there is an automorphism α ∈ Autfus(S,FS(G)) of p-power order, which is not the
restriction to S of an automorphism of G, and which moreover is not the restriction
of an automorphism of G′ for any finite group G′ with S ∈ Sylp(G′) and FS(G′) =
FS(G). Then there is a saturated fusion system (Ŝ, F̂) ⊇ (S,FS(G)), such that
FS(G) has p-power index in F̂ , and such that F̂ is not the fusion system of any
finite group.

Proof. By [BLO1, Theorem E], together with [O1, Theorem A] and [O2, Theorem
A], there is a short exact sequence

0 −−−→ lim←−
1

Oc
S(G)

(ZG) −−−−−−→ Outtyp(Lc
S(G)) −−−−−−→ Outfus(S,FS(G)) −−−→ 0

where Outfus(S,F) = Autfus(S,F)/ AutF (S), where Oc
S(G) and ZG are the cat-

egory and functor of Definition 1.7(b), and where Outtyp(Lc
S(G)) is the group of

“isotypical” automorphisms of Lc
S(G) modulo natural isomorphism (see the intro-

duction of [BLO1], or [BLO1, Definition 3.2], for the definition). Let [α] be the
class of α in Outfus(S,FS(G)); then [α] lifts to an automorphism α of the linking
system Lc

S(G). Upon replacing α by some appropriate power, we can assume that
it still has p-power order. We can also assume, upon replacing α by another auto-
morphism in the same conjugacy class if necessary, that the α-action on AutL(S)
leaves invariant the subgroup δS(S); i.e., that the action of α on Lc

S(G) restricts to
an action on S.

Set Ŝ = S�〈x〉, where |x| = |α| and x acts on S via α. Then Ŝ has an action
on Lc

S(G) induced by the actions of S and of α, and this action satisfies conditions
(a)–(d) in Theorem 4.6. Let F̂ ⊇ FS(G) be the saturated fusion system over Ŝ
constructed by the theorem.

We claim that F̂ is not the fusion system of any finite group. Assume otherwise:
assume F̂ is the fusion system of a group Ĝ. Since F has p-power index in F̂ ,
S ≥ Op

F̂ (Ŝ), and so S ≥ Ŝ ∩ Op(Ĝ) by the hyperfocal subgroup theorem (Lemma

2.2). Set G′ = S·Op(Ĝ). Then G′ � Ĝ since S � Ŝ; Ĝ/G′ ∼= Ŝ/S′, and thus
G′ � Ĝ has p-power index and S ∈ Sylp(G′). By Theorem 4.3, there is a unique
saturated fusion subsystem over S of p-power index in F̂ , and thus F = FS(G′).
Also, x ∈ Ŝ ≤ Ĝ acts on G′ via an automorphism whose restriction to S is α, and
this contradicts the original assumption about α. �
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5. Fusion subsystems and extensions of index prime to p

In this section, we classify all saturated fusion subsystems of index prime to
p in a given saturated fusion system F , and show that there is a unique minimal
subsystem Op′

(F) of this type. More precisely, we show that there is a certain finite
group of order prime to p associated to F , denoted below Γp′(F), and a one-to-one
correspondence between subgroups T ≤ Γp′(F) and fusion subsystems FT of index
prime to p in F . The index of FT in F can then be defined to be the index of T in
Γp′(F).

Conversely, we also describe extensions of saturated fusion systems of index
prime to p. Once more the terminology requires motivation. Roughly speaking, an
extension of index prime to p of a given saturated fusion system F is a saturated
fusion system F ′ over the same p-group S, but where the morphism set has been
“extended” by an action of a group of automorphisms whose order is prime to p.
Here again, a one-to-one correspondence statement is obtained, thus providing a
full classification.

As noted in the introduction, Puig [Pu1] had earlier showed how to construct
the minimal fusion subsystem of index prime to p (which he called the adjoint
subsystem), and also showed how to construct extensions of fusion systems of index
prime to p. What is new here is that we obtain a more explicit classification on the
level of fusion systems; and also show how such subsystems and extensions behave
on the level of linking systems, in the sense that the geometric realization of the
inclusion of linking systems is homotopy equivalent to a covering space projection.

5.1. Subsystems of index prime to p. We first classify all saturated fusion
subsystems of index prime to p in a given saturated fusion system F . The fusion
subsystems and associated linking systems will be constructed using Proposition
3.8 and Theorem 3.9, respectively. More precisely, Theorem 3.9 has already told us
that for any p-local finite group (S,F ,L), any surjection θ of π1(|L|) onto a finite
p′-group Γ, and any subgroup H ≤ Γ, there is a p-local finite subgroup (S′,F ′,L′)
such that |L′| is homotopy equivalent to the covering space of |L| with fundamental
group θ−1(H). What is new in this section is first, that we describe the “universal”
p′-group quotient of π1(|L|) as a certain quotient group of OutF (S); and second, we
show that all fusion subsystems of index prime to p in F (in the sense of Definition
3.1) are obtained in this way.

When applying Proposition 3.8 to this situation, we need to consider fusion
mapping triples (Γ, θ, Θ) on Fq, where Γ is finite of order prime to p. Since θ ∈
Hom(S, Γ), it must then be the trivial homomorphism. In this case, conditions
(i)–(iii) in Definition 3.6 are equivalent to requiring that there is some functor
Θ̂ : Fq → B(Γ) such that Θ(ϕ) = {Θ̂(ϕ)} for each ϕ ∈ Mor(Fq) (and condition
(iv) is redundant). So instead of explicitly constructing fusion mapping triples, we
instead construct functors of this form.

We start with some definitions. For a finite group G, one defines Op′
(G) to

be the smallest normal subgroup of G of index prime to p, or equivalently the
subgroup generated by elements of p-power order in G. These two definitions are
not, in general, equivalent in the case of an infinite group (the case G = Z being
an obvious example). We do, however, need to deal with such subgroups here. The
following definition is most suitable for our purposes, and it is a generalization of
the finite case.
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Definition 5.1. For any group G (possibly infinite), let Op′
(G) be the intersection

of all normal subgroups in G of finite index prime to p.

In particular, under this definition, an epimorphism α : G −−� H with Ker(α) ≤
Op′

(G) induces an isomorphism G/Op′
(G) ∼= H/Op′

(H). Thus by Proposition 2.6,
for any p-local finite group (S,F ,L), the projections of |L| � |Lq| onto |Fc| and
|Fq| induce isomorphisms

π1(|L|)
/
Op′

(π1(|L|)) ∼= π1(|Fc|)
/
Op′

(π1(|Fc|)) ∼= π1(|Fq|)
/
Op′

(π1(|Fq|)).
Fix a saturated fusion system F over a p-group S, and define

Γp′(F) = π1(|Fc|)/Op′
(π1(|Fc|)).

We will show that the natural functor

εFc : Fc −−−−−−→ B(Γp′(F))

induces a bijective correspondence between subgroups of Γp′(F) and fusion subsys-
tems of F of index prime to p.

Recall (Definition 3.3) that for any saturated fusion system F over a p-group S,
Op′

∗ (F) ⊆ F is the smallest fusion subsystem which contains Op′
(AutF (P )) for all

P ≤ S; i.e., the smallest fusion subsystem which contains all automorphisms in F
of p-power order. Define

Out0F (S) =
〈
α ∈ OutF (S)

∣∣α|P ∈ Mor
Op′

∗ (F)
(P, S), some F-centric P ≤ S

〉
.

Then Out0F (S) � OutF (S), since Op′

∗ (F) is normalized by AutF (S) (Lemma 3.4(a)).

Proposition 5.2. There is a unique functor

θ̂ : Fc −−−−−−−−→ B(OutF (S)/ Out0F (S))

with the following properties:

(a) θ̂(α) = α (modulo Out0F (S)) for all α ∈ AutF (S).
(b) θ̂(ϕ) = 1 if ϕ ∈ Mor(Op′

∗ (F)c). In particular, θ̂ sends inclusion morphisms
to the identity.

Furthermore, there is an isomorphism

θ : Γp′(F) = π1(|Fc|)/Op′
(π1(|Fc|))

∼=−−−−−−→ OutF (S)/ Out0F (S)

such that θ̂ = Bθ ◦ εc
F .

Proof. By Lemma 3.4(c), each morphism in Fc factors as the composite of the
restriction of a morphism in AutF (S) followed by a morphism in Op′

∗ (F)c. If

ϕ = ϕ1 ◦ α1|P = ϕ2 ◦ α2|P ,

where ϕ ∈ HomF (P, Q), αi ∈ AutF (S), and ϕi ∈ Hom
Op′

∗ (F)c(αi(P ), Q), then we
can assume (after factoring out inclusions) that all of these are isomorphisms, and
hence

(α2 ◦ α−1
1 )|P = ϕ−1

2 ◦ ϕ1 ∈ Iso
Op′

∗ (F)c(α1(P ), α2(P )).

Thus α2 ◦ α−1
1 ∈ Out0F (S); and so we can define

θ̂(ϕ) = [α1] = [α2] ∈ OutF (S)/ Out0F (S).
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This shows that θ̂ is well defined on morphisms (and sends each object in Fc to
the unique object of B(OutF (S)/ Out0F (S))). By Lemma 3.4(c) again, θ̂ preserves
compositions, and hence is a well defined functor. It satisfies conditions (a) and (b)
above by construction. The uniqueness of θ̂ is clear.

It remains to prove the last statement. Since OutF (S)/ Out0F (S) is finite of order
prime to p, π1(|θ̂|) factors through a homomorphism

θ̄ : π1(|Fc|)/Op′
(π1(|Fc|)) −−−−−−→ OutF (S)/ Out0F (S).

The inclusion of B AutF (S) into |Fc| (as the subcomplex with one vertex S) induces
a homomorphism

τ : OutF (S) −−−−−−→ π1(|Fc|)/Op′
(π1(|Fc|)).

Furthermore, τ is surjective since F = 〈Op′

∗ (F), AutF (S)〉 (Lemma 3.4(b)), and
since any automorphism in Op′

∗ (F) is a composite of restrictions of automorphisms
of p-power order. By (a), and since θ restricted to AutF (S) is the projection onto
OutF (S), the composite θ ◦ τ is the projection of OutF (S) onto the quotient group
OutF (S)/ Out0F (S). Finally, Out0F (S) ≤ Ker(τ ) by definition of Out0F (S), and this
shows that θ is an isomorphism. �

The following lemma shows that any fusion mapping triple on Fc can be extended
uniquely to Fq . This will allow us later to apply Proposition 3.8 in order to produce
saturated fusion subsystems of index prime to p.

Lemma 5.3. Let F be a saturated fusion system over a p-group S, and let (Γ, θ, Θ0)
be a fusion mapping triple on Fc. Then there is a unique extension

Θ: Mor(Fq) → Sub(Γ)

of Θ0, such that (Γ, θ, Θ) is a fusion mapping triple on Fq.

Proof. We construct the extension Θ one F-conjugacy class at a time. Thus, as-
sume Θ has been defined on a set H0 of F-quasicentric subgroups of S which is a
union of F-conjugacy classes, contains all F-centric subgroups, and is closed un-
der overgroups. Let P be maximal among F-conjugacy classes of F-quasicentric
subgroups not in H0; we show that Θ can be extended to H = H0 ∪ P.

Fix P ∈ P which is fully normalized in F . For each α ∈ AutF (P ), there is an
extension α ∈ AutF (P ·CS(P )) (axiom (II)), and we define a map

ΘP : AutF (P ) → Sub(NΓ(θ(CS(P ))))

by ΘP (α) = Θ(α)·θ(CS(P )). By Definition 3.6 ((i) and (ii)) Θ(α) is a left coset
of θ(CS(P ·CS(P ))), and by (iv), it is also a right coset (where the right coset
representative can be taken to be the same as the one representing the left coset);
hence ΘP (α) is a left and a right coset of θ(CS(P )) (again with the same coset
representative on both sides). If α′ ∈ AutF (P ·CS(P )) is any other extension of α,
then by [5A1, Lemma 3.8], there is some g ∈ CS(P ) such that α′ = cg ◦ α. Thus,
by Definition 3.6 again, Θ(α′) = Θ(cg ◦ α) = θ(g)Θ(α), and

Θ(α′)·θ(CS(P )) = θ(g)Θ(α)·θ(CS(P )) = Θ(α)θ(α(g))·θ(CS(P )) = Θ(α)·θ(CS(P )),

and so the definition of ΘP (α) is independent of the choice of the extension α. This
shows that ΘP is well defined.
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Notice also that ΘP clearly respects compositions, and since ΘP (α) = x ·
θ(CS(P )) = θ(CS(P )) · x, for some x ∈ Γ, we conclude that x ∈ NΓ(θ(CS(P ))).
Thus ΘP induces a homomorphism

ΘP : AutF (P ) → NΓ(θ(CS(P )))/θ(CS(P )).

We now make use of Lemma 4.1, which gives sufficient conditions to the existence
of an extension of a fusion mapping triple.

If α ∈ AutF (P ), and x ∈ ΘP (α), then x = y · θ(h) for some h ∈ CS(P ) and
y ∈ Θ(α), where α is an extension of α to P · CS(P ). Hence for any g ∈ P ,

xθ(g)x−1 = y · θ(hgh−1)y−1 = yθ(g)y−1 = θ(α(g)) = θ(α(g)).

This shows that point (+) of Lemma 4.1 holds, and so it remains to check (∗).
Assume P � Q ≤ S, P � Q, and let α ∈ AutF (P ) and β ∈ AutF (Q) be such

that α = β|P . Then Q·CS(P ) ≤ Nα in the terminology of axiom (II), so α extends
to another automorphism γ ∈ AutF (Q·CS(P )), and ΘP (α) = Θ(γ)·θ(CS(P )) by
definition of ΘP . By [5A1, Lemma 3.8] again, γ|Q = cg ◦ β for some g ∈ CS(P ).
Hence, by Definition 3.6, Θ(γ) = Θ(cg ◦ β) = θ(g) · Θ(β), and so

ΘP (α) = θ(g) · Θ(β) · θ(CS(P )) = Θ(β)θ(β(g)) · θ(CS(P )) = Θ(β) · θ(CS(P )).

In particular, ΘP (α) ⊇ Θ(β). This shows that point (∗) of Lemma 4.1 is satisfied
as well, and thus, by the lemma, Θ can be extended to a fusion mapping triple on
FH. �

Recall that a fusion subsystem of index prime to p in a saturated fusion system
F over S is a saturated subsystem F0 ⊆ F over the same p-group S, such that
AutF0(P ) ≥ Op′

(AutF (P )) for all P ≤ S. Equivalently, F0 ⊆ F has index prime
to p if and only if it is saturated and contains the subcategory Op′

∗ (F) of Definition
3.3. We are now ready to prove our main result about these subsystems.

Theorem 5.4. For any saturated fusion system F over a p-group S, there is a
bijective correspondence between subgroups

H ≤ Γp′(F) = OutF (S)/ Out0F (S),

and saturated fusion subsystems FH of F over S of index prime to p in F . The cor-
respondence is given by associating to H the fusion system generated by θ̂−1(B(H)),
where θ̂ is the functor of Proposition 5.2.

Proof. Let F0 ⊆ F be any saturated fusion subsystem over S which contains
Op′

∗ (F). Then Out0F (S) � OutF0(S), and one can set H = OutF0(S)/ Out0F (S).
We first show that a morphism ϕ of Fc is in F0 if and only if θ̂(ϕ) ∈ H. Clearly it
suffices to prove this for isomorphisms in Fc.

Let P, Q ≤ S be F-centric, F-conjugate subgroups, and fix an isomorphism
ϕ ∈ IsoF (P, Q). By Lemma 3.4, we can write ϕ = ψ ◦ (α|P ), where α ∈ AutF (S)
and ψ ∈ Iso

Op′
∗ (F)

(α(P ), Q). Then ϕ is in F0 if and only if α|P is in F0. Also, by

definition of θ̂ (and of H), θ̂(ϕ) ∈ H if and only if α ∈ AutF0(S). So it remains to
prove that α|P ∈ Mor(F0) if and only if α ∈ AutF0(S).

If α ∈ AutF0(S), then α|P is also in F0 by definition of a fusion system. So
it remains to prove the converse. Assume α|P is in F0. The same argument as
that used to prove Proposition 3.8(c) shows that α(P ) is F0-centric, and hence
fully centralized in F0. Since α|P extends to an (abstract) automorphism of S,



3838 C. BROTO, N. CASTELLANA, J. GRODAL, R. LEVI, AND B. OLIVER

axiom (II) implies that it extends to some α1 ∈ HomF0(NS(P ), S). Since P is
F-centric, [BLO2, Proposition A.8] applies to show that α1 = (α|NS(P )) ◦ cg for
some g ∈ Z(P ), and thus that α|NS(P ) ∈ HomF0(NS(P ), S). Also, NS(P ) � P
whenever P � S, and so we can continue this process to show that α ∈ AutF0(S).
This finishes the proof that F0 = θ̂−1(H).

Now fix a subgroup H ≤ OutF (S)/ Out0F (S), and let FH be the smallest fusion
system over S which contains θ̂−1(B(H)). We must show that FH is a saturated
fusion subsystem of index prime to p in F . For F-centric subgroups P, Q ≤ S,
HomFH

(P, Q) is the set of all morphisms ϕ in HomF (P, Q) such that θ̂(ϕ) ∈ H. In
particular, FH ⊇ Op′

∗ (F), since morphisms in Op′

∗ (F) are sent by θ̂ to the identity
element.

Define Θ: Mor(Fc) → Sub(Γp′(F)) by setting Θ(ϕ) = {θ̂(ϕ)}; i.e., the image
consists of subsets with one element. Let θ ∈ Hom(S, Γp′(F)) be the trivial (and
unique) homomorphism. Then (Γp′(F), θ, Θ) is a fusion mapping triple on Fc. By
Lemma 5.3, this can be extended to a fusion mapping triple on Fq; and hence FH

is saturated by Proposition 3.8.
By Theorem 1.5(a) (Alperin’s fusion theorem), FH is the unique saturated fusion

subsystem of F with the property that a morphism ϕ ∈ HomF (P, Q) between F-
centric subgroups of S lies in FH if and only if θ̂(ϕ) ∈ H. This shows that the
correspondence is indeed bijective. �

The next theorem describes the relationship between subgroups of index prime
to p in a p-local finite group (S,F ,L) and certain covering spaces of |L|.

Theorem 5.5. Fix a p-local finite group (S,F ,L). Then for each subgroup H ≤
OutF (S) containing Out0F (S), there is a unique p-local finite subgroup (S,FH ,LH),
such that FH has index prime to p in F , OutFH

(S) = H, and LH = π−1(FH)
(where π is the usual functor from L to F). Furthermore, |LH | is homotopy equiv-
alent, via its inclusion into |L|, to the covering space of |L| with fundamental group
H̃: where H̃ ≤ π1(|L|) is the subgroup such that θ̄(H̃/Op′

(π1(|L|))) corresponds to
H/ Out0F (S) under the isomorphism

π1(|L|)/Op′
(π1(|L|)) ∼= π1(|Fc|)/Op′

(π1(|Fc|)) θ−−−−−−→∼=
OutF (S)/ Out0F (S)

of Proposition 5.2.

Proof. By Theorem 3.9, applied to the composite functor

L π−−−−−−→ Fc θ̂−−−−−−→ B(OutF (S)/ Out0F (S)),

(S,FH ,LH) is a p-local finite group, and |LH | is homotopy equivalent to the cover-
ing space of |L| with fundamental group H̃ defined above. The uniqueness follows
from Theorem 5.4. �

Theorem 5.4 shows, in particular, that any saturated fusion system F over S
contains a unique minimal saturated subsystem Op′

(F) of index prime to p: the
subsystem F0 ⊆ F with OutF0(S) = Out0F (S). Furthermore, if F has an associated
centric linking system L, then Theorem 5.5 shows that Op′

(F) has an associated
linking system Op′

(L), whose geometric realization |Op′
(L)| is homotopy equivalent

to the covering space of |L| with fundamental group Op′
(π1(|L|)). We emphasize,
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however, that if F is the fusion system of a finite group G, then Op′
(F) need not be

the fusion system of Op′
(G): G = A5 (with p = 2) provides an easy counterexample.

Remark added in proof. Michael Aschbacher has pointed out to us that for any
saturated fusion system F over a p-group S, π1(|Fc|) is finite of order prime to p,
and hence is isomorphic to the group OutF (S)/Out0F (S) which appears in Theorems
5.4 and 5.5. In other words, there is a bijective correspondence between the set
of saturated fusion subsystems of index prime to p in F and the set of subgroups
of π1(|Fc|), or equivalently the set of covering spaces of |Fc|. This result can be
deduced from Lemma 3.4 and Proposition 5.2, using that the elements of Inn(S)
(as a subgroup of AutF (S)) represent the identity in π1(|Fc|).

5.2. Extensions of index prime to p. It remains to consider the opposite
problem: that of describing the extensions of a given saturated fusion system of
index prime to p. As before, for a saturated fusion system F over a p-group S,
Autfus(S,F) denotes the group of fusion preserving automorphisms of S (Def-
inition 4.5). Theorem 5.7 below states that each subgroup of Outfus(S,F) =
Autfus(S,F)/ AutF (S) of order prime to p gives rise to an extension of F .

The following lemma will be needed to compare the obstructions to the existence
and uniqueness of linking systems, in a fusion system and in a fusion subsystem of
index prime to p. Recall the definition of the orbit category of a fusion system in
Definition 1.7.

Lemma 5.6. Fix a saturated fusion system F over a p-group S, and let F ′ ⊆ F be
a saturated subsystem of index prime to p. Assume OutF ′(S) � OutF (S), and set
π = OutF (S)/ OutF ′(S). Then for any F : Oc(F) → Z(p)-mod, there is a natural
action of π on the higher limits of F |Oc(F ′), and

lim←−
∗

Oc(F)

(F ) ∼=
[

lim←−
∗

Oc(F ′)

(
F |Oc(F ′)

)]π

.

Proof. Let Oc(F)-mod denote the category of functors Oc(F)op → Ab. For any
F in Oc(F)-mod, OutF (S) acts on

∏
P∈Ob(Oc(F)) F (P ) by letting α ∈ OutF (S)

send F (α(P )) to F (P ) via the induced map α∗. This restricts to an action of π on
λ(F ) def= lim←−

Oc(F ′)

(F |Oc(F ′)); and by definition of inverse limits,

lim←−
Oc(F)

(F ) ∼=
[

lim←−
Oc(F ′)

(F |Oc(F ′))
]π

=
[
λ(F )

]π
.

Since F ′ is a subsystem of index prime to p, OutF ′(S) is a subgroup of Out0F (S).
Hence, by a slight abuse of notation, one has a functor θ̂ : F → B(π) given as the
composite of the functor θ̂ of Proposition 5.2 with projection to π. For any Z[π]-
module M , regarded as a functor on B(π), we let β(M) denote the composite
functor M ◦ θ̂. Then Z[π]-mod →β Oc(F)-mod is an exact functor, and a left
adjoint to Oc(F)-mod →λ Z[π]-mod. In particular, the existence of a left adjoint
shows that λ sends injective objects in Oc(F)-mod to injective Z[π]-modules.
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Thus, if 0 → F → I0 → I1 → · · · is an injective resolution of F in Oc(F)-mod,
and F takes values in Z(p)-modules, then

lim←−
∗

Oc(F)

(F ) ∼= H∗(0 → λ(I0)π
(p) → λ(I1)π

(p) → · · ·
)

∼=
[
H∗(0 → λ(I0)(p) → λ(I1)(p) → · · ·

)]π

∼=
[

lim←−
∗

Oc(F ′)

(F |Oc(F ′))
]π

. �

We are now ready to examine extensions of index prime to p.

Theorem 5.7. Fix a saturated fusion system F over a p-group S. Let

π ≤ Outfus(S,F) def= Autfus(S,F)/ AutF (S)

be any subgroup of order prime to p, and let π̃ denote the inverse image of π in
Autfus(S,F).

(a) Let F .π be the fusion system over S generated (as a category) by F together
with restrictions of automorphisms in π̃. Then F .π is a saturated fusion
system, which contains F as a fusion subsystem of index prime to p.

(b) If F has an associated centric linking system, then so does F .π.
(c) Let L be a centric linking system associated to F . Assume that for each

α ∈ π, the action of α on F lifts to an action on L. Then there is a unique
centric linking system L.π associated to F .π whose restriction to F is L.

Proof. (a) By definition, every morphism in F .π is the composite of morphisms in
F and restrictions of automorphisms of S which normalize F . If ψ ∈ HomF (P, Q)
and ϕ ∈ Autfus(S,F), then one has

(1) ϕ|Q ◦ ψ = ϕ|Q ◦ ψ ◦ ϕ−1|ϕ(P ) ◦ ϕ|P = ψ′ ◦ ϕ|P ,

where ψ′ ∈ HomF (ϕ(P ), ϕ(Q)) (since ϕ is fusion preserving). Hence each morphism
in F .π is the composite of the restriction of a morphism in π̃ followed by a morphism
in F .

We next claim F is a fusion subsystem of F .π of index prime to p. More precisely,
we will show, for all P ≤ S, that AutF (P ) � AutF .π(P ) with index prime to p.
To see this, let π1 ⊆ π̃ be the set of automorphisms ϕ in π̃ ≤ Autfus(S,F) such
that ϕ(P ) is F-conjugate to P , and let π0 ⊆ π1 be the set of classes ϕ such that
ϕ|P ∈ HomF (P, S). If ϕ(P ) and ψ(P ) are both F-conjugate to P , then ψ(ϕ(P ))
is F-conjugate to ψ(P ) since ψ is fusion preserving, and thus is F-conjugate to P .
This shows that π1 is a subgroup of π̃, and an argument using (1) shows that π0 is
also a subgroup. By definition, π0 ≥ AutF (S), so π1/π0 has order prime to p since
π does. Using (1), define

θP : AutF .π(P ) −−−−−−→ π1/π0

by setting θP (α) = [ψ] if α = ψ|β(P ) ◦ β for some β ∈ HomF (P, S) and some
ψ·AutF (S) ∈ π. By definition of π0, this is well defined, and Ker(θP ) = AutF (P ).
Since π1/π0 has order prime to p, this shows that AutF (P ) � AutF .π(P ) with
index prime to p.

We next claim that F and F .π have the same fully centralized, fully normalized
and centric subgroups (compare with the proof of Proposition 3.8(c)). By definition,
F and F .π are fusion systems over the same p-group S. Since each F-conjugacy
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class is contained in some F .π-conjugacy class, any subgroup P ≤ S which is fully
centralized (fully normalized) in F .π is fully centralized (fully normalized) in F .
By the same argument, any F .π-centric subgroup is also F-centric.

Conversely, assume that P is not fully centralized in F .π, and let P ′ ≤ S be a
subgroup F .π-conjugate to P such that |CS(P ′)| > |CS(P )|. Let ψ : P ′ → P be an
F .π-isomorphism between them. Then, by the argument above ψ = ψ′ ◦ ϕ, where
ψ′ is a morphism in F and ϕ ∈ π̃ is the restriction to P ′ of an automorphism of
S. Hence |CS(ϕ(P ′))| = |CS(P ′)| > |CS(P )|, and since ϕ(P ′) is F-conjugate to P ,
this shows that P is not fully centralized in F . A similar argument shows that if P
is not fully normalized (or not centric) in F .π, then it is not fully normalized (or
not centric) in F .

We prove that F .π is saturated using Theorem 1.5(b). Thus, we must show that
conditions (I) and (II) of Definition 1.2 are satisfied for all F .π-centric subgroups,
and that F .π is generated by restrictions of morphisms between its centric sub-
groups. Let P ≤ S be a subgroup which is fully normalized in F .π. Then it is
fully normalized in F , and since F is saturated, it is fully centralized there and
AutS(P ) ∈ Sylp(AutF (P )) = Sylp(AutF .π). Hence, condition (I) holds for any P
in (F .π)c.

Let ψ : P → Q be a morphism in F .π, and write ψ = ψ′ ◦ ϕ, as before. Set

Nψ = {g ∈ NS(P ) |ψ ◦ cg ◦ ψ−1 ∈ AutS(ψ(P ))};
then ϕ(Nψ) = Nψ′ since ϕcgϕ

−1 = cϕ(g) for all g ∈ S. Since condition (II) holds
for F , the morphism ψ′ can be extended to Nψ′ . Hence ψ = ψ′ ◦ϕ can be extended
to Nψ = ϕ(Nψ′), and so condition (II) holds for F .π.

That all morphisms in F .π are composites of restrictions of F .π-morphisms be-
tween F .π-centric subgroups holds by construction. Thus Theorem 1.5(b) applies,
and F .π is saturated.

(b) Let ZF : Oc(F) → Ab be the functor ZF (P ) = Z(P ), and similarly for ZF .π

(see Definition 1.7). By Lemma 5.6, restriction of categories induces a monomor-
phism

(2) lim←−
∗

Oc(F .π)

(ZF .π) −−−−−−→ lim←−
∗

Oc(F)

(ZF )

whose image is the subgroup of π-invariant elements.
By [BLO2, Proposition 3.1], the obstruction η(F .π) to the existence of a centric

linking system associated to F .π lies in lim←−
3(ZF .π). From the construction in

[BLO2] of these obstructions (and the fact that F .π and F have the same centric
subgroups), it is clear that the restriction map (2) sends η(F .π) to η(F). So if there
is a linking system L associated to F , then η(F) = 0, so η(F .π) = 0 by Lemma
5.6, and there is a linking system L.π associated to F .π.

(c) Let L.π be a centric linking system associated to F .π, as constructed in
(b), and let L′ be its restriction to F (i.e., the inverse image of F under the the
projection L.π → (F .π)c). By [BLO2, Proposition 3.1] again, the group lim←−

2(ZF )
acts freely and transitively on the set of all centric linking systems associated to
F . If the action on F of each α ∈ π lifts to an action on L, then the element
of lim←−

2(ZF ) which measures the difference between L and L′ is π-invariant, and
hence (by Lemma 5.6 again) is the restriction of an element of lim←−

2(ZF .π). Upon
modifying the equivalence class of L.π by this element, if necessary, we get a centric
linking system associated to F .π whose restriction to F is L. �
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As was done in the last section for extensions with a p-group quotient, we now
translate this last result to a theorem stated in terms of fibration sequences.

Theorem 5.8. Fix a p-local finite group (S,F ,L), a finite group Γ of order prime
to p, and a fibration E

v−−−→ BΓ with fiber homotopy equivalent to |L|∧p . Then there
is a p-local finite group (S,F ′,L′) such that F ⊆ F ′ is normal of index prime to p,
AutF ′(S)/ AutF (S) is a quotient group of Γ, and E∧

p � |L′|∧p .

Proof. For any space Y , let Aut(Y ) denote the topological monoid of homotopy
equivalences Y

�−−−→ Y . Fibrations with fiber Y and base B are classified by ho-
motopy classes of maps B → B Aut(Y ). This follows, for example, as a special case
of the main theorem in [DKS].

We are thus interested in the classifying space B Aut(|L|∧p ), whose homotopy
groups were determined in [BLO2, §8]. To describe these, let Auttyp(L) be the
monoid of isotypical self equivalences of the category L; i.e., the monoid of all
equivalences of categories ψ ∈ Aut(L) such that for all P ∈ Ob(L), ψP,P (Im(δP )) =
Im(δψ(P )). Let Outtyp(L) be the group of all isotypical self equivalences modulo
natural isomorphisms of functors. By [BLO2, Theorem 8.1], πi(B Aut(|L|∧p )) is a
finite p-group for i = 2 and vanishes for i > 2, and

π1(B Aut(|L|∧p )) ∼= Outtyp(L).

Each isotypical self equivalence of L is naturally isomorphic to one which sends
inclusions to inclusions (this was shown in [BLO1, Lemma 5.1] for linking systems
of a group, and the general case follows by the same argument). Thus each element
of Outtyp(L) is represented by some β which sends inclusions to inclusions. This
in turn implies that βS — the restriction of βS,S to δS(S) ≤ AutL(S) — lies in
Autfus(S,F), and that for every F-centric subgroup P of S, the functor β sends
P to the subgroup βS(P ) ≤ S. In particular, β is an automorphism of L, since it
induces a bijection on the set of objects.

Now let BΓ →fv B Aut(|L|∧p ) be the map which classifies the fibration E
v−→ BΓ.

Since Γ is a p′-group, the fibration E
v−−−→ BΓ is uniquely determined by the action

of Γ on |L|∧p ; more precisely, by the map induced by fv on fundamental groups:

π1(fv) : Γ −−−−−→ Outtyp(L) .

By an argument identical to that used to prove [BLO1, Theorem 6.2], there is
an exact sequence

0 −−−−→ lim←−
1

Oc(F)

(ZF ) −−−−−→ Outtyp(L)
µL−−−−−→ Outfus(S,F),

where µL is defined by restricting a functor L → L to δS(S) ≤ AutL(S). Also,
Oc(F) and ZF are as in Definition 1.7, but all that we need to know here is that
Ker(µL) is a p-group. Set

ψv = µL ◦ π1(fv) : Γ −−−−−→ Outfus(S,F).

Set π = Im(ψv) ≤ Outfus(S,F). By its definition, ψv comes equipped with a lift
to Outtyp(L). So by the above remarks, every element of π lifts to an automorphism
of L. Let (S,F .π,L.π) be the p-local finite group constructed in Theorem 5.7(a),
(c) as an extension of (S,F ,L). This induces a fibration

|L| −−−−−→ |L.π| −−−−−→ Bπ.
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By [BK, Corollary I.8.3], there is a fiberwise completion Ew of |L.π| which sits in
a fibration sequence

|L|∧p −−−−−→ Ew
w−−−−−→ Bπ,

and this fibration is classified by a map

fw : Bπ −−−−−→ B Aut(|L|∧p ).

As was the case for fv, the induced map between fundamental groups π1(fw) de-
termines the fibration.

Consider the diagram

(1) Γ
ρ

��

π1(fv)

��

π

incl

��

π1(fw)

���������������

Outtyp(L)
µL �� Outfus(S,F),

where ρ : Γ → π is the restriction of ψv to its image, and where the square
commutes since each composite is equal to ψv. The composite µL ◦ π1(fw) ∈
Hom(π, Outfus(S,F)) is the homomorphism induced by the homotopy action of
π = π1(Bπ) on the fiber |L|∧p . By the construction in Theorem 5.7, this is just
the inclusion map. Hence the lower right triangle in the above diagram commutes.
Since Γ has order prime to p and Ker(µL) ∼= lim←−

1(ZF ) is a p-group, any homomor-
phism from Γ to Outfus(S,F) has a unique conjugacy class of lifting to Outtyp(L) by
the Schur-Zassenhaus theorem (cf. [Go, Theorem 6.2.1]). In particular, π1(fw) ◦ ρ
and π1(fv) are conjugate as homomorphisms from Γ to Outtyp(L). Thus, the upper
left triangle in (1) commutes up to conjugacy.

Since π2(B Aut(|L|∧p )) is a finite p-group and the higher homotopy groups all
vanish, we have shown that fw ◦Bρ is homotopic to fv. In other words, we have a
map of fibrations

|L|∧p �� E

λ

��

v �� BΓ

Bρ

��
|L|∧p �� Ew

w �� Bπ.

A comparison of the spectral sequences for these two fibrations shows that λ is an
Fp-homology equivalence. Since |L| is p-good [BLO2, Proposition 1.12], the natural
map from |L.π| to its fiberwise completion Ew is also an Fp-homology equivalence.
Hence these maps induce homotopy equivalences E∧

p � (Ew)∧p � |L.π|∧p . This
finishes the proof of the theorem, with F ′ = F .π and L′ = L.π. �

Note that we are not assuming that Γ injects into Outfus(S,F) in the hypotheses
of Theorem 5.8. Thus, for example, if we start with a product fibration E =
|L|∧p × BΓ, then we end up with (S,F ′,L′) = (S,F ,L) (and E∧

p � |L|∧p ).
We do not know whether the index prime to p analog of Corollary 4.8 holds.

The key point in the proof of Corollary 4.8 is the observation that if G is a finite
group, whose fusion system at p contains a normal subsystem of index pm, then G
contains a normal subgroup of index pm. This is not true for subsystems of index
prime to p. For example, the fusion system at the prime 3 of the simple groups J4

and Ru has a subsystem of index 2.
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6. Central extensions of fusion systems and linking systems

Let F be a fusion system over a p-group S. We say that a subgroup A ≤ S is
central in F if CF (A) = F , where CF(A) is the centralizer fusion system defined
in [BLO2, Definition A.3]. Thus A is central in F if A ≤ Z(S), and each morphism
ϕ ∈ HomF (P, Q) in F extends to a morphism ϕ ∈ HomF (PA, QA) such that
ϕ|A = IdA.

In this section, we first study quotients of fusion systems, and of p-local finite
groups, by central subgroups. Afterwards, we will invert this procedure, and study
central extensions of fusion systems and p-local finite groups.

6.1. Central quotients of fusion and linking systems. We first note that every
saturated fusion system F contains a unique maximal central subgroup, which we
regard as the center of F .

Proposition 6.1. For any saturated fusion system F over a p-group S, define

ZF (S) =
{
x ∈ Z(S)

∣∣ϕ(x) = x, all ϕ ∈ Mor(Fc)
}

= lim←−
Fc

Z(−) :

the inverse limit of the centers of all F-centric subgroups of S. Then ZF (S) is the
center of F : it is central in F , and contains all other central subgroups.

Proof. By definition, if A is central in F , then A ≤ Z(S), and any morphism in F
between subgroups containing A restricts to the identity on A. Since all F-centric
subgroups contain Z(S), this shows that A ≤ ZF (S).

By Alperin’s fusion theorem (Theorem 1.5(a)), each morphism in F is a com-
posite of restrictions of morphisms between F-centric subgroups. In particular,
each morphism is a restriction of a morphism between subgroups containing ZF (S)
which is the identity on ZF (S), and thus ZF (S) is central in F . �

The center of a fusion system F has already appeared when studying mapping
spaces of classifying spaces associated to F . By [BLO2, Theorem 8.1], for any
p-local finite group (S,F ,L),

Map(|L|∧p , |L|∧p )Id � BZF (S).

We next define the quotient of a fusion system by a central subgroup.

Definition 6.2. Let F be a fusion system over a p-group S, and let A be a central
subgroup. Define F/A to be the fusion system over S/A with morphism sets

HomF/A(P/A, Q/A) = Im
[
HomF (P, Q) −−−−−→ Hom(P/A, Q/A)

]
.

By [BLO2, Lemma 5.6], if F is a saturated fusion system over a p-group S, and
A ≤ ZF (S), then F/A is also saturated as a fusion system over S/A. We now
want to study the opposite question: if F/A is saturated, is F also saturated? The
following example shows that it is very easy to construct counterexamples to this.
In fact, under a mild hypothesis on S, if a fusion system over S/A has the form
F/A for any fusion system F over S, then it has that form for a fusion system F
which is not saturated.

Example 6.3. Fix a p-group S and a central subgroup A ≤ Z(S). Assume there
is α ∈ Aut(S)�Inn(S) such that α|A = IdA and α induces the identity on S/A. Let
F be a saturated fusion system over S/A, and assume there is some fusion system
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F0 over S such that F0/A = F . Let F ⊇ F0 be the fusion system over S defined
by setting

HomF (P, Q) =
{
ϕ ∈ Hom(P, Q)

∣∣∃ϕ ∈ Hom(PA, QA),

ϕ|P = ϕ, ϕ|A = IdA, ϕ/A ∈ HomF (PA/A, QA/A)
}
.

Then A is a central subgroup of F , and F/A = F . But F is not saturated, since
AutF (S) contains as normal subgroup the group of automorphisms of S which are
the identity on A and on S/A (a p-group by Lemma 1.15), and this subgroup is by
assumption not contained in Inn(S). Hence AutS(S) is not a Sylow subgroup of
AutF (S).

The hypotheses of the above example are satisfied, for example, by any pair of
p-groups 1 �= A � S with A ≤ Z(S), such that S is abelian, or more generally such
that A ∩ [S, S] = 1.

We will now describe conditions which allow us to say when F is saturated.
Before doing so, in the next two lemmas, we first compare properties of subgroups
in F with those of subgroups of F/A, when F is a fusion system with central
subgroup A. This is done under varying assumptions as to whether F or F/A is
saturated.

Lemma 6.4. The following hold for any fusion system F over a p-group S, and
any subgroup A ≤ Z(S) central in F .

(a) If A ≤ P ≤ S and P/A is F/A-centric, then P is F-centric.
(b) If F/A is saturated, and P ≤ S is F-quasicentric, then PA/A is F/A-

quasicentric.
(c) If F and F/A are both saturated and P/A ≤ S/A is F/A-quasicentric, then

P is F-quasicentric.

Proof. For each P ≤ S containing A, let C̃S(P ) ≤ S be the subgroup such that
C̃S(P )/A = CS/A(P/A). Let

ηP : C̃S(P ) −−−−−→ Hom(P, A)

be the homomorphism ηP (x)(g) = [x, g] for x ∈ C̃S(P ) and g ∈ P . Thus Ker(ηP ) =
CS(P ).

For each P ≤ S containing A, set

ΓP = Ker
[
AutF (P ) −−−−→ AutF/A(P/A)

]
.

Since every α ∈ AutF (P ) is the identity on A, ΓP is a p-group by Lemma 1.15.
(a) If g, g′ commute in S, then their images commute in S/A. Thus for all

Q ≤ S, CS(Q)/A ≤ CS/A(Q/A).
Assume P/A is F/A-centric. Then for each P ′ which is F-conjugate to P , P ′/A

is F/A-conjugate to P/A, and hence CS(P ′)/A ≤ CS/A(P ′/A) ≤ P ′/A. Thus P is
F-centric.

(b) Fix P ≤ S such that P is F-quasicentric. Since CS(P ′A) = CS(P ′) for all
P ′ which is F-conjugate to P , P ′A is fully centralized in F if and only if P ′ is. Also,
CF (P ′) = CF (P ′A) for such P ′, and this shows that PA is also F-quasicentric. So
after replacing P by PA, if necessary, we can assume P ≥ A.

Choose P ′/A which is fully centralized in F/A and F/A-conjugate to P/A.
Then P ′ is F-conjugate to P , hence still F-quasicentric. So upon replacing P by
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P ′, we are reduced to showing that P/A is F/A-quasicentric when P ≥ A, P is
F-quasicentric, and P/A is fully centralized.

For any P ′ which is F-conjugate to P , there is a morphism

ϕ/A ∈ HomF/A

(
(P ′·C̃S(P ′))/A, (P ·C̃S(P ))/A

)
which sends P ′/A to P/A (by axiom (II) for the saturated fusion system F/A).
Then ϕ restricts to a morphism from CS(P ′) to CS(P ). Thus |CS(P ′)| ≤ |CS(P )|
for all P ′ which is F-conjugate to P , and this proves that P is fully centralized in
F .

If P/A is not F/A-quasicentric, then by Lemma 1.6 (and since F/A is saturated),
there is some Q/A ≤ P/A·CS/A(P/A) containing P/A, and some α ∈ AutF (Q),
such that Id �= α/A ∈ AutF/A(Q/A) has order prime to p and α/A is the identity
on P/A. Since α is also the identity on A, Lemma 1.15 implies that α|P = IdP .
Set Q′ = Q ∩ C̃S(P ). Then α(Q′) = Q′, and ηP ◦ α = ηP since α is the identity
on P ≥ A. Thus α induces the identity on Q′/CQ′(P ) since Ker(ηP ) = CS(P ).
Since α has order prime to p, Lemma 1.15 now implies that α|CQ′ (P ) �= Id. Thus
CQ′(P ) ≤ CS(P ) and α|P ·CQ′ (P ) is a nontrivial automorphism in CF (P ) of order
prime to p. Since P is fully centralized in F , this implies (by definition) that CF (P )
is not the fusion system of CS(P ), and hence that P is not F-quasicentric.

(c) Now assume that F and F/A are both saturated, and that P/A ≤ S/A
is F/A-quasicentric. If P is not F-quasicentric, and P ′ is F-conjugate to P and
fully centralized in F , then by Lemma 1.6(b), there is some P ′ ≤ Q ≤ P ′·CS(P ′)
and some Id �= α ∈ AutF (Q) such that α|P ′ = IdP ′ and α has order prime to p.
Then Q/A ≤ (P ′/A)·CS/A(P ′/A), α/A ∈ AutF/A(Q/A) also has order prime to p,
and so α/A �= Id by Lemma 1.15 again. But by Lemma 1.6(a), this contradicts the
assumption that P/A is F/A-quasicentric. �

In the next lemma, we compare conditions for being fully normalized in F and
in F/A.

Lemma 6.5. The following hold for any fusion system F over a p-group S, and
any subgroup A ≤ Z(S) central in F .

(a) Assume F is saturated. Then for all P, Q ≤ S containing A such that P
is fully normalized in F , if ϕ, ϕ′ ∈ HomF (P, Q) are such that ϕ/A = ϕ′/A,
then ϕ′ = ϕ ◦ cx for some x ∈ NS(P ) such that xA ∈ CS/A(P/A).

(b) Assume F/A is saturated, and let P, P ′ ≤ S be F-conjugate subgroups which
contain A. Then P is fully normalized in F if and only if P/A is fully
normalized in F/A. Moreover, if P is fully normalized in F , then there is
ψ ∈ HomF (NS(P ′), NS(P )) such that ψ(P ′) = P .

Proof. (a) Assume F is saturated, and fix P, Q ≤ S containing A such that P is
fully normalized in F . Let ϕ, ϕ′ ∈ HomF (P, Q) be such that ϕ/A = ϕ′/A. Then
Im(ϕ) = Im(ϕ′). Set α = ϕ−1 ◦ ϕ′ ∈ AutF (P ); then ϕ′ = ϕ ◦ α, and α/A = IdP/A.
Thus

α ∈ Ker[AutF (P ) −−−→ AutF/A(P/A)],

which is a normal p-subgroup by Lemma 1.15. Also, AutS(P ) ∈ Sylp(AutF (P ))
since P is fully normalized, and so α ∈ AutS(P ). Thus α ∈ cx for some x ∈ NS(P ),
and xA ∈ CS/A(P/A) since α/A = IdP/A.
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(b) We are now assuming that F/A is saturated. Assume first that P/A is fully
normalized in F/A. Then by Lemma 1.3, there is a morphism

(1) ϕ0 ∈ HomF/A(NS/A(P ′/A), NS/A(P/A))

such that ϕ0(P ′/A) = P/A, and this lifts to ϕ ∈ HomF (NS(P ′), NS(P )) such that
ϕ(P ′) = P . Therefore |NS(P ′)| ≤ |NS(P )| for any P ′ which is F-conjugate to P
and P is fully normalized in F . This also proves that the last statement in (b)
holds, once we know that P/A is fully normalized.

Assume now that P is fully normalized in F ; we want to show that P/A is fully
normalized in F/A. Fix P ′ which is F-conjugate to P and such that P ′/A is fully
normalized in F/A. By Lemma 1.3 again, there exists

ϕ0 ∈ HomF/A(NS/A(P/A), NS/A(P ′/A))

such that ϕ0(P/A) = P ′/A. Then ϕ0 = ϕ/A for some ϕ ∈ HomF (NS(P ), NS(P ′)),
and ϕ is an isomorphism since P is fully normalized in F . Thus ϕ0 is an isomor-
phism, and hence P/A is fully normalized in F/A.

Thus if P is fully normalized in F , then P/A is also fully normalized, and we
have already seen that the last statement in (b) holds in this case. �

We are now ready to give conditions under which we show that F is saturated if
F/A is saturated. As in [5A1, §2], for any fusion system F over a p-group S, and
any set H of subgroups of S, we say that F is H-generated if each morphism in F
is a composite of restrictions of morphisms between subgroups in H.

Proposition 6.6. Let A be a central subgroup of a fusion system F over a p-group
S, such that F/A is a saturated fusion system. Let H be any set of subgroups of S,
closed under F-conjugacy and overgroups, which contains all F-centric subgroups
of S. Assume

(a) Ker
[
AutF (P ) −−−→ AutF/A(P/A)

]
≤ AutS(P ) for each P ∈ H which is

fully normalized in F ; and
(b) F is H-generated.

Then F is saturated.

Proof. Let H0 be the set of all P ∈ H such that P ≥ A. Since A is central,
each morphism ϕ ∈ HomF (P, Q) extends to some ϕ ∈ HomF (PA, QA) such that
ϕ|A = IdA. Thus F is H0-generated if it is H-generated. So upon replacing H by
H0, we can assume all subgroups in H contain A.

By assumption, H contains all F-centric subgroups of S. So by Theorem 1.5(b),
it suffices to check that axioms (I) and (II) hold for all P ∈ H. For all P ≤ S
containing A, we write

ΓP
def= Ker

[
AutF (P ) −−−→ AutF/A(P/A)

]
.

(I) Assume P ∈ H is fully normalized in F . Then P/A is fully normalized in
F/A by Lemma 6.5(b). By assumption, ΓP ≤ AutS(P ). Hence

[AutF (P ) : AutS(P )] = [AutF/A(P/A) : AutS/A(P/A)],

and AutS(P ) ∈ Sylp(AutF (P )) since AutS/A(P/A) ∈ Sylp(AutF/A(P/A)).
Assume P ′ ≤ S is F-conjugate to P and fully centralized in F . By Lemma

6.5(b) again, there is ψ ∈ HomF (NS(P ′), NS(P )) such that ψ(P ′) = P . Then
ψ(CS(P ′)) ≤ CS(P ), so P is also fully centralized.



3848 C. BROTO, N. CASTELLANA, J. GRODAL, R. LEVI, AND B. OLIVER

(II) Assume ϕ ∈ HomF (P, S) is such that P ∈ H and ϕ(P ) is fully centralized.
Set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕ(P ))},

as usual. Then Nϕ/A ≤ Nϕ/A.
Assume first that ϕ(P ) is fully normalized in F . Then ϕ(P )/A is fully normalized

in F/A by Lemma 6.5(b), and hence also fully centralized. So by (II), applied
to the saturated fusion system F/A, there is ϕ̂ ∈ HomF (Nϕ/A, S/A) such that
ϕ̂|(P/A) = ϕ/A. Let ϕ ∈ HomF (Nϕ, S) be a lift of ϕ̂; then (ϕ|P )/A = ϕ/A and
ϕ(P ) = ϕ(P ). So there is α = ϕ ◦ (ϕ|P )−1 ∈ Γϕ(P ) ≤ AutF (ϕ(P )) such that
α ◦ ϕ|P = ϕ. By (a), there is x ∈ NS(ϕ(P )) such that α = cx; then cx ◦ ϕ lies in
HomF (Nϕ, S) and extends ϕ.

It remains to prove the general case. Choose P ′ which is fully normalized in F
and F-conjugate to P . By Lemma 6.5(b), there is ψ ∈ HomF (NS(ϕ(P )), NS(P ′))
such that ψ(ϕ(P )) = P ′. Then Nϕ ≤ Nψϕ. Since ψϕ(P ) = P ′ is fully normalized,
ψϕ extends to some ψ ∈ HomF (Nϕ, NS(P ′)). We will show that Im(ψ) ≤ Im(ψ),
and thus there is ϕ ∈ HomF (Nϕ, NS(ϕ(P ))) such that ϕ|P = ϕ.

For each g ∈ Nϕ, choose x ∈ NS(ϕ(P )) such that ϕcgϕ
−1 = cx; then we ob-

tain cψ(x) = ψcxψ−1 = c
ψ(g)

, and so ψ(x)ψ(g)−1 ∈ CS(P ′). Since ϕ(P ) is fully

centralized in F , ψ(CS(ϕ(P ))) = CS(P ′), and thus ψ(g) ∈ Im(ψ). �

For example, one can take as the set H in Proposition 6.6 either the set of
subgroups P ≤ S containing A such that P/A is F/A-quasicentric (by Lemma
6.4(b)), or the set of F-centric subgroups of S.

Now let (S,F ,L) be a p-local finite group. One can also define a centralizer
linking system CL(A) when A ≤ S is fully centralized [BLO2, Definition 2.4].
Since this is always a linking system associated to CF (A), A is central in L (i.e.,
CL(A) = L) if and only if A is central in F . So from now on, by a central subgroup
of (S,F ,L), we just mean a subgroup A ≤ Z(S) which is central in F .

Definition 6.7. Let (S,F ,L) be a p-local finite group with a central subgroup A.
Define L/A to be the category with objects the subgroups P/A for P ∈ Ob(L) (i.e.,
such that P is F-centric), and with morphism sets

MorL/A(P/A, Q/A) = MorL(P, Q)/δP (A).

Let (L/A)c ⊆ L/A be the full subcategory with object set the F/A-centric sub-
groups in S/A.

Similarly, if Lq is the associated quasicentric linking system, then define Lq/A to
be the category with objects the F/A-quasicentric subgroups of S/A — equivalently,
the subgroups PA/A for P ∈ Ob(Lq) — and with morphisms

MorLq/A(P/A, Q/A) = MorLq(P, Q)/δP (A).

Note that by Lemma 6.4(a), (c), for any P/A ≤ S/A, if P/A is F/A-centric or
F/A-quasicentric, then P is F-centric or F-quasicentric, respectively. Thus the
categories (L/A)c ⊆ L/A and Lq/A are well defined.

We are now ready to prove our main theorem about quotient fusion and linking
systems.

Theorem 6.8. Let A be a central subgroup of a p-local finite group (S,F ,L) with
associated quasicentric linking system Lq. Let Lq

≥A ⊆ Lq be the full subcategory with
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objects those F-quasicentric subgroups of S which contain A. Then the following
hold:

(a) (S/A,F/A, (L/A)c) is again a p-local finite group, and Lq/A is a quasicen-
tric linking system associated to F/A.

(b) The inclusions of categories induce homotopy equivalences |L| � |Lq
≥A| �

|Lq| and |(L/A)c| � |L/A| � |Lq/A|.
(c) The functor τ : Lq → Lq/A, defined by τ (P ) = PA/A and with the obvious

maps on morphisms, induces principal fibration sequences

BA −−−−−→ |L| |τ |−−−−−→ |L/A| and BA −−−−−→ |Lq
≥A|

|τ |−−−−−→ |Lq/A|

which remain principal fibration sequences after p-completion.

Proof. (a) The first statement is shown in [BLO2, Lemma 5.6] when |A| = p,
and the general case follows by iteration. So we need only prove that Lq/A is a
quasicentric linking system associated to F/A. Axioms (B)q, (C)q, and (D)q for
Lq/A follow immediately from those axioms applied to Lq, so it remains only to
prove (A)q.

Let H be the set of subgroups P ≤ S such that A ≤ P and P/A is F/A-
quasicentric and fix P, Q ∈ H. By construction, CS/A(P/A) acts freely on the
morphism set MorLq/A(P/A, Q/A), and induces a surjection

MorLq/A(P/A, Q/A)
/
CS/A(P/A) −−−−� HomF/A(P/A, Q/A).

We must show that this is a bijection whenever P/A is fully centralized in F/A.
Since any other fully centralized subgroup in the same F-conjugacy class has a
centralizer of the same order, it suffices to show this when P/A is fully normalized
in F/A; or equivalently (by Lemma 6.5(b)) when P is fully normalized in F .

Let C̃S(P ) ≤ S be the subgroup such that C̃S(P )/A = CS/A(P/A). Fix any
F/A-quasicentric subgroup Q/A, and consider the following sequence of maps:

MorLq (P, Q) −−−−−→ HomF (P, Q) −−−−−→ HomF/A(P/A, Q/A).

Since Lq is the quasicentric linking system of F , by property (A)q the first map is
the orbit map of the action of CS(P ). The second is the orbit map for the action
of AutC̃S(P )(P ) by Lemma 6.5(a). Thus the composite is the orbit map for the

free action of C̃S(P ). It now follows that C̃S(P )/A ∼= CS/A(P/A) acts freely on
MorLq/A(P/A, Q/A) = MorLq (P, Q)/A with orbit set HomF/A(P/A, Q/A).

(b) These homotopy equivalences are all special cases of Proposition 1.12(a).
(c) For any category C and any n ≥ 0, let Cn denote the set of n-simplices in the

nerve of C; i.e., the set of composable n-tuples of morphisms. For each n ≥ 0, the
group B(A)n acts freely on (Lq

≥A)n: an element (a1, . . . , an) acts by composing the
i-th component with δP (ai) for appropriate P . This action commutes with the face
and degeneracy maps, and its orbit set is (Lq/A)n. It follows that the projection
of |Lq

≥A| onto |Lq/A| (and of |L| onto |L/A|) is a principal fibration with fiber the
topological group BA = |B(A)| (see, e.g., [May, §§18–20] or [GJ, Corollary V.2.7]).

By the principal fibration lemma of Bousfield and Kan [BK, II.2.2], these se-
quences are still principal fibration sequencesafter p-completion. �
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6.2. Central extensions of p-local finite groups. We first make it more precise
what we mean by this.

Definition 6.9. A central extension of a (saturated) fusion system F over a p-
group S by an abelian p-group A consists of a (saturated) fusion system F̃ over a
p-group S̃, together with an inclusion A ≤ Z(S̃), such that A is a central subgroup
of F̃ , S̃/A ∼= S, and F̃/A ∼= F as fusion systems over S.

Similarly, a central extension of a p-local finite group (S,F ,L) by an abelian
group A consists of a p-local finite group (S̃, F̃ , L̃), together with an inclusion
A ≤ ZF̃ (S̃), such that (S̃/A, F̃/A, (L̃/A)c) ∼= (S,F ,L).

Extensions of categories were defined and studied by Georges Hoff in [Hf], where
he proves that they are classified by certain Ext-groups. We will deal with one
particular case of this. Hoff’s theorem implies that an extension of categories of
the type B(A) −−−→ L̃q

≥A
τ−−−→ Lq is classified by an element in lim←−

Lq

2(A). What

this extension really means is that Lq is a quotient category of L̃q
≥A, where each

morphism set in L̃q
≥A admits a free action of A with orbit set the corresponding

morphism set in Lq. Also, lim←−
2(A) means the second derived functor of the limit

of the constant functor which sends each object of Lq to A and each morphism to
IdA.

We regard A as an additive group. Fix an element [ω] ∈ lim←−
Lq

2(A), where ω is a

(reduced) 2-cocyle. Thus ω is a function from pairs of composable morphisms in
Lq to A such that ω(f, g) = 0 if f or g is an identity morphism, and such that for
any triple f, g, h of composable morphisms, the cocycle condition is satisfied:

dω(f, g, h) def= ω(g, h) − ω(gf, h) + ω(f, hg) − ω(f, g) = 0.

Consider the composite i◦δS : BS → Lq, where δS is induced by the distinguished
morphism S → AutLq(S) and i is induced by the inclusion of AutLq(S) in Lq as the
full subcategory with one object S. Then ωS = (i ◦ δS)∗(ω) is a 2-cocycle defined
on S which classifies a central extension of p-groups

1 −−−→ A −−−−−→ S̃
τ−−−−−→ S −−−→ 1 .

Thus S̃ = S × A, with group multiplication defined by

(h, b)·(g, a) = (hg, b + a + ωS(g, h)),

and τ (g, a) = g. For each F-quasicentric subgroup P ≤ S, set P̃ = τ−1(P ) ≤ S̃.
Using this cocycle ω, we can define a new category L̃0 as follows. There is one

object P̃ = τ−1(P ) of L̃0 for each object P of Lq. Morphism sets in L̃0 are defined
by setting

MorL̃0
(P̃ , Q̃) = MorLq(P, Q) × A.

Composition in L̃0 is defined by

(g, b) ◦ (f, a) = (gf, a + b + ω(f, g)).

The associativity of this composition law follows since dω = 0. Furthermore, if we
choose another representative ω + dµ where µ is a 1-cochain, the categories ob-
tained are isomorphic. This construction comes together with a projection functor
τ : L̃0 → Lq.
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Finally, we define
δS̃ : S −−−−−−→ AutL̃0

(S)

by setting δS̃(g, a) = (δS(g), a). This is a group homomorphism by definition of ωS .

Proposition 6.10. Let (S,F ,L) be a p-local finite group, and let Lq be the asso-
ciated quasicentric linking system. Fix an abelian group A and a reduced 2-cocycle
ω on Lq with coefficients in A. Let

L̃0
τ−−−−−−→ Lq and S̃

τ−−−−−−→ S

be the induced extensions of categories and of groups, with distinguished monomor-
phism δS̃ as defined above.

Then there is a unique saturated fusion system F̃ over S̃ equipped with a functor
π̃ : L̃0 → F̃ , and also unique distinguished monomorphisms δP̃ : P̃ → AutL̃0

(P ).
If L̃ ⊆ L̃0 denotes the full subcategory whose objects are the F̃-centric subgroups

of S̃, then (S̃, F̃ , L̃) is a p-local finite group with central subgroup A ≤ Z(S̃), such
that

(1) (S̃/A, F̃/A, L̃0/A) ∼= (S,F ,Lq).

Also, L̃0 extends to a quasicentric linking system L̃q associated to F̃ .

Proof. Assume that inclusion morphisms ιP have been chosen in the quasicentric
linking system Lq associated to (S,F ,L). For each F-quasicentric P � S, define

ιP̃ = (ιP , 0) ∈ MorL̃0
(P̃ , S̃).

Next, define the distinguished monomorphism

δP̃ : P̃ ·CS̃(P̃ ) −−−−−−→ AutL̃0
(P̃ )

to be the unique monomorphism such that the following square commutes for each
P̃ and each q ∈ P̃ ·CS̃(P̃ ):

(2) P̃

δ
P̃

(q,a)

��

ι
P̃ �� S̃

δS̃(q,a)

��

P̃
ι
P̃ �� S̃.

More precisely, since δS̃(q, a) = (δS(q), a) by definition, this means that

δP̃ (q, a) = (δP (q), a + ω(ιP , δS(q)) − ω(δP (q), ιP )).

For each morphism (f, a) ∈ MorL̃0
(P̃ , Q̃), and each element (q, b) ∈ P̃ , there is

a unique element c ∈ A such that the following square commutes:

(3) P̃

δ
P̃

(q,b)

��

(f,a)
�� Q̃

δ
Q̃

(π(f)(q),c)

��

P̃
(f,a)

�� Q̃.

In this situation, we set

π̃(f, a)(q, b) = (π(f)(q), c) ∈ Q̃.
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By juxtaposing squares of the form (3), we see that π̃(f, a) ∈ Hom(P̃ , Q̃), and that
this defines a functor π̃ from L̃0 to the category of subgroups of S̃ with monomor-
phisms.

Define F̃ to be the fusion system over S̃ generated by the image of π̃ and restric-
tions. By construction, the surjection τ : S̃ −−−→ S induces a functor τ∗ : F̃ −−−→ F
between the fusion systems, which is surjective since F is generated by restrictions of
morphisms between F-quasicentric subgroups (Theorem 1.5(a)). So we can identify
F with F̃/A. By Lemma 6.4(b), for each F̃ -quasicentric subgroup P ≤ S̃, PA/A is
F-quasicentric. So we can extend L̃0 to a category L̃q defined on all F̃ -quasicentric
subgroups, by setting

MorLq(P, Q) =
{
f ∈ MorL̃0

(PA, QA)
∣∣ π̃(f)(P ) ≤ Q

}
and δP = δPA

for each pair P, Q of F̃ -quasicentric subgroups. We extend π̃ to L̃q in the obvious
way.

It remains to prove that F̃ is saturated, and that L̃q is a quasicentric linking
system associated to F̃ . In the process of doing this, we will also prove the isomor-
phism (1).

Let H be the set of subgroups P̃ = τ−1(P ) ≤ S̃ for all F-quasicentric subgroups
P ≤ S.

F̃ is saturated: We want to apply Proposition 6.6 to prove that F̃ is saturated.
By Lemma 6.4(b), H contains all F̃ -quasicentric subgroups of S̃ which contain A,
and in particular, all F̃ -centric subgroups (since every F̃ -centric subgroup of S̃

must contain A). Since F̃ is H-generated by construction, it remains only to prove
condition (a) in Proposition 6.6.

Fix some P̃ = τ−1(P ) in H, and let ϕ ∈ AutF̃ (P̃ ) be such that τ∗(ϕ) = IdP .
Choose (f, a) ∈ π̃−1(ϕ); thus

ϕ = π̃(f, a) ∈ Ker
[
AutF̃ (P̃ ) −−−−→ AutF (P )

]
.

Then π(f) = IdP , so f = δP (q) for some q ∈ CS(P ), and (f, a) = δP̃ (q, c) for some
c ∈ A. Since δP̃ is a monomorphism, the definition of ϕ = π̃(f, a) via (3) shows
that ϕ = π̃(f, a) = π̃(δP̃ (q, c)) = c(q,c), and thus that ϕ ∈ AutS̃(P̃ ). Thus condition
(a) in Proposition 6.6 holds, and this finishes the proof that F̃ is saturated.

L̃q is a quasicentric linking system associated to F̃: The distinguished
monomorphisms δP̃ , for P̃ ∈ Ob(L̃q), were chosen so as to satisfy (D)q, and this was
independent of the choice of inclusion morphisms which lift the chosen inclusion
morphisms in Lq. Once the δP̃ were determined, then π̃ was defined to satisfy (C)q,
and F̃ was defined as the category generated by Im(π̃) and restrictions. Thus all
of these structures were uniquely determined by the starting data. Axiom (B)q

follows from (C)q by Lemma 1.10.
It remains only to prove (A)q. We have already seen that the functor π̃ is

surjective on all morphism sets. Also, since CS̃(P ) = CS̃(PA) for all P ≤ S̃, it
suffices to prove (A)q for morphisms between subgroups P̃ = τ−1(P ) and Q̃ =
τ−1(Q) containing A. By construction, CS̃(P̃ ) acts freely on each morphism set
MorL̃q (P̃ , Q̃), and it remains to show that if P̃ is fully centralized, then π̃P̃ ,Q̃ is the
orbit map of this action. As in the proof of Theorem 6.8(a), it suffices to do this
when P̃ and P are fully normalized.
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Fix two morphisms (f, a) and (g, b) from P̃ to Q̃ such that π̃(f, a) = π̃(g, b).
Then π(f) = π(g), so g = f ◦ δP (x) for some x ∈ CS(P ), and

(g, b) = (f, a) ◦ (δP (x), b − a − ω(δP (x), f)) = (f, a) ◦ δP̃ (x, c),

where c = b−a−ω(δP (x), f)−(ω(ιP , δS(x))−ω(δP (x), ιP )). Also, π̃(δP̃ (x, c)) = IdP̃

implies (via (3)) that (x, c) commutes with all elements of P̃ , so (x, c) ∈ CS̃(P̃ ),
and this finishes the argument. �

We now want to relate the obstruction theory for central extensions of linking
systems with kernel A to those for central extensions of p-groups, and to those
for principal fibrations with fiber BA. As a consequence of this, we will show (in
Theorem 6.13) that when appropriate restrictions are added, these three types of
extensions are equivalent.

Given a central extension F̃ of F by the central subgroup A, there is an induced
central extension 1 → A → S̃ → S → 1 of Sylow subgroups. Restriction to
subgroups P ≤ S produces corresponding central extensions 1 → A → P̃ → P → 1.
The homology classes of these central extensions are all compatible with morphisms
from the fusion system, and hence define an element in lim←−

F
H2(−; A). This, together

with notation already used in [BLO2], motivates the following definition:

Definition 6.11. For any saturated fusion system over a p-group S, and any finite
abelian p-group A, define

H∗(F ; A) = lim←−
F

H∗(−; A) ∼= lim←−
Fc

H∗(−; A).

The following lemma describes the relation between the cohomology of F and
the cohomology of the geometric realization of any linking system associated to F .

Lemma 6.12. For any p-local finite group (S,F ,L), and any finite abelian p-group
A, the natural homomorphism

(1) H∗(|L|; A) −−−−−−→ H∗(F ; A),

induced by the inclusion of BS into |L|, is an isomorphism. Furthermore, there are
natural isomorphisms

(2) lim←−
Lq

2(A) ∼= H2(|Lq|; A) ∼= H2(|L|; A).

Proof. The second isomorphism in (2) follows from Proposition 1.12(a). The first
isomorphism holds for higher limits of any constant functor over any small, discrete
category C, since both groups are cohomology groups of the same cochain complex

0 −−−→
∏
c

A −−−−→
∏

c0→c1

A −−−−→
∏

c0→c1→c2

A −−−−→ · · · .

This cochain complex for higher limits is shown in [GZ, Appendix II, Proposition
3.3] (applied with M = Ab

op).
To prove the isomorphism (1), it suffices to consider the case where A = Z/pn

for some n. This was shown in [BLO2, Theorem 5.8] when A = Z/p, so we can
assume that n ≥ 2, and that the lemma holds when A = Z/pn−1. Consider the
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following diagram of Bockstein exact sequences:
(1)

→ Hi−1(|L|; Z/p) ��

��

Hi(|L|; Z/pn−1) ��

��

Hi(|L|; Z/pn) ��

��

Hi(|L|; Z/p) →

��

→ Hi−1(BS; Z/p) �� Hi(BS; Z/pn−1) �� Hi(BS; Z/pn) �� Hi(BS; Z/p) → .

We claim that the bottom row restricts to an exact sequence of groups H∗(F ;−).
Once this is shown, the result follows by the 5-lemma.

By [BLO2, Proposition 5.5], there is a certain (S, S)-biset Ω which induces, via
a sum of composites of transfer maps and maps induced by homomorphisms, an
idempotent endomorphism of H∗(BS; Z/p) whose image is H∗(F ; Z/p). This biset
Ω also induces endomorphisms [Ω] of H∗(BS; Z/pn) and H∗(BS; Z/pn−1) which
commute with the bottom row in (1), since any exact sequence induced by a short
exact sequence of coefficient groups will commute with transfer maps and maps
induced by homomorphisms. The same argument as that used in the proof of
[BLO2, Proposition 5.5] shows that in all of these cases, Im([Ω]) = H∗(F ;−), and
the restriction of [Ω] to its image is multiplication by |Ω|/|S| ∈ 1 + pZ. Thus the
sequence of the H∗(F ;−) splits as a direct summand of the bottom row in (1), and
hence is exact. �

We can now collect the results about central extensions of (S,F ,L) in the follow-
ing theorem, which is the analog for p-local finite groups of the classical classification
of central extensions of groups.

Theorem 6.13. Let (S,F ,L) be a p-local finite group. For each finite abelian
p-group A, the following three sets are in one-to-one correspondence:

(a) equivalence classes of central extensions of (S,F ,L) by A;
(b) equivalence classes of principal fibrations BA → X → |L|∧p ; and
(c) isomorphism classes of central extensions 1 → A → S̃ →τ S → 1 for which

each morphism ϕ ∈ HomF (P, Q) lifts to some ϕ̃ ∈ Hom(τ−1(P ), τ−1(Q)).
The equivalence between the first two is induced by taking classifying spaces, and the
equivalence between (a) and (c) is induced by restriction to the underlying p-group.
These sets are all in natural one-to-one correspondence with

(1) lim←−
L

2(A) ∼= H2(|L|; A) ∼= H2(F ; A).

Proof. The three groups in (1) are isomorphic by Lemma 6.12. By Proposition
6.10, central extensions of L are classified by lim←−

L

2(A). Principal fibrations over

|L|∧p with fiber BA are classified by[
|L|∧p , B(BA)

] ∼= H2(|L|∧p ; A) ∼= H2(|L|; A),

where the second isomorphism holds since |L| is p-good ([BLO2, Proposition 1.12])
and A is an abelian p-group. Central extensions of S by A are classified by H2(S; A),
and the central extension satisfies the condition in (c) if and only if the correspond-
ing element of H2(S; A) extends to an element in the inverse limit H2(F ; A).

A central extension of p-local finite groups induces a principal fibration of clas-
sifying spaces by Theorem 6.8(c), and this principal fibration restricts to the prin-
cipal fibration over BS of classifying spaces of p-groups. Thus, if the fibration
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over |L| is classified by χ ∈ H2(|L|; A), then the fibration over BS is classified
by the restriction of χ to H2(BS; A). It is well known that the invariant in
H2(S; A) = H2(BS; A) for a central extension of S by A is the same as that
which describes the principal fibration over BS with fiber BA (see [AM, Lemma
IV.1.12]). Since H2(|L|; A) injects into H2(F ; A) (Lemma 6.12), this shows that χ
is also the class of the 2-cocycle which defines the extension of categories. So the
map between the sets in (a) and (b) defined by taking geometric realization is equal
to the bijection defined by the obstruction theory.

Since the isomorphism lim←−
L

2(A) ∼= H2(F ; A) is defined by restriction to S (as a

group of automorphisms in L), the bijection between (a) and (c) induced by the
bijection of obstruction groups is the same as that induced by restriction to S. �

The following corollary shows that all minimal examples of “exotic” fusion sys-
tems have trivial center.

Corollary 6.14. Let F be a saturated fusion system over a p-group S, and assume
there is a nontrivial subgroup 1 �= A ≤ Z(S) which is central in F . Then F is the
fusion system of some finite group if and only if F/A is.

Proof. Assume F is the fusion system of the finite group G, with S ∈ Sylp(G).
By assumption (A is central in F), each morphism in F extends to a morphism
between subgroups containing A which is the identity on A. Hence F is also the
fusion system of CG(A) over S, and so F/A is the fusion system of CG(A)/A.

It remains to prove the converse. Assume F/A is isomorphic to the fusion system
of the finite group G, and identify S/A with a Sylow p-subgroup of G. Since by
Lemma 6.12, H2(F/A; A) ∼= H2(BG; A) and A is F-central, the cocycle classifying
the extension is in H2(BG; A), and hence there is an extension of finite groups

1 −−−−→ A −−−−−→ G
τ−−−−−→ G −−−−→ 1

with the same obstruction invariant as the extension F → F/A. In particular, we
can identify S = τ−1(S/A) ∈ Sylp(G), and G = G/A.

We will prove the following two statements:

(a) F has an associated centric linking system L; and
(b) Lc

S/A(G/A) is the unique centric linking system associated to the fusion
system F/A = FS/A(G/A).

Once these have been shown, then they imply that

(S/A,F/A, (L/A)c) ∼= (S/A,FS/A(G/A),Lc
S/A(G/A))

as p-local finite groups. Hence (S,F ,L) ∼= (S,FS(G),Lc
S(G)) as p-local finite groups

by Theorem 6.13, and thus F is the fusion system of G.
It remains to prove (a) and (b). Let

ZF : Oc(F) −−−−→ Z(p)-mod and ZG : Oc
S(G) −−−−→ Z(p)-mod

be the categories and functors of Definition 1.7. By [O1, Lemma 2.1], ZG can also
be regarded as a functor on Oc(FS(G)), and

(c) lim←−
∗

Oc
S(G)

(ZG) ∼= lim←−
∗

Oc(FS(G))

(ZG).



3856 C. BROTO, N. CASTELLANA, J. GRODAL, R. LEVI, AND B. OLIVER

By [BLO2, Proposition 3.1], the existence and uniqueness of a centric linking
system depends on the vanishing of certain obstruction classes: the obstruction to
existence lies in lim←−

3

Oc
S(G)

(ZF ) and the obstruction to uniqueness in lim←−
2

Oc
S(G)

(ZF ). Thus

(b) follows from [BLO2, Proposition 3.1] and (c), once we know that lim←−
2(ZG/A) =

0; and this is shown in [O1, Theorem A] (if p is odd) or [O2, Theorem A] (if p = 2).
It remains to prove point (a), and we will do this by showing that

(1) lim←−
3

Oc(F)

(ZF ) ∼= lim←−
3

Oc
S(G)

(ZG) = 0.

The last equality follows from [O1, Theorem A] or [O2, Theorem A] again, so it
remains only to prove the isomorphism.

Let H be the set of subgroups P ≤ S containing A such that P/A is F/A-
centric; or equivalently, p-centric in G/A. Let OH(F) ⊆ Oc(F) and OH(FS(G)) ⊆
Oc(FS(G)) be the full subcategories with object sets H.

We claim that

(2) lim←−
∗

OH(F)

(ZF ) ∼= lim←−
∗

Oc(F)

(ZF ) and lim←−
∗

OH(FS(G))

(ZG) ∼= lim←−
∗

Oc(FS(G))

(ZG) .

If P ≤ S is F-centric but not in H, then there is x ∈ NS(P )�P such that
cx ∈ AutF (P ) is the identity on P/A and on A, but is not in Inn(P ). Thus
1 �= [cx] ∈ Op(OutF (P )), and so P is not F-radical. By [BLO2, Proposition 3.2],
if F : Oc(F)op → Z(p)-mod is any functor which vanishes except on the conjugacy
class of P , then lim←−

∗(F ) ∼= Λ∗(OutF (P ); F (P )), where Λ∗ is a certain functor de-
fined in [JMO, §5]. By [JMO, Proposition 6.1(ii)], Λ∗(OutF (P ); F (P )) = 0 for any
F , since Op(OutF (P )) �= 1. From the long exact sequences of higher limits induced
by an extension of functors, it now follows that lim←−

∗

Oc(F)

(F ) = 0 for any functor F on

Oc(F) which vanishes on OH(F); and this proves the first isomorphism in (2). The
second isomorphism follows by a similar argument.

The natural surjection of F onto F/A induces isomorphisms of categories

(3) OH(F) ∼= Oc(F/A) ∼= OH(FS(G)) .

By the definition of H, we clearly have bijections between the sets of objects in these
categories, so it remains only to compare morphism sets. The result follows from
Lemma 6.5(a) for sets of morphisms between pairs of fully normalized subgroups,
and the general case follows since every object is isomorphic to one which is fully
normalized.

We next claim that for all i > 0,

(4) lim←−
i

OH(F)

(ZF ) ∼= lim←−
i

Oc(F/A)

(ZF/A) and lim←−
i

OH(FS(G))

(ZG) ∼= lim←−
i

Oc(F/A)

(ZG/A) .

To show this, by (3), together with the long exact sequence of higher limits induced
by the short exact sequence of functors

1 → A −−−−−→ ZF −−−−−→ ZF/A → 1,

we need only show that lim←−
i

Oc(F/A)

(A) = 0 for all i > 0. Here, A denotes the con-

stant functor on Oc(F/A) which sends all objects to A and all morphisms to IdA.
For each P ∈ H, let FA,P be the functor on Oc(F/A) where FA,P (P ′/A) = A if



EXTENSIONS OF p-LOCAL FINITE GROUPS 3857

P ′ is F-conjugate to P and FA,P (P ′/A) = 0 otherwise; and which sends isomor-
phisms between subgroups conjugate to P to IdA. By [BLO2, Proposition 3.2],
lim←−

∗(FA,P ) ∼= Λ∗(OutF/A(P/A); A). Also, Λi(OutF/A(P/A); A) = 0 for i > 0 by
[JMO, Proposition 6.1(i,ii)], since the action of OutF/A(P/A) on A is trivial. From
the long exact sequences of higher limits induced by an extension of functors, we
now see that lim←−

i(A) = 0 for all i > 0.
Finally, we claim that

(5) ZF/A ∼= ZG/A

as functors on Oc(F/A) under the identifications in (3). To see this, note that for
each P , (ZF/A)(P ) = Z(P )/A = (ZG/A)(P ); and since these are both identified as
subgroups of P/A, any morphism in Oc(F/A) from P/A to Q/A induces the same
map (under the two functors) from Z(Q)/A to Z(P )/A. (This argument does not
apply to prove that ZF ∼= ZG. These two functors send each object to the same
subgroup of S, but we do not know that they send each morphism to the same
homomorphism between the subgroups.)

Thus by (2), (4), and (5), for all i > 0,

lim←−
i

Oc(F)

(ZF ) ∼= lim←−
i

OH(F)

(ZF ) ∼= lim←−
i

Oc(F/A)

(ZF/A)

∼= lim←−
i

Oc(F/A)

(ZG/A) ∼= lim←−
i

OH(FS(G))

(ZG) ∼= lim←−
i

Oc
S(G)

(ZG).

This finishes the proof of (1), and hence finishes the proof of the corollary. �
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