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Abstract. We construct a connected finite loop space of rank 66 and di-
mension 1254 whose rational cohomology is not isomorphic as a graded
vector space to the rational cohomology of any compact Lie group, hence
providing a counterexample to a classical conjecture. Aided by machine cal-
culation we verify that our counterexample is minimal, i.e., that any finite
loop space of rank less than 66 is in fact rationally equivalent to a compact
Lie group, extending the classical known bound of 5.

1. Introduction

Since the discovery of the Hilton-Roitberg ‘criminal’ [19,20,37] in 1968
it has been clear that not every finite loop space is homotopy equivalent
to a compact Lie group. The conjecture emerged however, that this should
hold rationally, i.e., that any finite loop space should be rationally equivalent
to some compact Lie group (see [1], [24, Conj. A, p. 67]), and evidence
for this has been accumulating over the years. In this paper we resolve
this conjecture in the negative by exhibiting a concrete finite loop space of
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rank 66 whose rational cohomology does not agree with that of any com-
pact Lie group. To do this, we first use Sullivan’s arithmetic square [40,41],
[6, VI.8.1] and the theory of p-compact groups [10,13,3] to translate the
conjecture into a purely combinatorial statement. We then proceed to show
that this statement is ‘generically’ false, with a counterexample appearing
in rank 66. On the other hand we verify using a computer that our coun-
terexample is in fact of minimal rank, i.e., that the conjecture is true for any
finite loop space of rank less than 66. This extends earlier work of many
authors which show the statement to be true when the rank is at most 5 (see
[33,36,39,22,15] and also [2,27,29,28]).

We now explain this in more detail. Recall that a connected finite loop
space is a triple (Y, BY, e) where Y is a connected finite CW-complex, BY
is a based CW-complex, and e : Y → ΩBY is a homotopy equivalence,
where ΩBY denotes the space of based loops in BY . (We usually refer to
a loop space just as Y suppressing the rest of the structure.) It is an old theo-
rem of Hopf [21, Satz I] that the rational cohomology of any connected finite
loop space is a graded exterior algebra H∗(Y ; Q) ∼= ∧

Q(x1, ..., xr), where
the generator xi is in odd dimension 2di −1. The number r is called the rank
of Y and the collection of di’s are called the degrees (or if doubled the ‘type’)
of Y . It is a classical result of Serre [34] that the collection {d1, . . . , dr} in
fact uniquely determines the rational homotopy type of (Y, BY, e). The p-
completion (Y p̂, BY p̂, ep̂) is a connected p-compact group, i.e., H∗(Y p̂; Fp)
is finite dimensional and connected and BY p̂ is p-complete (in the sense of
Sullivan [40,41] or Bousfield-Kan [6]; see e.g., [13], [10], or [3] for much
more on p-compact groups.)

An amazing result of Dwyer-Wilkerson [13], extending work of Dwyer-
Miller-Wilkerson [11] and Adams-Wilkerson [1], says that any p-compact
group X has a maximal torus, that is a loop map T ∼= (S1

p̂)
r → X which

is suitably maximal and an associated Weyl group WX . If X is connected,
then WX acts faithfully on L X = π1(T ) in such a way that (WX, L X )
becomes a finite Zp-reflection group and

H∗(BX; Zp) ⊗ Q
∼=→ (H∗(BT ; Zp) ⊗ Q)WX .

The invariant ring (H∗(BT ; Zp) ⊗ Q)WX is a polynomial algebra with gen-
erators in dimensions 2e1, . . . , 2er , and the integers e1, . . . , er are just the
well known degrees of the Qp-reflection group (WX, L X ⊗ Q) [5, Ch. 7],
[17]. (In fact the harder classification states that (WX, L X ) completely
classifies X when p is odd [3].) If Y is a finite loop space then, for all
primes p,

H∗(BY ; Q) ⊗ Qp
∼= H∗(BY ; Z) ⊗ Qp

∼= H∗(BY p̂; Zp) ⊗ Q.

Furthermore by the Eilenberg-Moore spectral sequence H∗(BY ; Q) is
a polynomial algebra with generators in dimensions 2d1, . . . , 2dr , where
the di’s are the degrees of Y introduced earlier. Hence by the above we
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conclude that, for each prime p, Y p̂ has to be some p-compact group such
that the degrees of Y are the same as the degrees of the Qp-reflection
group (WY p̂, LY p̂ ⊗ Q). This puts severe restrictions on the possible de-
grees. Finite Qp-reflection groups have been classified by Clark-Ewing [9]
building on the classification over C by Shephard-Todd [35]. The classi-
fication divides into three infinite families along with 34 sporadic cases
(the non-Lie ones only being realizable for certain primes). We denote
by WD the Weyl group coming from the Dynkin diagram D, whereas the
notation G(·, ·, ·) means a given group from the infinite family 2, and
Gn refers to one of the sporadic cases, in the standard notation listed
e.g., in [9] or [17]. Historically, pioneering work of Clark [8] had al-
ready shown that if the maximal degree of Y is h then Y also has to
have the degree m ≤ h if m − 1 and h are relatively prime, using ar-
guments only involving large primes (compare also [23, 3.20]). This, as
input to small rank calculations, served as original motivation for the con-
jecture. Adams-Wilkerson [1] much later found the restrictions imposed
by reflection groups described above, but worked only at large primes
since the technology of [13] was not available. They furthermore gave
an example [1, Ex. 1.4] showing that the large prime information is not
enough to settle the conjecture algebraically. What we show here is that,
contrary to general expectation, not even the restrictions at all primes are
sufficient.

Theorem 1.1. There exists a connected finite loop space Y of rank 66 such
that the Weyl group of Y p̂ as a Qp-reflection group is given by

WA4 B4 B5 B8 B8E8 A12 B14 × G24 for p = 2,

WA4 D4 B5 B8 B8E8 A13 B14 × G12 for p ≡ 1, 3 (mod 8),

WG2 A4 B4 B4 B7 D10 A13 B15 × G(4, 2, 7) for p ≡ 5 (mod 8),

WA4 B4 B5 B8 B8E8 A13 B14 × G(6, 3, 2) for p ≡ 7 (mod 24),

WD4 A5 D8 D8 B10 A13 D16 × G(24, 24, 2) for p ≡ 23 (mod 24).

The space Y has dimension 1254 and the degrees of Y are

{28, 32, 48, 52, 67, 7, 87, 9, 105, 11, 125, 13, 145, 163, 182, 202, 22, 242, 26,

28, 30}
(using exponent notation to denote repeated degrees) and these do not agree
with the degrees of any finite Q-reflection group, i.e., the graded vector space
H∗(Y ; Q) does not agree with H∗(G; Q) for any compact Lie group G.

Furthermore this counterexample is minimal in the sense that any con-
nected finite loop space of rank less than 66 is rationally equivalent to some
compact Lie group G.

Clark-Ewing [9] constructed p-compact groups realizing each of the irre-
ducible Qp-reflection groups above, in the cases where p does not divide the
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Weyl group order. The remaining important small prime cases which are not
realized by Lie groups were constructed by Zabrodsky (G12, p = 3) [46],
Dwyer-Wilkerson (G24, p = 2) [12], and Notbohm (G(·, ·, ·), p small)
[31]. Since G24 and G12 are the only finite irreducible Qp-reflection groups
which do not come from compact Lie groups, for p = 2 and 3 respectively,
any counterexample will have to involve these groups.

We note that by work of Bauer-Kitchloo-Notbohm-Pedersen [4] the loop
space Y of Theorem 1.1 is in fact homotopy equivalent to a compact smooth
parallelizable manifold.

Sullivan’s arithmetic square [40,41] reduces the study of finite loop
spaces to the study of p-compact groups for all primes p with the same
degrees together with the well understood concept of arithmetic square
‘mixing’. We restrict ourselves here to giving the following lemma which
guarantees that an algebraic counterexample produces a topological coun-
terexample.

Lemma 1.2. Let {d1, . . . , dr} be a collection of positive integers (with
repetitions allowed). Suppose that for each prime p we have a connected p-
compact group X p whose Weyl group (WX p, L X p) has degrees {d1, . . . , dr}.
Then there exists a (non-unique) connected, finite loop space Y such that
Y p̂

∼= X p as p-compact groups for all primes p.

The next theorem guarantees that ‘generically’ there will be collections
of degrees which are the degrees of a finite Qp-reflection group for all
primes p without being the degrees of a finite Q-reflection group. Together
with Lemma 1.2 this shows why examples like the one in Theorem 1.1 exist.
For the statement of the result we need to introduce some more notation.
If {d1, d2, . . . , dr} is a collection of degrees, then the associated degree
vector equals (x1, x2, . . . ) ∈ Z(∞) where xi is the number of degrees equal
to i. We let KLie ⊆ Q(∞) denote the positive rational cone spanned by the
degree vectors of the finite irreducible Q-reflection groups, i.e., the set of
finite non-negative rational linear combinations of these vectors. Similarly
we let K p denote the positive rational cone spanned by the degree vectors
of the finite irreducible Qp-reflection groups. Finally we let KLin denote the
positive rational cone spanned by the degree vectors of the finite irreducible
Q-reflection groups and the degree vectors of the groups G(m, m, 2), m = 8,
12, 24, cf. [27, Thm. 1.1(b)].

Theorem 1.3. We have KLie !
⋂

p K p, where the intersection is taken over
all primes p. Moreover

⋂
p K p = K2 ∩ K3 ∩ K5 ∩ K7 ∩ KLin.
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2. Proofs

Recall the following essentially classical result.

Theorem 2.1. Let X be a simply connected p-compact group with degrees
{d1, . . . , dr}. Then, as a space, X - (S2d1−1 × · · · × S2dr−1) p̂ if and only
if p ≥ max{d1, . . . , dr}. If X is only assumed to be connected then under
the stronger assumption p > max{d1, . . . , dr}, X still splits as a product of
spheres.

Sketch of proof. Set h = max{d1, . . . , dr} and suppose first that X is simply
connected. If p ≥ h then by a Bockstein spectral sequence argument of
Browder [7, Thm. 4.7], H∗(X; Zp) is torsion free and concentrated in odd
degrees. Hence an easy argument of Serre [34, Ch. V Prop. 6] (see also [26]),
using that πn(S2di−1) has no p-torsion when n < 2di − 1 + 2p − 3, yields
that X - (S2d1−1 ×· · ·× S2dr−1) p̂. (In fact, this direction uses only that X is
an H-space with H∗(X; Fp) finite dimensional.) The other direction, which
is more subtle and not needed here, was first established for compact Lie
groups by Serre [34] and Kumpel [25] by case-by-case arguments, and later
a general argument was given by Wilkerson [44, Thm. 4.1] using operations
in K -theory.

Assume now that X is just connected and that p > h. If π1(X) is
torsion free, then as a space X - X̃ × (S1

p̂)
k where X̃ is simply connected

(cf. e.g. [24, p. 24]), which reduces us to the previous case. Hence we
only have to justify that, with p as above, π1(X) does not have torsion.
By [30, Thm. 1.4] we have a fibration BK → BX̃ × BT ′ → BX, such
that X̃ is a simply connected p-compact group, T ′ is a p-completed torus,
K is a finite abelian p-group, and the projection map K → X̃ is a central
monomorphism. But then by [14, Thm. 7.5], the image of K is contained
in T̆ WX̃ , where T̆ is a discrete approximation to a maximal torus in X̃. In
particular if T̆ WX̃ = 0, π1(X) has to be torsion free. But if p > h then
p " |WX̃ |, so we have an exact sequence

· · · → H0(WX̃; L X̃ ⊗ Q) → H0(WX̃; T̆
) → H1(WX̃; L X̃) → · · ·

where the first and third terms are zero, so T̆ WX̃ = 0 as wanted. 01
Proof of Lemma 1.2. Set h = max{d1, . . . , dr} and let BM = (

∏
p BX p)Q.

Since rationalization commutes with taking loop space and finite products
we have that ΩBM - (

∏
p<h(X p)Q) × (

∏
p≥h X p)Q. By Theorem 2.1

X p - (
S2d1−1 × · · · × S2dr−1

)
p̂ when p > h, and by the same argument(

X p
)

Q - (
(S2d1−1 × · · · × S2dr−1) p̂

)
Q for all primes p. Combined with

the fact that (S2di−1
p̂)Q - K(Qp, 2di − 1) this implies that πn(BM) =(∏

p πn(BX p)
)

Q
∼= ⊕

i,2di=n A f , where A f = (
∏

p Zp) ⊗ Q is the ring of

finite adeles. In particular BM only has homotopy groups in even dimen-
sions. But now a rational space which only has homotopy groups in even
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dimensions is necessarily a product of Eilenberg-Mac Lane spaces, as is
easily seen by going up the Postnikov tower (cf. e.g., [43, Ch. IX]). Set
BK = K(Q, 2d1) × · · · × K(Q, 2dr) and construct a map BK → BM by
levelwise taking the unit ring map Q → A f . Define BY as the homotopy
pullback of the diagram BK → BM ← ∏

p BX p, and note that BY by
construction is a CW-complex.

Since Q and Ẑ = ∏
p Zp generate A f , the Mayer-Vietoris sequence in

homotopy groups corresponding to the homotopy pull-back in fact splits, so
πn(BY ) is the pull-back in the category of groups of the diagram πn(BK ) →
πn(BM) ← ∏

p πn(BX p). Concretely, the homotopy groups of BY are
given by

πn(BY ) =
 ⊕

i,2di=n

Z

 ⊕
(⊕

p

Tor
(
Z, πn(BX p)

))
.

In particular, this shows that πn(ΩBY ) is finitely generated for all n. Hence
also Hn(ΩBY ; Z) is finitely generated for all n (see [34][18, Thm. 2.16]).

By construction H∗(BY ; Zp)
∼=→ H∗(BX p; Zp) so, since the spaces

involved are simply connected, H∗(ΩBY ; Zp)
∼=→ H∗(X p; Zp) for all p.

But since we have seen that each Hn(ΩBY ; Zp) is finitely generated and
we know that X p is homotopy equivalent to a product of spheres for all
p > h, we conclude that in fact

⊕
n Hn(ΩBY ; Z) is finitely generated as

an abelian group.
If ΩBY is simply connected then it follows from the classical results

of Wall [42, Thms. B and F] that ΩBY is homotopy equivalent to a finite
CW-complex Y . If ΩBY is not simply connected then the conclusion still
holds, now appealing to a more recent result of Notbohm [32] (see also [4])
which relies on ΩBY being a loop space. 01
Proof of Theorem 1.1. It follows directly from Lemma 1.2 that we can
construct a connected finite loop space Y with the listed properties. One can
check directly by a finite search that the degrees of Y do not agree with those
of a compact Lie group, but one can also argue more simply as follows.
There are exactly 61 finite irreducible Q-reflection groups whose degrees
are all at most 30. The inner product of the vector

(0, 2,−1,−1, 0, 0, 1,−1, 0, 0, 0, 1,−1, 0, 1,−1, 0, 0,
(∗)

0, 0, 0, 4,−1,−3, 1,−1, 0, 0, 0, 1)

and the degree vector of any of these is non-negative. Hence the same holds
for any finite Q-reflection group whose degrees are all at most 30. However
the inner product of the vector (∗) with the degree vector of Y equals −1,
so the degrees of Y do not agree with those of a compact Lie group.

To check that our counterexample has minimal rank we proceed as fol-
lows. For any prime p, there are only finitely many finite Qp-reflection
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groups of a given rank, cf. [9]. Hence one can go through the list of
(say) finite Q2-reflection groups and check which of these have degrees
not matching those of a finite Q-reflection group, but matching those of a fi-
nite Qp-reflection group for p = 3, 5, . . . . We have written a C++ program
which implements this algorithm, and used it to check all finite Q2-reflection
groups of rank less than 66. 01
Remark 2.2. Note that Theorem 1.1 in particular tells us that there exists
a loop space whose p-completion is not homotopy equivalent to the p-
completion of a compact Lie group for any prime p. If we only want this to
hold for a single prime p we can find much simpler examples. For instance
using Lemma 1.2 one can construct a finite loop space whose 2-completion
is homotopy equivalent to X2 = DI(4) × Sp(1)2̂ × Sp(6)2̂ and whose p-
completion for p 4= 2 is homotopy equivalent to X p = Sp(3) p̂ × Sp(7) p̂,
where DI(4) denotes the 2-compact group constructed by Dwyer-Wilkerson
[12] realizing the Q2-reflection group G24. However, X2 is not homotopy
equivalent to the 2-completion of a compact Lie group, since the only
simply connected compact Lie groups with the correct rational degrees are
Spin(7)×Spin(15), Spin(7)×Sp(7), Sp(3)×Spin(15) and Sp(3)×Sp(7),
but these do not have the same mod 2 Poincaré series as X2, as can be
obtained from [12]. In fact an easy verification reveals that the mod 2
Poincaré series of X2 does not agree with that of any compact Lie group.
(Compare [45, Conj. 2], [38, Prob. 9], [24, Conjs. B and C, p. 67].)

Proof of Theorem 1.3. The first claim follows from the proof of Theo-
rem 1.1, see also Remark 2.3 below. To show the second claim note that the
proof of [27, Thm. 1.1(b)] shows that

⋂
p K p ⊆ KLin and hence⋂

p

K p ⊆ K2 ∩ K3 ∩ K5 ∩ K7 ∩ KLin.

To prove the reverse inclusion, note that the only finite irreducible Q3-
reflection group which is not a Q-reflection group is the group G12. Since
this is a Qp-reflection group for all primes p satisfying p ≡ 1, 3 (mod 8)
we get K3 ⊆ K p for these primes. Similarly the finite irreducible Q5-
reflection groups which are not Q-reflection groups are precisely the groups
G(4, 1, n), G(4, 2, n) for n ≥ 2, G(4, 4, n) for n ≥ 3, Z/4 from family
3, G8, G29 and G31. This shows that K5 ⊆ K p when p ≡ 1 (mod 4). In
the same way we see that K7 ⊆ K p when p satisfies p ≡ 1 (mod 6) and
p ≡ ±1 (mod 8), i.e. when p ≡ 1, 7 (mod 24). Finally all the groups
G(m, m, 2), m = 8, 12, 24 are Qp-reflection groups when p ≡ ±1
(mod 24), so KLin ⊆ K p for these primes. This proves the result since
any prime p satisfies p = 2, p ≡ 1, 3 (mod 8), p ≡ 1 (mod 4), p ≡ 1, 7
(mod 24) or p ≡ ±1 (mod 24). 01
Remark 2.3. A few remarks about how we found the counterexample in
Theorem 1.1 might be in order, since this is not really clear from the
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proof. First we used Fukuda’s cdd+ program [16] to establish Theorem 1.3
by showing that KLie truncated at degree say 30 does not agree with the
intersections of the similarly truncated versions of K2, K3, K5, K7, and KLin.
From this it is a linear programming problem to obtain a concrete point in
the difference, and by solving the associated integer programming problem
one gets a point in the difference which is minimal with respect to rank
(or dimension). Note however that being minimal in this sense is slightly
weaker than being a minimal counterexample, which is why we had to
finish off our proof of minimality in Theorem 1.1 with a brute force check,
which required rather massive computer calculations. Using the geometric
picture we have found a counterexample of smaller dimension but larger
rank. Namely, there exists a connected finite loop space of rank 74 and
dimension 1250 and degrees

{29, 32, 47, 53, 68, 73, 88, 93, 106, 112, 126, 132, 145, 15, 163, 182,

202, 22, 24},
which is not rationally equivalent to a compact Lie group. This is seen by
considering the Qp-reflection groups

WA1 A1 E6 D7 D8 A9 D11 D13 A15 × G24 for p = 2,

WA1 A1 D5 D7 D9 B10 B12 A13 A14 × G12 for p ≡ 1, 3 (mod 8),

WA1 A1 D5 D6 E7 D9 B11 A13 A14 × G(4, 4, 7) for p ≡ 5 (mod 8),

WG2 D5 D7 D9 B10 B12 A13 A14 × G(8, 8, 2) for p ≡ 7 (mod 8).

It is also possible to construct a counterexample where all degrees are even,
cf. [29]. For instance there is an example of rank 68, dimension 1468 and
degrees

{28, 48, 68, 88, 106, 125, 146, 164, 183, 203, 222, 243, 262, 28, 30}.
Here one can use the Qp-reflection groups

WB4 B5 B5 B8 B8E8 B13 B14 × G24 for p = 2,

WD4 B5 B5 B8 B8E8 B14 D14 × G12 for p ≡ 1, 3 (mod 8),

WG2 B4 B5 B5 B7 B9 D14 B15 × G(4, 2, 7) for p ≡ 5 (mod 8),

WB4 B5 B5 B8 B8E8 B14 D14 × G(6, 3, 2) for p ≡ 7 (mod 24),

WD4 D6 D8 D8 B10 D14 D16 × G(24, 24, 2) for p ≡ 23 (mod 24).
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