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In my talk, based on [2], I explained how to assign certain finite algebraic models
to G-spaces with finite mod p homology, for G a finite group. In general these
models are too näıve to capture the mod p equivariant homotopy type, where by
equivariant homotopy type we mean that two G-spaces are considered equivalent
(called hG-equivalent) if they can be connected by a zig-zag of G-maps which are
non-equivariant homotopy equivalences. We show, however, that the model does
in fact capture the mod p equivariant homotopy type in the fundamental case when
X has the mod p homology of a sphere—integral results can easily be obtained
from the p-local results via the arithmetic square. Even when the model does
not capture the homotopy type it still encodes important information about the
group action, including all of classical Smith theory. We also show that for spheres
the algebraic models are themselves determined by simple numerical information
(Theorem 2), and that all models are realizable (Theorem 3). Our work also seems
to point to that the models have independent algebraic interest. The models are
given via the following theorem.

Theorem 1. Let G be a finite group and consider the functor Φ : G-spaces →
Ch(VectOp(G)op) which to a G-space X associates the functor on the opposite p-
orbit category Op(G)op given by

G/P 7→ lim
n
C∗(mapG(EG×G/P, Pn(Fp)nX); Fp)

Then Φ sends a G-space with finite Fp-homology to a perfect complex in VectOp(G)op .

A perfect complex is a complex quasi-isomorphic to a finite chain complex
of finitely generated projectives. Here Ch(VectOp(G)op) denotes chain complexes
of functors from the opposite p-orbit category Op(G)op to Fp-vector spaces, C∗
denotes singular chains reduced by setting C−1 = Fp, mapG is the G-equivariant
mapping space, Pn denotes the nth Postnikov truncation, and (Fp)nX denotes
the nth stage in the Bousfield-Kan tower of X converging to the Bousfield-Kan
Fp-completion of X. Under mild restrictions on X, the formula for Φ(X)(G/P )
can be simplified to C∗((X∧p )hP ; Fp), and if X is a genuine finite complex even to
C∗(XP ; Fp), using the generalized Sullivan Conjecture (now a theorem by Miller
and Lannes). The technical description in general is forced upon us by properties
of Lannes’ T -functor.

Note that, up to quasi-isomorphism, Φ(X) only depends on X up to hG-
equivalence. Also note that by the existence of minimal resolutions, every perfect
complex has a minimal model, a finite chain complexes of projectives, well-defined
up to isomorphism. To get a feeling for Theorem 1, one may note that in the case
where X is a point, the result implies that the constant functor in VectOp(G)op has
finite projective dimension; a celebrated result first proved by Jackowski-McClure-
Oliver [3].
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The abelian category VectOp(G)op can be viewed as modules over the category
algebra FpOp(G)op of Op(G)op, i.e., the algebra with Fp-basis consisting of the
morphisms in Op(G)op and multiplication given by composition. This is a finite
dimensional algebra whose simple modules are described by the simple modules
for NG(P )/P , where P runs over the conjugacy classes of p-subgroups of G, and
the projectives are given by left Kan extension. For instance for G = Cp the
orbit category looks like G/G → G/e so the simples are k → 0 and 0 → k with
corresponding projectives k → k and 0→ kCp, where we from now on let k = Fp

for short. Examining the perfect complexes which can be built from them easily
leads to the statements of classical Smith theory. For G = Σ3 and k = F2 we get
simples k ⇒ 0, 0⇒ k, and k ⇒ St (where⇒ denotes 3 arrows, and St denotes the
2-dimensional simple module for Σ3) with corresponding projectives k ⇒ k[G/C2],
0⇒ k[G/C3], and 0⇒ St. Notice that here the constant functor is not projective,
but has a projective resolution with k ⇒ k[G/C2] in degree zero and 0 ⇒ St in
degree one.

The proof of Theorem 1 requires first developing a criterion for recognizing
perfect complexes in terms of certain kNG(P )/P -modules, and then using Lannes
theory together with the theory of support varieties to verify that these conditions
are met.

We say that a perfect complex X of kOp(G)op-modules is a kOp(G)op-sphere
if H(X(G/e)) is one-dimensional. An oriented dimension function consists of a
functor n : Op(G)op → (Z,≤), together with an action ofG on k. Every kOp(G)op-
sphere has an associated oriented dimension function given by letting n(G/P )
be the (by Smith theory) unique n such that Hn(X(G/P )) 6= 0, and taking as
orientation the action of G on H(X(G/e)). The next theorem gives a classification
of kOp(G)op-spheres.

Theorem 2. Let X and Y be kOp(G)op-spheres. Then X and Y are quasi-
isomorphic if and only if X and Y have the same oriented dimension functions.

The proof involves setting up the right obstruction theory, and then showing
that the existence and uniqueness obstructions to extending a map vanish, once
we have chosen the map on X(G/S) for a Sylow p-subgroup S. The vanishing
result takes as one input extending properties of Steinberg complexes in [1] to the
perfect complexes we are considering.

We conjecture that a given oriented dimension function is realizable by a kOp(G)op-
sphere if and only if it satisfies the so-called Borel-Smith conditions (where only-if
is easy). We have proved this for certain classes of groups including many groups
of small order, and groups with normal Sylow p-subgroup (in particular p-groups).

The last theorem which we list here states that there is a 1-1-correspondence
between p-complete G-spheres, up to homotopy, and kOp(G)op-spheres subject to
obvious low-dimensional restrictions.

Theorem 3. Let X and Y be G-spaces which homotopy equivalent to Fp-complete
spheres. Then X and Y are hG-equivalent if and only if Φ(X) and Φ(Y ) are
quasi-isomorphic.
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Furthermore, we have a 1-1-correspondence between Fp-complete G-spheres up
to hG-equivalence and kOp(G)op-spheres where H(X(G/S)) has degree no less
than −1 and the NS/S-action on H(X(G/S)) is trivial if in degree −1 and factors
through ±1 if in degree 0, where S is a Sylow p-subgroup.

In addition to the results and methods of Theorem 1 and 2, the proof uses that
the G-action on π∗(X) of has a filtration where the quotients are kG-modules of
dimension less than p, which allows for passing between X and its abelianization
FpX via obstruction theory and tower arguments.

Note that Theorem 2 and 3 in particular shows that maps [BG,BAut(Sn∧
p )]

are determined by the restriction to the normalizer of a Sylow p-subgroup in G.
This shows that homotopical group actions on spheres are better behaved than
homotopical representations [BG,BU(n)∧p ], where there are many exotic maps
due to non-vanishing of certain higher limit obstructions, as first discovered by
Jackowski-McClure-Oliver [3].
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