Uncompleting classifying spaces

Jesper Grodal

(joint work with Bob Oliver)

The information encoded in a finite group G is equivalent to the information encoded in its classifying space BG. In homotopy theory, one can complete a space at a prime, which produces the p-completed classifying space BG_p^{\wedge} . When G is abelian this procedure simply gives the classifying space BS of the Sylow p-subgroup of G, and all information prime to p is lost. When G is non-abelian the resulting space BG_p^{\wedge} is a much more complicated object, but still an invariant of the "p-local structure" of the group, suitably defined.

In this talk we showed that often, when G is "non-abelian enough", this p-completion process can in fact be reversed! We explained theorems saying that for many "sufficiently complicated" groups G, BG can be recovered from from the p-completed space BG_p^{\wedge} for just a single prime p. In other words the p-local structure in G in fact completely determines its global structure. The approach goes via a certain category $\mathcal{L}_p(G)$ called the p-local finite group of the group (see e.g., [1] or [2] for definitions). We propose the fundamental group $\pi_1(\mathcal{L}_p(G))$ as an interesting invariant of the p-local structure of the group.

For several groups we get "local-to-global" theorems:

Theorem 1 (Grodal-Oliver [3]). Suppose that G is either

- (1) A p-solvable group with $O_{p'}(G) = 1$.
- (2) A finite group of Lie type of rank ≥ 3 with $O_{p'}(G) = 1$.
- (3) Σ_{p^n} with $n \geq 3$ and p = 2 (probably also OK for p odd).
- (4) Several of the larger sporadic groups for p = 2 e.g., the Monster, M_{24} , Co_3

Then $\pi_1(\mathcal{L}_p(G)) = G$, and in particular G can be recovered from its p-local structure $\mathcal{L}_p(G)$.

For other groups G, such as linear groups over \mathbb{F}_q for q a prime power different from p, easy examples show that the p-local structure cannot determine the group G uniquely. However, our work indicate that even in those cases $\pi_1(\mathcal{L}_p(G))$ can be a sort of "best global approximation" to the p-local finite group $\mathcal{L}_p(G)$, which is an interesting group, though not necessarily finite:

Theorem 2 (Grodal-Oliver [3]). Suppose that $G = SO_n(\mathbb{F}_q)$ for $q \equiv 3, 5(8)$, $n \leq 8$, then $\pi_1(SO_n(\mathbb{F}_q)) \cong SO_n(\mathbb{Z}[\frac{1}{2}])$

REFERENCES

- [1] C. Broto, R. Levi, and B. Oliver, Homotopy equivalences of p-completed classifying spaces of finite groups, Invent. math. 151 (2003), 611–664
- [2] C. Broto, R. Levi, and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), 779–856
- [3] J. Grodal and B. Oliver, Fundamental groups of p-local finite groups, In preparation.