THE TRANSCENDENCE DEGREE OF THE MOD p
COHOMOLOGY OF FINITE POSTNIKOV SYSTEMS

JESPER GRODAL

ABSTRACT. We examine the transcendence degree of the mod p cohomology
of a finite Postnikov system E. We prove that, under mild assumptions on
E, the transcendence degree of H*(E; Fp) is always positive, and give a com-
plete classification of the Postnikov systems where the transcendence degree
of H*(E;Fyp) is finite. More precisely we prove that H*(E;F)) is of finite
transcendence degree iff E is Fp-equivalent to the classifying space of a p-toral
group. To obtain the results we establish a general formula for determining
the transcendence degree of an unstable algebra given in terms of the growth
of certain ‘unstable Betti numbers’. As an application of these results we de-
rive statements about the n-connected cover X (n) of a finite complex X. We
show for instance that, under suitable connectivity assumptions on X, the LS
category of X (n) is always infinite assuming X (n) # X. Finally we discuss
generalizations of the obtained results to polyGEMs.

1. INTRODUCTION

In 1953 Serre showed his celebrated result that a 1-connected finite Postnikov
system F with finitely generated homotopy always has homology in infinitely many
dimensions, using his newly invented spectral sequence [31]. His methods, however,
although revealing the asymptotic size of the Betti numbers (the coefficients in the
Poincaré series) of H*(E; F,), did not in general give information about the ring or
A-module structure of H*(E;F)) (here A denotes the Steenrod algebra). Serre’s
theorem has since then been generalized in several ways by a number of people
(Dwyer-Wilkerson [9], Lannes-Schwartz [20, 22|, McGibbon-Neisendorfer [24]) all
utilizing the theory of unstable modules over the Steenrod algebra as developed
by Lannes, Schwartz and others. One of the main advantages of this approach is
that, by relating certain properties of the cohomology to questions about mapping
spaces, it gives a grip on how these properties behave with respect to fibrations—i.e.
it turns traditional spectral sequence questions into long exact sequence questions.
This paper is a contribution along these lines.

We offer the following two main theorems:

Theorem 1.1. Let E be a connected nilpotent finite Postnikov system with finite
m1(E). Assume that H*(E;F,) is of finite type and that H*(E;Fy) # 0. Then
H*(E;F,) contains an element of infinite height.
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Theorem 1.2. Let E be a connected nilpotent finite Postnikov system with finite
m1(E). Assume that H*(E;F,) is of finite type. Then H*(E;F,) has finite tran-
scendence degree iff E is Fp-equivalent to a space E’ fitting into a principal fibration
sequence of the form

CP® x---xCP>® - E' — K(P,1),
where P is a finite p-group.

Here we define the transcendence degree, d(K), of a graded algebra K as the
maximal number of homogeneous algebraically independent elements in K. When
K is connected noetherian, d(K) is equal to the Krull dimension of K. Note
that Theorem 1.1 can be reformulated as saying that the transcendence degree
of H*(E;F)) is always positive. Theorem 1.1 was previously known in the case
p = 2 for E 1-connected by work of Lannes and Schwartz [22], but was actually
rediscovered independently by the author and formed the starting point for this
work.

From now on H*(X) denotes the mod p cohomology of X for some fixed but
arbitrary prime p. In the rest of this introduction we use some standard notation
concerning unstable modules over the Steenrod algebra. In the next section we
briefly introduce these concepts, for a general reference see e.g. Schwartz [30].

The key topological result needed in proving the results about H*(FE) is the
following asymptotic growth formula in rk, V', where V is an elementary abelian
group:

log,, |[BV, K (m(E), n)]| ~ log, [[BV. E]| ~ Clog, |[BV, K (mu(E),n)]|

where n is the dimension of the highest homotopy group which is not uniquely
p-divisible.

The above growth formula relates to the algebra structure of H*(E) by the
following theorem of Lannes, generalizing earlier work of Miller [25]:

Theorem 1.3. [18, 19] Let X be a connected space. Suppose that X is nilpo-
tent with finite 71 (X) and H*(X) of finite type. Then the natural map f — f*,
[BV, X] — Homy (H*(X), H*(V)) is a bijection.

Here IC denotes the category of unstable algebras over the Steenrod algebra.
We have the following theorem of Lannes and Schwartz:

Theorem 1.4. [29, 30] Let M be an unstable module over the Steenrod algebra.
Then the following two conditions are equivalent:

1. M is nilpotent.
2. Homy (M, H*(V')) = 0 for all elementary abelian p-groups V.

Here U denotes the category of unstable modules over the Steenrod algebra.
The Lannes linearization principle [19)

HOHlu(K, H*(V))/ ~ F:I;Iom;c(K,H*(V)) ,

where ’ denotes the (continuous) vector space dual, now immediately leads to an
analogous theorem concerning unstable algebras.

Theorem 1.5. [21] For an augmented unstable algebra K the following conditions
are equivalent:

1. Homg (K, H*(V)) = 0 for all elementary abelian p-groups V.
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2. K is F-equivalent to the trivial unstable algebra F,.
3. K is nilpotent as an unstable module over the Steenrod algebra.
4. K is a nil ideal in K, i.e. it consists of nilpotent elements.

Here the bar denotes the augmentation ideal. The equivalence of 2., 3., and
4. are direct consequences of the definitions. Theorem 1.1 now follows from the
growth formula and the preceding general theorems.

It is worth noting that in the preceding theorems one has to consider elementary
abelian groups V' of an arbitrary size. Restriction to e.g. V = Z/p would not be
enough, which is seen by for example setting K = H*(K(Z,3)). This makes the
property ‘nilpotent’ a bit less well behaved than for example the property ‘locally
finite’.

To prove Theorem 1.2 we examine work of Henn, Lannes and Schwartz [16] on
the structure of unstable algebras and look at it in terms of growth properties. This
leads to a characterization of the transcendence degree of an unstable algebra K in
terms of the growth of the characteristic numbers 7, (K) := log,, | Homg (K, H*(V))|
in v := 1k, V, under mild restrictions on K. More precisely we prove:

Theorem 1.6. Let K be an unstable algebra with 1 # 0. Assume that K has
transcendence degree d(K) and that Homy (K, H*(V)) is finite for oll V. If d(K)
is finite then v,(K) ~ d(K)v. If d(K) is infinite then ~,(K) grows faster than
linearly in v.

Theorem 1.6 is a powerful tool for calculating the transcendence degree of unsta-
ble algebras. To demonstrate this we rederive Quillen’s theorem in the finite group
case, by proving that the Krull dimension of H*(G) is equal to the p-rank rk, G
for every finite group G.

We call the numbers v, (K) (which are not necessarily integers) ‘unstable Betti
numbers’ since they show some similar properties of the traditional Betti numbers
of a graded algebra, (,(K) = dimg, K™. One should think of the log, as a replace-
ment of dimg, necessary since Homy (K, H*(F£™)) in general is not an F-vector
space. Theorem 1.6 shows that an analog of the well known formula relating the
growth of the Betti numbers and the transcendence degree (Krull dimension) of a
noetherian connected graded algebra holds for these new numbers, now with much
weaker restrictions on the unstable algebra.

Applying Theorem 1.6 to the obtained growth formula for log, |[BV, E]|, where
E is a finite Postnikov system, and doing a bit of work now leads to Theorem 1.2.

We also include a section where we see that the above results imply that the
n-connected cover of a finite complex always has infinite Lusternik-Schnirelmann
(LS) category, generalizing earlier partial results of McGibbon and Mgller [23].

Finally we discuss and conjecture generalizations of the above results to poly GEMs,
correcting a small mistake put forth in [12].

In the proofs of the theorems we several times need a small but useful fact
about nilpotent actions. Since we have been unable to find this fact stated in the
literature, and believe that it ought to be better known, we give a proof in a short
appendix.
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2. NOTATION

By a space we, for simplicity, mean an object in the pointed homotopy category
Ho,. of CW-complexes. The bracket [—, —] means a free homotopy class of maps
(Theorem 1.3 is the main reason why this is convenient). We will also need to refer
to pointed homotopy classes of pointed maps which we denote by [—, —|p:.

We define the p-rank, rk,, of a group G as the maximal rank of an elementary
abelian subgroup V contained in G. At all times we employ the convention that
v =1k, V, for the elementary abelian group V in question.

When talking about the asymptotic behavior of some sequence of numbers, we
mean by the symbol X that for all € > 0 there exists an N such that (left-hand

side),, < (1 + €)(right-hand side),, for all n > N. We define & and ~ analogously.

In our notation involving unstable modules over the Steenrod algebra, we follow
the standard notation used in e.g. Schwartz [30]. We quickly review the basic
definitions:

Definition 2.1. An unstable module M is a graded module over the Steenrod al-
gebra A satisfying the following instability conditions:

o Ifp=2then Sq"x =0 fori > |x|.

o Ifp>2 then f°Pix =0 for e + 2i > |z|.

Let U denote the category whose objects are unstable modules and whose mor-
phisms are (degree 0) A-module maps. Note that this is an abelian category.

Definition 2.2. An unstable algebra K is an unstable module equipped with two
maps n : Fp, — K and p : K @ K — K making K into a commutative unital
F,-algebra such that

o u is A-linear (i.e. the Cartan formula holds).

o Sql*lz = 22 for any v € K if p = 2; P1*1122 = P for any x € K of even
degree if p > 2.

Let K denote the category whose objects are unstable algebras, and whose mor-

phisms are those (degree 0) Fp,-algebra maps which are A-linear.

Furthermore, throughout this paper, for convenience we make the standing as-
sumption that all unstable algebras have 1 # 0, i.e. we exclude the unstable algebra
0.

Definition 2.3. We say that an unstable module is nilpotent if the following holds:

o Ifp =2 then for every x € M there exists an integer N such that
SqQNfl‘m‘ Sq2N72|m| o Sq\z\x =0.



THE COHOMOLOGY OF FINITE POSTNIKOV SYSTEMS 5

o If p > 2 then for every x € M where |z| is even there exists an integer N
such that PP '=l/2pp" Pl2l/2 L plel/2; —
Let N'il denote the full subcategory of U whose objects are nilpotent modules.

Note that this definition extends the usual definition if [ is an ideal in an unstable
algebra, in the sense that we have that I lies in Al iff it is nil as an ideal, that is if
all its elements are nilpotent. Beware however, for a non-noetherian algebra a nil
ideal I need not be nilpotent (i.e. there exists n such that I = 0), which makes
the terminology slightly ambiguous. Note also that an unstable algebra with 1 # 0
of course cannot itself be nilpotent.

We need a last definition:

Definition 2.4. A morphism of unstable algebras ¢ : K — K' is said to be an
F-monomorphism if the kernel of ¢ in the (abelian) category of unstable modules
is nilpotent as an unstable module. We define F-epimorphism and F-isomorphism
analogously.

This definition coincides with Quillen’s original definition of an F-isomorphism,
and is also the same as what is sometimes referred to as a (purely) inseparable
isogeny.

We note that everything in this paper only depends on the space E up to F -
equivalence (E here, as everywhere, connected nilpotent with finite 71), and that
Bousfield-Kan F,-completion [5] of E coincides with Bousfield F,-localization [3].
As noted by Miller [26] map, (BV, E) ~ map, (BV, E,), and of course H*(E; F,) ~
H*(E,;F,) — Likewise we have that [BV,E] ~ [BV, E,] [5, 3]. Thus we could
reformulate everything by writing: “Let E be Fj-equivalent to...” — For the sake
of clarity we refrain from doing so and instead leave reformulations like that to the
reader.

3. GROWTH PROPERTIES

In this section we establish the growth formula for log, |[BV, E]| mentioned in
the introduction. To do this we first need to prove a couple of lemmas. The first
lemma in its present form is due to Lannes and Schwartz [22].

Lemma 3.1. Let G be an abelian group, and assume that t = 1k, (,G) and s =
tk,(GQ®Z/p) are finite. Furthermore let V be an elementary abelian p-group of rank
v. Then the Poincaré series of H*(V;G), Pg(x) = ;.o dimg, (H*(V; G)®Z/p)a*
is given by

t+ sx
P =
o) =T~

(1=2)""-1).
Especially
rk,(H (V;G)) ~ tv

for v — oo and

Lo ift >0
do (HAV: Q) ~ ] W, TP
=i ift=20

forv— o0, k>2.
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Proof. Note that induction on the rank v of V', using the cohomology of H*(Z/p; Z)
together with the Kiinneth formula, gives us that pH*(V;Z) = 0 for all k > 0 and
all V.

The universal coeflicient theorem now gives us the following exact sequence

0— H*V;Z)® G — H*(V;G) — Tor(H*(V;Z),G) — 0,
le. fork>1
0— H*V;Z)® (G®Z/p) — H*V;G) — H*"(V;Z) ® (,G) — 0.
This shows that Pg(z) = (t + sz)Pz(z). Setting G = Z/p we obtain

T x
P, =——PF = 1—z)7" -1
2(3) = T Pappla) = T (1=2) " = 1)
and hence
t+ sx —w
Po(a) = (1= a) 7 = 1),
From this formula the growth formulas are immediate. O

Lemma 3.2. Let X be an arbitrary space and let E be a connected finite Postnikov
system. Then
X, El| < [T 1H (X mi(E))
i>0
when E is simple.

If more generally E is nilpotent, then there exists, for each i, a filtration 0 =
Fio<---<QF;, =m(E) such that m1 (E) acts trivially on F; j/F; i_1 and

ti
X, Bl < [T T 1H (X; Fij/Fij)l -
i>0j=1

Proof. The proof is by induction on the number of nontrivial homotopy groups.
Assume that the top homotopy group sits in dimension n. Consider first the case
where E is simple. We have a fibration sequence, which is principal since E is
simple:

K(m,(E),n) > E — P, 1 E,

where Py F denotes the kth Postnikov stage of E. Since the fibration is principal
we have an action E x K(m,(E),n) — E, and thus an induced action * : [X, E],; x
(X, K(m(E),n)]pt — [X,E]p. This action has the property that in the exact
sequence
[Xa K(T{'n(E), n)];Dt - [Xv E]Pt = [Xv PnflE]Pt

we have that x(f) = k(g) iff there exists h € [X, K (7, (E), n)] such that f+«h = g.
This implies that |[[X, E]p| < [[X, Poc1E)p||H™(X, 7 (E))|, so by induction we
get that |[X, E]p| < [[,50 [H(X,m(E))| as wanted.

Now assume that F is only nilpotent. The fibration K (7,(E),n) - E — P,_1F
might no longer be principal, but it does have a principal refinement corresponding
to a filtration 0 = F; 0 < --- 9 F;y, = mi(E) of m;(E) (cf. [17]). Using induction as
before finishes the proof in this case too. O

We are now ready to prove the key growth theorem:
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Theorem 3.3. Let E be a connected nilpotent finite Postnikov system with finite
71 (E). Assume that H*(E) is of finite type and that H*(E) # 0. Let n denote
dimension of the highest homotopy group m,(F) which is not uniquely p-divisible
and set k =n if m,(E) has p-torsion, k =n — 1 if not. Then

ak < log,, [[BV, E]| < ook,
for v — oo, where ¢, C' are positive constants.

Remark 3.4. The condition that H*(X) is of finite type is equivalent to the con-
dition that H,(X;F,) is of finite type. By the universal coefficient theorem this is
again equivalent to requiring ,H,(X;Z) and H, (X;Z) ® Z/p to be finite for all n.
If X is connected nilpotent with finite 71, this is equivalent to asking that ,m, (X)
and 7, (X) ® Z/p are finite for all n > 2, e.g. by the Whitehead theorem modulo
Serre classes. Note also that for a connected nilpotent space, X, the condition
H*(X) # 0 is equivalent to m,(X) not being uniquely p-divisible (by the above or
[5]). Also note that the k& which appears in the theorem also could be defined as
the dimension of the highest non-trivial mod p homotopy group minus 1.

Proof of Theorem 3.3. By replacing E by the Fj,-equivalent space P,E, we can
assume that n is the dimension of the top non-trivial homotopy group. Since E is
connected and 71 (E) is finite we might as well show the theorem for [BV, E],;, which
is what we do. We have a principal fibration sequence QP,, 1 F — K(m,(E),n) —
E so we get an exact sequence of pointed sets
[BV, 0P 1 Elpy — [BV, K(7n(E), n)lpr — [BV, Elps.

We can also write this as

[BV, QU Pp_1E]py — H*(V;mn(E)) — [BV, E]pt (3.1)

where [BV,QoP,,_1E], acts on H"(V;m,(E)) as described in the previous proof
and Qg P,_1FE denotes the zero component of QP,_1 F.
Now by Lemma 3.2 and 3.1 we get:
n—2

log, |[BV, Py 1Ely| < Y log, |[H'(Vimiy1(E))|
=1

n—2

= Y vk, H'(V;mip1(E))
i=1
S Kon2
for v — oo, since Qg P, —1 E is an H-space and hence simple. Since log, |[H"(V'; m,(E))| ~
cv®, where k is as defined in the theorem, (3.1) shows us:
log,, [H"(V;mn(E))| ~ log, |[H"(V;mu(E))| —log, |[BV, Qo Pn_1E]|p
~ 1og, |[BV, El|p:

We want to get the other inequality by appealing to Lemma 3.2. In the simple
case it is immediate that

log,, [BV, El| < S log, [H (V' mi(E))|  Co*.
i=1
If 7, (E) does contain p-torsion we can take C' = ¢, whereas C' in the case where
7 (E) does not contain p-torsion is given in terms of 7, (E) and m,—1 (E).



8 J. GRODAL

In the non-simple case we need to worry a little bit about actions. We now have
that

n t;
log, [[BV, Elp| ~ Z Zlogp |H* (Vs Fij/ Fijj—1)] -

i=1 j=1
It is still clear that log,, |[BV, E],:| < Cv™ for some C. This takes care of the case
where 7, (E) does contain p-torsion. In the case where m,(E) does not contain
p-torsion however we want the better estimate Cv™~!. This is not obvious since
the filtration quotients could have p-torsion, even though 7, (E) did not. To resolve
this problem we have to appeal to Proposition 7.1.

By replacing E by an F-equivalent space, we can assume that 71 (E) is a p-group,
since every finite nilpotent group is a product of p-groups. By Proposition 7.1
m1(E) acts trivially on 7,(E), so we can take the filtration of m,(F) to be the
trivial filtration, and thus there is no p-torsion introduced in dimension n. This

shows that, in this case, we can conclude that log,, [[BV, ]| S oot O

Remark 3.5. It follows from the proof of the theorem above that one can actually
get concrete estimates for ¢ and C. This does have some interest, especially in the
case k = 1 where ¢ and C actually turn out to give lower and upper bounds on the
transcendence degree of H*(E).

The first main theorem now follows from the preceding growth theorem.

Theorem 3.6. Let E be a connected nilpotent finite Postnikov system with finite
m1(E). Assume that H*(E) is of finite type and that H*(E) # 0. Then H*(E)

contains an element of infinite height.

Proof. Theorem 3.3 shows the asymptotic growth of log, |[[BV, E]|-—in particular
it shows that [BV, E] is nontrivial for some V. But by Theorem 1.3 and 1.5 this
now implies that H*(E) ¢ Nil, so H*(E) has to contain an element of infinite
height. (|

4. APPLICATIONS TO n-CONNECTED COVERS

We now turn to investigating the consequences for n-connected covers of finite
complexes:

Corollary 4.1. Let X be a finite complex, 1-connected with finite mo(X). Assume
furthermore that H*(P,X) # 0. Then H*(X(n)) contains an element of infinite
height.

Remark 4.2. The assumption H*(P,X) # 0 could be formulated in a number
of alternative ways. Since X is 1-connected the assumption is equivalent to the
natural map H*(X) — H*(X(n)) not being an isomorphism by a Serre spectral
sequence argument. Also, since X is of finite type, H*(P,X) # 0 iff H*(P,X;Z)
is not entirely g-torsion for primes ¢ # p, which, by for example the Whitehead
theorem modulo Serre classes, is equivalent to 7. (P, X)) # 0.

Proof of Corollary 4.1. We have an exact sequence

BV,QX] — [BV,QP,X] — [BV, X(n)] — [BV, X].
By Miller’s theorem [BV,QX] = [BV, X]| = 0, so [BV,QP,X] = [BV, X(n)]. Since
H*(P,X) # 0 we have that H*(QP,X) # 0. Now observe that P, X satis-
fies the assumptions of Theorem 3.3, so in particular we get that [BV, X (n)] =
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[BV,QP, X] # 0 for some V. By Theorem 1.3 and 1.5 this is equivalent to H*(X (n))
containing an element of infinite height. O

Remark 4.3. The relatively strong assumption on the connectivity of X cannot
be weakened, as is shown by the Hopf fibration S* — S3 — S2.

Corollary 4.4. Let X be a finite complex, 1-connected with finite mo(X). Assume
that X # X(n). Then there exists a prime g such that H*(X(n);F,) contains an
element of infinite height.

Proof. If X # X (n), we have to have that H*(P, X;F,) # 0 for some prime g. The
statement is now obvious from Corollary 4.1. O

Corollary 4.5. Let X be a finite complex, 1-connected with finite mo(X). Assume
that X # X (n). Then X{(n) has infinite LS category.

Proof. By Corollary 4.4 there exists a prime ¢ such that H*(X (n); F,) has infinite
cup-length, so especially X (n) has infinite LS category. O

These corollaries generalize earlier partial results of Mgller and McGibbon [23].
As they point out, it can be interesting to note the radical difference between these
results and the results obtained in the rational case. Here the rational LS category
of X (n) is always less than or equal to the rational LS category of X by the mapping
theorem of Félix and Halperin [13]. But, on the other hand, in the rational setting
we have no Serre’s theorem either—indeed the rational cohomology of K (Z, 3) does
not contain an element of infinite height.

5. THE TRANSCENDENCE DEGREE OF H*(E)

In this section we give a complete classification of the Postnikov systems whose
cohomology is of finite transcendence degree. We start by using work of Henn,
Lannes and Schwartz [16] to relate the growth of v, (K) := log,, | Homx (K, H*(V))|
in v to the transcendence degree of K, under mild restrictions on K. Combining
these results with our growth formula for [BV, E] = Homg(H*(E), H*(V)) now
leads to a classification theorem for finite Postnikov systems of finite transcendence
degree.

In order to state and prove our results we need to review some work of Henn,
Lannes and Schwartz. For the ease of the reader we follow their notation; we refer
the reader to [16] for more details.

Definition 5.1. For any unstable algebra K define its transcendence degree d(K)
as the mazimal number of algebraically independent homogeneous elements in K.

Remark 5.2. If K is a connected graded noetherian algebra, the maximal number
of algebraically independent elements, d(K), is finite. In this case the number
d(K) coincides with the Krull dimension of K, and we can furthermore choose
d(K) algebraically independent elements such that K will be finite over the algebra
spanned by those elements. If K is an integral domain, d(K) is equal to the classical
transcendence degree of the field of fractions of K. A nice and graded proof of these
standard facts can be found in [1].

In the following we need to refer to elementary abelian groups of different rank.
Therefore we sometimes equip the elementary abelian group V with a subscript
which in those cases indicate the rank of V.
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Definition 5.3. Let £ denote the category of elementary abelian p-groups, i.e. of
finite dimensional Fp-vector spaces. Let PS denote the category of profinite sets
and let G be the category of functors € — (PS)°P. Note that we can view G°P as
the category of contravariant functors € — PS.

One should realize that objects in G contain a rich structure. This stems from
the fact that not only do we associate to each vector space a profinite set, but we
do this in a natural way, which, loosely speaking, ties the profinite sets together.

By inverting all F-isomorphisms in K we obtain a quotient category of I which
will be denoted by K/Nil. Let g : K — G be given by g(K)(V) = Homy (K, H*(V))
for all V. Here we equip Homy (K, H*(V)) with the profinite topology induced by
writing

Homy (K, H*(V)) = Homg (colimy, Ko, H*(V)) = lim Homy (K, H*(V)),

where « runs over the finitely generated A-subalgebras K, of K.

By Theorem 1.4 and the Lannes linearization principle we have that a mor-
phism between unstable algebras K — K’ is an F-monomorphism (resp. F-epi) iff
g(K")(V) — g(K)(V) is a surjective (resp. injective) map of sets for all V. This
shows that ¢ induces a a faithful functor £/Nil — G (likewise denoted g). In [16]
Henn, Lannes and Schwartz actually identify the image of g—we shall however not
need this.

Definition 5.4. Let PS — EndVy denote the category whose objects are profinite
sets equipped with a continuous right action of the monoid End Vy and whose mor-
phisms are maps of profinite sets respecting the End Vy-action.

To each G € G°P and each vector space Vy we can associate a profinite right
End Vg-set G(Vy). Namely define the right action of End V; on G(Vy) by to each
(s,) € G(V4) xEnd Vy associating sp = G(¢)s. This gives us a ‘restriction functor’

eq:G? - PS—EndV,.
Likewise we can define an ‘induction functor’
iqg: PS—EndVy; — G?:S+— (W S Xgnav, Hom(W, Vy)),

where S Xgnav, Hom(W, V) denotes the coequalizer in the category of profinite
sets of the action of End V; on S and Hom (W, Vy) respectively.

Now note that the canonical map G(Vy) x Hom(W, Vy) — G(W) induces a well
defined map on the coequalizer G(Vy) Xgndav, Hom(W, V;) — G(W). Therefore, to
each map S — G(Vy) of profinite End Vy-sets and each W, we can associate a map

S XEnd Vy I{OIH(VV7 Vd) — G(Vd) XEnd Vy HOHl(VV, Vd) — G(W) .

Likewise a morphism in G°P, i4(S) — G of course induces a map S — G(Vy)
of profinite End V-sets. Since these operations are inverses of each other we get
that Homgor (i4(S),G) = Homps_gnav,(S,eqs(G)), naturally in G € G?, S €
PS —End Vg, so iq4 is left adjoint of e4. It is immediate that we have an equivalence
lps—Endv, 5 eq 014, given by the unit of the adjunction, so we get an embedding
of PS — EndV; as a subcategory of G°?. Define sq = e’ o g, where ¢}’ : § —
(PS — End V)°P is the opposite functor of eq.

In [16] Henn, Lannes and Schwartz prove the following key results about the
structure of G°P.
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Proposition 5.5. [16] The morphism (iq 0 eq)(G) — G given by the counit of the
adjunction is a monomorphism in G°P for all G € G°P, i.e. we have that (i4 o
eqd)(G)(V) — G(V) is an injective map of profinite sets for all V.

This gives us a filtration of G which turns out to coincide with the filtration of
K /Nl by transcendence degree.

Proposition 5.6. [16] Let G € G°P. Define the transcendence degree of G as
d(G) :=min{d | ((ig 0 eq)G)(W) — G(W) is bijective for all W},

where we take d(G) = oo if none such d exists. For an element G € G we define
the transcendence degree by viewing it as lying in G°P. With these definitions we

have that d(K) = d(g(K)).

We shall need some alternative ways of expressing the transcendence degree of
an object in G°P. These can be found implicit in [16]. Since they are important in
their own right we find it useful to state them explicitly—we include proofs for the
convenience of the reader. First a useful definition:

Definition 5.7. Let S be an End Vy-set, and let s € S. Define the rank of s € S
as

rk s = min{rk p| where s =ty for some t € S, € End Vy}.
We say that s is regular if tks = d, i.e. if s = to implies that ¢ is a reqular
(invertible) matriz.

Proposition 5.8. We have the following formula for the transcendence degree of
Gegor:

d(G) := min{d|((iqoeq)G)(W) — G(W) is bijective for all W}
= max{rks|s € G(Vy) for some d}

= max{d|G(Vy) contains a regular element} .

Proof. We start by proving that

max{d|G(Vy) contains a reg. elt.} = max{rks|s € G(Vy) for some d}.
(5.1)

First note that ‘<’ is obvious. To prove ‘>’ let s € G(W) and suppose that rk s = d.
We can thus choose 7 € End W, t € G(W) such that s = ¢7 and rtkm = d. By
changing ¢t we can assume that 7 is a projection. Let p: W — 7W and¢: 7W — W
be the canonical projection and inclusion associated to m. Now set s’ = G(i)s €
G(7W) and note that G(p)s’ = G(p)G(i)s = G(p)G(i)G(m)t = G(wip)t = s. We
claim that s’ is regular. Suppose we have ¢ € End(7W),u € G(x#W) such that
s’ = uep. Then we have

s =G(p)s' = G(p)G(p)u = G(p)G(p)G(i)G(p)u = G(ipp)G(p)u = (G(p)u)(igp)
so ¢ has to be regular, since rk s = d. This shows the wanted inequality.

We now prove that the number given by (5.1) actually coincides with the tran-
scendence degree. We first see that it is less than or equal to the transcendence
degree. Suppose therefore that we have d such that G(Vy) Xgnav, Hom(W, Vy) —
G (W) is bijective for all W, and let s € G(W) be arbitrary. Choose t € G(V;) and
¢ € Hom(W, Vy) such that G(y)t = s. Since the rank of ¢ : W — V; must be less
than or equal to d, we can choose a projection m € End W of rank less than or equal
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to d such that pm = . But this gives us that s = G(p)t = G(m)G(p)t = (G(p)t)m,
which shows that rk s < d, as wanted.

We finish the proof by showing d(G) < max{d|G(Vy) contains a regular element}.
Let d be the maximal number such that G(Vy) contains a regular element (if there
exist regular elements in infinitely many dimension we are done). We want to prove
that G(Vy) Xgnd v, Hom(W, V) — G(W) is surjective for all W. Let s € G(W) be
arbitrary and set n = rk s. Note that n < d by (5.1). Choose an element 7 € End W
of rank n and ¢t € G(W) such that s = tw. By changing the choice of ¢t we can assume
that 7 is a projection. Letting p: W — «W and i : #W — W denote the canonical
projection and inclusion we get that s = G(m)t = G(wip)t = G(p)(G(wi)t). There-
fore s is in the image of G(V,,) Xgnav, Hom(W,V;,) which implies that s is in the
image of G(Vy) Xgndav, Hom(W, Vy), since n < d. This completes the proof, since
G (Vi) XEndv, Hom(W, Vy) — G(W) is injective by Proposition 5.5. O

Example 5.9. Let X,, be the End V,,-set consisting of two elements x; and x,
with the End V,,-action given as follows:

roo = xg for all & € End 'V,

|z foraeAutV,
o= z9g fora & AutV,.

We have that x1 has rank n and xg has rank 0. The EndV,,-set X,, is thus the
smallest End V,,-set containing a regular element. It has the universal property that
any End V,,-set containing a regular element surjects onto X,, as an End V,,-set.

Just knowing the growth properties of the ‘unstable Betti numbers’ ~,(K) =
log, [9(K)(V')| in v is actually enough to determine the transcendence degree of K,
under mild restrictions on K.

Theorem 5.10. Let K be an unstable algebra and assume that Homx (K, H*(V))
is finite for all V. If d(K) is finite then v, (K) ~ d(K)v. If d(K) is infinite then
Yo (K) grows faster than linearly in v.

Remark 5.11. The assumption that Hom (K, H*(V')) is finite for all V' is a tech-
nical assumption which (by Theorem 3.3) is satisfied in all the applications we
have in mind. Also it is clear that if for instance K is finitely generated as an
A-algebra, then Homy (K, H*(V)) is likewise finite. Furthermore if K is NVil-closed
(cf. [6, 16]) and of finite type then Homy (K, H*(V)) is finite [16]. Note however
that H*([]:2, K(Z/p,1)) serves as an example of an unstable algebra of finite type
where Homy (K, H*(V)) is not finite.

Proof of Theorem 5.10. We want to establish the general growth formulas by estab-
lishing them for the ‘largest’ and the smallest finite End V,,-set containing a regular
element. Let X, be the End V,,-set defined in Example 5.9. For the elements in
in(Xn)(V) = X, XEnav,, Hom(V,V;,) we have the following relations:

(zo, ) ~ (x0,0) for all ¢ € Hom(V,V;,)

(x1,0) ~ (20,0)if tkp <n

(x1,) ~ (x1,v) if ko =1kt =n and kerp = ker ).

This shows that |in(X,)(V)| = #( n dimensional subspaces in V ) + 1
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For v > n, the number of n dimensional subspaces of V is as follows:

(p¥—1)---(p* —p" ")
(pr—1)---(p" —p"1)
~ Cp’n/l)

#( n dimensional subspaces in V )

for v — oo.
Let T be a finite set and consider the End V,,-set T' x EndV,,. We have that
in(T x EndV,)(V) =T x Hom(V, V,,) so

|in(T x End V,,)(V)| = |T|p"™" .
From the above we conclude that
logp i (X0n) (V)| ~ logp |in(T x End V,,)(V)| ~ nv .

Now let K be an unstable algebra and assume that s, (K) contains a regular ele-
ment. Since s, (K) is finite we can find a surjection of End V,,-sets T' x End V;, —
$n(K) for some finite set T. Also, since s, (K) contains a regular element, we can
find a surjection s,(K) — X, of EndV,,-sets. Now this means that, for all V', we
have surjections of sets

in(T x End V,)) (V) = in(sn(K))(V) — in(X2)(V),

so log, |igP (s, (K))(V)| behaves asymptotically as nv.

If K has transcendence degree d < 0o, then g(K) also has transcendence degree
dsolog, |g(K)(V)| =log, |(if’ ce’ og)(K)(V)| = log, |ig"(sa(K))(V)| which grows
asymptotically as dv, since s4(K) contains a regular element by Proposition 5.8. If
K has transcendence degree d = oo then by Proposition 5.5

log,, [g(K)(V)| = log, [(i7? o €;¥ 0 g)(K)(V)| = log,, |iz? (sn (K)) (V)] -

Since s, (K) contains a regular element for infinitely many n by Proposition 5.8,
we get that log, [g(K) (V)] R nw for all n as wanted. O

The unstable Betti numbers v, (K) can be viewed as an unstable algebra alter-
native to the classical Betti numbers of a graded algebra. In the classical case we
have a formula relating the growth of the Betti numbers and the transcendence
degree of a noetherian connected graded F-algebra given by

d(K) = min{k € Ny| there exists a C such that dimg K" < Cn*~! for all n}.

Theorem 5.10 establishes a different but analogous formula for these new numbers,
which has among its advantages that it holds with much weaker restrictions on the
unstable algebra. Moreover, when applied to the cohomology of spaces, it is easy to
see how these numbers behave with respect to fibrations of the underlying spaces.
For instance we immediately get that the unstable Betti numbers are subadditive
over principal fibrations, and hence that the transcendence degree is likewise so.
More precisely:

Proposition 5.12. Let B, F be connected nilpotent spaces with finite fundamental
groups and mod p cohomology rings of finite type. Assume that we have a principal
fibration F — E — B. Then v,(H*(E)) < v,(H*(F)) 4+ v,(H*(B)), and hence, if
vo(H*(F)) and ~,(H*(B)) are finite for all v, d(H*(E)) < d(H*(F)) + d(H*(B)).
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Proof. Note that obviously E is also connected with finite 71 and by [5, Prop.
I1.4.4] E is nilpotent as well. Since the fibration is principal 71 (B) acts nilpotently
on H*(F) (cf. [5, p. 62]), so the Serre spectral sequence guarantees that H*(E) is of
finite type. The subadditivity of the unstable Betti numbers follows from Theorem
1.3 and the fact that, by the principal action, |[BV, E]| < |[BV, F]||[BV, B]|. The
subadditivity of the transcendence degree now follows from Theorem 5.10. O

Remark 5.13. In [16] Henn, Lannes and Schwartz use Proposition 5.5 and 5.6 to
derive a far reaching generalization of Quillen’s theorem about the structure of the
mod p cohomology ring of a finite group [28]. They prove that for any unstable
algebra K of transcendence degree less than or equal to d there is an F-isomorphism

K — lim H*(Vy).
sa(K) (Va)

Here we view s4(K) as a category by taking as objects the elements in s4(K),
and as morphisms the maps induced on s4(K) from endomorphisms of V. (The
theorem is strictly speaking only true as stated here when s4(K) is finite—when
54(K) is infinite one has only to consider the elements in lim,,x) H*(V4) which
are continuous as functions s4(K) — H*(Vy).)

The theorem however has the inherent weakness that it requires a priori knowl-
edge of the transcendence degree of K. Theorem 5.10 can remedy this defect, since
it gives an easily applicable way of calculating the transcendence of an unstable
algebra K.

To illustrate the usefulness of this approach we rederive Quillen’s theorem in the
finite group case, by showing that the Krull dimension of H*(G) is equal to rk, G.
By Cartan-Eilenberg [8], H*(G) is isomorphic to an inverse limit of the cohomology
of its p-subgroups, so it is enough to show the claim for a finite p-group P. It was
shown by Hurewicz that [BV, BP] = Rep(V, P) = Hom(V, P)/(conj. by p € P). It
is furthermore an easy exercise to see that log, | Rep(V, P)| grows asymptotically
as rk, P v (cf. also Proposition 5.17 and its proof). Theorem 5.10 now implies
that d(H*(P)) = rk, P, and since we know that H*(P) is noetherian by the Evens-
Venkov theorem (cf. [11]) we are done.

Tracing back what elements go into this proof one sees that one of the main
ingredients is the use of Proposition 5.8, which in some sense can be seen as being
the replacement of Serre’s theorem about cohomological detection of elementary
abelian groups.

Theorem 5.10 now enables us to prove the second main theorem.

Theorem 5.14. Let E be a connected nilpotent finite Postnikov system with finite
m1(E). Assume that H*(E) is of finite type. Then H*(E) has finite transcendence
degree iff E is Fp-equivalent to a space E' fitting into a principal fibration sequence
of the form:

CP® x---xCP>® - E' — K(P,1),

where P is a finite p-group.

Proof. By Theorem 3.3 and 5.10 all spaces E’ as in Theorem 5.14 have cohomology
of finite transcendence degree. To prove the converse, assume that H*(E) has
finite transcendence degree. We see from Theorem 3.3 that Homy (H*(E), H*(V))
is finite for all V. Theorem 3.3 and 5.10 now imply that F has to be F,-equivalent
to P,E, and furthermore that mo(E) cannot contain p-torsion. Since m1(P2FE) is
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finite nilpotent, and thus a product of p-groups, we can by passing to a covering
replace PoE with an Fj-equivalent space whose fundamental group is a finite p-
group. These observations show that, without restriction, we can assume that E
has nontrivial homotopy groups only in dimension 1 and 2, 7o (F) being without
p-torsion and 71 (FE) being a finite p-group. But now Proposition 7.1 tells us that
the action of 71 (F) on m2(F) has to be trivial. This means that the Postnikov
fibration K (m(F),2) — F — P FE is principal (cf. [17]). We thus have a fibration
sequence

E— P,E £ K(m(E),3).

Upon passing to F,-completion we obtain a fibration sequence (cf. [5])

E, — PIE 5 K(Ext(Z/p™, m2(E)),3).

Now Ext((Z/p>,m2(F)) is a torsion free Ext —p complete abelian group, and hence
classified by the F,-dimension of Ext(Z/p>,m2(E)) ® Z/p (cf. [5, p. 181], [15]),
which is finite since H*(E) is of finite type. In other words Ext(Z/p™, 3 (F)) ~
Z, % ---xZ,. Note that H3(m,(E); Z) = H3(m,(E); Z,) by the universal coefficient
theorem. We can thuslet k' : PLE — K(Z x---XxZ,3) be the map corresponding to
k under the equivalence [P E, K(Ext(Z/p>,m2(E)),3)] ~ [PAE,K(Z X --- x Z,3)].
Letting E’ denote the homotopy fiber of k' we obtain a diagram

o P.E Y K(Zx--x1Z,3)
lf ‘ le:
E, P.E L K(Ext(Z/p>®, ma(E)),3)

where f is any lifting which makes the diagram commute. From this diagram we
see that f : B/ — Ep has to be an Fp-equivalence as well. By construction E’ is
F-equivalent to E and fits into a principal fibration sequence of the form stated
in the theorem. O

Remark 5.15. Remember that a p-toral group G is a group which arises as a
group extension 1 — T" — G — P — 1, where T™ is an n-dimensional torus
and P is a finite p-group. The spaces E’ which appear in Theorem 5.14 are just
those classifying spaces of p-toral groups which arise as central extensions. They
are classified by n, P and their one extension class (= Postnikov invariant) k €
[BP,K(Zx---x7Z,3)] = H3(P;Zx---xZ) ~ H*(P; T"), where in the cohomology
P acts trivially on the coefficients.

Remark 5.16. By Venkov’s theorem [32], classifying spaces of p-toral groups have
noetherian cohomology. Theorem 5.14 thus in particular shows that for the coho-
mology of a finite Postnikov system, being of finite transcendence degree is equiva-
lent to being noetherian. This is indeed a very striking and unusual property which
of course does not hold for spaces in general. The cohomology of the loop space of
a (1-connected, say) finite complex for instance is always non-noetherian and has
transcendence degree 0. Just knowing this intriguing property of finite Postnikov
systems would actually be enough to rederive the above theorem using the original
Betti numbers estimates of Serre—knowing this equivalence would secure that the
wild growth of the Betti numbers could only be caused by an infinite number of
polynomial generators in the ring.
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We end this section by showing a proposition which precisely determines the
transcendence degree of the cohomology the spaces E’ of Theorem 5.14, and whose
proof illustrates a calculation using Theorem 5.10. The proposition can also be
obtained by using Quillen’s theorem for compact Lie groups.

Proposition 5.17. Let E be a space which fits into a fibration sequence of the form
CP® x - xCP® - E— K(P1) 5 K(Zx - xZ,3),

n

where P is a finite p-group. Then
d(H*(E)) = n+ max{rk, V|V < P,.* (k) =0 € H*(V;Z x --- x Z)} .
Especially n + 1k, P > d(H*(E)) > n+ 1, when P is non-trivial.
Proof. Consider the sequence
BV, Elye — [BV.K(P. 1)l ™ [BV. K(Z x -+ x Z,3)]r
Let ¢ € [BVy, BP],; = Hom(Vy, P) be an injection and assume that ¢ € ker(k.).
We have that ¢ naturally gives rise to ~ Cp® elements in ker(k.) as v — oo

coming from maps arising by precomposing ¢ with projections onto d dimensional
subspaces of V. Since Hom(Vix, p, P) is finite we obtain that

log,, | ker(k.)| ~ max{rk, V|V 4 Pt (k) =0},

But since it is easy to see that [BV, K(Z x - - x Z,2)],, acts freely on [BV, E],; we
get that

log,, |[BV, E]pt| ~ nv + max{rk, V|V 4 Pt (k) =0},

so d(H*(E)) = n 4 max{rk, V|V < P,.*(k) = 0} by Theorem 5.10. To get the
last part of the proposition, note that H3(Z/p;Z) = 0. O

Example 5.18. Consider the space E = Fib(K(Z/p x Z/p, 1) LA K(Z,3)), where
k is some nonzero element in H3(Z/p x Z/p; Z) ~ Z/p. From the above proposition
it follows that d(H*(E)) = 2.

Remark 5.19. Note that the formula for the transcendence degree of H*(FE) in-
volves the behavior of a certain class in the integral cohomology of P when restrict-
ing to elementary abelian subgroups.

6. GENERALIZATIONS TO POLYGEMS

Recall that a GEM is a (possibly infinite) product of K(G,n)’s, where G is an
abelian group. A space is a polyGEM if it belongs to the smallest full subcate-
gory (polyGEMs) of spaces containing all GEMs and which is closed under taking
extensions by fibrations, i.e. which satisfies that if F — E — B is an arbitrary
fibration then B, F' € polyGEMs = E € polyGEMs. We say that a space is an
oriented polyGEM if it belongs to the smallest full subcategory polyGEMs®" of
spaces containing all GEMs and which is closed under taking extensions by princi-
pal fibrations, i.e. which satisfies that if ¥ — E — B is a principal fibration then
F, B € polyGEMs®"! = E € polyGEMs®". Note that a nilpotent finite Postnikov
system is an oriented polyGEM by [17].

In [12] Dror Farjoun conjectures that if X is a non-trivial p-complete polyGEM
then [BZ/p, X] is always non-trivial. As stated the conjecture is false—gé and
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K (Zp, 3) serve as counterexamples. The problem with S’; is easy—it’s a fundamen-

tal group problem. The problem with K (Zp, 3) is deeper, it demonstrates that it
in general is not enough to look at maps from just a single BZ/p (it is however
interesting to note that for any nilpotent, connected space X with finite 7, and
with H*(X) assumed to be noetherian, we have that [BV, X] # 0 = [BZ/p, X] # 0
(cf. [16, Prop II 7.2])). Since the idea that polyGEMSs should behave like finite
Postnikov systems still seems very plausible, we dare to state the following more
modest conjecture:

Conjecture 6.1. Let E be a connected nilpotent polyGEM with finite m1(E). As-
sume that H*(E) is of finite type and that H*(E) # 0. Then H*(E) contains an
element of infinite height.

We likewise believe that Theorem 5.14 should generalize:

Conjecture 6.2. Let E be a connected nilpotent polyGEM with finite m1(E). As-
sume that H*(E) is of finite type. Then the transcendence degree of H*(E) is finite
iff E is Fp-equivalent to a space E' fitting into a principal fibration sequence of the
form:

CP® x---xCP>® - E'— K(P,1),
where P is a finite p-group.

One piece of evidence for the first conjecture is a theorem of Félix, Halperin,
Lemaire and Thomas [14] which (in the language of Dror Farjoun) states that a
1-connected oriented polyGEM E with H*(E) of finite type and H*(E) # 0 has
infinite LS category.

We give another piece of evidence for the conjecture, whose proof makes use of
the Neisendorfer localization functor [27], which we now define. By [3, 12] we can
choose a map f such that Ly = Lyz/,, where Lyz,, denotes localization with
respect to mod p homology and L denotes localization with respect to the map
f. Let g be the map g : BZ/p — %, and note that, by definition, L, = Pgz/,,,
the BZ/p-nullification functor (cf. [12]). We define the Neisendorfer localization
functor as L = Lyy4, where f V g just denotes the wedge of the two maps. Note
that, by the universal properties of the functors, we have a natural transforma-
tion of coaugmented functors Lz, Ppz/, — L. This induces a weak equivalence
Lyz/pPpz/pX % LX whenever Ppz/,X is a nilpotent space, since in that case
we know that Lyz/,Ppz/p,X is BZ/p-null. (Our definition differs slightly from
the one given by Neisendorfer, since we want to to ensure that L is an idempotent
localization functor on all of Ho,.)

We need the following definition.

Definition 6.3. Let polyGEMs denote the smallest full subcategory of spaces
which is closed under taking extensions by fibrations and which contains all con-
nected GEMs with finite 7.

Remark 6.4. The class polyGEMs'® contains all connected finite Postnikov sys-
tems with finite solvable 71, and is probably very close to being equal to all con-
nected polyGEMs with finite 7.

Remember that an unstable module M is called locally finite if for all x € M we
have that Az is finite dimensional.
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Proposition 6.5. Let E be a nilpotent polyGEM which belongs to polyGEMs't.

Assume that H*(E) is of finite type and that H*(E) # 0. Then H*(E) is not
locally finite.

Before giving the proof we need a lemma:

Lemma 6.6. We have that LE = * for all E € polyGEMs, where L denotes the
Neisendorfer localization functor.

Proof of Lemma 6.6. Our main technical tool is a theorem of Dror Farjoun which
states that if Ly is any localization functor with respect to some map f, and if F' —
E — B is any fibration sequence, then L F = % implies that L;E = L;B (cf. [12]).
Hence the class of spaces which are acyclic with respect to Neisendorfer localization,
i.e. the spaces F which satisfies LE = x, is closed under taking extensions by
fibrations. It is therefore enough to prove the claim for connected GEMs with
finite ;. Furthermore note that it is enough to prove the claim for 1-connected
GEMs, since we can apply the theorem of Dror Farjoun to the fibration sequence
E(1) - E — K(m(E), 1), where LK (m1(FE), 1) is easily seen to be zero.

Now let E be a 1-connected GEM and write this E = QF where E is 2-connected.
By a theorem of Dror Farjoun [12, Prop 7.B.5] Ppz/, and Pyrz/p,1) coincide on
GEMs (where M(Z/p,1) denotes the mod p Moore space). This gives us

PyzpE = Przp) E = QPyzpa) E

where the last equality is by another theorem of Dror Farjoun [12, Prop 3.A.1].
Bousfield [4] has shown that

. ~ 1
7i(Pr(z/p2) ) = mi(E) ® Z[;] ;

where we use that F is a 2-connected GEM. But this shows that Ppz/pE is a
connected nilpotent space with uniquely divisible homotopy groups, and hence
LE = LHZ/pPBZ/pE = X, O

Proof of Proposition 6.5. By Lemma 6.6 we have that LE = x*, so especially
map, (BZ/p, E) # x, since map,(BZ/p, E) = * would imply that LE = E’p # *.
But saying that map,(BZ/p, E) # * is equivalent to saying that H*(F) is not
locally finite (cf. [26, 21]). O

Remark 6.7. Using recent results of Bousfield [2] it is in fact possible to replace
the category polyGEMs® in Proposition 6.5 with the larger and somewhat more
natural category consisting of all connected polyGEMs with finite 7.

Remark 6.8. Neisendorfer’s theorem [27], stating that LX(n) = X, for a 1-
connected finite complex X with finite ms, follows immediately from Lemma 6.6,
by applying L to the fibration sequence QP,X — X(n) — X and using Miller’s
theorem to conclude that LX = Xp.

Remark 6.9. There is no direct relation between the LS category and the property
locally finite. For instance XK (Z/2,2) is an example of a space with non-locally
finite cohomology but with LS category 1, whereas [], .n S™ is an example of a
space of infinite LS category whose cohomology is locally finite.
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7. APPENDIX: NILPOTENT ACTIONS

In this short appendix we prove a proposition about nilpotent actions, which
we have used several times in the paper. The author thanks W. Chachdlski for
pointing out a proof somewhat simpler than the author’s original proof.

Proposition 7.1. Let M be an abelian group which does not contain any p-torsion
and let P be a p-group. Assume that P acts nilpotently on M. Then P acts trivially
on M.

Proof. Suppose that P acts nilpotently on M and let 0 = Fy C --- C F,, = M be
a filtration on M such that P acts trivially on the filtration quotients. We want
to do an induction on the length of the filtration, the initial step being trivial. Let
g € P and z € F, be arbitrary. We can write gr = = + 1 where z; € F;. By
iterating this we get that ¢g"z = x + nx;. Setting n = |g| gives us |g|lz1 = 0. But
since M does not contain p-torsion we have that multiplication by |g| is injective
on M so z1 = 0. Since x and g were arbitrary we conclude that P acts trivially on
F5. Induction on the length of the filtration now finishes the proof. (|
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