Serre’s theorem and the N i/, filtration of Lionel
Schwartz

Jesper Grodal

Abstract. We give three different cohomological characterizations of classify-
ing spaces of p-compact toral groups amongst finite Postnikov systems sat-
isfying mild conditions. This leads to a unifying generalization of previous
versions of Serre’s theorem on the homotopy groups of a finite complex.

1. Introduction

In the heart of all generalizations of Serre’s theorem on the homotopy groups of a
finite complex (cf. e.g. [17, 12, 10, 11, 4, 6]) there have implicitly or explicitly been
statements about the ‘non-finiteness’ of the mod p cohomology of a finite Postnikov
system. The negations of these statements say that a space with ‘finite’ mod p co-
homology has infinitely many nontrivial mod p homotopy groups (that is, infinitely
many homotopy groups are not uniquely p-divisible). Such statements can then in
some cases (but not all cf. Remark 4.5) afterwards be improved to showing that
the space has infinitely many homotopy groups containing p-torsion, by employing
a method of McGibbon and Neisendorfer [12]. We put these generalizations into
a common framework by offering the following cohomological characterizations of
classifying spaces of p-compact toral groups amongst finite Postnikov systems.

Theorem 1.1. Let X be a connected finite Postnikov system with m X a finite p-
group and H*(X;F,) of finite type. The following conditions are equivalent.

1. QH*(X;F,) € Nil,.

2. H*(X;F,) is of finite transcendence degree.

3. H*(X;F,) is noetherian.

4. X is Fp-equivalent to the classifying space of a p-compact toral group.

Here () denotes the indecomposables, and Nl refers to the Ail filtration
of the category U of unstable modules over the Steenrod algebra of Schwartz [15].
(Note that locally finite modules over the Steenrod algebra lie in AVilz.) Recall that
two spaces are said to be Fp-equivalent if they become homotopy equivalent after
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Bousfield H,(—;F)) localization [1]. Furthermore, recall that a classifying space
of a p-compact toral group is a space which fits as the total space in a fibration
sequence over K (P, 1) with fiber K (Zg, 2) for some n < oo, where Zp denotes the
p-adic integers and P is a finite p-group (cf. [5]).

The theorem extends results in [6], and also the generalization of Serre’s
theorem of [4] can be easily recovered and generalized (Theorem 4.4).

To prove the results we study the Nil; filtration and its relation to the
Eilenberg-Moore spectral sequence, using the methods of Schwartz [15], and use
this to reduce the theorem to results of [6].

I am grateful to W. Dwyer and B. Shipley for helpful discussions and sug-
gestions, and to B. Shipley for making an early thesis proposal [18] on a similar
topic available to me.

2. Notation and preliminaries

By a space we mean, for simplicity, an object in the homotopy category of finite
pointed CW-complexes. A connected finite Postnikov system is a connected space
such that m;X = 0 for ¢ large. Throughout we abbreviate H*(X;F,) to H*X
where p is a fixed but arbitrary prime.

We now state some basic facts about the Eilenberg-Moore spectral sequence
and the A\il; filtration.

2.1. The Eilenberg-Moore spectral sequence

The cohomological Eilenberg-Moore spectral sequence of a fibration D — E —
B over a connected space B is a second quadrant spectral sequence with FEo-
term given by E5* = Tor}. g(F,, H*E) as an unstable module over the Steenrod
algebra A [14]. The columns E$*, s < 0,7 > 2 are likewise unstable A-modules,
and the differentials d, : ES* — EST™* are A-linear of degree —(r — 1). The
spectral sequence converges strongly to H*D when H*E and H*B are of finite
type and m B acts nilpotently on H*D [3]. Specifically, there is a cocomplete
filtration of A-modules of H*D:

H*DD"'FSDFS+1 D---DFpDF, =0
such that X°F;/F, 1 ~ ES*.

2.2. The Nil,; filtration

An unstable module M is said to be [-nilpotent if it is the colimit of unstable
modules each having a finite filtration whose filtration quotients are [-suspensions.
(For some equivalent definitions of I-nilpotency see for example [16], which is also
a general reference for other facts concerning unstable modules over the Steenrod
algebra.) Let Ail; denote the full subcategory of U of I-nilpotent modules. We
hence get a decreasing filtration

"'CN'ilQ CNZh:N'LlCNZlO:u
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of U with the property that NVil; equals the usual subcategory of nilpotent modules
Nil and NNl = 0. Tt is often more convenient to work with the slightly larger
subcategory Nil; which is the smallest Serre class in ¢/ that contains Nil; and
B, the category of locally finite modules, and is closed under colimits. A more
concrete description of N7il; is given by observing that M € Nil; if and only if
Mzl e Nill.

3. Relations between QH*X and H*QX

In this section, we study the relation between the Ail; filtration and the Eilenberg-
Moore spectral sequence using the methods of Schwartz [15]. Our Theorem 3.1 can
fairly easily be derived directly from [15, 16], but since we need the results under
slightly weaker assumptions than the ones used in [15, 16], and think that insight
is gained from a direct proof, we give one.

Define the nilpotency degree of an unstable module M as the largest [, such
that M € Nil;. If M is locally finite we say that the nilpotency degree of M is
infinite. We start by giving a proof of the key result about the nilpotency degree.

Theorem 3.1. Let X be a connected space with 11 X a finite p-group and H*X of
finite type. For anyl >0, QH*X € Nili1 if and only if H*QX € Nil;.

Proof. Since we assume that m; X is a finite p-group, it acts nilpotently on the
F,-vector space H*Q1.X, since the group-ring F,7; X has nilpotent augmentation
ideal. Hence the Eilenberg-Moore spectral sequence for the path-loop fibration
over X converges strongly to H*Q.X.

For an unstable algebra K we have by [16, Lemma 8.7.6] that

QK € Nil,, implies that Tory (F,,F,) € Nil,—5_1. (3.1)

Assume that QH*X € Nil;y,. This implies that Toryy. x (Fp,Fp) € Nil;_,, so
$~*F,;/Fsy1 € Nilj_s. Therefore Fy/F,y1 € Nil; for all s which gives H*QX €
Nil;.

__ To prove the other direction assume that H*QX € Nil;, so SH*QX €
Nilj 1. If QH*X € B we are done; else let n be the nilpotency degree of QH*X.
Consider the canonical map

QH*X = E;"* » B < SH*QX

We claim that this map has kernel in Wnﬂ. To see this, first note that since
QH*X € Nil, we have that E;"~! € Nil,, by (3.1). Therefore the image of
d, : E;T*I’* - Eb* is in Nil, 1 by the fact that d, is A-linear of degree
—(r — 1), and this establishes the claim. Since Nil; is a Serre class we get that
n > min{n + 1,1+ 1}, so n > [ + 1 as wanted. O

Corollary 3.2. Let X be a connected space with m, X a finite p-group and H*X of
finite type. We have that QH*X is locally finite if and only if H*QX is locally
finite. O
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Remark 3.3. Note that one of the main results in [5] can be formulated as saying
that if H*QX is finite over F;, then QH*X is finite over F—here the converse is
however far from being true.

Theorem 3.1 makes it desirable to understand the relationship between the
nilpotency degree of K and QK for an unstable algebra K. In general the nilpo-
tency degree can differ radically if K is not in Ail;, for example for any finite
group G whose order is divisible by p, QH* BG € B but H*BG ¢ Nil;. However
the next proposition shows that this is the only thing that can go wrong.

Proposition 3.4. Let K be a connected unstable algebra and assume that K € Nil;.
Then K € Nil; if and only if QK € Nil;.

Proof. Tt is clear that QK € Nil; if K € Nil;. To see the converse suppose that
QK € Nil;. The statement is trivially true for [ = 0,1, so suppose that [ > 2 and
assume by induction that the statement is true for [ — 1.

It is straight forward to see that K = 0 and K € MNil;_; ensures that
K ® K € Nil; (cf. [15, Cor. 1.9]). (Here K denotes the augmentation ideal of
K.) Hence both QK and K ® K lie in Nil;, so K € Nil; as well, by the defining
sequence of QK and the fact that N7l is a Serre class. This shows that K € Nil;
as wanted. O

4. Generalizations of Serre’s theorem

In this section we use the results of the preceding section to prove the promised
generalizations of Serre’s theorem on the homotopy groups of a finite complex.

Before doing this, however, we prove a general result which says that the
transcendence degree of the cohomology ring decreases when passing to covers. To
get the result in its best form we use the Sullivan p-adic completion (see [13]), which
coincides with the Bousfield-Kan F,-completion on spaces with mod p cohomology
of finite type [13, 3.4]. (We will actually only need the result for spaces with mod
p cohomology of finite type, where references to [13] can be replaced by references
to [9].)

Theorem 4.1. Let X be a Sullivan p-adically complete space. Then the transcen-
dence degree of H*X (1) is less than or equal to the transcendence degree of H* X .

Proof. First note that we may assume that X is connected. Recall that, by the
work of Morel [13], for any Sullivan p-adically complete space X and any elemen-
tary abelian p-group V' [BV, X| = Homx (H*X, H*BV), where [—, —] denotes free
homotopy classes of maps and Homx denotes Hom in the category of unstable al-
gebras over the Steenrod algebra. By [8] the transcendence degree of H* X is equal
to the transcendence degree of the functor [B—, X] = Homg (H* X, H* B—) from
elementary abelian p-groups to profinite sets. One definition of the transcendence
degree of the functor [B—, X] is the rank of the largest elementary abelian p-group
V' such that there exists s € [BV, X] which cannot be written as s = s’ o By,
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where ¢ € End V is singular (see [8],[6, Prop. 5.8]). Since [BV, X] is obtained from
[BV, X]p: by taking the quotient under the action of m X we especially see that
[B—, X] and [B—, X],+ have the same transcendence degree.

The principal fibration m X — X (1) — X shows that the map [BV, X(1)],; —
[BV, X]p: is injective, so the transcendence degree of [B—, X(1)] is less than or
equal to that of [B—, X]. Since X (1) is again Sullivan p-adically complete (see
[13, 1.3,1.4]) we conclude that the transcendence degree of H*X (1) is less than or
equal to that of H*X. O

Theorem 4.2. Assume that X is a connected finite Postnikov system, with m X a
finite p-group and H*X of finite type. Then QH*X € Nily if and only if X is
F,-equivalent to the classifying space of a p-compact toral group.

Proof. If X is F,-equivalent to a the classifying space of a p-compact toral group,
then QX is F-equivalent to a disjoint union of circles, so especially H*Q.X € Nilq,
so QH*X € Nily by Theorem 3.1.

To see the converse, assume that QH*X € Nil,. Since m X is a finite p-
group the Bousfield-Kan Fj-completion of X is F,-complete and is again a finite
Postnikov system by [2, II 5.1], so we may assume that X is F,-complete. Hence
QX is also Fy-complete [2] [5, 11.9]. By for example the Eilenberg-Moore spectral
sequence, H*Q X is also of finite type so both X and QX are Sullivan p-adically
complete. By Theorem 3.1 H*(QX) € Aili, so Theorem 4.1 implies that also
H*((QX)(1)) € Nil,. Likewise, as above, H*((2X)(1)) is of finite type.

We therefore have that (2X)(1) is a one-connected finite Postnikov system
with cohomology in A7l and of finite type, which by [6, Thm. 1.1] implies that
H*((2X)(1)) = 0. So X is homotopy equivalent to its second Postnikov stage P> X,
since both spaces are F-complete. Since H*QP, X € Nily, the abelian group mo X
cannot have p-torsion, as this would imply the existence of an element of infinite
height in the mod p reduced cohomology ring of Qo P2 X = K (w3 X, 1) by standard
group cohomology (or [9]). (o denotes the zero component of the loop space.)
Hence X is an Fp-complete space with homotopy only in dimensions 1 and 2,
and my X p-torsion free. But this means that 73 X is a torsion free Ext-p complete
abelian group and hence isomorphic to Z;” for some n (cf. [2, p. 181],[7]). Since
H*X is of finite type we have n < oco. This completes the proof.

Combining Theorem 4.2 with the results in [6] now enables us to give a proof
of the main Theorem 1.1.

Proof of Theorem 1.1. By [5, Prop. 6.9, 12.1] 4. implies 3. Condition 3. obviously
implies 1. and 2., and the implication 1. implies 4. follows from Theorem 4.2. The
remaining 2. implies 4. follows easily from [6]. Namely, assume that the transcen-
dence degree of H* X is finite. We can assume that X is Fj,-complete. By Theorem
4.1, H*X (1) likewise has finite transcendence degree. Now, X (1) is an F,-complete
one connected finite Postnikov system with H*X (1) of finite type, which by [6,
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Thm. 1.2] means that X (1) is homotopy equivalent to K (ZZ, 2) for some n < oo.
Hence X is F-equivalent to the classifying space of a p-compact toral group. O

Remark 4.3. Note how 1. and 2. are complementary, in the sense that 2. is a
statement about the ring structure of H* X, whereas 1. is a statement about the
Steenrod algebra action on what is left when you kill all products.

Using the ‘McGibbon-Neisendorfer trick’, which basically says that an arbi-
trary space cannot have locally finite cohomology and have infinitely many non-
trivial homotopy groups which are all p-torsion free, we can now easily strengthen
the result of Dwyer and Wilkerson [4]. We show that the 2-connected assumption
on their result was only necessary to exclude classifying spaces of p-compact toral
groups.

Theorem 4.4. Assume that X is a connected space, with m X a finite p-group and
H* X of finite type. If QH* X is locally finite as a module over the Steenrod algebra
then X is either F,-equivalent to the classifying space of a p-compact toral group,
or it contains p-torsion in infinitely many of its homotopy groups.

Proof. Assume that X is not F-equivalent to the classifying space of a p-compact
toral group. By Theorem 4.2, X cannot be Fj-equivalent to a finite Postnikov
system, in other words 7;(X;Z/p) # 0 for infinitely many 7. But H*QX is also
locally finite by Corollary 3.2 which by [12, p. 255] implies that 7; X actually has
p-torsion for infinitely many 4. O

Remark 4.5. The above theorem is not a true generalization of Theorem 4.2 for
a good reason. The assumptions in Theorem 4.4 cannot be weakened to QH*X €
Nily as is demonstrated by setting X = BSU, the classifying space of the infinite
special unitary group. Indeed, H*SU € Nily, so QH*BSU € Nils by Theo-
rem 3.1. But BSU is obviously neither the classifying space of a p-compact toral
group nor does it contain any p-torsion in its homotopy groups by Bott periodicity.
(See also [11].)
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