
Journal of Topology 1 (2008) 747–760 c© 2008 London Mathematical Society
doi:10.1112/jtopol/jtn021

The Steenrod problem of realizing polynomial cohomology rings

Kasper K. S. Andersen and Jesper Grodal

Abstract

In this paper, we completely classify which graded polynomial R-algebras in finitely many
even degree variables can occur as the singular cohomology of a space with coefficients in
R, a 1960 question of N. E. Steenrod, for a commutative ring R satisfying mild conditions.
In the fundamental case R = Z, our result states that the only polynomial cohomology rings
over Z that can occur are tensor products of copies of H∗(CP∞; Z) ∼= Z[x2 ], H∗(B SU(n); Z) ∼=
Z[x4 , x6 , . . . , x2n ], and H∗(B Sp(n); Z) ∼= Z[x4 , x8 , . . . , x4n ], confirming an old conjecture. Our
classification extends Notbohm’s solution for R = Fp , p odd. Odd degree generators, excluded
above, only occur if R is an F2 -algebra and in that case the recent classification of 2-compact
groups by the authors can be used instead of the present paper. Our proofs are short and rely
on the general theory of p-compact groups, but not on classification results for these.

1. Introduction

In 1960, N. E. Steenrod [39] asked which graded polynomial rings occur as the cohomology
ring of a space. We answer the question in this paper.

Theorem 1.1. If H∗(X; Z) is a finitely generated polynomial algebra over Z, for
some space X, then H∗(X; Z) is isomorphic, as a graded algebra, to a tensor product of
copies of H∗(CP∞; Z) ∼= Z[x2 ], H∗(B SU(n); Z) ∼= Z[x4 , x6 , . . . , x2n ], and H∗(B Sp(n); Z) ∼=
Z[x4 , x8 , . . . , x4n ].

This has been a standard conjecture since the 1970s. In fact, we solve the question over any
ground ring R, satisfying mild assumptions. As usual, CP∞ denotes infinite complex projective
space, and B SU(n) and B Sp(n) are the classifying spaces of the special unitary group and the
symplectic group, respectively. We first describe the background of the problem and previously
known results.

Steenrod proved in his 1960 paper [39] that if H∗(X; Z) ∼= Z[x] then |x| = 2 or 4, as a
consequence of his newly introduced Steenrod operations, settling the one-variable case over Z.
In contrast, when taking coefficients in a field R of characteristic zero, every finitely generated
graded polynomial ring on even degree generators can occur, since H∗(K(Z, 2n);R) ∼= R[x2n ],
as proved by Serre in his thesis [37, Chapitre VI, § 3, Proposition 4]. Note that by anti-
commutativity, all generators have to be in even degrees, whenever 2 �= 0 in R.

Restrictions on realizable polynomial rings over Fp were studied in the 1960s and 1970s,
mainly by ingenious use of Steenrod operations (see, for example, [40, 42, 44, 45]). Key
progress was made with the discovery of a connection with finite p-adic reflection groups by
Sullivan [43], Clark and Ewing [17], and others in the early 1970s. Further significant progress
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was made with the connection to the category of unstable modules over the Steenrod algebra,
starting with Wilkerson [50] and Adams and Wilkerson [1] in the late 1970s and early 1980s.
Aguadé in his 1981 paper [2] used Adams and Wilkerson’s work [1] to obtain a partial version of
Theorem 1.1, under the strong additional hypothesis that all generators are in different degrees.
(Theorem 1.1 is referred to in [2] as ‘the standing conjecture’; see also the survey paper [3] for
a historical account and references as of 1981.) Following additional partial results, Notbohm
[33] in 1999 used the more powerful techniques of p-compact groups, as developed by Dwyer
and Wilkerson [21, 23] and others since the early 1990s, to obtain a full answer in the case
where the ground ring is Fp for p odd. Note, however, that 2-primary information is needed for
Theorem 1.1 as, for example, H∗(B Spin(2n); Z[ 1

2 ]) ∼= Z[ 1
2 ][x4 , x8 , . . . , x4(n−1) , x

′
2n ], for n � 2.

In this paper, we obtain a solution for any commutative Noetherian ring R of finite Krull
dimension, under the assumption that all generators are in even degrees. The even degrees
assumption is automatic unless R is an F2-algebra; in that case a solution however follows as
a consequence of our recent classification of 2-compact groups; see [6, Theorem 1.4]. We use
standard results about p-compact groups in the present paper, but remark that classification
results for these, as well as Notbohm’s results in the case R = Fp , p odd, are not used. We
also note that Theorem 1.1 can alternatively be deduced from our aforementioned result
[6, Theorem 1.4], but the argument we present here is significantly more direct, as explained
below. By the type of a graded polynomial ring, we mean the multiset (that is, unordered
tuple) of degrees of its generators. The general result (implying Theorem 1.1) that we prove
here is as follows.

Theorem 1.2. Let R be a commutative Noetherian ring of finite Krull dimension, let P
be the set of prime numbers p that are not units in R, and let A be a graded polynomial
R-algebra in finitely many variables, all in positive even degrees. Then there exists a space Y
such that A ∼= H∗(Y ;R) as graded R-algebras if, and only if, for each prime p ∈ P, the type
of A is a union of multisets of degrees in Tables 1–3 which occur at the prime p.

Table 1. Lie group cases.

Lie group Degrees Occur for

S1 2 all p
SU(n) 4, 6, . . . , 2n all p
Sp(n) 4, 8, . . . , 4n all p
Spin(2n) 4, 8, . . . , 4(n − 1), 2n p � 3
G2 4, 12 p � 3
F4 4, 12, 16, 24 p � 5
E6 4, 10, 12, 16, 18, 24 p � 5
E7 4, 12, 16, 20, 24, 28, 36 p � 5
E8 4, 16, 24, 28, 36, 40, 48, 60 p � 7

Table 2. Exotic cases, first part (families 2a, 2b, and 3).

W Degrees Conditions Occur for

G(m, r, n) 2m, 4m, . . . , 2(n − 1)m, 2mn/r n � 2, m � 3, r | m p ≡ 1 (mod m)
D2m 4, 2m m � 5, m �= 6 p ≡ ±1 (mod m)
Cm 2m m � 3 p ≡ 1 (mod m)



THE STEENROD PROBLEM 749

Table 3. Exotic cases, second part.

W Degrees Occur for

G8 16, 24 p ≡ 1 (mod 4)
G9 16, 48 p ≡ 1 (mod 8)
G12 12, 16 p ≡ 1, 3 (mod 8)
G14 12, 48 p ≡ 1, 19 (mod 24)
G16 40, 60 p ≡ 1 (mod 5)
G17 40, 120 p ≡ 1 (mod 20)
G20 24, 60 p ≡ 1, 4 (mod 15)
G21 24, 120 p ≡ 1, 49 (mod 60)
G22 24, 40 p ≡ 1, 9 (mod 20)
G23 4, 12, 20 p ≡ 1, 4 (mod 5)
G24 8, 12, 28 p ≡ 1, 2, 4 (mod 7), p �= 2
G29 8, 16, 24, 40 p ≡ 1 (mod 4)
G30 4, 24, 40, 60 p ≡ 1, 4 (mod 5)
G31 16, 24, 40, 48 p ≡ 1 (mod 4)
G32 24, 36, 48, 60 p ≡ 1 (mod 3)
G33 8, 12, 20, 24, 36 p ≡ 1 (mod 3)
G34 12, 24, 36, 48, 60, 84 p ≡ 1 (mod 3)

The space Y is rarely unique; see Remark 3.3. The assumption that R is Noetherian
with finite Krull dimension can be replaced by the assumption that Y has finite type; see
Proposition 2.5.

We briefly explain the origin of Tables 1–3. Table 1 lists the simple simply connected compact
Lie groups and S1, and the primes for which the homology of the group is p-torsion free, together
with the degrees of the polynomial generators of the Fp -cohomology of their classifying spaces,
but with Spin(2n + 1), p odd, left out for simplicity, since its Fp -cohomology agrees with that
of Sp(n). This information goes back to Borel [13] (see Proposition 4.3).

To explain Tables 2 and 3, we recall some facts about reflection groups. The Shephard–
Todd–Chevalley theorem [11, Theorem 7.2.1] says that, for a field K of characteristic zero
and a finite dimensional K-vector space V , a finite group W � GL(V ) is a reflection group if
and only if the ring K[V ]W of W -invariant polynomial functions on V is a graded polynomial
ring, where we grade K[V ] by giving the elements of V ∗ degree 2. The degrees of W � GL(V )
is defined to be the type of this invariant ring. (We warn the reader that degrees are sometimes
defined as half of what is the convention in this paper.) Shephard and Todd [38] classified
the finite irreducible complex reflection groups as falling into three infinite families (labeled
1–3) and 34 sporadic cases (labeled Gi , 4 � i � 37). Clark and Ewing [17] used this to give a
classification of finite Qp -reflection groups (with additional clarification by Dwyer, Miller and
Wilkerson [21, Proposition 5.5, Proof of Theorem 1.5]). This classification says that for a given
prime p, a finite C-reflection group gives rise to a unique Qp -reflection group if and only if its
character field embeds in Qp , and all finite Qp -reflection groups arise this way. Tables 2 and 3
essentially list the finite irreducible Qp -reflection groups that are exotic, that is, those whose
character field is not Q, except the Q2-reflection group G24 ; but, for simplicity, we have also
removed the groups Gi for i = 4, 5, 6, 7, 10, 11, 13, 15, 18, 19, 25, 26, and 27, whose degrees
is readily obtainable as a multiset union of the degrees of the remaining groups, at any prime
for which they exist as Qp -reflection groups.

To illustrate Theorem 1.2, if P = ∅ (that is, if R is a Q-algebra) there are no restrictions,
recovering Serre’s result mentioned earlier. If 2 ∈ P, the possible types of A are unions of
the multisets {2}, {4, 6, . . . , 2n}, and {4, 8, . . . , 4n}, in particular recovering Theorem 1.1. If
P = {3} the type of A is a union of {2}, {4, 6, . . . , 2n}, {4, 8, . . . , 4n}, {4, 8, . . . , 4(n − 1), 2n},
{4, 12}, and {12, 16}, and similar lists can easily be compiled for P = {p} for any individual
prime p. For arbitrary P, it is a simple combinatorial problem to check whether any given
multiset of degrees is realizable, as is described in the following corollary.
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Corollary 1.3. For any multiset of degrees {2d1 , . . . , 2dr}, there exist integers a1 , . . . , am

and N such that the following conditions are equivalent for any commutative Noetherian ring
R of finite Krull dimension.

(1) The graded polynomial R-algebra R[x1 , . . . , xr ], with |xi | = 2di , is isomorphic to
H∗(Y ;R) for some space Y.

(2) Every prime number p, which is not a unit in R, satisfies p ≡ ai (mod N) for some i.

We give an algorithm for finding N and a1 , . . . , am in the course of the proof. Finding explicit
generators for the commutative monoid of realizable multisets of degrees for a given collection
of primes P is a harder combinatorial problem in general.

The proof of the main theorem spans three short sections. The first two sections reduce
the problem to p-compact groups: In Section 2, we show that if H∗(Y ;R) is a polynomial
algebra, then the same holds for H∗(Y ; Fp) for all prime numbers p that are not units in
R, and hence that the Fp -completion Y p̂ is the classifying space of a p-compact group. The
proof has a small ring-theoretic twist due to finite-type problems coming from the fact that we
are working with cohomology. Conversely, Section 3 constructs a space Y with polynomial R-
cohomology from a collection of p-compact groups with compatible cohomology rings, for p any
non-unit in R. Finally, in Section 4, we determine the graded polynomial Fp -algebras on even
degree generators, which occur as the Fp -cohomology of the classifying space of a p-compact
group. The key Proposition 4.1 reduces this question to separate questions for classifying
spaces of compact Lie groups and classifying spaces of exotic p-compact groups (without using
classification results on p-compact groups). These are then easily solved, the first one essentially
by Borel, and the second using earlier existence results for exotic p-compact groups. Combining
the earlier steps now establishes the main result, Theorem 1.2, and its corollaries. We remark
that Notbohm’s approach to the case R = Fp , p odd, in [33] differs from the one given here
in Section 4. Notbohm instead uses an argument relying on various earlier, fairly elaborate,
case-by-case calculations of invariant rings, which in particular does not extend to the case
of F2 .

1.1. Notation and recollections

We stress that by a graded polynomial algebra we mean a graded algebra generated by a
set of homogeneous elements, which are algebraically independent (that is, we do not allow
odd degree exterior generators). For the theorems of the paper, a space can be taken to
mean any topological space, though for the purposes of the proofs we may, without loss of
generality, restrict ourselves to CW-complexes (or even simplicial sets), as we will often tacitly
do. We constantly use the theory of p-compact groups, and here recall some pertinent facts,
referring to, for example, [6, 7, 20, 23] for more information. A p-compact group consists of
a triple (X,BX, e : X

�−→ ΩBX) such that BX is an Fp -complete space and X has finite Fp -
cohomology. Proposition 2.2 recalls that spaces with polynomial Fp -cohomology ring always
come from p-compact groups. A standard result, central to this paper, states that for a
connected p-compact group X, H∗(BX; Fp) is a polynomial algebra, concentrated in even
degrees if and only if H∗(X; Zp) is torsion free if and only if H∗(BX; Zp)

∼=−→ H∗(BT ; Zp)WX,
where T and WX are respectively the maximal torus and the Weyl group of X. (Parts of this
result are due to Borel and parts to Dwyer, Miller and Wilkerson; see [7, Theorem 12.1].) In
this case the type of H∗(BX; Fp) equals the degrees of WX, which act as a reflection group on
π2(BT ) ⊗ Q with invariant ring Qp [π2(BT ) ⊗ Q]WX ∼= H∗(BX; Zp) ⊗ Q [23, Theorem 9.7]—
this provides the link between polynomial cohomology rings concentrated in even degrees,
torsion free p-compact groups, and finite Zp - and Qp -reflection groups. A couple of times in
the proofs, we use root data for which we refer to [6, Section 8], although we do not use
anything that is not already in [24] in a slightly different language.
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2. From R to Fp

In this section, we show how a polynomial cohomology ring over R produces polynomial
cohomology rings over Fp for the prime numbers p that are not units in R.

Proposition 2.1. Suppose that R is a commutative Noetherian ring of finite Krull
dimension, and Y is a space such that H∗(Y ;R) is a polynomial R-algebra in finitely many
variables, each in positive degree. If a prime p is not a unit in R then H∗(Y ; Fp) is a polynomial
Fp -algebra with the same type and Y p̂ is the classifying space of a p-compact group.

The proof will occupy the rest of this section. The proof is straightforward if, for example,
R ⊆ Q (using the exact sequence 0 → R

p−→ R → Fp → 0), but in general it is a bit more subtle,
with complications arising even for R = Z/4. First we explain the well-known fact that spaces
with polynomial Fp -cohomology ring give rise to p-compact groups.

Proposition 2.2. Let Y be a space. If H∗(Y ; Fp) is a finitely generated polynomial algebra
over Fp , then Y p̂ 
 BX for a p-compact group X. If, furthermore, H1(Y ; Fp) = 0, then X is
connected.

Proof. By considering the fiber of the canonical map Y → K(H1(Y ; Fp), 1), one easily
reduces to the case where H1(Y ; Fp) = 0 (cf. [6, Proof of Theorem 1.4]), and, in fact, this is also
the only case relevant for our main theorem. By [14, Proposition VII.3.2], Y is Fp -good, and Y p̂

is Fp -complete and simply connected. In particular, the Eilenberg–Moore spectral sequence of
the path-loop fibration of Y p̂ converges [19] and shows that H∗(ΩY p̂ ; Fp) is finite-dimensional
over Fp . Hence Y p̂ is the classifying space of a p-compact group, which is connected since Y p̂

is simply connected.

Next we deal with the finiteness restrictions usually associated with universal coefficient
theorems in cohomology. Recall that the finitistic flat dimension of a commutative ring R is
defined to be the supremum over the flat dimensions of all R-modules with finite flat dimension.

Lemma 2.3. Let R be a commutative ring, and let C∗ be a chain complex of R-modules
(with differential of degree −1) concentrated in non-positive degrees such that Cn and Hn (C∗)
are flat for all n. If the finitistic flat dimension of R is finite, then Hn (C∗) ⊗R M

∼=−→ Hn (C∗ ⊗R

M) for any R-module M .

Proof. Let fd(−) denote the flat dimension of an R-module. By the Künneth formula
[47, Theorem 3.6.1] it suffices to show that im(Cn

dn−→ Cn−1) is flat for all n. To see this,
first note that by the short exact sequence

0 → im(dn+1) → ker(dn ) → Hn (C∗) → 0,

we have fd(im(dn+1)) = fd(ker(dn )), since Hn (C∗) is flat, cf. [47, Exercise 4.1.2(3)]. Now, since
Cn is flat, the short exact sequence

0 → ker(dn ) → Cn → im(dn ) → 0

shows that either im(dn ) and im(dn+1) are flat or fd(im(dn+1)) = fd(ker(dn )) = fd(im(dn )) − 1.
Since im(dn ) = 0 is flat for n positive, it follows that either im(dn ) is flat for all n or there
exists an n0 such that im(dn ) is flat for n � n0 and fd(im(dn )) = n0 − n for n � n0 . Since R
has finite finitistic flat dimension the second possibility cannot occur, and we are done.
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Remark 2.4. A way to view the assumptions in the lemma is that they ensure convergence
of the Künneth spectral sequence, derived from the spectral sequence of a double complex
(see [47, § 5.6]). In complete generality the Künneth spectral sequence need not converge, the
standard counterexample being R = Z/4, C∗ = · · · 2−→ Z/4 2−→ Z/4 2−→ · · · and M = Z/2.

The preceding lemma, together with a result in commutative ring theory, gives the following
result about the cohomology of spaces.

Proposition 2.5. Let R be a commutative ring and let Y be a space such that H∗(Y ;R)
is finite free over R in each degree. If either R is Noetherian with finite Krull dimension or Y
has finite type, then

H∗(Y ;R) ⊗R R/p
∼=−→ H∗(Y ;R/p)

∼=←− H∗(Y ; Fp) ⊗Fp
R/p

as R/p-algebras.

Proof. Assume first that Y is arbitrary and that R is Noetherian with finite Krull dimension.
Then the singular cochain complex C∗(Y ;R) is a complex of flat modules, since over a
commutative Noetherian ring arbitrary products of flat modules are again flat (that is,
commutative Noetherian rings are coherent; see [16, Theorem 2.1] or [15, Exercise VI.4,
p. 122]). By a result of Auslander and Buchsbaum [8, Theorem 2.4], the finitistic flat
dimension of R is bounded above by its Krull dimension (in fact they differ by at most
1 by a result of Bass [10, Corollary 5.3]), and in particular the assumptions imply that
it is finite. Hence, since obviously C∗(Y ;R) ⊗R R/p ∼= C∗(Y ;R/p), Lemma 2.3 implies that
H∗(Y ;R) ⊗R R/p

∼=−→ H∗(Y ;R/p). Now

H∗(Y ;R/p) = H(C∗(Y ;R/p)) = H(HomFp
(C∗(Y ; Fp), R/p))

∼=−→ HomFp
(H∗(Y ; Fp), R/p)

as R/p-modules, and in particular H∗(Y ; Fp) is finite in each degree. Hence H∗(Y ; Fp) ⊗Fp
R/p

∼=−→ HomFp
(H∗(Y ; Fp), R/p), which combined with the previous isomorphisms gives the result

under the ring-theoretic assumption on R.
Now assume that Y has finite type, and that R is an arbitrary commutative ring. Let

C∗(Y ;−) denote the cellular cochain complex, and note that, by the finite-type assumption,
C∗(Y ; Z) ⊗Z R

∼=−→ C∗(Y ;R). Now H∗(Y ;R) ⊗R R/p
∼=−→ H∗(Y ;R/p) by a result of Dold [18,

Satz 5.2], applied to the Z-chain complex C∗ = C−∗(X; Z), Λ = R and M = R/p. (Note that
the proof of Dold’s theorem is more involved than the proof of the ordinary Künneth theorem.)
The second isomorphism in the proposition now follows as above.

Lemma 2.6. Let A be a graded connected Fp -algebra that is finite-dimensional in each
degree, and let B be an Fp -algebra (viewed as a graded algebra concentrated in degree 0). If
A ⊗Fp

B is a graded polynomial B-algebra, then A is a graded polynomial Fp -algebra with the
same type.

Proof. By reducing B modulo a maximal ideal, we can without restriction assume that
B is a field. Since B is a flat Fp–module, Q(A) ⊗Fp

B
∼=−→ Q(A ⊗Fp

B), where Q(·) denotes the
module of indecomposable elements. Picking a basis for the Fp -vector space Q(A) and lifting
this to A produces a set of generators for A as an Fp -algebra, which maps to a set of generators
for A ⊗Fp

B as a B-algebra. By construction, they form a B-basis for Q(A ⊗Fp
B). Hence they

are algebraically independent, since A ⊗Fp
B is assumed to be a graded polynomial B-algebra

(to see this, note that mapping polynomial generators of A ⊗Fp
B to the constructed generators

will produce an epimorphism A ⊗Fp
B → A ⊗Fp

B, which also has to be a monomorphism since
A ⊗Fp

B is finite-dimensional over B in each degree). Since B is a faithfully flat Fp -module,
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the generators are algebraically independent in A as well, and hence A is a graded polynomial
Fp -algebra.

Proof of Proposition 2.1. By Proposition 2.5 and Lemma 2.6, H∗(X; Fp) is a polynomial
algebra with the same type as H∗(X;R). It hence follows from Proposition 2.2 that X is
Fp -good and Xp̂ is the classifying space of a p-compact group.

3. From Fp to R

In this section, we show how spaces with polynomial Fp -cohomology ring at different primes
can be glued together, provided that they have the same type.

Proposition 3.1. Let P be a set of prime numbers, let J be the set of prime numbers not
in P, and let {2d1 , . . . , 2dr} be a fixed multiset. Suppose that for each p ∈ P there exists a space
Bp such that H∗(Bp ; Fp) is a polynomial algebra with type {2d1 , . . . , 2dr}. Then there exists a
simply connected space Y of finite type, such that H∗(Y ; Z[J−1 ]) is a polynomial algebra over
Z[J−1 ] with generators in degrees {2d1 , . . . , 2dr}. More generally, if R is a commutative ring
with R = R[J−1 ], then H∗(Y ;R) is also a polynomial R-algebra with generators in the same
degrees.

Before the proof we need the following lemma, which is similar to a lemma used by Baker
and Richter [9, Proposition 2.4] in a different context.

Lemma 3.2. Let J be a set of prime numbers and set R = Z[J−1 ]. Suppose that A is a
graded connected R-algebra, finite free over R in each degree. If A ⊗R Q is a graded polynomial
Q-algebra and A ⊗R Zp is a graded polynomial Zp -algebra for all primes p �∈ J , then A is a
graded polynomial R-algebra as well (with the same type as both A ⊗R Zp , p �∈ J , and A ⊗R Q).

Proof. The proof is similar to the proof of Lemma 2.6. Since Zp is flat over R for p �∈ J ,
we have Q(A) ⊗R Zp

∼=−→ Q(A ⊗R Zp), which is free over Zp in each degree by assumption.
Hence Q(A) does not have p-torsion when p �∈ J , and since Q(A) is finite over R in each
degree, we conclude by the structure theorem for finite Z[J−1 ]-modules that Q(A) is finite
free over R in each degree. Likewise, since Q is flat over R, Q(A) ⊗R Q

∼=−→ Q(A ⊗R Q). Pick
homogeneous elements in A that project to an R-basis of Q(A). Clearly, these elements generate
A as an R-algebra. They are also algebraically independent, since they, via the isomorphism
Q(A) ⊗R Q

∼=−→ Q(A ⊗R Q), give rise to generators of the graded polynomial ring A ⊗R Q.
Hence A is a graded polynomial R-algebra, with the same type as A ⊗R Q and A ⊗R Zp ,
p �∈ J .

Proof of Proposition 3.1. The proof is reminiscent of [5, Proof of Lemma 1.2], to which we
also refer. By Proposition 2.2, (Bp)p̂ is Fp -complete with the same Fp -cohomology as Bp , so
we may assume that Bp is Fp -complete. Set K = K(Z[P−1 ], 2d1) × . . . × K(Z[P−1 ], 2dr ). We
will define Y as a homotopy pull-back

Y ��

��

∏
p∈P Bp

��
K

f �� (
∏

p∈P Bp)Q

(3.1)

where the map f has to be constructed.
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Since Bp is the classifying space of a connected p-compact group by Proposition 2.2,
π∗(Bp) and H∗(Bp ; Zp) are finite over Zp in each degree. It follows that H∗(Bp ; Zp) is also
a polynomial algebra over Zp , with type {2d1 , . . . , 2dr}. By an essentially classical result (see
[5, Theorem 2.1]),

πn (Bp) ∼= πn−1((S2d1 −1 × . . . × S2dr −1)p̂)

for p > max{d1 , . . . , dr} and similarly for the Q-localization, so

πn

(( ∏
p∈P

Bp

)
Q

)
∼= πn−1(S2d1 −1 × . . . × S2dr −1) ⊗

( ∏
p∈P

Zp

)
⊗ Q.

Since these homotopy groups are concentrated in even degrees, (
∏

p∈P Bp)Q is a product of
Eilenberg–Mac Lane spaces, as follows from standard obstruction theory [48, Chapter IX].

Hence we can define f : K → (
∏

p∈P Bp)Q to be the canonical map induced by the unique
ring map Z[P−1 ] → Q → (

∏
p∈P Zp) ⊗ Q. By the Mayer–Vietoris sequence in homotopy applied

to the pull-back square (3.1), we see that

πn (Y ) =

( ⊕
i,2di =n

Z

)
⊕

( ⊕
p∈P

Tor(Q/Z, πn (Bp))

)
.

In particular, πn (Y ) is finite over Z, since for a fixed n, πn (Bp) is p-torsion free, for p large
[37, Chapitre V, § 5, Proposition 4]. Since Y is simply connected, this implies that Y is
homotopy equivalent to a CW-complex with finitely many cells in each dimension; that is,
Y can be chosen to have finite type (compare, for example, [46, Theorem A]).

For p ∈ P, the pull-back square above shows that the map Y → Bp induces an isomorphism
on mod p homology so H∗(Y ; Zp)

∼=←− H∗(Bp ; Zp). Hence H∗(Y ; Zp) is a polynomial ring over
Zp with the same type as H∗(Bp ; Fp). Since H∗(Y ; Z[J−1 ]) is finite over Z[J−1 ] in each degree,
the universal coefficient theorem [47, 3.6.5] (applied to the Z[J−1 ]-module Zp) shows that
H∗(Y ; Z[J−1 ]) is in fact finite free over Z[J−1 ] in each degree, and hence so is H∗(Y ; Z[J−1 ]).
In particular,

H∗(Y ; Z[J−1 ]) ⊗Z[J−1 ] Zp
∼= H∗(Y ; Zp) ∼= H∗(Bp ; Zp).

Lemma 3.2 now shows that H∗(Y ; Z[J−1 ]) is a polynomial Z[J−1 ]-algebra as wanted. Finally,
let R be a commutative ring with R = R[J−1 ]. Since H∗(Y ; Z[J−1 ]) is finite free over
Z[J−1 ] in each degree, the universal coefficient theorem again implies that H∗(Y ;R) ∼=
H∗(Y ; Z[J−1 ]) ⊗Z[J−1 ] R, proving the last claim.

Remark 3.3. The space Y in Proposition 3.1 is rarely unique, even up to Z[J−1 ]-
localization, due to a multitude of factors: First, given a multiset of degrees and a prime
p, there may be several choices of p-compact groups with the same degrees; this is a finite,
essentially combinatorial, problem (see [6, Theorem 1.5] and [33, Corollary 1.8]).

Secondly, the classifying space BX of a connected p-compact group may lift to many Z(p)-
homotopy types of spaces of finite type over Z(p) , with examples at least going back to
Bousfield and Mislin [34, Appendix]. This uses a variant of Wilkerson’s double coset formula
[49, Proof of Theorem 3.8] resulting from the pull-back K → (BX)Q ← BX, for K a rational
space with the same rational degrees as BX. In fact, a more careful analysis along the same
lines reveals that BX has a unique lifting as above if and only if X is a p-compact torus or
X is a product of rank one p-compact groups and the rational degrees {2d1 , . . . , 2dr} have the
property that none of the degrees can be written as a non-negative integral linear combination
of the others. Moreover, if the lift is non-unique, there are uncountably many lifts.

Thirdly, given a set of Z(p) -homotopy types Yp as in the second step, one for each prime in P
(that is, p /∈ J), with the same rational degrees, Zabrodsky mixing associated to the pull-back
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K → (
∏

p∈P Yp)Q ←
∏

p∈P Yp produces, in general, infinitely many Z[J−1 ]-homotopy types.
Again, a more careful analysis with the corresponding double coset formula reveals that if
2 � |P| < ∞, then there are countably infinitely many lifts, unless (Yp)p̂ satisfies the conditions
of the second step for each p ∈ P, in which case there is only one lift. If P is infinite then there
are uncountably many lifts unless the rational degrees are {2, 2, . . . , 2}; that is, the torus case.
(See also, for example, [29, 31, 34, 36, 49] for related information.)

4. p-compact groups with polynomial Fp -cohomology concentrated in even degrees

In this section, we provide the necessary results on p-compact groups, and use this, together
with the results of the previous sections, to prove Theorem 1.2 and its corollaries. The key
step is the following result, which in fact also holds without the even degree assumption
[6, Theorem 1.4], though we do not know a proof in that generality, which does not go via the
classification of 2-compact groups [6, Theorem 1.2].

Proposition 4.1. If X is a p-compact group such that H∗(BX; Fp) is a finitely generated
polynomial algebra over Fp concentrated in even degrees, then we can write

H∗(BX; Fp) ∼= H∗(BG; Fp) ⊗ H∗(BY ; Fp)

as Fp -algebras (and in fact as algebras over the Steenrod algebra), for G a compact connected
Lie group and Y a product of exotic p-compact groups.

First, we need a lemma.

Lemma 4.2. Let X be a p-compact group such that H∗(BX; Fp) is a finitely generated
polynomial algebra over Fp concentrated in even degrees. Then CX (ν) is connected for any
elementary abelian p-subgroup ν : BE → BX of X.

Proof. Let ν : BE → BX be an elementary abelian p-subgroup of X. By [24, Proof of The-
orem 8.1] we have H∗(BCX (ν); Fp) ∼= TE,ν∗(H∗(BX; Fp)), where TE,ν∗ denotes the component
of Lannes’ T -functor corresponding to ν∗ [28, 2.5.2]. Since TE,ν∗ preserves objects concentrated
in even degrees [28, Proposition 2.1.3] as well as finitely generated graded polynomial algebras
[26, Theorem 1.2], we conclude that H∗(BCX (ν); Fp) is also a finitely generated polynomial
algebra over Fp concentrated in even degrees and, in particular, CX (ν) is connected by
Proposition 2.2.

Proof of Proposition 4.1. By Proposition 2.2, X is connected. The classification of Zp -root
data [6, Theorem 8.1] says that the Zp -root datum DX of X can be written as a direct product
DX

∼= (DG ⊗ Zp) × D1 × . . . × Dn , where G is a compact connected Lie group and the Di

are exotic Zp -root data. By the product decomposition theorem [25, Theorem 1.4] we have an
associated decomposition BX 
 BX ′ × BX1 × . . . × BXn , where X ′ is a connected p-compact
group with DX ′ ∼= DG ⊗ Zp and the Xi are exotic p-compact groups with DXi

∼= Di .
We finish the proof by showing that H∗(BX ′; Fp) ∼= H∗(BG; Fp) as Fp -algebras. Lemma 4.2

shows that CX ′(ν) is connected for every elementary abelian p-subgroup ν : BE → BX ′ of X ′.
If ν is toral, that is, if ν factors through the maximal torus BT → BX ′ of X ′, a result of Dwyer
and Wilkerson [24, Theorem 7.6] (see also [6, Proposition 8.4(3)]) shows that π0(CX ′(ν)) can be
computed from the root datum DX ′ . Since DX ′ ∼= DGp̂

, it follows that CGp̂
(ν) is also connected

for every toral elementary abelian p-subgroup ν of Gp̂ . If E is an elementary abelian subgroup
of G and i : E → G is the inclusion, we have CG (E)p̂

∼= CGp̂
(Bi), so CG (E) is connected for

every elementary abelian p-subgroup E of G that is contained in a maximal torus. By results
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of Steinberg [41, Theorems 2.27 and 2.28] and Borel [13, Theorem B], it follows that G does
not have p-torsion, or equivalently that H∗(BG; Fp) is a polynomial algebra concentrated in
even degrees. But, by [7, Theorem 12.1], this implies that we have isomorphisms

H∗(BX ′; Zp)
∼=−→ H∗(BT ; Zp)W ∼=←− H∗(BG; Zp),

since the Weyl group W and its action on T is determined by DX ′ ∼= DGp̂
. In particular,

H∗(BX ′; Fp) ∼= H∗(BG; Fp) as algebras over the Steenrod algebra, as required.

The following proposition, which determines the compact Lie groups whose classifying space
has polynomial cohomology, goes back to Borel [13, Theorem 2.5].

Proposition 4.3. A finitely generated graded polynomial Fp -algebra A concentrated in
even degrees is isomorphic to H∗(BG; Fp) for some compact connected Lie group G if and only
if the type of A is a union of multisets of degrees occurring in Table 1.

Proof. In [13, Theorem 2.5] Borel determined, for all simple simply connected compact Lie
groups G, the prime numbers p such that H∗(BG; Fp) is a polynomial algebra concentrated
in even degrees. This is the data in Table 1. (G = Spin(2n + 1), p � 3, is omitted since
H∗(B Spin(2n + 1); Fp) ∼= H∗(B Sp(n); Fp) as Fp -algebras.)

Assume now that G is an arbitrary compact connected Lie group such that H∗(BG; Fp) is
a polynomial Fp -algebra concentrated in even degrees. There exists a fibration BG′ → BG →
BS, where G′ denotes the commutator subgroup of G and S is a torus. Since π2(BG) →
π2(BS) is surjective by the long exact sequence in homotopy, H2(BS; Fp) → H2(BG; Fp) is
injective. Because H∗(BS; Fp) is generated by elements in degree 2 and H∗(BG; Fp) is poly-
nomial, the homomorphism H∗(BS; Fp) → H∗(BG; Fp) is injective and H∗(BG; Fp) is free over
H∗(BS; Fp). Hence the Eilenberg–Moore spectral sequence for the fibration collapses and we
get an isomorphism H∗(BG; Fp) ∼= H∗(BS; Fp) ⊗ H∗(BG′; Fp) of Fp -algebras. This shows that
H∗(BG′; Fp) is a polynomial algebra concentrated in even degrees as well, so we can assume
that G has finite fundamental group. But, since H3(BG; Fp) = 0, π1(G) cannot contain p-
torsion, so we can assume that G is simply connected. Hence G splits as a product of simple
simply connected compact Lie groups, and in particular the type of H∗(BG; Fp) is a union of
multisets of degrees from Table 1.

The next proposition covers the exotic case.

Proposition 4.4. A finitely generated graded polynomial Fp -algebra A concentrated in
even degrees is isomorphic to H∗(BY ; Fp) for Y a product of exotic p-compact groups if and
only if the type of A is a union of multisets of degrees occurring in Tables 2 and 3.

Proof. The degrees of every exotic Qp -reflection group, p odd, is realized as the type of a
polynomial Fp -cohomology ring. This is the culmination of the work of a number of people:
Sullivan [43, p. 166–167], Clark and Ewing [17], Quillen [35, § 10], Zabrodsky [51, 4.3], Aguadé
[4] and Notbohm and Oliver [32]. See also [33] and [7, § 7] for a unified treatment. In particular,
the multisets of degrees in Tables 2 and 3 are all realized.

Conversely, suppose that X is an exotic p-compact group, with H∗(BX; Fp) a polynomial
Fp -algebra concentrated in even degrees. As used before, this implies that H∗(BX; Zp) is also
polynomial and H∗(BX; Zp) ∼= H∗(BT ; Zp)W. In particular, the type of H∗(BX; Fp) agrees
with the type of H∗(BT ; Zp)W ⊗ Q, that is, with the degrees of the Qp -reflection group W ,
which is exotic by assumption. For p = 2, the classification of finite Q2-reflection groups says
that there is only one exotic Q2-reflection group, namely G24 . By the classification of Zp -root
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data [6, Theorem 8.1], there is a unique Z2-root datum associated to G24 , namely DX = DDI(4) ,
the root datum of the exotic 2-compact group DI(4) constructed by Dwyer and Wilkerson
[22]. Using the formula for the component group of a centralizer [24, Theorem 7.6] (see also
[6, Proposition 8.4(3)]) one sees that CX (2 T̆ ) is not connected, where 2 T̆ denotes the maximal
elementary abelian 2-subgroup of the discrete torus T̆ . This contradicts Lemma 4.2, so the
classifying space of a 2-compact group with this root datum cannot have polynomial F2-
cohomology ring concentrated in even degrees, and we must have p odd. (Alternatively, one
can see directly that the polynomial algebra F2 [x8 , x12 , x28 ] cannot be an unstable algebra over
the mod 2 Steenrod algebra A2 ; for degree reasons the ideal generated by x8 and x12 is closed
under A2 , so the quotient F2 [x28 ] would have to be an unstable algebra over A2 . However, this
is not possible since 28 is not a power of 2.)

It only remains to be shown that for p odd, the degrees of any exotic Qp -reflection group
that does not occur in Tables 2 and 3 can be written as a multiset union of degrees of those
that do; the cases G4 , G5 , G6 , G7 , G10 , G11 , G13 , G15 , G18 , G19 , G25 , G26 , and G27 are left
out of Table 3 since these are covered by the groups G(6, 3, 2), G(6, 1, 2), C4 × C12 , C12 × C12 ,
G(12, 1, 2), C24 × C24 , G8 , G(12, 1, 2), G(30, 1, 2), C60 × C60 , G(6, 2, 3), G(6, 1, 3), and C6 ×
G20 , respectively.

Proof of Theorem 1.2. Suppose that we are in the setup of the theorem, with a fixed
commutative Noetherian ring R of finite Krull dimension. If H∗(Y ;R) is a polynomial
R-algebra, then Proposition 2.1 shows that for p ∈ P, H∗(Y ; Fp) is a polynomial Fp -algebra
with the same type and Y p̂ is the classifying space of a p-compact group. Hence by
Propositions 4.1, 4.3, and 4.4, the type of H∗(Y ;R) satisfies the restrictions of Theorem 1.2,
as required.

Conversely, suppose that we are given a multiset of degrees, which satisfies the degree
restrictions for all p ∈ P. Then for each p ∈ P there exists, by Propositions 4.3 and 4.4, a space
Bp such that H∗(Bp ; Fp) is a polynomial Fp -algebra with the given type. By Proposition 3.1,
we can construct a space Y such that H∗(Y ;R) is a polynomial R-algebra with the given type.

Proof of Corollary 1.3. By inspection, a given multiset of degrees occurs at most finitely
many times in Tables 1–3. It follows that a given finite multiset L can only be decomposed
in finitely many ways as a union of multisets of degrees from Tables 1–3 (ignoring for now
restrictions on primes p). We next have to determine the prime numbers p for which each of
these decompositions can occur.

For short, say that a set of integers is listable if it can be written as a union of congruence
classes modulo some number N . Finite intersections and finite unions of listable sets are again
listable and there is an obvious algorithm for computing them as listable sets. Notice that each
entry in the tables occur for a prime number p if and only if p belongs to some listable set.
(This follows directly from the tables, together with the observation that for any integer k we
have p � k if and only if p belongs to a union of congruence classes modulo N =

∏
l<k, l prime l;

for example, p � 5 if and only if p ≡ ±1 mod 6.) A given decomposition of L (as a union of
multisets of degrees corresponding to entries in the tables), can be used at a prime p if and
only if each of the entries occur at p, and by the above this is equivalent to p belonging to an
explicit listable set depending only on the decomposition. Since there are only finitely many
decompositions of L as above, we conclude that the set of primes p for which there exists some
decomposition of L at p is a listable set. The result now follows from Theorem 1.2.

Remark 4.5. A different line of argument for Theorem 1.2 in the case R = F2 is as follows.
As before, using product splitting for p-compact groups, one can reduce to the case where
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H∗(Y ; F2) ∼= H∗(BX; F2) for X a simply connected simple 2-compact group, and the type of
H∗(BX; F2) agrees with the degrees of WX. We hence have to rule out the degrees of W (Dn )
(n � 4), W (E6), W (E7), W (E8), W (F4), W (G2), and W (DI(4)). All but the first family can
be eliminated directly, even as algebras over the Steenrod algebra, by [45, Theorem 1.4], and
the same can be seen to hold for W (Dn ), n � 5, n odd, using [42]. The case W (Dn ), n � 4,
n even, can actually exist as an algebra over the Steenrod algebra (when n is a power of 2)
but cannot occur as the cohomology ring of a space by the following argument. Consider X ′ =
CX (2 T̆ ). By [24, Theorem 7.6], WX ′ is the subgroup of elements in W , which act trivially on L
modulo 2, and hence WX ′ is a normal 2-subgroup of W (cf. [7, Lemma 11.3]). By assumption
and Lemma 4.2, X ′ is connected, so WX ′ is generated by reflections. Since all reflections
in W are conjugate and −1 ∈ W , we conclude WX ′ = W . In particular, W is a 2-group, a
contradiction.

Remark 4.6. The spaces in Theorems 1.1 and 1.2 can be realized as cohomology rings of
discrete groups by a theorem of Kan and Thurston [27], but the group can rarely be taken to be
finite: If H∗(BG;R) is a finitely generated polynomial algebra, for G a finite group and R any
commutative ring, then all polynomial generators are in degree 1. This follows from a result of
Benson and Carlson [12, Corollary 6.6], but one can also argue as follows: If all generators are
in even degrees, H∗(BG; Fp) is a polynomial ring with the same type as H∗(BG;R) for the
primes p that are not units in R. Hence BGp̂ is a connected p-compact group, and in particular
every element of p-power order in G is divisible by p (see [23, Proposition 5.6] and [30, (4)]).
Therefore the order of G is prime to p, and H∗(BG;R) = R. If there are generators in odd
degrees, then R has to be an F2-algebra and a small modification of the argument shows that
all generators have to be in degree one (see the proof of Proposition 2.2).
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Neuchâtel 1970, Lecture Notes in Mathematics 196 (Springer, Berlin, 1971) 85–99.
41. R. Steinberg, ‘Torsion in reductive groups’, Adv. Math. 15 (1975) 63–92.
42. T. Sugawara and H. Toda, ‘Squaring operations on truncated polynomial algebras’, Japan. J. Math. 38

(1969) 39–50.
43. D. P. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, the 1970 MIT notes,

K -Monographs in Mathematics 8 (ed. A. Ranicki; Springer, Dordrecht, 2005).
44. E. Thomas, ‘Steenrod squares and H -spaces’, Ann. of Math. (2) 77 (1963) 306–317.
45. E. Thomas, ‘Steenrod squares and H -spaces. II’, Ann. of Math. (2) 81 (1965) 473–495.
46. C. T. C. Wall, ‘Finiteness conditions for CW-complexes’, Ann. of Math. (2) 81 (1965) 56–69.
47. C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38

(Cambridge University Press, Cambridge, 1994).
48. G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61 (Springer, New

York, 1978).
49. C. W. Wilkerson, ‘Applications of minimal simplicial groups’, Topology 15 (1976) no. 2, 111–130; erratum,

Topology 19 (1980) no. 1, 99.
50. C. W. Wilkerson, ‘Classifying spaces, Steenrod operations and algebraic closure’, Topology 16 (1977)

no. 3, 227–237.



760 THE STEENROD PROBLEM

51. A. Zabrodsky, ‘On the realization of invariant subgroups of π∗(X )’, Trans. Amer. Math. Soc. 285 (1984)
no. 2, 467–496.

Kasper K. S. Andersen
Department of Mathematical Sciences
University of Aarhus
Ny Munkegade, Bygning 1530
DK-8000 Aarhus C
Denmark

kksa@imf.au.dk

Jesper Grodal
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
DK-2100 Copenhagen
Denmark

jg@math.ku.dk


	Introduction
	From R to Fp
	From Fp to R
	p-compact groups with polynomial Fp-cohomology concentrated in even degrees
	References

