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Abstract

This report briefly sketches some parts of my internship on group cohomology. Even
though the (co)homology of a group appears in a multitude of situations, the actual
computations are far from obvious and make use of techniques found in related fields.
Indeed, knowledge of homological algebra, topology or even algebraic geometry proves
to be useful in a variety of ways. To keep this document short and concise, we focus
more precisely on the interaction between group cohomology and topology.

Resumé

Denne rapport kort præsenterer nogle dele af min praktik om gruppekohomologi.
Selvom (ko)homologi af en gruppe vises i mange situationer, de faktiske beregninger
er virkelig hårdt i almindelighe og gøre brug af teknikker findes i relaterede områder.
Kendskab til homologisk algebra, topologi eller algebraisk geometri viser sig at være
nyttigt på forskellige måder. For at holde dette dokument kort og kortfattet, vi fokuserer
mere præcist på samspillet mellem gruppekohomologi og topologi.

Jeg vil gerne takke min vejleder Jesper Grodal for hans tid og forklaringer. Jeg vil
også gerne takke Institutet for Matematiske Fag for at lade mig blive i Københavns Uni-
versitetet i løbet af min praktik.
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The cohomology theory of groups arose from both algebraic an topological sources.
The idea behind this report is to provide a tiny walk-through for anyone wanting to take
a peek at some basic results in this field, with a special emphasize on the relation between
two worlds: algebra and topology. We first start with an example where they meet in an
unusual fashion.

Let G be a group. Since their appearance in a 1936 paper by Hurewicz [3], topologists
have used and constructed aspherical spaces (connected topological spaces with vanishing
higher homotopy groups, ie. such that πn = 0 for n 6= 1). It is a result that we can construct
a classifying space of G: an aspherical space BG with G as fundamental group. Follow-
ing the standard notation, we will say that BG is an Eilenberg-MacLane space K(G, 1).
This idea is central in topology, indeed the ordinary cohomology theory can defined with
the Eilenberg-MacLane spectrum [7]. In his paper, Hurewicz proved that these spaces are
determined up to homotopy by their fundamental group. Therefore, it seems that the (or-
dinary) cohomology of BG is a good candidate for our definition of the cohomology of
G.

Before jumping to formal definitions, let us put our algebraist’s hat on. A first way of
studying our group is to consider a representation of it (briefly, a functor {•} −→ Vect
where the morphisms of {•} are the group elements). By slightly modifying this approach
(ie. by replacing Vect by ZG-Mod), we can consider G-modules, that is to say abelian
groups with a G action (or modules over the group ring ZG). In particular we are interested
in the submodule of G-invariants (the fixed elements under the G action). Let us be more
specific: we take M to be a G-module and we write −G for the functor associated with
taking the G-invariants. Basic computations show that this functor is left exact and our
algebraic description of group cohomology relies on its right derived functors Ext∗ZG(Z,−).

In the end, Hn(G, M) (with our topological defition) is naturally isomorphic to Extn
ZG(Z, M)

(our algebraic construction).

From this situation, we see that the topological and the algebraic points of view are
closely intertwined for the strong reason that they describe the same object in two different
languages. This relation will sometimes be straightforward, for example when constructing
the standard resolution of a group G, we will essentially build a K(G, 1), but will require
more work in other situations.

Starting with basic definitions to introduce the subject, we will quickly delve into the
real world with computations related to topology. We finish by briefly introducing the ring
structure and spectral sequences, both essential tools to continue studying the subject. The
appendix is miles away from standard introductions and can be skipped at first reading.
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1 Some Homological Algebra and Group Cohomology

The study of group (co)homology makes use of objects and constructions found in homo-
logical algebra. We provide here a short summary of the basic definitions and properties
we will use in this report. For more in-depth introductions, we refer to [10] or [2].

1.1 Chain Complexes and Homology

Let R be a ring. A chain complex (C•, d•) is a sequence of R-modules Ci together with
homomorphisms, called boundary operators or differentials, di : Ci −→ Ci−1 such that
d2 := d ◦ d = 0 (we will often drop the indexing subscript when the domain and codomain
are understood). Likewise, a cochain complex is a sequence of R-modules Ci and differ-
entials di : Ci −→ Ci+1 such that di+1 ◦ di = 0. Because d2 = 0, we see that Im d ⊂ Ker d
and we can consider the quotient Hi(C•) := Ker di

/
Im di+1, called the homology of the

chain complex (and the same reasoning applies to a cochain complex). As in ordinary
(co)homology, we will call (co)boundaries elements of Im d and (co)cycles elements of
Ker d. If (C•, d•) and (C′•, d′•) are chain complexes, we will say that f• : C• −→ C′• is
a chain map if it commutes with the differentials. That is to say, the following diagram
commutes:

· · · Ci+1 Ci Ci−1 · · ·

· · · C′i+1 C′i C′i−1 · · ·

di+2 di+1

fi+1

di

fi

di−1

fi−1

d′i+2 d′i+1 d′i

d′i−1

Two chain maps f , g : C −→ C′ are homotopic, denoted f ' g if there is a chain map
h : C −→ C′ of degree 1 (a chain map C −→ C′ has degree r if the maps on the modules are
of the form Ci −→ C′i+r) such that d′h + hd = f − g. Pictorially, the situation is as follows:

· · · Ci+1 Ci Ci−1 · · ·

· · · C′i+1 C′i C′i−1 · · ·

di+2 di+1 di

fi−gi
hi

di−1

hi−1

d′i+2 d′i+1 d′i

d′i−1

Writing down the commutativity of squares in the definition of a chain map f , we
see that it sends cycles to cycles and boundaries to boundaries. Therefore, it induces a
map on the homology of the complex, often denoted H( f ) (this makes H(−) into functor
Ch(A) −→ Ab for A an abelian category and Ch(A) the category of chain complexes with
elements in A). This allows us to call a chain map a weak equivalence if the induced map
on homology is an isomorphism.

Given three chain complexes A, B and C, we call 0 −→ A −→ B −→ C −→ 0 a
short exact sequence if every row of the following diagram is exact, and every square is
commutative:

...
...

...

0 Ai+1 Bi+1 Ci+1 0

0 Ai Bi Ci 0

0 Ai−1 Bi−1 Ci−1 0

...
...

...
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Given such a short exact sequence, a diagram chase shows that we have a long exact
sequence:

· · · −→ Hn+1(C)
δ−→ Hn(A) −→ Hn(B) −→ Hn(C) −→ · · ·

where δ is called the connecting homomorphism.

1.2 Special Modules and Resolutions

In order to compute the (co)homology of a group, we will need to consider specific alge-
braic constructions. We here provide the minimal background to define them.

We will say that a module Q is injective, and that a module P is projective if they satisfy
the following properties (not universal, we do not require uniqueness):

0 X Y

Q

∀ f

∀g
∃h

P

X Y 0

∀g∃h

∀ f

Let F : R-Mod −→ Ab be a covariant additive (ie., it is a group homomorphism on the
each hom-set) functor and 0 −→ A −→ B −→ C −→ 0 a short exact sequence of modules.
We say that F is right exact if F(A) −→ F(B) −→ F(C) −→ 0 is exact. We call it left exact
when 0 −→ F(A) −→ F(B) −→ F(C) is exact. It is exact if 0 −→ F(A) −→ F(B) −→
F(C) −→ 0 is exact.

Before giving the definition of the (co)homology of a group, we need a final algebraic
construction. Let A be a R-module. We say that an exact sequence

P• −→ A := (· · · −→ Pn −→ · · · −→ P1 −→ P0 −→ A −→ 0)

is a projective resolution of A over R if all the Pi’s are projective modules. Likewise, we
have an injective resolution of A over R:

A −→ I• := (0 −→ A −→ I0 −→ I1 −→ · · · −→ In −→ · · · )

when the Ii’s are injective modules and the sequence is exact. We can show that the cate-
gory of modules has enough injectives and projectives, which implies that we can always
find an injective or a projective resolution for a given module. In the case of projective
resolution, we can even construct a free resolution (defined as before with free modules) in
the following way: recall that every module is the quotient of a free module and construct
the resolution inductively (where every projection is a quotient map found by the previous
remark):

Ker f2 Ker ε

F3 F2 F1 F0 A 0

. . . Ker f1

f3

f2

f1

ε

For a right exact functor F, we can define its left derived functors LiF(−). We can
describe them on objects by the following: for a module A, we pick a projective resolution
P −→ A and put LiF(A) := Hi(F(P)). We proceed in a similar way for the right derived
functors RiF(−) of a left exact functor F: for a module A, we pick an injective resolution
A −→ I and put RiF(A) := Hi(F(I)). We can show that the definition does not depend
on the chosen resolution, or more precisely, if we fix a resolution for each module to have
well defined derived functors, then the functors obtained by changing the resolutions are
naturally isomorphic.

1.3 Group (Co)homology

For a fixed ring R and a fixed R-module M, we denote by TorR
∗ (M,−) the left derived

functors of −⊗R M and by Ext∗R(−, M) the right derived functors of HomR(M,−). For a
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group G, we define its nth (co)homology groups with coefficients in M to be:

Hn(G, M) := Extn
ZG(Z, M)

Hn(G, M) := TorZG
n (M, Z)

Functoriality of (co)homology plays a central role in everyday life. We first start with
homology, the situation for cohomology being similar. Let C denote the category consisting
of pairs (G, M) where G is a group and M a G-module, with morphisms (φ, f ) : (G, M) −→
(G′, M′) where φ : G −→ G′ is a group homomorphism and f : M −→ M′ a map of
abelian groups such that f (gm) = φ(g) f (m) for g ∈ G and m ∈ M. By taking projective
resolutions F and F′ of Z over ZG and ZG′ respectively, a bit of homological algebra gives
us an augmentation preserving G-chain map τ : F −→ F′, well-defined up to homotopy
such that τ(gx) = φ(g)τ(x) for g ∈ G and x ∈ F. In the end τ ⊗ f induces a well defined
map on homology, denoted (φ, f )∗. This makes H∗ a covariant functor on C.

In the case of cohomology, we define a new categoryD with the same objects but where
a morphism (G, M) −→ (G′, M′) consists of a pair (φ : G −→ G′, f : M′ −→ M). For such
a morphism, similar constructions on the chain level induce a morphism on cohomology
(φ, f )∗ : H∗(G′, M′) −→ H∗(G, M), thus turning H∗ into a contravariant functor on D.

For the sake of concreteness, we here provide two popular examples of maps induced
by functoriality. For a subgroup H < G, the inclusion i induces a map

resG
H := H∗(i, id) : H∗(G, M) −→ H∗(H, M)

where we look at M as a H-module by forgetting parts of the G-action.
For a fixed g ∈ G, the morphism (H, M) −→ (gHg−1, M) in D defined by (h 7→

ghg−1, m 7→ gm) gives an isomorphism

g∗ : H∗(gHg−1, M) −→ H∗(H, M).

2 (Co)homology via Topology

When computing the (co)homology of a group G, difficulties arise from finding a nice pro-
jective resolution of Z over ZG. Indeed, even though we can always choose the standard
resolution F• −→ Z with Fi = Z[Gi+1] and differentials (g0, . . . gn) 7→ ∑n

i=0(−1)i(g0, . . . , ĝi, . . . , gn),
the actual computations do not give any satisfying result in the majority of cases.

2.1 Eilenberg-MacLane Spaces

Let G be a group. We can construct an Eilenberg-MacLane BG (such that π1(BG) = G and
πn(BG) = 0 if n 6= 1), called a classifying space, as the quotient of ∆-complex, built from
the simplices [g0, . . . , gn], gi ∈ G (glued together in the natural way), by the G-action. Such
a model X of K(G, 1) is a CW-complex, so there exists a simply connected universal cover
X̃ on which G acts freely. The augmented chain complex of X̃:

· · · −→ C2(X̃) −→ C1(X̃) −→ C0(X̃) −→ Z −→ 0

is therefore a free (thus projective) resolution of Z over ZG, where we denote by Ci(X̃) the
singular i-chains.

As an application, we can compute the (co)homology of the free group F(S) on a set S
of generators. A little bit of algebraic topology shows that π1(

∨
s∈S S1) ' F(S) and that the

universal cover of
∨

s∈S S1 may be constructed as the simplicial complex whose vertices are
the elements of F(S) and whose 1-simplices are the pairs {g, gs} for g ∈ F(S) and s ∈ S.
The augmented complex is then:

0 −→ ZF(S) ∂−→ ZF(S) ε−→ Z −→ 0

where ∂({g, gs}) = s − 1 and ε(g) = 1 is the augmentation map. In the case of two
generators, we have the following picture of the universal cover:
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From the chain complex, we see that the (co)homology groups of degree r > 1 are zero.
By a direct computation from the definitions we get that H0(F(S), Z) = H0(F(S), Z) = Z

and H1(F(S), Z) = H1(F(S), Z) = Zn if |S| = n.

2.2 Groups Acting on Spheres

Another way of connecting algebra and topology is given by groups acting on spaces. In
particular, we can find a nice resolution to compute the (co)homology of a group G acting
on a G-complex X (a CW-complex on which G acts freely by permuting the cells) homeo-
morphic to an odd dimensional sphere S2n−1. We denote by Ci(X) the singular i-chains.
Because of the free action, each Ci(X) is a free G-module, and we can show that we have
an exact sequence

0 −→ Z −→ C2n−1(X) −→ · · · −→ C1(X) −→ C0(X)
ε−→ Z −→ 0.

By splicing such sequences, we get a free resolution of Z over ZG of period 2n:

· · · −→ C1(X) −→ C0(X) −→ C2n−1(X) −→ · · · −→ C1(X) −→ C0(X) −→ Z −→ 0.

For example, G = Z/n ' 〈t〉 (tn = 1) acts freely by rotations on a circle made of n
vertices and n 1-cells. This gives a resolution:

· · · −→ ZG t−1−→ ZG N−→ ZG t−1−→ ZG N−→ ZG t−1−→ ZG ε−→ Z −→ 0

where t− 1 is the multiplication by t− 1 and N is the multiplication by N = 1 + t + t2 +
. . . + tn−1. Direct computations then give:

Hi(G, Z) =


Z for i = 0
0 for i 6= 0 even
Z/n for i odd

and Hi(G, Z) =


Z for i = 0
Z/n for i 6= 0 even
0 for i odd

For a finite group G and a G-module M, we introduce the Tate cohomology groups Ĥ∗

defined by:

Ĥi(G, M) :=


Hi(G, M) for i ≥ 1
Coker N for i = 0
Ker N for i = −1
H−(i+1)(G, M) for n ≤ −2

where N : MG −→ MG is induced by M −→ M, m 7→ ∑g∈G gm.
We will say that a group G has period cohomology of period d if we have isomorphisms

Ĥn(G, M) ' Ĥn+d(G, M). As we have seen above, if a group G acts on a G-complex
homeomorphic to an odd sphere, it has periodic cohomology. Conversely, Swan proved
in [9] that a group G with cohomology of period q over Z can act freely and simplicially
on a finite dimensional simplicial homotopy (q − 1)-sphere of dimension (q − 1) (in fact,
the result holds in a more general setting modulo Serre classes, but we refer to the original
paper for the details).
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3 The Cohomology Ring

Giving extra structure on algebraic invariants helps to refine them and often gives a better
understanding of the original object. We present a brief overview of the ring structure on
cohomology. More explicitly, for a group G and a commutative ring R, we endow

H∗(G, R) :=
⊕
k∈N

Hk(G, R)

with a multiplication, turning it into a graded ring.

Let G be a group and R a commutative ring that we turn into a G-module with trivial
action for simplicity. For P∗ a projective resolution of Z over ZG, we define the cross-
product on the co-chain level by:

× : HomG(P∗, R) ⊗Z HomG(P∗, R) −→ HomG×G(P∗ ⊗Z P∗, R⊗Z R)
f ⊗ f ′ 7−→

[
(x⊗ x′) 7→ (−1)| f

′ ||x| f (x)⊗ f ′(x′))
]

We can show that P⊗ P is a projective resolution of Z over Z[G× G] and that the product
of two cocycles is a cocycle whose cohomology class depends only on the classes of the
given cocycles. Skipping the details, there is an induced cohomology cross-product:

Hr(G, R)⊗ Hs(G, R) −→ Hr+s(G× G, R⊗ R).

By functoriality, the maps d : G −→ G × G, g 7→ (g, g) and R ⊗ R −→ R give rise to a
morphism:

Hr+s(G× G, R⊗ R) −→ Hr+s(G, R).

We finally define the cup-product by the composition:

−^ − : Hr(G, R)⊗ Hs(G, R) −→ Hr+s(G× G, R⊗ R) −→ Hr+s(G, R)

which makes H∗(G, R) a graded R-algebra.
Pictorially, we read the following diagram to make explicit computations:

Hr(G, R)⊗ Hs(G, R) Hr+s(G× G, R⊗ R) Hr+s(G, R)

Hr(HomG(P, R))⊗ Hs(HomG(P, R)) Hr+s(HomG(P⊗ P, R⊗ R)) Hr+s(HomG(P, R))

−^−

−×− H∗(HomG(∆∗ ,·))

This additional structure is of great help in a number of situations. Stealing from alge-
braic topology, a standard example would be to distinguish S2 ∨ S4 and CP2. Furthermore,
it is one of the reasons for the multiplicative structure on pages of some spectral sequences
(see below) which turns out to be vital in many situations to actually compute the differen-
tials.

The cohomology ring has be studied in various settings and more could be said about
it. For brevity, we will just mention that it is Noetherian whenever the coefficient module
is a commutative Noetherian ring.

4 Spectral Sequences

Computing the (co)homology of a group quickly gets out of hand. Indeed, even for rea-
sonably nice groups such as S3 or D8 one cannot hope to compute their (co)homology from
simple manipulations. A general idea in mathematics is to break down objects into simpler
parts on which computations are more approachable. The spectral sequences we will con-
sider in this section fit into this approach, informally we will start from know (co)homology
groups and bootstrap up to our desired result. Spectral sequences were first introduced by
Jean Leray as a way to compute sheaf cohomology but the subject has been developed and
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is now widely used in various computations. For an encyclopedic reference on a collection
of spectral sequences, we advise to check McCleary’s book [5].

Let G be a group. As we want to work on something easier than G, a natural idea is to
pick a normal subgroup N in G. This allows us to write down a short exact sequence of
groups:

1 −→ N −→ G −→ G/N −→ 1

Now, because N and G/N are "smaller" than G, we can perhaps assume that we know
how to compute their (co)homology groups. We can ask if there is a way to compute the
(co)homology of G from there. It turns out that their is an algorithmic way that leads to the
desired result up to extension problems: in our case, the computational tool is called the
Lyndon-Hochshild-Serre spectral sequence associated to the short exact sequence.

The spectral sequence is an infinite sequence of bigraded abelian groups

E0, E1, E2, . . .

called pages. Each page {Ep,q
r }p,q has morphisms (differentials) of bidegree (r, 1− r)

dp,q
r : Ep,q

r −→ Ep+r,q−r+1
r ,

and is related to the adjacent ones by Er+1 = H(Er, dr). We will only consider first quadrant
spectral sequences, ie. such that Ep,q

r = 0 if p < 0 or q < 0. Finally, in the case of homology,
the differentials have bidegree (−r, r − 1) and we often swap the indexes (we write Er

p,q).
Pictorially we can represent the pages as follows (we have drawn parts of the E2-page and
E3-page of a cohomological spectral sequence):

...
...

...
...

...

• • • • • · · ·
• • • • • · · ·
• • • • • · · ·

...
...

...
...

...

• • • • • · · ·
• • • • • · · ·
• • • • • · · ·

Let us fix (p, q) for a moment. Because the groups oustide the first quadrant are 0,
for some r large enough the differentials at Ep,q

r will be 0. Now, Ep,q
r+1 is defined to be the

cohomology at Ep,q
r , ie. it is Ep,q

r+1 = Ker dp,q
r / Im dp−r,q+r−1

r = Ep,q
r /0 = Ep,q

r . In the end, for
every pair (p, q), there is some r large enough such that:

Ep,q
r = Ep,q

r+1 = . . . =: Ep,q
∞ .

We will say that the spectral sequence {Ep,q
r }r,p,q converges to a graded module H• if

there exists a filtration

0 = F∗H∗ ⊂ . . . ⊂ F1H∗ ⊂ F0H∗ = H∗

such that the associated graded complex {GpHp+q}p,q := {Fp Hp+q/Fp+1Hp+q}p,q of H
satisfies

Ep,q
∞ ' GpHp+q ∀p, q.

We shall write Ep,q
r ⇒ H•.

There are several ways of constructing the Lyndon-Hochshild-Serre (LHS) spectral se-
quence. We refer to [10], [4], [1] or [8] for the technical details. Different points of view give
different constructions. When looking at the cohomology of G as the derived functors of
the invariant functor −G, the LHS spectral sequence is a special case of Grothendieck spec-
tral sequence for the composition of functors (from the fact that AG = (AN)G/N). When
computing cohomology from projective resolutions, it arises from a double complex. We
can even recover it from the Serre spectral sequence of a fibration. In the end, the E2-page
is the same and is often taken as the starting point. From the definitions above, we describe
the LHS spectral sequence with:
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Ep,q
2 = Hp(G/N, Hq(N, M))⇒ Hp+q(G, M)

Having introduced a general computational tool, we take that opportunity to describe
another common point of algebraic topology and group cohomology. We recall that a
(Hurewicz) fibration is a continuous mapping p : E −→ B satisfying the homotopy lifting
property with respect to any space (or CW complexes for a Serre fibration). The homo-
topy lifting poperty with respect to a space X is described by the following commutative
diagram:

X E

X× I B

id×{0}

f̃0

p

f

f̃

We define a fiber F by taking a point b ∈ B and letting F := p−1(b). Another choice of
point gives homotopy equivalent fibers so that we can speak of the fiber. We often write a
fibration as F −→ E −→ B. The Serre spectral sequence associated to a Serre fibration is
the following:

Ep,q
2 = Hp(B, Hq(F))⇒ Hp+q(E)

As we briefly discussed in the introduction, the cohomology of a group G might be
computed as the ordinary cohomology of an Eilenberg-MacLane space K(G, 1). Starting
from of short exact sequence of groups

1 −→ N −→ G −→ Q −→ 1

we would like to construct a fibration of the form

K(N, 1) −→ K(G, 1) −→ K(Q, 1)

where we use K(−, 1) as both the general idea and a model of an Eilenberg-MacLane space
(which are all homotopy equivalent anyway).

We see that f : B −→ C induces a map B f : K(G, 1) −→ K(Q, 1). We define the
mapping path space of B f to be EB f := {(x, p) ∈ K(G, 1)× K(Q, 1)I | B f (x) = p(0)}. We
can prove that EB f is homotopy equivalent to K(G, 1) (by embedding K(G, 1) in EB f with
x 7→ (x, cB f (x)) where cB f (x) is the constant map at B f (x) and retracting EB f by contracting
the paths). On top of that, we get a fibration:

EB f

K(Q, 1)

(x,p) 7→p(1)

with homotopy fiber FB f . That is to say, we have the fibration:

FB f −→ EB f ' K(G, 1) −→ K(Q, 1)

In fact, FB f is a K(N, 1). Indeed, the long exact sequence of homotopy reduces to:

0 −→ π1(FB f ) −→ B
f−→ C −→ π0(Fb f ) −→ 0

And we see that π1(FB f ) ' N and πn(FB f ) = 0 ∀n 6= 1.
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A A Higher Point of View

Cohomology theories arise in various settings: group cohomology, singular cohomology of
CW complexes, de Rham cohomology, etc. It turns out that theses theories can be unified
under a general definition of "cohomology". In this section, we try to unwind the general
constructions to arrive at a more familiar form.

This appendix is apart from the rest of this report and our approach will be somewhat
terse and informal, mainly following the nLab article on cohomology [6].

Lets start with the general definition before applying it a more specific case of our in-
terest. The cohomology theories emerge from (∞, 1)-categories, that is to say higher cate-
gories where all k-morphisms are reversible for k > 1. Let H be such a category. For two
objects A and X of H, the (∞, 1)-categorical hom-space H(X, A) is a ∞-groupoid (where
every morphism is reversible). We will be interested in the set of connected components
π0H(X, A), which we can also see as the hom-set in the homotopy category HoH of H
(where we identify the 1-morphisms that are connected by a 2-morphism). The objects
(c : X −→ A) ∈ H(X, A) are called cocycles on X with coefficients in A, and the mor-
phisms (λ : c1 −→ c2) are the coboundaries. Two cocycles connected by a coboundary are
said to be cohomologous, and the equivalence classes [c] ∈ π0H(X, A) are the cohomology
classes. In the end, we define the cohomology set to be:

H(X, A) := π0H(X, A) = HoH(X, A).

Before going astray, we stop developing more abstract nonsense here. In fact, we do not
need anymore details to glimpse some properties.

For instance, for a sufficiently nice topological space X (eg. a CW complex), we can use
the fact that the nth cohomology is the set of homotopic functions from X to an Eilenberg-
MacLane space. Explicitly, we have:

Hn(X, Z) = [X, K(Z, n)]

which is exactly our definition where H is the (∞, 1)-category of topological spaces, ie. Top.
Because the K(Z, n) can be grouped together to form a ring spectrum, our definition gives
a hint towards a ring structure on H∗(X, Z), which we indeed find with the cup product.

The natural (∞, 1)-category for group cohomology is denoted ∞-Grpd. It is the (∞, 1)-
category of ∞-groupoids, ie (∞, 0)-categories. We will only study the case of a discrete
group G and an abelian discrete group A with trivial G-action (to avoid unnecessary diffi-
culties coming from local coefficients). The main bridge between our higher world and our
previous constructions by chain complexes is the following isomorphism:

Hn
Grp(G, A) ' π0 sSet(WG, DK(A[n])).

We will not prove it here, but rather explain what the involved objects are and how they
fit together.

Firstly, we denoted by sSet the category of simplicial sets. Simplicial complexes appear
naturally in topology for their geometric realizations are simple examples of nice topolog-
ical spaces: a point, a segment, a triangle, etc. It turns out that the underlying concept is
fundamental in homotopy theory. We generalize our visual intuition by defining the sim-
plex category ∆ consisting of objects [n] := {0, 1, . . . , n} and morphisms [n] −→ [m] that
are order preserving functions. A simplicial set is then defined to be a functor ∆op −→ Set.
In the end, we have the functor category sSet := [∆op, Set].

Secondly, we can define (in fact, this is a shortcut which avoids technical details):

WG =

(
· · · −→ G× G× G

−−→−−→−−→ G× G −−→−−→ G −→ ∗
)

as the standard bar construction.
Thirdly, DK denotes the Dold-Kan correspondence, which asserts that there is an equiv-

alence of categories between abelian simplicial groups and connective (with zeros in neg-
ative degrees) chain complexes of abelian groups. We also see A[n] as the chain complex
with A concentrated in degree n.

10



We can derive known properties of low-dimensional cohomology groups. For the sake
of concreteness, we write down the example of H1. For a morphism c : WG −→ DK(A[1]),
we have in degree 1:

c1 :
(
∗ g−→ ∗

) (
∗ c(g)∈A−→ ∗

)
and in degree 2:

∗ ∗

c2 : 7−→

∗ ∗ ∗ ∗

g2 c(g2)g1

g1g2

c(g1)

c(g1g2)

so that

H1(G, A) = π0 sSet(WG, DK(A[n])) = {c : G −→ A s.t. c(g1)c(g2) = c(g1g2)}
= HomGrp(G, A).
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