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Abstract

We construct the étale topological type of a simplicial scheme (X•)ét, a pro-object gener-
alising the Čech nerve with the intent of applying the homotopy theory techniques of
pro-objects to give a way of calculating some group cohomologies of reductive linear alge-
braic groups. The Lang-Steinberg theorem is proved and used to exhibit a principal fibration
of simplicial schemes to which the étale type is applied along with the homotopy theory
developed to obtain a ‘cohomological pullback square’. We then restrict attention to the
case of general linear groups over finite fields to give a calculation of the K-theory of finite
fields.
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0 Introduction

An object of interest in algebraic topology is the classifying space of a group G, this space
BG, in conjunction with a certain map EG → BG has the property that it classifies principal
G-bundles (or G-fibrations) over a paracompact space X: given a map X → BG we obtain a
principal G-bundle over X by means of a pullback and moreover principal G-bundles over
X are in bijection with [X, BG] - the homotopy classes of maps from X to BG. The space
BG also provides a way of extending the definition of group (co)homology from discrete
groups to all topological groups. In the case that G is discrete we have that K(G, 1), the
Eilenberg-Maclane space of G, is a model for BG and that there is a natural isomorphism
H∗(K(G, 1); R) ∼= H∗(G; R), where the right hand side is the group (co)homology of G. So
we can take this as a definition for group (co)homology, i.e. we set H∗(G; R) := H∗(BG; R).
A more indepth discussion of the above can be found in [Ben91].

We note that for a topological group G it is not necessarily the case that K(G, 1) is a
model for BG. A construction of BG goes as follows: find a space EG which is contractible
with free G action and define the map and classifying space by EG → BG := EG/G to
be the quotient which is a principal G-bundle. As an example S1 has the structure of a
topological group by viewing it as a subset of C where the multiplication and inverse maps
are continuous. S1 acts freely on S∞ so that by the long exact sequence of a fibration 8.2.2
we have π2(BS1) = Z and all other homotopy groups are trivial, thus K(Z, 2) = CP∞ is a
model for BS1.

The major result we work towards in this paper is a method for calculating the co-
homology of certain finite groups. Specifically those that are the fixed points of a surjec-
tive endomorphism of a reductive linear algebraic group over some algebraically closed
field of characteristic p. We will specify to the case of the Forbenius morphism acting on
GLn(k) with fixed points GLn(Fp). In [Qui72] Quillen provided a calculation for these
(co)homologies with coefficients Fl for l coprime to p and in this paper we set out to extend
these results to a more general setting, albeit by somewhat different means.

The interest in this specific group is the relation to the K-theory of rings as defined by
Quillen which extends previously constructed groups.

Unlike S1 or GLn(C) the groups we shall be interested in will be subgroups of GLn(k)
and so do not come with a useful Hausdorff topology, however we do have a Zariski
topology on them by viewing them as linear algebraic groups, i.e. a variety equipped with
a group structure. This topology does not yield anything too interesting however, it is
sufficient if we want to examine vector bundles over a space but not prinicpal G-bundles,
a finer topology is needed to investigate these. A counterexample for instance would be
the case of the punctured affine complex line wound n times round itself. As such we
will redefine out notion of topology to that of a Grothendieck topology (or site) which
can be though of as replacing the open sets with maps from some other variety satisfying
reasonable conditions such as composites should also be considered as ‘opens’ as should
pullbacks. If we leave this definition as is we are left with what is esentially the Zariski
topology so we impose an extra condition for our maps to be considered as ‘opens’, that of
being an étale morphism - intuitively a morphism which is locally a homeomorphism. On
C an étale map would be one which has non-vanishing derivative at all points, or on Cn

non-vanishing Jacobian.
We provide a couple of pieces of motivation for the above, firstly a theorem concerning

sheaves on the étale site and secondly some motivation for the redefining of ‘topology’.
Given a variety X of finite type over C we can form it’s analytification X(C) by transport-
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ing the structure of Cn in the Euclidean topology across to X, associated to this construction
there is a comparison theorem:

Theorem. Let X be a variety and X(C) its analytification, let M be an abelian sheaf on the étale
site of X which is locally constant and torsion and denote by the same the corresponding abelian local
coefficient system on X(C). Then there is a natural isomorphism:

H∗(X(C); M) ∼= H∗(Xét; M)

As motivation for replacing ‘topology’ with ‘Grothendieck topology’ we state the Čech
nerve theorem:

Theorem (Čech Nerve Theorem). Let {Ui → X} be a covering of a paracompact space X with
the Ui and their intersections contractible and open, and let C(U) be the Čech nerve of the covering:

C(U) :=
(

. . . äi,j Ui ∩Uj äi Ui

)
then after applying the connected components functor and taking geometric realization we obtain a
space homotopy equivalent to X.

The hope is that by forming an analogous object to the Čech nerve we can produce
a simplicial set homotopy equivalent to BG thereby passing to some more manageable
combinatorial data. This is however too optimistic, but we can impose further conditions
on what a covering should be and then consider all such coverings, this gives us a functor
indexed by such coverings to the category of simplicial sets a so called pro-object:

(X•)ét : Rigid Hypercoverings→ Simplicial Sets

We call this the étale topological type of the variety X and it has the property that it
determines (co)homology on the étale site for certain sheaves. Having defined this object it
will be necessary to consider the homotopy theory of pro-objects, we shall define analogues
of the homotopy and (co)homology groups as well as Hurewicz and Whitehead theorems
and recall some p-completions and limits in the homotopy category.

Using the above construction we can then show the major result, existence of a cohomo-
logical pullback square relating the fixed points H of G, for G a reductive linear algebraic
group, to the Bousfield-Kan l-completion of BG where l is coprime to the characteristic of
the field k:

BH (BG)̂l

(Z/l)∞(Sing (BG)) (Z/l)∞(Sing (BG))× (Z/l)∞(Sing (BG))

By a cohomological pullback square we mean that the induced map from BH to the
actual pullback is an isomorphism on cohomology with Z/l coefficients. In nice cases
this will make the (co)homology groups with Fl coefficients of BGLn(k) susceptible to
calculation via means of the Eilenberg-Moore spectral sequence or similar. If we have any
hope of this working we need knowledge of the (co)homology of (Z/l)∞(Sing ((BG)), so
long as we make extra assumptions about G, i.e. that G is reductive, we can relate the linear
algebraic group Gk to GC.
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Theorem. Let GZ be a reductive linear algebraic group. For l coprime to p = char(k) there is an
isomorphism:

H∗ét(Gk; Z/l) ∼= H∗ét(GC; Z/l)

We give a breakdown of the chapter structure of this thesis.
Chapter 1 will give some of the prerequisites we require from algebraic geometry and

provides a small discussion on étale morphisms. Some results about simplicial objects
will be recalled, specifically the construction of the coskeleta which will be vital for our
definition of the ‘nice’ class of coverings. Finally we give the definition of a ‘Grothendieck
Topology/site’ and introduce the étale site.

Chapter 2 will define the notion of (pre)sheaves on a site, mention that these form an
abelian category and give conditions on when a sequence of sheaves is exact. The inverse
and direct image functors of sheaves will be introduced as will the right derived functors of
the latter. Also introduced are two cohomology groups associated to these and finally we
provide some cohomology results - that of the Comparison theorem stated earlier as well
as the proper base change theorem to do with the higher direct image sheaves.

Chapter 3 introduces the étale topological type and the category of rigid hypercoverings
used to define it.

Chapter 4 discusses some of the work of Artin and Mazur in [AM69] regarding pro-
objects and provides most of the homotopy theoretic background necessary for studying
the étale type.

Chapter 5 will introduce the corresponding notion of a principal G-fibration (when G
is discrete) for (simplicial) schemes with the intention of concluding that just as maps
π1(X) → G classify principal G-fibrations for topological spaces so too then for (simplicial)
schemes so long as the fundamental group is replaced by the fundamental group of the
étale topological type. We can then deduce that the étale topological type is sufficient for
cohomology calculations on the étale site for locally constant abelian sheaves.

Chapter 6 will fill in some missing details regarding firstly some equivalences between
various topological types (after some form of pro-completion) and secondly some compar-
isons of fibre types - since we are passing from (simplicial) schemes to pro-objects in the
homotopy category we could either take first the geometric fibre in the realm of schemes
and then consider its topological types or first take the topological type and then perform a
fibrant replacement and look at the pro-fibres. A result stated for instance will say that the
cohomology groups of the two cases are isomorphic under certain conditions.

Chapter 7 states the Lang-Steinberg theorem and is used to exhibit a pullback square
as above and the Eilenberg-Moore spectral sequence is then applied to calculate the group
cohomology of H with coefficients in Fl for the case of GLn(Fq).

Chapter 8 introduces the K-theory as defined by Quillen and uses the above calculation
to find the K-theory of finite fields.

Some proofs of a few results have been relegated to the appendices, namely existence
and construction of the coskleton functor and a condition on a map being a homology
isomorphism in integral coefficients.

We make some last remarks for what is to come. Various constructions we have eluded
to on varieties can in fact be given on schemes as well so this is how they will be stated.
In later sections when we apply this to calculate (co)homology we will be working with
linear algebraic groups so it will be more convinient to refer to varieties then. We will,
for the most part, ignore any set theoretic issues when they arise and refer elsewhere for
these considerations. Our passing from the category of topological space to the category
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of schemes/varieties will require the construction of classifying spaces and principal G-
fibrations for schemes, these definitions are near identical to their topological analogues.

The majority of the results concerning the étale type within as well as the method for
showing the cohomological pullback square can be found in the book [Fri82] of Friedlander.
Also very helpful for understanding the material was the paper [Fri76] of the same author.

Some Notations and Conventions

When we say homotopy group we implicitly mean set in degree 0, group in degree 1
and abelian group in all higher degrees. The term ring shall mean commutative unital
ring. Colimits and limits shall be written as colim and lim without an arrow underset to
distinguish them. Subscripts (resp. superscripts) on functors shall mostly be used to denote
covariance (resp. contravariance). When we say a map we shall mean a continuous function.
Topology shall refer to the notion of a Grothendieck topology (or site) introduced in 1.4.1.

We will ignore set theoretic size issues when they appear however these are accounted
for by Friedlander in [Fri82, Chp 4] using Grothendieck universes.

Many of the constructions of schemes are more precisely schemes over a base scheme,
most commonly Spec of a field, but this shall for the most part be left implicit for brevity. For
instance the construction of the coskeleton functor works equally well over a base scheme.
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1 Preliminaries and Definitions

1.1 Algebraic Geometry

We recall here some scheme terminology and lemmas.

Definition 1.1.1. A scheme (X, OX) is a locally ringed space such that every x ∈ X has an open
neighbourhood U with (U, OX|U) ∼= (Spec(A), OSpec(A)) as locally ringed spaces.

Definition 1.1.2. The stalk at a point x in a scheme X is

OX,x := colimU3x OX(U)

Definition 1.1.3. A morphism of schemes is surjective if it is surjective on the underlying set

Definition 1.1.4. A morphism of schemes, f : X → Y, is étale if it is:

1. locally of finite presentation - i.e for all x ∈ X there are affine opens x ∈ Spec(A) ⊂ X
and Spec(B) ⊂ Y with f (Spec(A) ⊂ Spec(B) such that the corresponding ring morphism
B→ A is of finite presentation, i.e. A ∼= B[x1, x2, . . . , xn]/(g1, g2, . . . gm)

2. flat - i.e. all induced maps on stalks fp : OY, f (p) → OX,p are flat

3. unramified - i.e. it is locally of finite type and for each p ∈ X the morphism of local rings
fp : OY, f (p) → OX,p sends the unique maximal ideal surjectively onto the unique maximal
ideal and is also such that κ(p) is a finite separable extension of κ( f (p)) - where κ(p) is the
residue field of the local ring at p

These are very much the ‘nice’ morphisms we will work with in schemes, there are many
alternate definition but these will be the easiest to work with without defining sheaves of
relative differentials. However with this one can realise the étale morphims as being the
‘smooth morphisms of relative dimension 0’, i.e. the scheme analogue to local diffeomor-
phism in manifolds. Reinforcing this idea is the special case of varieties where the conditions
are equivalent to invertibility of the Jacobian matrix at each point.

Lemma 1.1.5. The composition of étale (surjective) scheme morphisms is étale (surjective).

Proof. Apparent from the definition since composition of flat (resp. locally of finite presenta-
tion, resp. unramified, resp. surjective) morphisms are flat (resp. locally of finite presentation,
resp. unramified, resp. surjective).

Lemma 1.1.6. The category of Schemes Sch admits all fibre products. In particular all finite limts
exist as Spec(Z) is terminal.

Proof. [Har77, Thm 3.3]

Lemma 1.1.7. The pullback of étale (resp. surjective) scheme morphisms is étale (resp. surjective).

Proof. We show the pullback of an étale morphism is étale. For locally of finite presentation
we consider the diagram:

X Spec(B)

Spec(C) Spec(A)

f
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where f is of finite presentation so that we may write B ∼= A[x1, x2, . . . , xn]/(g1, g2, . . . , gm).
Finding this pullback is then equivalent to finding the pushout of:

A B

C R

f

We abuse notation by writing f for both the scheme map and ring map. The pushout R is
just the tensor product C⊗A B and so the pullback is:

X = Spec(C⊗A B) = Spec(C⊗A A[x1, x2, . . . , xn]/(g1, g2, . . . , gm))

so that C → C⊗A B is of finite presentation.
For flatness consider again the pushout square:

A B

C C⊗A B

f

Since flatness of the ring morphisms A f−1(p) → Bp for all primes p ∈ B is equivalent to
flatness of the morphism A→ B we will assume that f is flat and shows it’s pushout is also
flat. Take 0→ M→ N to be an exact sequence of C modules, tensoring with B⊗A C over C
we obtain:

0→ B⊗A C⊗C M→ B⊗A C⊗C N

But this is just the sequence:
0→ B⊗A M→ B⊗A N

with A acting on M and N via the A → C algebra structure, but the above is injective as
A→ B is flat, hence C → C⊗A B is flat.

It remains then to show pullbacks of unramified morphisms are unramified. Again we
check this affine locally. We are given that for p ⊂ B we have p · Bp = ( f ( f−1(p))) · Bp

or equivalently for each p/1 ∈ p · Bp there is a p1 ∈ f−1(p) and b1/b2 ∈ Bp with f (p1) ·
b1/b2 = p/1. We are required firstly to show that for any prime ideal q ⊂ C ⊗B A that
q · C⊗A B = (g(g−1(q))) · C⊗A B and secondly that there is the finite separable extension
condition on the residue fields.

The following psuhout diagram can be localized at the prime q (and its preimages).

A C

B C⊗A B

j

f g

h

We write n for the prime ideal n := f−1(h−1(q)) = j−1(g−1(q)) and so we have:
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An Cg−1(q)

Bh−1(q) (C⊗A B)q

j

f g

h

We choose then some element c⊗ b ∈ q ⊂ C⊗A B which is also (c⊗ 1)× (1⊗ b). The
first of these elements is in the image of g when restricted to g−1(q) which contains c. For
the second note b 7→ 1⊗ b and that b ∈ h−1(q) and we can then write b/1 = f (n) · b1/b2 for
some n ∈ n and b1/b2 ∈ Bh−1(q) by f being unramified. Observe then the equalities:

1⊗ b = 1⊗ h( f (n))b1/b2 = g(j(n))⊗ b1/b2 = (g(j(n))⊗ 1)× (1⊗ b1/b2)

and j(n) ∈ g−1(q). We omit the remaining check on the residue fields.

Definition 1.1.8. A geometric point x of a scheme X is a morphism x : Spec(K) → X with K
algebraically closed.

1.2 Simplicial Objects

We write ∆ for the category with objects [n] = {0, 1, . . . , n} and morphisms the weakly
increasing functions f : [n]→ [m] . A simplicial object in a category C is a functor X : ∆op →
C . The category of simplicial objects in C will be denoted sC which has morphisms the
natural transformations of functors. X evaluated on [n] will be written as Xn .

We can restrict the simplex category ∆ to the full subcategory with objects [k] for k ≤ n
and we denote this category ∆≤n . A functor X : (∆≤n)op → C will be called an n-truncated
simplicial object in C , we also obtain the full category snC of sC consisting of the n-truncated
simplicial objects.

Note 1.2.1. Any simplicial object X gives rise to an n-truncated simplicial object via the inclusion
i : ∆≤n ↪→ ∆ and so we have an n-truncation functor τn : sC → snC .

The following two definitions are used in the proof of existence of a right adjoint to the
truncation functor.

Definition 1.2.2. For a category C and x ∈ ob(C ) we can form the overcategory, denoted C/x ,
where:

• objects are morphisms y→ x in C

• morphisms are commuting triangles

y z

x
.

The under category can be defined in an analogous way.
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Definition 1.2.3. Given a k-truncated simplicial object X in C we define a functor Xn : ∆op
/[n] → C

sending:

• objects [l]→ [n] to Xl

• morphisms

[l] [m]

[n]

ϕ

to ϕ∗ : Xm → Xl .

Theorem 1.2.4. Let C admit all finite fibre products and have a terminal object then the m-truncation
functor admits a right adjoint cosk m. (This is temporary notation).

Proof. Proof detailed in Appendix A.

Corollary 1.2.5. In particular since Sch or Sch/X have finite fibre products and terminal objects
the right adjoint cosk m is defined on the respective simplicial categories.

Definition 1.2.6. For a category C with all finite limits the m-coskeleton functor is the composition

coskn := cosk m ◦ τm : sC → sC

By adjointness we have a natural isomorphism HomsnC(τnX, τnY) ∼= HomsC (X, cosknY)
We will make most use of this for simplicial schemes and the coskeleton will feature in

the definition of a hypercovering of (simplicial) schemes with the étale site, although it can
be defined on other topologies.

Example 1.2.7. As an example suppose we view an object Y ∈ C as a 0-truncated simplicial set,
i.e. in s0C . We give a calculation for cosk 0Y. This will be useful later when we give an example
of a hypercovering for any étale surjection U → X. Suppose we have a morphism τ0X → Y on
the left side of the adjunction Homs0C (τ0X, Y) ∼= Hom(X, cosk 0Y). When defined we must have
commutativity in the following:

Xk cosk kY

X0 cosk 0Y

ϕk

d d

ϕ0

whenever d : [0]→ [k] is a morphism in the ordinal category. This gives (k + 1) morphisms and an
obvious candidate for cosk 0Y is given in dimension k by the (k + 1) fold fibre product of Y since
there will be a unique induced morphism Xk → Y× . . .×Y by the universal property of pullbacks.
It can be checked that there are face and degeneracy maps on these commuting with the induced map
ϕ and so we have given a construction of cosk 0Y.

cosk 0Y :=

 Y Y×Y Y×Y×Y . . .


As a briefer second example we consider the simplicial object coskt−1(cosk 0U) which
will feature in the definition of hypercoverings. Specifically its t-degree part.
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Example 1.2.8. From the proof in Appendix A we have:

(coskt−1(cosk 0U))t := lim
(∆/[t])≤t−1

(cosk 0U)t

using also the notation Xn of 1.2.3. We conclude from this that (coskt−1(cosk 0U))t is some finite
fibre product of U × . . .×U of lengths less than (t− 1) over other such objects. In particular the
map ((cosk 0U)t = U × . . .×U → (coskt−1(cosk 0U))t is étale surjective where there are (t + 1)
copies of U.

Definition 1.2.9. The Geometric Realization of a simplicial set X is

|X| :=

(
ä
i≥0

X× ∆i

)
/ ∼

where
∣∣∆i
∣∣ is the standard topological i-simplex and the equivalence relation∼ identifies (ϕ∗(x), t) ∼

(x, ϕ∗(t)) for all morphisms ϕ in the category ∆.

Remark 1.2.10. When we say that a simplicial object X• in some category has the property ‘P’
we shall usually mean that each Xn has the property P. E.g. for a simplicial scheme to be locally
noetherian means that Xn is locally noetherian for each n. For the most part we will be working with
simplicial schemes, however simplicial spaces and simplicial simplicial sets (or bisimplicial sets) will
make an appearance.

The following lemma will be useful when we compare various topological types.

Lemma 1.2.11. If T•• is a bisimplicial space, i.e. functor ∆op × ∆op → Top we can consider the
geometric realization of the Tn,• and T•,n which assemble to form simplicial spaces [n]→ |Tn,•| and
[n] → |T•,n| so we can take their geometric realizations also. We have homeomorphisms between
these and the geometric realization of the diagonal of T••.

|{[n]→ |T•,n|}| ∼= |∆T••| ∼= |{[n]→ |Tn,•|}|

Proof. [Qui10, §1]

By a group scheme G we mean a scheme equipped with scheme morphisms e : Spec(Z)→
G and µ : G× G → G such that these morphisms satisfy the usual conditions for forming
a group. The definition of the classifying simplicial scheme will resemble the definition of
cosk 0G in that in each degree it is a product of G, albeit offset by a shift of 1 degree, however
the face and degeneracy maps are induced by the morphisms e and µ. We write ∗ for the
unique scheme morphism G → Spec(Z). More generally one can consider group schemes
over a base scheme S.

Definition 1.2.12. The Classifying Simplicial Scheme of a group scheme G or Bar Construction,
denoted by BG•, has BGn an n-fold product of G and face and degeneracy maps from BGn = Gn

given by:

si :=
{

e× idGn , i = 0
idGi × e× idGn−i , 1 ≤ i ≤ n

di :=


∗ × idGn−1 , i = 0
idGi−1 × µ× idGn−3−i , 1 ≤ i ≤ n− 1
idGn−1 × ∗, i = n
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Note the construction is similar to that of the nerve, NG•, of the category obtained from
the discrete group G, when viewed as a category with one object and morphisms are the
elements of G. The geometric realization of NG• provides a model for K(G, 1). We will
later remark that the simplicial scheme BG• will carry enough information to study the
topological BG = K(G, 1) in the cases we are interested in.

More generally we can form a bar construction involving schemes X and Y with right
and left G actions respectively. If we write l : G×Y → Y and r : X× G → X then we make
the defintion:

Definition 1.2.13. The Double Bar Construction of X, G and Y is the simplicial scheme, denoted
B(X, G, Y)•, which has B(X, G, Y)n := X × Gn × Y and face and degeneracy maps are as above
(with identity maps for X and Y), except for d0 and dn which replace the maps ∗ with r and l
respectively.

Restricting our attention temporarily to varieties we have that if H < G is a closed sub-
group of the variety G then G/H is a homogenous G-space and can be given the structure
of a variety (see discussion following [MT11, Thm 5.5]). We can then consider the double
bar constructions of the form B(G/H, G, ∗)•. In a case to be considered later this will turn
out to model the topological space BH.

1.3 Local Coefficient Systems

Recall by Yoneda HomSets∆op (∆(−, [n]), S) ∼= S([n]) for a simplicial set S : ∆op → Sets so
that we may talk about a simplex sn ∈ S([n]).

We define a local coefficient system M on a simplicial set S• to be for each simplex
sn ∈ Sn := S([n]) an assignment of a set (abelian group) M (sn) and for any map in the
ordinal category ϕ : [m]→ [n] there is a map ϕ∗ : M (sn)→M (sm) which is an isomorphism
of sets (abelian groups). Further we want M (ϕ ◦ χ) = M (χ) ◦M (ϕ) so that M is a functor.
If M (sn) = A for some simplex we say that M has fibres isomorphic to A.

Equivalently M can also be viewed as a group homomorphism from the fundamental
group to the group of automorphisms of A.

M : π(S•, s0)→ Aut(A)

Cohomology of a simplicial set can be defined with coefficients in a local coefficient
system similar to its usual definition where we define p-cochains by:

Cp(S•, M ) := {σ : xp → A(xp)|xp ∈ Sp}
and where differentials take into account the isomorphisms between groups in the local

coefficient system.

1.4 Topologies

Definition 1.4.1. A Topology (or Site) T on a category C is a collection of families of morphisms
{Ui → U} for each U, called coverings, satisfying:

1. Any isomorphism is a covering

2. If {Ui → U} and {Vij → Ui} are coverings for each i then the composition {Vij → U} is a
covering
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3. If {Ui → U} is a covering and V → U ∈ Mor(C) then Ui ×
U

V exists and {Ui ×
U

V → V}
is a covering

We will write Cat(T) for the underlying category and Cov(T) for the collection of coverings.

Definition 1.4.2. For topologies T, T′ we define a morphism of topologies F : T → T′ to be a
functor F : Cat(T)→ Cat(T′) satisfying:

1. If {Ui
αi→ U} ∈ Cov(T) then {FUi

Fαi→ FU} ∈ Cov(T′)

2. If {Ui → U} ∈ Cov(T) and V → U is a morpism in Cat(T) then the induced morphism on
pullback squares is an isomorphism, i.e.

F(Ui ×
U

V)
∼=→ FUi ×

FU
FV

Note some definitions of morphisms of topologies modify this to be a map in the reverse
direction so that it agrees with the case that when we have a map of topological spaces
X → Y and cover of Y then the preimage of the cover is a cover for X so that the map of
sites goes Y → X. We do not make take this convention.

Definition 1.4.3. A presheaf on a topology T with values in C is a contravariant functor P : Cat(T)→
C . If in addition C has all products and the following is an equalizer diagram:

PU ∏
i

PUi ∏
i,j

P(Ui ×
U

Uj)

then we say P is a sheaf on T.

Definition 1.4.4. A representable presheaf on a topology T is a presheaf of the form U →
Hom(U, X) for some X ∈ Cat(T).

We also say that the presheaf U → Hom(U, X) is represented by the object X.
Representable presheaves are of interest due to the Yoneda lemma asserting there is

a natural bijection between morphisms from a representable presheaf to a presheaf and
elements of the section of the presheaf over the representing object:

Hom(Hom(−, X), P) ∼= P(X)

Definition 1.4.5. The Étale Site, Et(X•) of a simplicial scheme X• has the underlying category
with:

• objects the étale morphisms U → Xn for some U and n

• morphisms the commutative squares where ϕ : [n]→ [m]

U V

Xm Xn
ϕ∗



8 1 PRELIMINARIES AND DEFINITIONS

The coverings of an object U → Xn will be collections of morphisms with the maps Ui → U étale
and with the Ui jointly surjective onto U.

Ui U

Xn Xn
id


i∈I

We shall supress the Xn and abbreviate this by {Ui → U}i∈I .

Proof. We verify the definition of the étale site does indeed define a site. Isomorphisms
are clearly etale and surjective. If {Ui → U} and {Vij → Ui} are coverings then they are
étale and jointly surjective and compositions of étale are étale and compositions of jointly
surjective morphisms are jointly surjective 1.1.5. The third condition of a site follows from
1.1.7 as pullbacks preserve the étale (resp. surjective) property.

The étale site can also be defined without the simplicial structure and in this setting
is sometimes referred to as the small étale site. In contrast the big étale site relaxes the
condition that objects U → X be étale although we shall never make use of this definition.
Also introduced later is the classical site (or local homeomorphism site) on the analytification
of some scheme of finite type over Spec(C) (or more generally some space). It will turn out
these are closely related, in fact 6.1.2 asserts there is an equivalence of categories between
the classical site of a scheme and the (small) étale site. We will for the most part work on the
étale site of a simplicial scheme much for this reason and the étale topological type defined
later will capture the cohomological information of sheaves on the étale site.

Returning to representable presheaves we have the following proposition, useful for the
definition of constant sheaves:

Proposition 1.4.6. For a scheme X the representable presheaves on Ét(X) are in fact sheaves.

Proof. [Tam94, Thm 3.1.2]
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2 Cohomology Groups

We restrict attention now to (pre)-sheaves in abelian groups on a topology T which we
call abelian (pre)-sheaves. Given an abelian sheaf F on a topology T we can define two
cohomology theories the first on abelian sheaves and the second on abelian presheaves.
We will briefly recall the main cohomology groups associated to an abelian sheaf without
any simplicial structure. First we note the following so that we can use the techniques of
homological algebra:

Proposition 2.0.1. The category of abelian (pre-)sheaves on a topology T is abelian.

Proof. [Tam94, Props 2.1.1 & 3.2.1]

Proposition 2.0.2. The category of abelian (pre-)sheaves on a topology T has enough injectives.

Proof. [Tam94, Cors 2.1.2 & 3.2.2]

For the first we recall the section functor, ΓU(−), associated to an object U ∈ Cat(T)
evaluates an abelian (pre-)sheaf F at U, i.e. ΓU(F ) = F (U). This functor is exact on the
category of presheaves but only left exact on the category of abelian sheaves and so we can
form the pth right derived functors.

Definition 2.0.3. The pth Cohomology group functor of U is defined to be the pth right derived
functor of the section functor ΓU(−) on the category of abelian sheaves

Hp(U;−) := RpΓU(−)

For the second suppose we have a covering {Ui → U} of U in a topology. We can form
a functor from abelian presheaves to abelian groups:

H0({Ui → U}; F) := ker

(
∏

i
(F(Ui)

−→→∏
i,j

F(Ui ×
U

Uj)

)

When we restrict to abelian sheaves this gives the sections over U, F(U), by the equalizer
property of sheaves. But again the sections functor is left exact so we can right derive to
form the Čech Cohomology group of a cover:

Hp({Ui → U}; F) := RpH0({Ui → U}; F)

which agree with the previous cohomology groups of U when F is an abelian sheaf. However
the extra structure of the covering allows us to take colimits over all coverings once we define
what a map of coverings should be. A refinement of a covering {Vj → U} → {Ui → U}
consists of a function α : I → J and maps f j : Vj → Uα(j) over U. It can be checked that these
induced maps on all the right derived functors [Tam94] and so we have:

Definition 2.0.4. The pth Čech Cohomology group of U on abelian sheaves is given by:

Ȟp(U;−) := colim{Ui→U} Hp({Ui → U};−)

Theorem 2.0.5. The Čech cohomology group of a cover H∗({Ui → U}, F ) can be computed using
the complex of Čech cochains:
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∏ F (Ui) ∏ F (Ui1 ×U
Ui2) . . .

Proof. [Tam94, Thm 2.2.3]

These two cohomology groups need not agree. We consider sheaves on the topology
induced by the open sets, i.e. the Zariski site. In [Gro57] Grothendieck constructs a coun-
terexample, the affine plane with sheaf supported on two circles intersecting at two points in
the affine plane. In fact there are counterexamples even if we impose Hausdorffness on our
space, in [Sch13], Schröer constructs a space formed by a countable wedge of 2-discs which
is homeomorphic to the CW structure away from the wedge point but which is weakened at
the wedge point, an open contatining the wedge necessarily contains all but perhaps finitely
many of the discs (without the antipodes of the wedge point). The sheaf is given by the
locally constant Z-valued sheaf on the complement of the 1-skeleton and extended by 0 on
the whole space.

2.1 Cohomology Groups on the Étale Site

In this section we introduce the corresponding cohomology group functors for simplicial
schemes on the étale site. First however we note that the functor (−)n restricting an abelian
sheaf on Ét(X•) to an abelian sheaf on Ét(Xn) admits both a left and right adjoint.

Definition 2.1.1. Let A be an abelian sheaf on Ét(Xn), we define Ln(A) and Rn(A) in degree m
by:

(Ln(A))m :=
⊕

ϕ∈∆[n,m]

ϕ∗A

(Rn(A))m := ∏
ϕ∈∆[m,n]

ϕ∗A

Since the functor ϕ∗ is exact so is Ln(−). Rn(−) is merely left exact.

Lemma 2.1.2. Ln(−)
(

resp. Rn(−)
)

is a left (resp. right) adjoint of the restriction functor (−)n.

Definition 2.1.3. The pth Cohomology group functor on the étale site Et(X•) assigns to a sheaf
F the pth right derived functor of the functor sending F to ker (d∗0 − d∗1 : F (X0)→ F (X1))

Hp(X•; F ) := Rp (ker(d∗0 − d∗1))

If we take X• to be the same scheme X in each degree and all induced maps θ∗ : Xn → Xm
being the identity then the above just becomes the right derived functor of the section functor
on X0 = X. We could also define the cohomology group functor by using representability
of the section functor. Writing Z for the constant sheaf (defined later) we could have made
the definition:

H∗(X•;−) := Ext∗AbSh (Z,−)
We have a spectral sequence which computes the sheaf cohomology on simplicial

schemes in terms of the sheaves in each degree. This will turn out to be a very useful
decomposition of the cohomology as we will state many cohomological results on the
étale site of a non-simplicial scheme so we will need a method to push these results onto
cohomology on simplicial schemes.
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Lemma 2.1.4. Let F be an abelian sheaf on the étale site of a simplicial scheme X•, then there is a
first quadrant spectral sequence:

Es,t
1 := Ht(Xs; Fs) =⇒ Ht+s(X•; F )

Proof. [Fri82, Prop 2.4]

Similarly if Ét(X••) is the étale site for a bisimplicial scheme sheaf cohomology can be
defined on X••, either by:

H∗(X••;−) := Rp ker(d∗0 × d∗0 − d∗1 × d∗1))

or using representability of the section functor by:

H∗(X••;−) := Ext∗AbSh (Z,−)

The diagonal functor ∆ : s(sSets)→ sSets restricts the functor X•• : ∆× ∆→ Set to the
subcategory with objects ([n], [n]) and morphisms θ × θ, i.e. the same object (morphism) in
both components. Then sheaf cohomology of bisimplicial schemes can be caluclated on the
level of simplicial schemes by restriction:

Proposition 2.1.5. There is a natural isomorphism of δ-functors:

H∗(X••;−) ∼= H∗(∆(X••), (−)∆)

Proof. The proof is Proposition 2.5 of [Fri82] and is shown by observing both are δ-functors,
both are 0 on the higher cohomology groups when computed on an injective abelian sheaf
and that there is a natural isomorphism in degree 0. The proposition then follows from
standard results of cohomological δ-functors.

In analogy of 2.0.5 we define the Čech Cohomology groups on Et(X•) using the Čech
nerve.

Definition 2.1.6. We define the pth Čech Cohomology group functor by:

Ȟp(X•; F ) := colimU•→X• Hp(F (NX•(U•)))

Replacing sheaf cohomology by Čech cohomology in 2.1.4 we get a similar spectral
sequence.

Henceforth when we write H∗(X•;−) or refer to sheaf cohomology on a (simplicial)
scheme we shall mean cohomology of an abelian sheaf on the étale site of X•.

2.2 Constructions on (Pre)sheaves

We have observed that the categories of abelian (pre)sheaves denoted P and S on a topology
T are abelian categrories.

Theorem 2.2.1. The inclusion functor i : S → P admits a left adjoint (−)# which we call the
sheafification functor.

HomP (i(F ), G) ∼= HomS (F , G#)

Proof. [Tam94, Thm 3.1.1]
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As an immediate application we define constant and locally constant abelian sheaves.
Let A be an abelian group with the discrete topology, then we can define a sheaf, also
denoted A, on the étale site Ét(X). Define the sheaf by the sheafification of the constant
abelian presheaf U → A.

A(−) := ((−)→ A)#

An explicit construction of the sheaf associated to a presheaf is given in [Tam94, Chp. 1
§3.1] where a functor (−)- is defined on an abelian presheaf by:

F -(U) := Ȟ0(U; F )

If the abelian presheaf F is separated, i.e. for any covering {Ui → U} the morphism
F (U)→ ∏ F (Ui) is injective then F - is a sheaf and is the sheafification of F . Even when F
is not separated we have F - is separated so that F -- is a sheaf and in fact the sheafification
of F . This is the result [Tam94, Chp. 1 Prop 3.1.3].

The constant presheaf A above is easily seen to be separated so that we need only apply
the construction (−)- once. If given two (étale) morphisms U → X and V → X the scheme
theoretic intersection is non empty U ×

X
V → X then the restriction maps in the presheaf

A are the identity, otherwise they are 0. Consider now the connected components of the
scheme X. They are closed but not necessarily open (but indeed open if for instance we
have finitely many such components), we can take a covering {Ui → X} where each Ui
consists of all but finitely many of the connected components - we can restrict to such
coverings as the restriction morphisms are either the identity or zero morphism depending
on intersection. The colimit over the cohomology of the complex of Čech cochains can now
be seen to depend only on the connected components and thus we have the sheafification
of the constant presheaf A is:

A#(U) := ∏
π(U)

A

where we write π(U) for the set of connected components of U. This can be seen to be
equivalent to the representable sheaf:

HomÉt(X)(−, ä
A

X)

which really is a sheaf also since representable presheaves on the étale site are sheaves.
We call such an abelian sheaf a constant sheaf. More generally for a sheaf F on Ét(X) if

we have for any object U of Ét(X) a covering {Ui → U} such that F |Ui is a constant sheaf
then we say that F is locally constant.

We will use locally constant sheaves mostly in the case where the groups are torsion in
which case we also consider a system of local coefficients determined by the sheaf.

Definition 2.2.2. The Stalk of a (pre)sheaf F on Xét at a geometric point x is given by the colimit
over the étale neighbourhoods of x:

Fx := colim(U,u) F (U)

Proposition 2.2.3. For a sequence of abelian sheaves on Xét

0→ F → G → H → 0

the following are equivalent:
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1. The sequence of abelian sheaves is exact

2. For all geometric points x : Spec(Ω)→ X the sequence on stalks at x is exact

0→ Fx → Gx → Hx → 0

Proof. [Mil, Prop 7.6]

Let f : X → Y be a morphism of schemes, F an abelian sheaf on Xét and V → Y and
étale morphism.

Definition 2.2.4. The Direct Image Sheaf of F on V → Y is

f∗F (V) := F (V ×
Y

X)

Keeping the above notation we have:

Lemma 2.2.5. f∗F is a sheaf

Proof. Take {Vi → V}I to be a covering of V for V → Y in the étale site over Y. Pulling back
along X → Y we get a covering {Vi ×

Y
X → V ×

Y
X}I in the étale site on X, hence since F is

a sheaf we have an equalizer sequence:

F (V ×
Y

X) ∏I F (Vi ×
Y

X) ∏I×I F (Vi ×
Y

X×
Y

Vj ×
Y

X)

which is the condition than f∗F needs to satisfy to be a sheaf.

Suppose now G is an abelian sheaf on Yét and U → X is étale.

Definition 2.2.6. The Inverse Image Sheaf of G on U → X is defined to be the sheafification of
the presheaf given by

U → colim G(V)

where the colimit is indexed over morphisms U → V commuting over X → Y. We denote this by
f ∗.

We have the following adjunction of direct and inverse image sheaves:

Proposition 2.2.7. f ∗ is left adjoint to f∗

Proof. We have the following natural isomorphisms:

Hom( f ∗G , F ) = Hom((colim G(−))#, F )
∼= Hom(colim G(−), F )
∼= Hom(G , f∗F )

In fact f ∗ also admits a left adjoint f! a construction of which can be found in [Mil].

Corollary 2.2.8. The functor f ∗ is exact and f∗ is left exact.
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Thus given the following proposition we can right derive the direct image functor.

Proposition 2.2.9. The category of abelian sheaves on Xét has enough injectives.

Keeping the above notation we call the pth-right derived functor Rp f∗F the pth-higher
direct image. We have the pth-higher direct image is the sheafification of the cohomology
group of the pullback of an open V on F .

Proposition 2.2.10. Rp f∗F is the sheafification of V 7→ Hp(V ×
Y

X; F ) on Xét.

Proof. [Mil, Prop 12.1]

2.3 Cohomological Results on the Étale Site

Suppose X is a scheme locally of finite type over Spec(C), i.e. every x ∈ X has an affine
open x ∈ Spec(A) ⊂ X where the induced map C → A is of finite type so that A is a
finitely generated C algebra. We equip the set of C-rational points of X (also just called
rational points) denoted X(C) with the ‘classical’ or ‘analytic’ topology (here we use the
usual notion of topology, not that of 1.4.1). The term ananlytic topology implies a sheaf of
functions on the topology which we shall not use so we use the former terminology.

We define this topology as follows: on the above open Spec(A) of X we write A =
C[x1, . . . , xn]/I and so a C-rational point with image in A corresponds to a ring map
C[x1, . . . , xn]/I → C, i.e. a choice (xi) ∈ Cn satisfying the equations in I. Transporting
the Euclidean topology of Cn across to X(C) gives the set X(C) the classical topology.

Using this we now define the classical or analytic site of a scheme, with the understand-
ing X(C) comes equipped with the topology described above.

Definition 2.3.1. The Classical Site of a scheme X denoted Xcl has underlying topology with:

• objects being local homeomorphisms U → X(C)

• morphisms commuting triangles over X(C) of local homeomorphisms

We say a collection {Ui → U} of morphisms over X(C) is a covering if ∪Ui = U

We can also define the classical site of any topological space in a similar way.

Proof. Isomorphisms are clearly local homeomorphisms. Compositions of local homeomor-
phisms are local homeomorphisms as are pullbacks. So the classical site is indeed a site.

Before we state the comparison theorem we need to define a morphism of sites from
the étale site to the classical site. Assume also that Y is locally of finite type over Spec(C).
If f : X → Y is a morphism of schemes we have an induced function f∗ : X(C) → Y(C)
by post composing a rational point of X with f . We would like this function to be not
only continuous but also a local homeomorphism so that when U → X(C) is a local
homeomorphism so is U → X(C)→ Y(C). This is true if we further assume that f is étale.

Lemma 2.3.2. If f : X → Y is étale then f∗ : X(C)→ Y(C) is a local homeomorphism.

Proof. The étale property is a local one and on locally finite type is equivalent to invertibility
of the Jacobian at a point. f∗ being invertible now follows from the implicit function theorem.
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The above lemma further reinforces the idea that étale morphisms really are the scheme
analogue to local homeomorphisms of topological spaces/manifolds. What this gives us is
a morphism of topologies from the étale site to the classical one:

ε : Xét → Xcl (2.3.3)

For a definition of a constructible sheaf see [Tam94, Chp. 2, §9.3], but note we shall use
this theorem in the case that the sheaf is locally constant on some covering which are in
addition finite on such a covering and these are examples of constructible sheaves.

Definition 2.3.4. A morphism X → S of schemes is proper if it universally closed, i.e. the pullback
of a morphism Y → S is closed.

For the following theorems a notion of a smooth morphism of schemes is also needed. Most
generally this says that ‘the sheaf of relative differentials is locally free of dimension the
same as the relative dimension of X over S’ along with a flatness condition. Again we will
restrict attention later to linear algebraic groups defined as varieties so we suffice to think
about smoothness, over Spec(k), in terms of varieties where the condition is equivalent to
having a cover by affine opens Speck[x1, x2, . . . , xn]/( f1, f2, . . . , fr) such that the jacobian of
all these affines has the same corank d. Either way one of the cases we will later consider is
the projection from a fibre product so equppied also with the knowledge that smoothness
is preserved by base change we needn’t check explicitly these conditions.

With the above notation the Comparison Theorem states:

Theorem 2.3.5. Suppose X is a locally finite scheme smooth over C and let F be an abelian torsion
sheaf on the étale site. Then if either F is constructible or the map X → Spec(C) is proper then
there is a natural isomorphism for each p:

Hp(Xét; F ) ∼= Hp(Xcl; F )

Proof. [Art73, Exposé XVI Thm 4.1]

Finally we mention the Smooth base change theorem on the étale site. A consequence of
the smooth base change used later will be that the higher direct images of constant sheaves
are themselves constant.

Suppose we have the pullback square:

X×
S

S′ X

S′ S

b′

f ′ f

b

We define the base change morphism:

b∗(Rp f∗)(F )→ (Rp f ′∗)b
′∗(F )

Note since both sides are δ functors it suffices to define the morphism in degree 0 where
we need a morphism b∗ f∗F → f ′∗b′∗F . Equivalently by the adjunction b∗ ` b∗:

f∗F → b∗ f ′∗b
′∗F
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which is then equivalent by commutativity of the pullback square to:

f∗F → f∗b′∗b
′∗F

We have a natural choice of such a morphism now by taking f∗ applied to the unit of
the adjunction:

id→ b′∗b
′∗

and so this defines for us a morphism in degree 0. With the base change morphism
defined and using the notation of the above we can state the smooth base change theorem.
Recall a quasi-compact morphism is one where the inverse of every affine open is quasi-
compact.

Theorem 2.3.6 (Smooth Base Change Theorem). If f is smooth, b quasi-compact and F an
abelian torsion sheaf with torsion prime to the characteristic of the scheme S then the base change
morphism is an isomorphism.

Proof. [Mil16, Chp VI Thm 4.1]
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3 Topological Types

In the introduction we stated the Čech nerve theorem which to an open cover of a paracom-
pact topological space X, satisfying contractibility conditions on all intersections, associated
a simplicial set which is weakly equivalent to X. Thus we have replaced the rather unwieldy
cover with the combinatorial data of a simplicial set. We would like to carry out a similar
construct for (simplicial) schemes but of course the contractible intersection criterion fails
rather badly in schemes but this failure can be repaired by considering all such covers and
forming these into a formal limit object, thus we obtain an object in pro−sSets instead of
sSet.

We will define a Čech Topological Type and an Étale Topological Type, the latter having
the nice property that it determines sheaf cohomology on locally noetherian simplicial
schemes when we restrict to locally constant abelian sheaves.

3.1 Pro-Objects

Definition 3.1.1. We say a non-empty category I is cofiltered if the following are satisified:

• For any j, k ∈ ob(I) there exists i ∈ ob(I) and morphisms i→ j and i→ k

• For any two morphisms f , g : j→ k there exists a third h : i→ j with f h = gh

Definition 3.1.2. For a category C the category of pro-objects in C denoted pro−C has

• objects the functors X : I → C with I small and cofiltering - which we also denote {Xi}i∈I

• morphisms Hom(X, Y) = limJ colimI Hom(Xi, Yj)

In general a morphism of pro-objects f : {Xi}i∈I → {Yj}j∈J need not have the same
indexing category, however we have the following useful result which allows us to reindex
by the same category.

Lemma 3.1.3. A morphism f : {Xi}i∈I → {Yj}j∈J can be represented by a system of morphisms
{ fi : Xi → Yi}i∈I .

Proof. [AM69, Appendix Cor 3.2]

3.2 The Čech Nerve

Given an étale covering of a simplicial scheme U• → X• we can define, in an analogous way
to the topological Čech nerve, a Čech nerve for this simplicial cover. The difference being in
that intersection is replaced fibre product (which of course agrees in Top).

Definition 3.2.1. The Čech nerve of an étale covering U• → X• is:

NX•(U•)s,t := NXs(Us)t

where NXs(Us)t is the (t + 1) fold fibre product of Xs over Us. This is a bisimplicial scheme.

We introduce the notion of a rigid covering which will have the effect of restricting our
coverings so that they form a cofiltered category. We can also think of them as behaving in
an analogous way to covering spaces in that maps of covering spaces are determined by a
point which is the assertion of the following proposition.
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Proposition 3.2.2. Let U → X be an étale morphism of schemes with U connected and V → X
separated and étale. Then two morphisms f , g : U → V over X are equal iff they agree on a geometric
point of U.

Proof. [Fri82, Prop 4.1]

With this lemma in mind we now define a rigid covering.

Definition 3.2.3. Let X be a locally noetherian scheme, we say a morphism of schemes ϕ : U → X
is a Rigid Covering if ϕ is a disjoint union of étale separated morphisms:

ϕx : (Ux, ux)→ (X, x)

with Ux connected and ϕx takes the geometric point ux to x

We now show the category of rigid coverings over X, RC(X), is cofiltered. Morphisms
of rigid coverings over a scheme morphism f : X → Y are those morphisms taking a
geometric point over x to a geometric point over f (x), restricting f to be the identity 3.2.2
gives uniqueness of morphisms. Given two rigid coverings of X a subobject of the pullback
can be formed with the property that it is also a rigid covering of X, one takes a disjoint
union indexed of connected components of Ux ×Vx containing the geometric point ux × vx
showing that any two rigid coverings have a third mapping to both so that RC(X) is
cofiltered.

We can now define our first topological type based on these coverings by taking con-
nected components of the diagonal:

Definition 3.2.4. The Čech Topological Type of a simplicial scheme X• is the pro simplicial set
given by:

π ◦ ∆ ◦ NX•(−) : RC(X•)→ sSets

Each component of this pro-object is then providing an approximation for the simplicial
scheme and the hope of the inclusion of the pro-object of the definition is to circumvent
the problem that n-fold intersections need not be contractible. However we have already
commented previously that the systems of Čech complexes computes the Čech cohomology
groups and not the sheaf cohomology and we have commented also that these do not
necessarily agree. Since we are specifically interested in the sheaf cohomology of the étale
site due to the theorems alluded to in the introduction we are forced to consider other
pro-objects.

3.3 Hypercoverings and Rigid Hypercoverings

In order to obtain elements of pro−sSets so we can employ the techniques of étale homotopy
theory we need our indexing categories to be cofiltering. The previous construction of Čech
nerves is in general not cofiltering. We introduce an additional requirement on our covers,
that of being a hypercovering.

Definition 3.3.1. A Hypercovering of a scheme is a simplicial scheme over X, U• → X, such
that there is an étale surjection of Ut onto its (t− 1)-skeleton:

Ut → (coskX
t−1(U•))t

where we take the t = 0 case to mean U0 → X is étale surjective.
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In a topological setting where the Čech nerve may have failed due to intersections being
non-contractible we have replaced this condition with the intersections are covered by a
covering. Consider for example the following topological situation as coverings of S1 by
copies of (0, 1):

Applying the Čech nerve theorem of the introduction to the first diagram fails to model
S1. In fact below we show that the Čech nerves are a suubset of the hypercoverings so that
we have included more general objects in an attempt to counter the problem of sheaf and
Čech cohomology disagreeing.

In some sense the nth stage of the simplicial scheme U• provides a covering for the
(n− 1)th stage. In degree 0 we have the simple statement that there is a covering:

U0 → X

In degree 1 the condition of a hypercovering amounts to there being an étale surjection:

U1 → U0 ×
X

U0

and in higher degrees some generalisation of these. We could alternatively view this
construction by writing the maps Ut → coskX

t−1U• as Ut → (cosk t−1 ◦ τt−1(U•))t. Then once
we have an étale surjection U0 → X and we have constructed some covering of the 1st degree
of the Čech complex if we can form U0 and U1 into a 1-truncated simplicial scheme then
the hypercovering condition says we need an étale surjection of U2 onto cosk t−1 ◦ (U•)≤1
so this covering condition is in some sense accounting for all lower levels of intersections.

Another observation to be made about the definition of Hypercoverings is the following
sequence of isomorphisms:

Homst−1C (∂(∆[−, t]), (U•)≤t−1) ∼= Homst−1C ((∆[−, t])≤t−1, (U•)≤t−1)
∼= HomsC (∆[−, t], coskt−1U•)
∼= (coskt−1U•)t

The first isomorphism is just the definition of the boundary of the standard n simplex,
the second is the truncation-coskeleton adjunction and the third follows by an application
of the Yoneda lemma. Notice also by Yoneda that Ut ∼= HomsC (∆[−, t], U•). Now supposing
we had defined a hypercovering for simplicial sets instead, so that U• is now a simplicial
set rather than a simplicial scheme and the étale surjection condition has been replaced
with some appropriate condition which also includes surjective. And for further simplicity
suppose X = ∗. Then the condition of a hypercovering amounts to there being a surjection:

HomsSets (∆[−, t], U•) ∼= Homst−1Sets (∂(∆[−, t])≤t−1, (U•)≤t−1)
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I.e. that the simplicial set U• is a Kan fibration.
As an example of a hypercovering we show the Čech nerves satisfy the conditions:

Example 3.3.2. This is a continuation of example 1.2.8. As an example of a hypercovering, which
will be useful later, suppose U → X is an étale surjective scheme morphism. Then we claim there is
a hypercovering of X:

(coskX
0 U)• → X

recalling that (coskX
0 )t is the (t + 1)-fold fibre product U ×

X
. . .×

X
U.

Proof. We already have that the morphism in degree 0 is étale surjective so we need only
show we have an étale surjection (coskX

0 U)t → (coskX
t−1(coskX

0 U))t. This is the conclusion
of 1.2.8.

We extend the definition of hypercoverings to simplicial schemes:

Definition 3.3.3. A Hypercovering of a simplicial scheme X• is a covering U•• → X• such
that the restriction to degree s is a hypercovering of schemes, i.e. for all s we have étale surjections:

Us,t → (coskXs
t−1(Us,•))t (3.3.4)

We define the homotopy category of such coverings and show it does indeed form a
cofiltered category.

Definition 3.3.5. The Category of Hypercoverings HR(X•) has objects the hypercoverings
U•• → X• and morphisms are equivalence classes of maps of hypercovering over X• where two
maps are equivalent if they are restrictions of a simplicial homotopy U•• ⊗ (∆[0]× ∆[1])→ V••

Proposition 3.3.6. The category HR(X•) is cofiltered.

We only sketch the proof as we will not make much use of this category in preference
of defining rigid hypercoverings afterward.

Proof. For full details see [Fri82, Prop 3.4]. The construction of the equalizer is the tricky part.
For this the construction roughly goes: Construct the simplicial scheme Ws,• := Hom(Xs ⊗
∆[−, 1], Vs,•). By the tensor-internal hom adjunction we have:

HomSch/Xs
(−, Hom(Xs ⊗ ∆[1]), Vs,•) ∼= HomSch/Xs

((−)⊗ ∆[−, 1], Vs,•)

There are two maps from Ws,• to Vs,• over Xs given by sending an element of Ws,• to its
image at either end of the simplicial homotopy. The required equalizer is then given as a
pullback of the diagram:

Z•• U••

W•• V•• ×
X•

V••

The use of hypercoverings becomes apparent with the following proposition:
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Proposition 3.3.7. Let U•• → X• be a hypercovering of a simplicial scheme. Then there is a natural
isomorphism of δ functors:

H∗(X•,−) ∼= H∗(U••,−)

Proof. The natural isomorphism is induced by the diagonal ∆U•• → X• and can be shown
using the standard machinery of δ functors to demonstrate the isomorphism by showing
there is a natural isomorphism in degree 0 and that they agree on injectives.

In fact there is another isomorphism:

Proposition 3.3.8. There is a natural isomorphism of δ functors:

H∗(X•;−) ∼= colimHR(X•) H∗(U••;−)

Proof. [Fri82, Thm 3.8]

One disadvantage of the category HR(X•) is that we are required to take homotopy
classes of morphisms in order to make it cofiltered. As an improvement on the above we
can further simplify the category HR(X•) so that there can be at most 1 map between any
two hypercoverings as above by enforcing a rigidity condition on morphisms.

Definition 3.3.9. A Rigid Hypercovering of a locally noetherian simplicial scheme X• is a hyper-
covering U•• → X• where the morphisms of 3.3.4 are rigid coverings for all s and t and such that
ϕ : [s′]→ [s] induces a morphism of rigid coverings for all s, t.

We obtain a category of rigid hypercoverings over X• denoted HRR(X•) by taking
morphisms of rigid coverings U•• → X• and V•• → X• over X• to be a morphism of
bisimplicial schemes U•• → V•• over X• which is compatible with the maps of 3.3.4, i.e. the
following commutes:

Us,t Vs,t

(coskXs
t−1Us,•)t (coskXs

t−1Vs,•)t

Without the need of taking homotopy classes of maps this category is cofiltered. In fact
in the presence of 3.2.2 we have the stronger statement that it is left directed as any two
morphisms of rigid hypercoverings U•• → V•• over X• must agree.

Lemma 3.3.10. The category of rigid hypercoverings HRR(X•) is cofiltered.

Proof. It remains to show the property that for any two rigid hypercoverings there is a third
having the property that there are maps from the third to the first two. For this there is a
rigid product which keeps track of geometric points: take U•• and V•• in HRR(X•) and
suppose there is a morphism U•• → V••, suppose further the morphisms of 3.3.4 are given
by the disjoint union of étale separated morphisms

((Us,t)a, (us,t)a)→ ((coskXs
t−1Us,•)t, a)

((Vs,t)b, (vs,t)b)→ ((coskXs
t−1Vs,•)t, b)
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Then we define Zs,t to be the disjoint union of étale separated maps each of the form:

(Us,t ×Vs,t)0 → (coskXs
t−1Us,•)t × (coskXs

t−1Vs,•)t ⊃ (coskXs
t−1(Us,• ×Vs,•))t (3.3.11)

where the disjoint union is over the product set of geometric points ((us,t)a) × ((vs,t)b),
the connected component functor (−)0 is taking the component containing the image of
((us,t)a) × ((vs,t)b) and we restrict to those that have image in coskeleton of the product
sitting inside the product of the coskeleton. Together the Z•• define a hypercovering of
X• that is rigid: hypercovering following from the fact that the first map in 3.3.11 will be
étale surjective when we take the disjoin union, as U•• and V•• are hypercoverings, and
rigidity from the definition of Zs,t. Furthermore it is clear there are maps from Z•• to U••
and V••.

The advantage of working with the category of rigid hypercoverings becomes even more
apparent when we make the following definition of the étale topological type which is a
pro-object of sSets rather than in the homotopy category H .

Definition 3.3.12. The Étale Topological Type is the object in pro−sSets given by the composi-
tion of the diagonal functor and the connected components functor:

(X•)ét := π ◦ ∆ : HRR(X•)→ sSets

This is indeed a pro-object since HRR(X•) is cofiltered by the above lemma. Given a
scheme morphism f : X• → Y• we have an induced map f ét : (X•)ét → (Y•)ét and hence a
functor:

Definition 3.3.13. The Étale Topological Type Functor from the category of locally Noetherian
simplicial schemes, sSch ln to pro−sSets is:

(−)ét : sSch ln → pro−sSets

as described above.

One can also define the (étale) homotopy type by replacing the domain of the functor
with HR(X•) and the codomain by the homotopy category. Denote this (−)ht.

This concludes the transfer of our object that lies in the realm of algebraic geometry to
something we can conceivably do homotopy theory on. The study of the étale topological
site will continue in Chapter 5 but the next chapter will first provide some homotopy results
on pro objects to convince ourselves that they are well behaved homotopically speaking in
that many results carry over from the homotopy categroy.
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4 Homotopy Theory

4.1 Homotopy Theory of Pro-Objects

We denote by H∗c the homotopy category of connected pointed simplicial sets and we
consider in this section the pro-category pro−H∗c and various constructions on it. Recall
we denote a pro-object X : I → C of C where I is cofiltered by {Xi}i∈I or simply {Xi}.

We start by stating an analogue of the Whitehead Theorem for the pro-homotopy cate-
gory the proof of which is found as [AM69, Thm 4.3].

Theorem 4.1.1 (Artin, Mazur). The following are equivalent for a map f : {(X•)i} → {(Y•)j} in
pro−H∗c :

1. f is a weak equivalence

2. We have isomorphisms on pro-homotopy groups for all k > 0 :

f∗ : πk({(X•)i})
'→ πk({(Y•)j})

3. We have an isomorphism on the first pro-homotopy group and isomorphisms on cohomology
for all local abelian coefficient systems M :

f ∗ : H∗({(Y•)j}, M)
'→ H∗({(X•)i}, M)

We of course need to define the pro-homotopy (cohomology) groups and what a weak
equivalence is.

Definition 4.1.2. For an object {(X•)i} ∈ pro−H∗c and corresponding abelian local coefficient
system {Ai} we define:

• The kth Homotopy Group is the pro-group object πk ◦ X : I → Grp

• The kth Homology Group with coefficients in {Ai} is {Hk((X•)i; Ai)}

• The kth Cohomology Group with coefficients in {Ai} is colim Hk((X•)i; Ai)

For definitions of (co)homology in an abelian local coefficient system we refer to [Hal83,
Chps 12, 14]. We note we take the colimit in the case of cohomology but not the limit for
homology as colimit is an exact functor, the limit is merely left exact.

The weak equivalences are not quite as simple as a morphism f : {(X•)i} → {(Y•)j}
inducing isomorphism on the homotopy groups, they need encompass a slightly larger
collection so that we obtain a Whitehead theorem. As a counterexample [AM69] provide
the following.

Counterexample 4.1.3. Let X• be a simplicial set considered as a pro-object indexed by the trivial
category, and form another pro-object {coskn(X•)} indexed by N with maps n → m whenever
n ≥ m. The map X → {coskn(X•)} of pro-objects induces an isomorphism on pro-homotopy
groups: πiX• → πi(cosknX•) is an isomorphism for i < n and is 0 otherwise, and inverse map
πi(cosknX•) → πiX• also an isomorphism for i < n and 0 otherwise. Composing these (in either
order) in the pro-category gives the identity morphism.

However:

Hompro−H∗c({cosknX•}, X•) = colimN HomH∗c(cosknX•, X•)

and if the homotopy groups of X• don’t vanish above some degree then we cannot find morphisms
cosknX• → X• which provide an inverse when we apply homotopy group functors.
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We use this as motivation to define weak equivalence and for a more general object in
pro−H∗c, {(X•)i}, we form a pro-object by resolving each X•(i) into its Postnikov tower.

Definition 4.1.4. We denote this pro-object by {(X•)i}\ := {(cosknX•)i}I×N where there is a
unique morphism n→ m in N whenever n ≥ m.

We say a morphism f : {(X•)i} → {(Y•)j} is a weak equivalence if the induced morphism
\ f : {(X•)i}\ → {(Y•)j}\ is an isomorphism in pro−H∗c.

The notational use of \ is that of [AM69], ] is used in [Fri82] for the same construction.
We also have analogous results to the Hurewicz isomorphism, uniqueness of Eilenberg-

Maclane spaces and uniqueness of spheres although we will not need these.

Theorem 4.1.5 (Hurewicz in pro−H∗c). Let {(X•)i} ∈ pro−H∗c and suppose the first n− 1 pro-
homotopy groups are 0, then the canonical map πn({(X•)i}) → Hn({(X•)i}) is an isomorphism
in pro−Ab .

Proof. [AM69, Cor 4.5]

Theorem 4.1.6 (Uniqueness of Eilenberg-Maclane Spaces). Let {(X•)i} ∈ pro−H∗c have
πn({(X•)i}) = {Gi} and all other pro-homotopy groups being 0. Then there is a weak equivalence
{(X•)i} → K({Gi}, n)

Proof. [AM69, Cor 4.14]

For uniqueness of sphere we write pro−CH∗c for the subcategory with pro-finite pro-
homotopy groups and write Ẑ and Ŝn for there pro-finite completions (explained in the
next section):

Theorem 4.1.7. Let {(X•)i} ∈ pro−CH∗c with Hn({(X•)i}, Z) = Ẑ and all other pro-homology
groups 0, then there is a weak equivalence Ŝn → {(X•)i}.

Proof. [AM69, Cor 14.5]

Another remark to make is that we can also take fibrant replacements so that there is,
for a map of pro objects {(E•)i} → {(B•)j}, a long exact sequence on homotopy groups:

. . . πn+1({(B•)j})→ πn({(F•)k})→ πn({(E•)i})→ πn({(B•)j})→ πn−1({(F•)k})→ . . .

We now introduce various completions in pro−H∗c. For a subset L of all primes P we
denote by LH∗c the subcategory consisting of those objects whose homotopy groups are
finite L-torsion groups, and similarly we define pro−LH∗c.

We will make use of the following:

(−)L̂ pro−H∗c → pro−LH∗c the pro−L completion functor
holimSu(−) pro−PH∗c → H∗c the Sullivan homotopy limit functor

holimSu((−)L̂) pro−H∗c → H∗c the composite of the above two is the Sulli-
van pro−L completion functor

(Z/l)∞(−) sSets → sSets the Bousfield-Kan Z/l completion functor
holim(−) sSets I → sSets the Bousfield-Kan homotopy limit functor

We will construct here the first two and refer to [Bou72] for construction and theory of
the latter two.
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4.2 The pro−L Completion

Definition 4.2.1. A Class of groups C is a collection of groups such that:

• 0 ∈ C

• If 0→ A→ B→ C → 0 is exact then A, C ∈ C iff B ∈ C

• If A, B ∈ C then so is ∏B A

In particular note that the classes of finite L-torsion groups are classes. The following can
be done more generally in the case of classes but we suffice to state if for these particular
cases.

Given an object {Gi} in the pro-category of groups, pro−Grps , there is an associated
pro-object lying in the full subcategory pro−L. We construct this by considering the under
category (pro−L)G/ where objects are morphisms from {Gi} to an object in pro−L and
morphisms are commutative triangles, see 1.2.2.

{Gi}

{Ai} {Bi}

ϕ ψ

f

This category is cofiltered and there is a small cofinal subcategory, choosing such a
subcategory and forgetting the structure of an under category, i.e. we only retain the pro−L
objects and maps between them, we obtain an object of pro−L. We’ll denote this pro-object
({Gi})L̂ and it comes with a map {Gi} → (G)L̂. We would like a similar construction for
objects in pro−H∗c and this is given by [AM69, Thm 3.4].

Theorem 4.2.2. The inclusion pro−LH∗c → pro−H∗c admits a left adjoint (−)L̂ : pro−H∗c →
pro−LH∗c.

The construction is similar to that of the groups case in that one considers the category
(pro−LH∗c)X•/, (note X• is not necessarily in pro−LH∗c and shows it is cofiltering and and
that there is a small final subcategory.

X•

Y•1 Y•2

ϕ ψ

f

g

With the notation of the above diagram where Y•i ∈ pro−LH∗c existence of a third
object mapping to the Y•i follows by taking for instance their product. To show there is a
(X• → Y•) ∈ (pro−LH∗c)X•/ and map j : Y• → Y•1 with f ◦ j = g ◦ j.

Equivalently to the above theorem we could say that there is a map {(X•)i} → ({(X•)i})L̂

initial with respect to maps from {(X•)i} into pro−LH∗c.
There is also a variant of 4.1.1 for the case of pro−L completion.



26 4 HOMOTOPY THEORY

Theorem 4.2.3. Let f : {(S•)i} → {(T•)j} be a map in pro−H∗c then the pro−L completion ( f )L̂

is a weak equivalence if and only if the following two conditions hold:

1. ( f∗)L̂ is an isomorphism between fundamental groups (π1({(S•)i}))L̂ ∼=→ (π1({(T•)j}))L̂

2. whenever A is a collection of compatible coefficient systems on {(T•)j} with all groups over a
point being finite L-groups and whose representing homomorphism π1({(T•)j})→ Aut(At)
, for some point t, factors through the pro−L completion of the fundamental group then there
is a cohomology isomorphism:

f ∗ : H∗({(T•)j}; A)
∼=→ H∗({(S•)i}; f ∗A)

Proof. This follows from the previous pro-Whitehead theorem along with the fact that for
a local coefficient system A on {(T•)j} whose groups at a point are finite L-groups the
cohomology on {(T•)i} with A coeffcients is detected on the the pro−L completion of
{(T•)j} with the same coeffcients.

4.3 The Sullivan Homotopy Limit

We sketch the construction found in [Sul74]. Suppose F• ∈ PH∗c and consider the con-
travariant functor [−, F•] : H∗c → Set sending an X• ∈ PH∗c to the set of classes of
pointed maps up to homotopy. This is a so called compact Brownian functor. Suppose
now {(F•)i} ∈ pro−PH∗c, i.e. an inverse system in H∗c with finite homotopy groups. We
can now consider the functor lim[−, (F•)i] sending an X• to lim[X•, (F•)i], this can also be
shown to be a compact Brownian functor and so by Brown reprsentability is isomorphic to
[−, F̂] for some F̂. We thus make the following definition:

Definition 4.3.1. The Sullivan Homotopy Limit Functor is given by:

holimSu(−) : pro−PH∗c → H∗c
{(F•)i} 7→ F̂•

In particular we have isomorphisms:

Hom(X•, holimSu({(F•)i})) ∼= lim Hom(X•, {(F•)i})

A result we use later is the following:

Proposition 4.3.2. Suppose f : {(S•)i} → {(T•)j} is a map in pro−H∗c which becomes an
isomorphism after taking a Sullivan pro−L completion. Then there is an isomorphism:

holimSu({(S•)i}L̂)→ holimSu({(T•)j}L̂)

I.e. isomorphic objects in pro−LH∗c are represented by the same object of H∗c in the
above compact Brownian functor construction.
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4.4 The Bousfield Kan Z/l-completion

The Bousfield-Kan Z/l completion functor for a prime l is a functor defined from sSets to
sSets which is determined by the fact that for any map S• → T• there is a weak equivalence

(Z/l)∞(S•)→ (Z/l)∞(T•)

if and only if there is a homology (or cohomology) isomorphism:

H∗(S•; Z/l)
∼=→ H∗(T•; Z/l)

This construction is defined on the whole of sSets but it particularly ncie when restriced
to nilpotent spaces, those whose fundamental group acts nilpotently on all homotopy groups.
Take S• to be a nilpotent space, then there is an isomorphism of (co)homology groups:

H∗(S•; Z/l)
∼=→ H∗((Z/l)∞(S•); Z/l)

Further we have the result [Bou72, Thm 5.1] stating:

Theorem. If f : E→ B is a fibration of pointed connected spaces such that the action of π1(B) on
the homology H∗(F; Z/l) is nilpotent then (Z/l)∞( f ) is also a fibration and there is a homotopy
equivalence between the Z/l-completion of the fibre and the fiber of the Z/l-completion.

4.5 The Bousfield-Kan Homotopy Limit

The homotopy limit of Bousfield-Kan, holim, provides a homotopy invariant replacement
for lim on the level of sSets instead of the homotopy category. More precisely we have the
homotopy limit is a functor:

holim: sSets I → sSets

such that if α : F → G is a natural transformation of functors of the form I → sSets such
that each αi : F(i) → G(i) is a homotopy equivalence then and both are fibrant simplicial
sets then the induced map is a homotopy equivalence:

holim α : holim F '→ G

Another useful property of the homotopy limit is the following lemma:

Lemma 4.5.1 (Fibration Lemma of Bousfield-Kan). Let α : F → G be a natural transformation
of functors of the form I → sSets and such that for all i ∈ I we have αi : F(i)→ G(i) is a fibration.
Then the induced map is a fibration:

holim α : holim F → holim G

Proof. [Bou72, Ch XI Lem 5.5]
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4.6 Comparisons of Completions and Homotopy Limits

Under certain nice conditions we can relate the previous defined constructions to each
other up to homotopy equivalence. Its use is quite apparent for the defined completions:
the Sullivan completion has a very simple definition so that the object is quite simple to
work with however the Bousfield-Kan Z/l completion satisfies the very useful condition of
inducing weak equivalence if and only if there is an isomorphism on cohomology with Z/l
coefficients.

The following are proved as proposition 6.10 in [Fri82].

Proposition 4.6.1. Let S• ∈ H∗c have finite homotopy groups, then there is an isomorphism in
pro−lH∗c:

(Z/l)∞(S•)
∼=→ (S•)l̂

Proposition 4.6.2. Suppose {(S•)i} ∈ pro−sSets is such that each component has finite Z/l
cohomology groups (or that it is weakly equivalent to such a pro-space), i.e. Hn((S•)i; Z/L) if finite
for each i and n. Then there is an isomorphism:

holim(Z/l)∞(S•)
∼=→ holimSu({(S•)l̂}i)

In particular we note the following case where the second is applicable: Suppose (X•, x)
is a pointed connected noetherian simplicial scheme, in addition to defining hypercoverings
type we could also restrict our hypercoverings to those U•• → X• with each Us,t noetherian.
It is a fact that the inclusion of the noetherian hypercoverings into the hypercoverings is
final. Since in addition the inclusion of rigid hypercoverings into hypercoverings is also
final we can conclude that the noetherian homotopy type:

(X•, x)nht := π ◦ ∆ : nHR(X•, x)→ sSets

is weakly equivalent to the étale topological type (X•, x)ét. Since by definition the com-
ponents of the noetherian homotopy type are finite in each dimension so is the cohomology
with Z/l coefficients so that the conditions of 4.6.2 are satisifed in the case that we con-
sider the étale topological type of a connected pointed noetherian simplicial scheme. For an
explicit proof of finality of nHR(−) in HR(−) see [Fri82, Prop 7.1].

4.7 Homotopy Theory of Topological Types

Proposition 4.7.1. If morphisms f , g : X• → Y• of locally noetherian simplicial schemes are related
by a simplicial homotopy then f ét = gét.

Proof. [Fri82, Cor 4.8]

Definition 4.7.2. The pro-homotopy groups of a locally Noetherian pointed simplicial scheme
(X•, x) are given by composing the étale topological type functor with πi.

πi((X•, x)ét) := πi ◦ (X•, x)ét
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To define the cohomology groups of (X•)ét we first fix an object U•• → X• of HRR(X•)
and consider the overcategory (HRR(X•))/U•• . To an abelian local coefficient system M on
π ◦ ∆(U••) and a map f : V•• → U•• in the overcategory we have the pullback f ∗M on V••
and for any commuting square:

V•• W••

U••

j

f g

we get a morphism j∗ : H∗(π ◦ ∆(W••); g∗M) → H∗(π ◦ ∆(V••); f ∗M) and so we make
the following definition:

Definition 4.7.3. The cohomology groups of the étale topological type are given by:

H∗((X•)ét; M) := colim H∗(V••; f ∗M)

Once we have developed the theory of prinicpal G-fibrations in the setting of simplicial
schemes we will be able to show that the étale topological type is a suitable object in
pro−sSets for computing the sheaf cohomology of locally constant abelain sheaves in the
setting of locally noetherian connected simplicial schemes, i.e. we have:

Proposition. Let X• as above, A a locally constant abelian sheaf on Ét(X•). There exists some
corresponding local coefficients system A on (X•)ét and we have:

H∗(X•; A) ∼= H∗((X•)ét; A)
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5 Principal G-fibrations of Simplicial Schemes

In this chapter we develop a notion of principal G-fibration for a scheme and extend it to
simplicial schemes. It will be shown that we can reduce principal G-fibrations of simplicial
schemes to the fibration over the X0 component so long as we keep track of some additional
data, known as descent data, which provides all the required information to reform the full
fibration over X•. Just as in the topological case we will then have principal G-fibrations are
then classified by the maps from fundamental groups into G.

This chapter concludes by transferring the calculation of sheaf cohomology to the calcu-
lation of the cohomology of a local coefficient system on the étale topological type.

5.1 Definitions and Descent Data

We take G to be a discrete group.

Definition 5.1.1. A Principal G-fibration over a scheme X is a map of schemes Y → X com-
muting with a right G action which acts trivially on X and furthermore there is an étale surjective
morphism U → X and an isomorphism of schemes U ×

X
Y
∼=→ U ⊗ G over U commuting with the G

action.

In the definition U⊗ G should be read as the disjoint union of copies of U indexed by G
with free G-right action permuting the copies of U, thus we should view the isomorphism
as locally trivialising the fibration. A map of principal G-fibrations over X, (p1 : Y1 → X)→
(p2 : Y2 → X), will be a map ρ : Y1 → Y2 commuting with the G action and with p2 ◦ ρ = p1.
We will denote the category defined with objects the principal G-fibrations over X and maps
as described by Π(X, G).

Remark 5.1.2. It can be shown that the map Y → X is fppf, i.e. faithfully flat and of finite
presentation and it is a fact that a scheme morphism over some base scheme is an isomorphism if
and only if its base change along an fppf morphism is an isomorphism. Using this the morphisms in
Π(X, G) can be shown to be isomorphisms.

This definition can be easily extended to simplicial schemes.

Definition 5.1.3. A Principal G-fibration over a simplicial scheme X• is a map p : Y• → X•
of simplicial schemes commuting with a right G action which acts trivially on X satisfying:

1. In degree 0, p is a principal G-fibration over X0

2. For any ϕ : [n]→ [m] we have a pullback square

Ym Yn

Xm Xn

θ∗

p p

θ∗

A morphism of principal G-fibrations over a simplicial scheme is defined similarly and
again it can be shown such a morphism is necessarily an isomorphism of simplicial schemes.
The category consisting of such objects and morphisms will be denoted Π(X•, G).
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Note 5.1.4. We observe that the restriction of a (p : Y• → X•) ∈ Π(X•, G) to degree n is an
element of Π(Xn, G). Indeed pullback of an étale surjection is an étale surjection by 1.1.7 so we can
show pullbacks preserve the property of being a principal G-fibrations. Let p : Y → X and U be as
above, and Z → X a morphism. U ×

X
Z → Z is étale and surjective and the isomorphism follows by

commuting pullbacks:

(Y×
X

Z)×
Z
(U ×

X
Z) ∼= Y×

X
(Z×

Z
U)×

X
Z ∼= (Y×

X
U)×

X
Z ∼= (U ⊗ G)×

X
Z ∼= (U ×

X
Z)⊗ G

It should not come as too much of a surprise in light of the second condition that
Π(X•, G) can be interpreted as Π(X0, G) with some ‘descent data’. Recall the standard
face maps on simplicial objects are denoted di and that we can form the pullback of a
principal G-fibration p by these maps which we denote d∗i (p). We define a new category
Πdd(X0, G) to have objects consisting of a principal G-fibration over X0, p0 : Y0 → X0, with
an isomorphism ϕ : d∗0(p0) → d∗1(p0) of principal G-fibrations over X1 satisfying d∗1 ϕ =
d∗2 ϕ ◦ d∗0 ϕ as morphisms of principal G-fibrations over X2 (where d∗i ϕ is the morphism
induced by pullback).

For the definition of morphisms in Πdd(X0, G) let p0 : Y0 → X0 and q0 : Z0 → X0 be
principal G-fibrations with isomorphisms ϕ and χ respectively. A morphism f of these
objects is then a map Y0 → Z0 over X0 satisfying χ ◦ d∗0 f = d∗1 f ◦ ϕ.

Many of the propositions to come involve the technique of reducing principal G-fibrations
over some object to principal G-fibrations over an object of simplicial freedom one fewer
with some descent data. We will then show once how this comes about in 5.1.5 and omit
the proofs in subsequent propositions involving this reduction.

Proposition 5.1.5. There is an equivalence of categories Π(X•, G) ∼= Πdd(X0, G).

The map in one direction is clear: to a principal G-fibration of simplicial schemes p : Y• →
X• we can associate the object of Πdd(X0, G) consisting of p0 and take ϕ to be the composite
identifying the principal G-fibrations over X1, d∗0(p0) ∼= p1

∼= d∗1(p0) - the isomorphisms
following from 5.1.2. The maps inducing these morphisms are given by universal property
of the pullback. The first of the two isomorphisms for instance comes from the following
diagram:

Y1

X1 ×
X0

Y0 Y0

X1 X0

∼=

d0

p1

d∗0(p0)
p0

d0

The outer square commutes by the property of a principal G-fibration being a simplicial
map. We now check the conditions on objects of Πdd(X0, G) and show the reverse map but
first we recall breifly the simplicial identities:
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di ◦ dj = dj−1 ◦ di, i < j
sj ◦ si = si ◦ sj−1, i < j

di ◦ sj =


sj−1 ◦ di,
id,
sj ◦ di−1,

i < j
i = j, j + 1

j < i

Proof. We need to verify d∗1 ϕ = d∗2 ϕ ◦ d∗1 ϕ. The first of the simplicial identities, for i ≤ j,
gives di ◦ dj = dj−1 ◦ di and hence the commuting hexagon:

X1

X0 X0

X2

X1 X1

X0

d0 d1

d0

d1

d2

d1

d0

d1

d0

(5.1.6)

We expand either side of the relation to be verified using the formula for ϕ.

d∗1 ϕ = d∗1(d
∗
0 p0 → d∗1 p0) = d∗1(d

∗
0 p0

∼=→ p1
∼=→ d∗1 p0) = d∗1d∗0 p0

∼=→ d∗1 p1
∼=→ d∗1d∗1 p0

d∗2 ϕ = d∗2(d
∗
0 p0 → d∗1 p0) = d∗2(d

∗
0 p0

∼=→ p1
∼=→ d∗1 p0) = d∗2d∗0 p0

∼=→ d∗2 p1
∼=→ d∗2d∗1 p0

d∗0 ϕ = d∗0(d
∗
0 p0 → d∗1 p0) = d∗0(d

∗
0 p0

∼=→ p1
∼=→ d∗1 p0) = d∗0d∗0 p0

∼=→ d∗0 p1
∼=→ d∗0d∗1 p0

Using commutativity of 5.1.6 we can identify pullbacks of pullbacks with the commuting
squares and the final equality in the following follows from commutativity of the entire
hexagon.

d∗2 ϕ ◦ d∗0 ϕ = (d∗1d∗0 p0 = d∗0d∗0 p0
∼=→ d∗0 p1

∼=→ d∗0d∗1 p0 = d∗2d∗0 p0
∼=→ d∗2 p1

∼=→ d∗2d∗1 p0 = d∗1d∗1 p0)

= d∗1 ϕ

We now need to construct a principal G-fibration of simplicial schemes from an object
of Πdd(X, G).

By the second condition of principal G-fibrations we are forced to define Yn as the
pullback along some ϕ : [n]→ [0]. Using ϕ = (d0)

n, the n-fold composition of d0 makes the
caluclations simple and automatically gives us the maps d0 : Yn+1 → Yn.
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Yn Ym

Y0

Xn Xm

X0

pn pm

(d0)
n

θ∗

(d0)
m

p0

It suffices to define the induced maps for θ∗ = si and di. By the simplicial identities for
each i we have (d0)

n+1 ◦ si = (d0)
n : Xn → X0, for i ≤ n we have (d0)

n ◦ di = (do)n+1, and for
i = n + 1, (d0)

n ◦ dn+1 = d1 ◦ (d0)
n. So we define the simplicial maps on Yn+1 := Xn+1 ×

X0

Y0

by:

si := si × idY0 ∀i

di :=
{

di × idY0
(dn+1 × idY0) ◦ ((d0)

n)∗ϕ
i ≤ n

i = n + 1

The definition for dn+1 coming from the following diagram noting that all squares
and the triangle involving solid arrows commute by definition and so the dashed ar-
row exists and is unique by the pullback property of Yn. Note dn+1 is also the pullback
((d0)n)∗((d∗1 p0 → Y0) ◦ ϕ).

Yn+1 Yn

Y1 d∗1(p0) Y0

Xn+1 Xn

X1 X0

dn+1

pn+1
(d0)

n

pn

(d0)
n

ϕ

∼=

p1

dn+1

(d0)
n

(d0)
n

d1

p0

The simplicial identities clearly hold for the relations not involving dn+1 so we check
di ◦ dn+1 = dn ◦ di in the case i ≤ n − 1. The following gives us equality after we post
compose by (d0)n−1 as we know each of the inner diagrams commute (but not yet the outer
diagram).
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Yn Yn+1

Y1 Yn

d∗1 p0

Y0 Yn−1

Yn−1 Yn

dn

(d0)
n−1 di

dn+1

d0

ϕ∼=
(d0)

n−1

(d0)
n

(d0)
n−1

d0

di

Commutativity of all squares but the top in the following then gives equality after
postcomposing by pn−1.

Yn+1 Yn

Yn Yn−1

Xn+1 Xn

Xn Xn−1

dn+1

di
di

dn

dn+1

di di
dn

It can also be checked that mapping then to X0 makes the maps equal, ı.e. we have
compatible maps in the following so that by uniqueness of maps into the pullback we have
the desired equality di ◦ dn+1 = dn ◦ di.

Yn+1

Yn−1 Y0

Xn−1 X0

di◦dn+1

dn◦di

For the case of dn ◦ dn+1 = dn ◦ dn with n = 1 we have the following diagram which
is 5.1.6 after applying pullbacks of maps to Y0 → X0 and using the given relation d∗1 ϕ =
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d∗2 ϕ ◦ d∗0 ϕ.

d∗0 p0 d∗1 p0

Y0 d∗2d∗0 p0 d∗2 p0 Y0

d∗0d∗1 p0 d∗1d∗1 p0

d∗1 p0 d∗0d∗0 p0 d∗1d∗0 p0 d∗1 p0

d∗0 p0 Y0 d∗0 p0

ϕ

∼=

d∗2 ϕ

∼=

d∗0 ϕ

∼=
d∗1 ϕ

∼=

ϕ

∼=
ϕ

∼=

(5.1.7)

The map d1 ◦ d2 is then the composition Y2 := d∗0d∗0 p0
∼= d∗0d∗1 p0 = d∗2d∗0 p0 → d∗0 p0

∼=
d∗1 p0 → Y0 and the map d1 ◦ d1 is the composite Y2 := d∗0d∗0 p0 = d∗1d∗0 p0 → d∗0 p0

∼= d∗1 p0 →
Y0 which are equal by commutativity of 5.1.7. The relation for higher n can now be seen by
induction on the pullback cubes along d0:

Yn Yn+1

Yn−1 Yn

Yn−1 Yn

Yn−2 Yn−1

dn

d0

d0

dn

dn+1

dn−1

dn−1

d0

dn

d0

dn−1

dn

We omit the verification of the morphisms and remaining simplicial identities - it amounts
to similar diagram chasing. So we conclude that restricting from principal G-fibrations
over a simplicial scheme to the degree 0 part (with the added descent data) and lifting a
principal G-fibration with descent data to the whole simplicial scheme gives the equivalence
of categories as claimed.

We have a similar proposition involving the diagonal of a bisimplicial scheme ∆X••
where we descend to simplicial principal G-fibrations. The category Πdd(X0,•, G) has objects
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principal G-fibrations of simplicial schemes p : Y• → X0,• with isomorphism ϕ : d∗0(p) →
d∗1(p) in Π(X1,•, G) satisfying d∗1 ϕ = d∗2 ϕ ◦ d∗0 ϕ.

Proposition 5.1.8. There is an equivalence of categories Π(∆X••, G) ∼= Πdd(X0,•, G).

Recall, for the topological case, from the introduction that principal G-fibrations over
some space X (which we assume to be path connected) are in bijection with homotopy
classes of maps [X, BG] where BG is the classifying space of the group G. If G is finite, or
more generally viewed with the discrete topology, then a choice of a principal G-fibration
over X amounts to a choice of group homomorphism Π(X)→ G as K(G, 1) is a model for
BG. A natural question now given our definition of principal G-fibrations for (simplicial)
schemes is do we have an analogue to this? If we use instead the étale homotopy group of
(X•, x) we have a correspondence between these fibrations and pro-group homomorphisms
for sufficiently nice schemes.

For the remainder of this chapter we shall take X• to be locally Noetherian and connected.
We will make use of two lemmas. The restriction functor (−)n : sSch X• → Sch Xn restricting
a simplicial scheme over X• to degree n admits a right adjoint ΓX•

n (−) that extends étale
(resp. surjective) morphisms in degree n to a simplicial scheme morphism which is étale
(resp. surjective) in all degrees. This is the content of [Fri82, Prop 1.5].

Lemma 5.1.9. The functor ΓX•
n (−) of taking a covering U•n → Xn to a covering W•• → X•

restricts to a functor ΓX•
n (−) : HRR(Xn)→ HRR(X•)

Lemma 5.1.10. For a hypercovering U• → X the category of principal G-fibrations over π(U•) is
equivalent to the category of principal G-fibrations trivial over U0.

Proof. [AM69, Cor 10.7]

Proposition 5.1.11. Let X• be pointed by x. There is a natural bijection:

Hom(π1((X•, x)ét, G) ∼= {objects of Π(X•, G) up to iso}

For a pointed hypercovering U•• → X• there is a natural bijection:

Hom(π1(π ◦ ∆(U••), u), G) ∼= {objects of Π(X•, G) trivial over U0,0 up to iso}

Proof. We show how the first statement follows from the second.

Hom(π1((X•, x)ét), G) := colim Hom(π1(π(∆U••), u), G)

From a principal G-fibration Y• → X• trivialized by an étale surjection U0,0 → X0, then
there is a hypercovering (coskX0

0 U0,0)• → X0 by 3.3.2 and applying ΓX•
0 (−) we obtain a

hypercovering of X• which we can rigidify, this gives an element in HRR(X•). By the
second bijection this gives an element of Hom(π1(π(∆U••, u)), G) and hence an element of
the colimit colim Hom(π1(π(∆U••, u)), G) since HRR(X•) is cofiltering.

Conversely given an element of Hom(π1((X•, x)ét), G) choose a representative of it for
some U• in the colimit so that by the second bijection we have a principal G-fibration, which
happens to be trivial over U0,0.

For the second statement since G is discrete so that BG ' K(G, 1), homomorphisms
π1(π(∆U••, u)) → G are in bijection with principal G-fibrations of π(∆U••, u) which are
equivalent to principal G-fibrations of (π(U•,0), u) with descent data by the simplicial set
version of 5.1.8 which is equivalent, by 5.1.10, to principal G-fibrations trivial over U0,0.
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5.2 Cohomology of the Étale Topological Type

We now aim to show that for such simplicial schemes X• that are connected and locally
noetherian the étale cohomology of a locally constant abelian sheaf on Ét(X•) is determined
by the étale topological type of X• with some appropriate local coefficient system. We recall
that the Čech nerve theorem expressed a space X with the combinatorial data of a simplicial
set which has the same homotopy type, so then we replace our scheme with some pro-
combinatorial data that is good enough for calculating cohomology when we restrict to
locally constant abelian sheaves (corresponding to abelian local coefficient systems).

Lemma 5.2.1. Let U•• → X• be a hypercovering, then there is a natural bijection between locally
constant sheaves on Ét(X•) with all stalks isomorphic to a set S and local coefficient systems on
(X•)ét with fibres isomorphic to S.

Proof. On π(∆U••) a local coefficient system A with stalks isomorphic to S is equivalent to
a group homomorphism π1(π(∆(U••))→ G and so also to a principal G-fibration over X••
with fibres isomorphic to S which is trivialized by U0,0.

Theorem 5.2.2. Let A be a locally constant abelian sheaf on Ét(X•) and A the corresponding local
coefficient system on (X•)ét, then there is a natural isomorphism:

H∗(X•; A) ∼= H∗((X•)ét; A)

Proof. Let U•• → X• be a hypercovering and recall that we have the natural isomorphisms
of δ functors:

H∗(X•;−) ∼= colimHR(X•) H∗(U••;−)

H∗(∆U••; (−)∆) ∼= H∗(U••;−)
of 3.3.8 and 2.1.5. If we choose U•• such that the locally constant sheaf A on X• is constant
when restricted to U0,0 (i.e. we apply the inverse image functor on U0,0 → X0) then the
cohomology groups H∗(π(∆U••); A) and H∗(∆U••; (A)∆) are naturally isomorphic.

We can indeed make such a choice of hypercovering U••, for instance such a construction
could go: choose opens of X0 making A constant and covering X0, take their disjoint union
and set this as U0,0. The natural map U0,0 → X0 is an étale, as a disjoint union of open
immersions, and surjective morphism hence a covering in Ét(X0) and so we have that
the map (coskX0

0 U0,0)• → X0 is a hypercovering. Next recall the functor ΓX•
0 (−) takes a

hypercovering of X0 to a hypercovering of X• and so we have (ΓX•
0 (coskX0

0 (U0,0))•• → X•
is a hypercovering with the desired property.

Thus we need to show the isomorphism labelled ? in the following and then the theorem
will follow from the above isomorphisms of δ functors.

H∗((X•)ét; A) := colim(HRR(X•))/U••
H∗(π(∆V••); f ∗A)

?∼= colimV••∈HRR(X•)
AV0,0 constant

H∗(π(∆V••; A)

It will suffice to show that the subcategory of rigid hypercoverings restricting the sheaf
to be constant are cofinal in the category of rigid hypercoverings which can be seen by
considering the pullback of some hypercovering along the above hypercovering U•• → X•.
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6 Comparisons of Topological Types and Fibres

In this chapter we relate various topologial types in the category pro−H∗c as well as various
types of fibres.

We keep the conditions connected, locally Noetherian on a pointed simplicial scheme
(X•, x).

6.1 Some Comparisons of Topological Types

Lemma 6.1.1. Let f : U•• → X• be a pointed hypercovering, then there is a weak equivalence in
pro−H∗c

(g)ét : (∆U••, u)ét → (X•, x)ét

Proof. 4.1.1 says it is sufficient to check there are isomorphisms on the first homotopy group
and all cohomology groups induced by (g)ét. On π1 this follows from the descent theory of
Chapter 5 and for cohomology from 3.3.8 and 5.2.2.

We now further impose that X is finite type over Spec(C) so that we may take the
analytification of X. Recall also from 2.3.1 the classical site of a topological space Tcl. In the
case that T• is a paracompact simplicial topological space we have the following as a lemma
([Fri82, Lem 8.3]), which relates sheaf cohomology on the classical site to cohomology of a
simplicial set via a natural isomorphism.

H∗((Y•)cl; A) ∼= H∗(Sing (|T•|); A)

The following theorem of Grauert and Remmert [Art73, Exposés XI Thm 4.3] relates the
classical site to the étale site via the functor of 2.3.3.

Theorem 6.1.2. The functor ε : Xét → Xcl is an equivalence of categories between the category of
finite coverings of X(C) that are local homeomorphisms and the category of étale coverings of X.

Before stating the comparison theorem we introduce another topological type denoted
(−)s.ét. Like the étale topological type it is also defined on the hypercoverings of X•, but
unlike the étale topological type it features the analytification of X. Temporarily we denote
X(C) by Xtop for clarity. (−)s.ét is then given by the composite functor:

∆ ◦ Sing ◦ (−)top ◦ ∆ : HRR(−)→ sSets
With this we have natural maps

ρ : (−)s.ét → (−)ét

Let U•• → X• be a hypercovering, then the map ρ on this hypercovering sends an
element ∆n → (Utop)n,n to the connected component of the image of this map, which is
well defined as ∆n is connected and defined on the diagonal, so does define a map to the
element of (X•)ét corresponding to U••.

τ : (−)s.ét → Sing (|(−)top|)

Theorem 6.1.3. τ is an isomorphism and (ρ)P̂ a weak equivalence in pro−H∗c.

This is [Fri82, Thm 8.4].
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Proof. Explicitly τ is the composite, on a hypercovering U•• → X• of a simplicial scheme,
of maps:

τ := ∆(Sing ((∆U••)top))→ ∆(Sing (Xtop
• ))→ Sing (|Xtop

• |)

The first map is just the induced map coming from the hypercovering and the second
is the natural map sending a singular map α : ∆k → Xk to the image in the geometric
realization of α× id : ∆k → Xk × ∆k. τ being an isomorphism in pro−H∗c follows since the
second map is a homotopy equivalence (using 1.2.11) and the first can be shown similarly
to 6.1.1 by descent data for isomorphisms on π1 and by analogous results for cohomology
on the local homeomorphism site.

Recall the comparison theorem 2.3.5 which identifies sheaf cohomology on the étale
and classical sites on a finite type scheme over C for constructible sheaves, we shall use
this to show that (ρ)P̂ is a weak equivalence. Friedlander proves this by expressing ρ as a
composite. Hypercoverings can also be defined on the classical site in the same way so we
have the category HRR((X•)top) and can define an analogue of (−)s.ét (just omit the (−)top

functor).

(−)s.cl : HRR((X•)top)→ sSets

Just as in the case with τ there is an isomorphism (−)s.cl
∼= Sing (| − |) so that we have

β : (−)s.cl
∼= (−)s.ét induced by forgetting the structure from the classical site. Define γ

similar to ρ, again without the (−)top functor and define a map δ : (X•)cl → (X•)ét to be
induced by the morphism of sites ε : (X•)ét → (X•)cl. The following now commutes:

(X•)s.cl (X•)s.ét

(X•)cl (X•)ét

β

γ ρ

δ

since forgetting the structure of the site and taking the natural map to connected components
is the same as taking connected components and forgetting the site structure. The limitation
on ρ being a weak equivalence only after a P-completion comes from δ. By this theorem then
we have that δ induces cohomology isomorphisms with such coefficients. By Whitehead
it then suffices to prove isomorphisms on the pro-fundamental group which follows from
descent and 6.1.2. Thus (ρ)P̂ is a weak equivalence.

6.2 On Fibres

There are multiple choices of definition of fibres we can take for a simplicial scheme mor-
phism f : X• → Y•, either we can take the (étale) topological type of a scheme theoretic fibre
or we can define a fibre of the induced map f ét.

We first define fibres for the types (−)ht and (−)ét. For a pointed simplicial scheme mor-
phism f : X• → Y• we consider morphisms of hypercoverings over f , i.e. for hypercoverings
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U•• → X• and V•• → Y• we consider the morphisms ϕ in:

U•• V••

X• Y•

ϕ

f

Since we defined the category of hypercoverins HR(X•) up to equivalence by simplicial
homotopy we consider the maps ϕ up to simplicial homotopy. We say ϕ and ψ are equivalent
over the pointed map f if there is a pointed simplicial map ϕ⊗ ∆[−, 1]→ ψ.

Definition 6.2.1. We denote the category of maps of hypercoverings over f up to pointed simplicial
homotopy by HR( f ).

Similarly if we impose rigidity conditions as in HRR(X•) we can define:

Definition 6.2.2. We denote by HRR( f ) the category of of maps of rigid hypercoverings over the
rigid morphism f up to pointed simplicial homotopy.

Let y : Spec(Ω)→ Y• be the pointed data for the pointed map f so that y has image in Y0
and recall that for a map of simplicial sets α : S• → T• we have a functorial replacement of
α converting it to a fibration, this will replace the domain S• by another simplicial set which
is weakly equivalent to it. Denote this new map α∼ : (S•)∼ → T• following the notation of
[Fri82].

Definition 6.2.3. The homotopy fibre of the homotopy topological type, denoted fib( fht), is
defined to be the pro-object sending a map of hypercoverings ϕ as above to the equivalence class
(((π ◦ ∆)(ϕ))∼)−1(y) in the homotopy category H∗.

fib( fht) := (((π ◦ ∆)(−))∼)−1(y) : HR( f )→ H∗

Definition 6.2.4. The homotopy fibre of the étale topological type, denoted fib( f ét), is defined
to be the pro-object sending a map of rigid hypercoverings ϕ as above to the pointed simplicial set
((π∆)∼)−1(ϕ)

fib( f ét) := (((π ◦ ∆)(−))∼)−1(y) : HRR( f )→ sSets∗

These then are the defintion of the fibres if we first pass to the map of topological types
and then take appropriate fibres, alternately we can first take scheme theoretic fibres:

Definition 6.2.5. The topological type of the scheme theoretic fibre is denoted:

(X• ×
Y•

y)ht : HR(X• ×
Y•

y)→ H∗

Definition 6.2.6. The étale topological type of the scheme theoretic fibre is denoted:

(X• ×
Y•

y)ét : HRR(X• ×
Y•

y)→ sSets∗

There is nothing new in these definitions.
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We have the inclusion map of the scheme theoretic fibre into X• induced from the
pullback i : X• ×

Y•
y→ X•. We also have a projection onto the first vertical map in the square:

U•• V••

X• Y•

ϕ

f

Their compositions induce maps from the topological types of the scheme theoretic fibres
to the fibres of the topological type:

(X• ×
Y•

y)ht → fib( fht)

(X• ×
Y•

y)ét → fib( f ét)

We can also compare fibres of different topological types. We have maps:

(X• ×
Y•

y)ht → (X• ×
Y•

y)ét

f ib( fht)→ f ib( f ét)

All 4 of these maps assemble to give a square that is homotopy commutative, the third
map is a weak equivalence and the fourth a weak equivalence if there is a bijection on π0 on
the first map as can be seen by comparing long exact sequence of fibrations of the étale and
homotopy types and applying a 5-lemma argument. [Fri82, Prop 10.2] provides the proof
of these results. What is harder to prove and aruguably more useful is a comparison on the
first or second maps. The following will be of great importance later.

Theorem 6.2.7. Suppose the Xn and Yn are connected and noetherian, that π1((Yn)ht) if pro-finite
and π0(X• ×

Y•
y) finite. Let A be a locally constant abelian sheaf on the étale site of X• with all

right derived functors of the push forward Rq( fn)∗An locally constant with base change map an
isomorphism (Rq( fn)∗An)y → Hq(Xn ×

Yn
y; i∗An). Then there is an isomorphism on cohomology:

H∗( f ib( f ét); A)→ H∗(X• ×
Y•

y; i∗A)

The proof of this is Proposition 10.7 of [Fri82] for which we sketch a proof. The map i
is the second comparison map given above and note that we will apply this in conjunction
with the smooth base change theorem so that the isomorphism condition is satisfied.

Sketch proof. A third type of fibre is introduced defined similarly over those maps which are
in addition special as well as hypercoverings. The category of special maps is cofiltered and
we have that the fibres of the homotopy type and special type are isomorphic (although this
does not arise from a finality argument):

f ib( fht)
∼=→ f ib( fsp)

The use of special maps is apparent from the following results. Defining f−1
sp (y) by:

f−1
sp (y) := {π(g)−1(y)|g ∈ Sp( f )}
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where the g are maps of hypercoverings over f : X → Y then there is an isomorphism:

H∗( f−1
sp (y); A)

∼=→ (R∗ f∗A)y

which moreover fits in a homotopy commutative diagram:

H∗( f−1
sp (y); A) (R∗ f∗A)y

H∗((X×
Y

y)ht; i∗A) H∗(X×
Y

y; i∗A)

∼=

∼=

the bottom map being an isomorphism since the étale cohomology of a scheme is the same
as the cohomology of the étale type under our assumptions. The weak equivalence relating
the homotopy and etale types of the geometric fibres means we can replace the bottom left
with the étale type so that if there is an isomorphism for the right vertical map (part of the
condition of this theorem) so that there is an isomorphism on the left vertical arrow and
if we relate the top left to the fibre of the étale type we are done (after a bootstrap to the
simplicial setting). The proof of these results are presented as Lemmas 10.3, 10.4 and 10.5
of [Fri82].
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7 A Principal Fibration of Linear Algebraic Groups

This chapter creates a principal fibration from which we can derive the cohomological
pullback square which we then use for the case of general linear groups over finite fields.

7.1 The Lang-Steinberg Theorem

We first set up some theory of linear algebraic groups.

Definition 7.1.1. A Linear Algebraic Group is an affine algebraic variety equipped with a group
structure where the multiplication and inverse functions are morphisms of varities.

We write R(G) for the radical of G, i.e. the maximal closed connected normal subgroup
of G. We say an element u of GL(V), for V finite dimensional, is unipotent if all it’s eigen-
values are 1, or equivalently u − 1 is nilpotent. The additive Jordan decomposition of g
into a diagonalisable (semisimple) plus nilpotent part (which commute) can be turned into
a multiplicative decomposition into a diagonalisable times unipotent part (which again
commute), [MT11, Prop 2.2].

Further there exists a closed embedding ρ of any linear algebraic group G into GLn(k)
where k is the base field of G as a variety, [MT11, Corollary to Thm 5.5]. Then g ∈ G can be
expressed uniquely as g = gsgu with ρ(gs) diagonalisable and ρ(gu) unipotent, moreover
this expression is independent of embedding, [MT11, Thm 2.5], and we say gu is unipotent.

With the notation of the above and writing Hu for the unipotent elements of a subgroup
H ≤ G we make the following definition:

Definition 7.1.2. A linear algebraic group G is said to be Reductive if the unipotent part of its
radical, R(G)u, is trivial.

The major result will be stated in terms of reductive linear algebraic groups instead
of anything more general as in this instance we will have a means, 7.3.1, of relating étale
cohomology of the group over the fields C and k by means of base change. It also provides
for finding a Z model for the group variety from which we can base change to obtain
the linear algebraic groups of interest. More we have the following theorem attributed to
Chevalley (in the case we base change from Q instead) and Demazure.

Proposition 7.1.3. Let k be a field, then for all reductive k-groups Gk there exists a reductive
Z-group GZ such that Gk is obtained from G by the base change:

Gk G

Spec(k) Spec(Z)

Proof. Either [Mil13, Exposé XXV Cor 1.3]

Theorem 7.1.4 (Lang-Steinberg). Let ϕ : G → G be a surjective endomorphism of a connected
linear algebraic group over algebraically closed field k. If the fixed point group H := Gϕ is finite then
the Lang map is surjective:

(1/ϕ) : G → G

g 7→ g · (ϕ(g))−1
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Lang’s original theorem was for k = Fq and Steinberg gave this generalisation in [Ste68]
and it’s this proof we present. Before however we note how we’ll apply this, our ultimate
aim is to calculate the group cohomology of GLn(Fq) and since the frobenius morphism
Fp : GLn(Fq) → GLn(Fq) is surjective, where q = pd, 7.1.4 says we have a a principal H-
fibration (1/ϕ) : GLn(Fq)→ GLn(Fq). Where the fixed points H = (GLn(Fq))

Fp = GLn(Fq)
are the group we are interested in.

We will give a proof due to Steinberg: first we prove the result for G solvable then using
existence of a Borel subgroup fixed by ϕ we generalise to the full case.

Definition 7.1.5. A group is called solvable if the derived series of a group (the series of iterated
commutator subgroups):

G ≥ G1 := [G, G] ≥ G2 := [G1, G1] ≥ G3 := [G2, G2] ≥ . . . ≥ {e}

terminates at {e} after finitely many steps.

Definition 7.1.6. A Borel subgroup of a linear algebraic group G is a maximal subgroup with respect
to being closed, connected and solvable.

Lemma 7.1.7. Let G be a linear algebraic group, then the following hold:

1. All Borel subgroups are conjugate

2. If G is connected it is the union over all conjugates of a Borel subgroup

3. A surjective endomorphism of G fixes some Borel subgroup

4. If G is connected and ϕ a surjective endomorphism of G and B a Borel subgroup fixed by ϕ
then the following is also surjective:

α : G× B→ G

(g, b) 7→ gb(ϕ(g))−1

Proof. These are proved in the following:

1. [MT11, Thm 6.4(a)]

2. [MT11, Thm 6.10]

3. [Ste68, Thm 6.2]

4. [Ste68, Lem 7.3]

Proof of Lang-Steinberg. Gϕ is finite iff (1/ϕ)G contains a dense open of G - follows from a
dimension argument. Using this we can prove for HC G, if Gϕ is finite so is (G/H)ϕ.

The solvable case — We proceed by induction on length of the derived series. Let g ∈ G,
we show g ∈ im(1/ϕ). Consider G/H where H is the abelian entry in the derived series,
i.e. the last non-identity group. G/H has derived series of length 1 fewer than that of G
so by induction we have a k ∈ G with g + H = (k + H)((ϕ(k))−1 + H) in G/H and so
k−1gϕ(k) ∈ H. As H is abelian (1/ϕ) is a group homomorphism so (1/ϕ)H is closed,
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[MT11, Prop 1.5], and as Hϕ is finite we have (1/ϕ)H = H and so k−1gϕ(k) = h(ϕ(h))−1

for some h ∈ H. This gives g = (kh)(ϕ(kh))−1, i.e. (1/ϕ) is surjective on G.
The general case — Again we show g ∈ im(1/ϕ). Choose a Borel subgroup B ≤ G fixed

by ϕ by (3) of 7.1.7 and k ∈ G, b ∈ B with g = kb(ϕ(k))−1 by (4) of 7.1.7. Since B is
solvable by the solvable case there exists c ∈ B with b = c(ϕ(c))−1. Combining these we get
g = kc(ϕ(kc))−1 showing surjectivity of (1/ϕ).

Remark 7.1.8. In the case of GLn(k) with ϕ = Fq the Frobenius morphism, which acts by raising
each component of the matrix to the power q, we can take the Borel subgroup B to be the subgroup
with zeroes below the diagonal and it is clear this is fixed by Fq.

More generally for any linear algebraic group over k we take the Frobenius morphism
(as a ring homomorphism) to raise the variables Xi to the q-th power.

ϕ : k[X1, . . . , Xn]/I → k[X1, . . . , Xn]/I
k 3 a 7→ a

Xi 7→ Xq
i

The effect on points of GLn,k for instance is as described above.

7.2 A Principal Fibration of Linear Algebraic Groups

Denoting by H the fixed points, H := Gϕ we now have a principal H-fibration (1/ϕ) : G → G
when H is finite. This is called the Lang Isogeny. Checking the definition we need an étale
surjective morphism to G which we take to be (1/ϕ) and we need to verify the pullback
along two copies of (1/ϕ) is isomorphic to G ⊗ H. Note (1/ϕ) is indeed étale: we are
working in varities so we can check the étale property by computing the map on tangent
spaces and verifying it is an isomorphism for all points. It can be shown that dϕ = 0 (the
ring homomorphism sends Xi 7→ Xq

i so that the derivative is 0 since we are in characteristic
p) and then d(1/ϕ) = d(id)− d(ϕ) = id, so that the tangent map is an isomorphism.

Suppose we have a scheme X and maps f and g to G making the diagram commute.

X

G⊗ H G

G G

g

f

θ

pr1

µ

(1/ϕ)

(1/ϕ)

We define θ by θ(x) = f (x)⊗ f (x)−1 · g(x), this is a scheme morphism as f and g are,
as are multiplication and inverse in G. The morphism does indeed have codomain G⊗ H
as (1/ϕ)( f (x)−1 · g(x)) = 1 and makes the diagram commute, moreover θ is unique by
definition: the first component is forced on us by commutativity in f = pr1 ◦ θ and the
second by commutativity in g = µ ◦ θ and knowledge of the first component. Thus we have
shown the conditions of a principal H-fibration.
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7.3 Some Z/l Cohomology Isomorphisms

In the above we have a commutative diagram involving a linear algebraic group G over
the algebraically closed field k, of charateristic p and it’s subfield Fq with q = pd. The
commutative diagram will not be of any use in the finite field case unless we know more
about the algebraically closed case.

As it turns out when we take l coprime to p we have isomorphisms in étale cohomology
between the cohomologies of G over k, the Witt vectors of k denoted R, the field complex
numbers C and a fourth algebraically closed field K containing R and C.

We do not discuss the Witt vectors here in depth as doing do would distract from the
exposition. For now we suffice to say they are a functorial construction from commutative
rings to commutative rings. We will later mention some more properties for the specific
case mentioned above.

Theorem 7.3.1. Let GZ be a reductive linear algebraic group. With k, R and K as above and l
coprime to char(k) the base change maps Gk → GR ← GK → GC induce isomorphisms on étale
cohomology

H∗(Gk, Z/l) '← H∗(GR, Z/l) '→ H∗(GK, Z/l) '← H∗(GC, Z/l)

Proof. [FP81]

By means of the Spectral Sequence 2.1.4 we also deduce isomorphisms on classifying
simplicial schemes.

Corollary 7.3.2. There are isomorphisms of sheaf cohomology groups on the étale site:

H∗(BGk, Z/l) '← H∗(BGR, Z/l) '→ H∗(BGK, Z/l) '← H∗(BGC, Z/l)

Theorem 7.3.3. There is a weak equivalence:

holim ◦(Z/l)∞((BGk)ét) ' (Z/l)∞((BG(C))

Proof. Recall from 6.1.3 we have for X• a connected, pointed simplicial scheme of finite type
over C:

(X•, x)ét
ρ←− (X•, x)s.ét

τ−→ Sing (|Xtop
• , x|)

with ρ a weak equivalence after taking the pro-P completion (−)P̂ and τ an isomorphism.
The conclusion of 6.1.3 also holds if we instead take a pro-l completion. Substituting BGC

for X• we obtain weak equivalences:

((BGC)ét)
l̂ '←− ((BGC)s.ét)

l̂ '−→ (Sing (BG(C)))l̂

from which we now apply the Sullivan homotopy limit from which we obtain, by 4.3.2,
weak equivalences:

holimSu((BGC)ét)
l̂ '←− holimSu((BGC)s.ét)

l̂ '−→ (Sing (BG(C)))l̂

Since the simplicial scheme BGC is Noetherian we have that the homology with Z/l co-
efficients of each component of (BGC)ét is finite and under these conditions, by 4.6.2, we
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have that there is a natural isomorphism between the Sullivan homotopy limit of the pro
l-completion and the Bousfield-Kan homotopy limit of the Bousfield-Kan Z/l-completion,
i.e.

holim ◦(Z/l)∞({S•}i) ' holimSu({S•}i)
l̂

Combining this with the above sequence of weak equivalence we obtain the weak equiva-
lence:

holim ◦(Z/l)∞((BGC)ét) ' (Z/l)∞Sing (BG(C))

We are then left with showing that there is a weak equivalence:

holim ◦(Z/l)∞((BGk)ét) ' holim ◦(Z/l)∞((BGC)ét)

which we do by using 7.3.1, showing there are no principal G-fibrations so that the funda-
mental groups of the étale topological types of BGA (for A ∈ {k, R, K, C}) are trivial, and so
by 4.2.3 we have that the base change maps after pro−l completion give weak equivalence
(since the fundamental groups are trivial there are no non-trivial local coefficient systems
so it suffices to check isomorphisms on Z/l cohomology which is the result of 7.3.1).

We now prove there are no non-trivial principal G-fibrations (this G bears no relation
to the GA). By descent we can reduce to consider Π((BGA)0, G) and an isomorphism in
Π((BGA)1, G). But (BGA)0 is just Spec(A) and observe that for the cases A ∈ {k, K, C} an
étale morphism U → Spec(A), for U connected, is necessarily induced by A → B for B a
finite separable field extension of A but since A is algebraically closed A = B, so in this
case principal G-fibrations are trivial. For the case R see the following remark. Further the
conditions d∗1 ϕ = d∗2 ϕ ◦ d∗0 ϕ enforce no non-trivial isomorphisms for the descent data.

We then have, by 5.1.5, that since the category of principal G-fibrations with descent data
is trivial so is Π((BGA)•, G) and then by 5.1.11 that the fundamental groups are trivial. This
completes the proof.

Remark 7.3.4. In the above case the Witt vectors are a complete local ring and so form a Hensel
local ring [Tam94, Ch II Def 6.1.2]. Moreover since the finite field Fp is perfect so that its algebraic
closure F coincides with its separable closure we have that R is a strict Hensel local ring [Tam94,
Ch II Def 6.1.8] (its residue field is F). Equivalently [Tam94, Ch II Prop 6.1.7] this says that finite
étale R-algebras are trivial, i.e. isomorphic to a finite product of copies of R, and so we have that
Π((BGR)0, G) is trivial.

7.4 A Cohomological Pullback Square of Linear Algebraic Groups

As before we take k to be an algebraically closed field of charateristic p, l coprime to p and
ϕ : Gk → Gk a surjective endomorphism of linear algebraic groups with finite fixed points
H := Gϕ

k . The major result is the following:

Theorem 7.4.1. Let G(C) be a reductive Lie Group and GZ the integral algebraic group associated
to it. Then for the purposes of cohomology calculations with coefficients in Z/l we may assume that
7.4.2 is a pullback.

BH (Z/l)∞(Sing(BG(C)))

(Z/l)∞(Sing(BG(C))) (Z/l)∞(Sing(BG(C)2))
(7.4.2)
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In particular we can use the Eilenberg-Moore spectral sequence to commute H∗(BH; Z/l).
7.4.1 is the result [Fri82, Thm 12.2].

Consider the following square:

U•

B(Gk/H, Gk, ∗) B((Gk × Gk)/∆Gk, Gk × Gk, ∗)

BGk B(Gk × BGk)

γ

α

β

Ψ

id×ϕ

(7.4.3)

We will show the square is a pullback. Both vertical maps project away from the left most
variety and are principal Gk/H and (Gk×Gk)/∆Gk) fibrations (verification of the conditions
is straightforward), the bottom horizontal map is the identity cross the surjective endomor-
phism and the top morphism sends rational points (or elements in the groups/homogenous
spaces) by the formula:

Ψm(n, g1, g2, . . . , gm) := ((n, ϕ(n)), (g1, ϕ(g1)), . . . , (gm, ϕ(gm)))

The simplicial scheme morphism γm can be defined degree wise uniquely using αm
and βm making 7.4.3 commute. The image on the Gk components is determined by the
map β and the image on the homogenous space Gk/H is determined by α, projecting on to
(Gk × Gk)/∆Gk and the isomorphisms : Gk → (Gk × Gk)/∆ and Gk/H ∼= (Gk × Gk)/∆Gk
given by n → (n, ϕ(n)). It can be checked the γm assemble to a simplicial map and so we
have 7.4.3 is indeed a pullback.

The next lemma shows the pullback is a model for BH.

Lemma 7.4.4. There is a weak equivalence between B(Gk/H, Gk, ∗)ét and BH.

Proof. First the pro object B(Gk, Gk, ∗)ét is shown to be contractible by exhibiting a homotopy
from the identity on B(Gk, Gk, ∗) to the map factoring as:

B(Gk, Gk, ∗)→ Spec(k)→ B(Gk, Gk, ∗)

Explicitly there are maps
Observe the claim now holds as k is a Hensel local ring and so admits no non-trivial

étale covers. It then suffices to show either there is a weak equivalence on the fibres of the
étale type of the diagram:

B(H, H, ∗) B(Gk, Gk, ∗)

BH B(Gk/H, Gk, ∗)
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Note the BH in this diagram is the classifying space of schemes not of topological spaces!
The weak equivalence on fibres follows from [Fri82, Lem 10.6]. Essentially those hypercov-
erings of B(Gk/H, Gk, ∗) that factor through B(Gk, Gk, ∗) equip the étale type with a free H
action whose quotient is the étale type of the base. Now note that H is just the disjoint union
of copies of Spec(k), being finite and having a discrete topology, equipped with the group
action so that it’s etale type agrees with the discrete group H. Then by the contractibility of
B(Gk, Gk, ∗)ét we have a weak equivalence:

BH ' B(Gk/H, Gk, ∗)ét

where the BH is the topological classifying space of the discrete group H.

Proof of 7.4.1. By the above we have the following commuting diagram of simplicial schemes
with an isomorphism of varieties on the fibres:

Gk/H (Gk × Gk)/∆Gk

B(Gk/H, Gk, ∗) B((Gk × Gk)/∆Gk, Gk, ∗)

BGk BGk × BGk

'

p1 p2

id×ϕ

(7.4.5)

Applying the étale topological type functor (−)ét followed by holim ◦(Z/l)∞ to the
bottom square we obtain:

holim ◦(Z/l)∞((B(Gk/H, Gk, ∗))ét) holim ◦(Z/l)∞((B((Gk × Gk)/∆Gk, Gk, ∗))ét)

P

holim ◦(Z/l)∞((BGk)ét) holim ◦(Z/l)∞((BGk × BGk)ét)

ζ

This doesn’t necessarily preserve pullbacks so we write P for the new pullback. We will
however show that the induced map holim ◦(Z/l)∞((B(Gk/H, Gk, ∗))ét)→ P is an isomor-
phism in cohomology with Z/l coefficients i.e. after applying (Z/l)∞ we obtain a weak
equivalence (Z/l)∞((B(Gk/H, Gk, ∗))ét)→ (Z/l)∞(P).

We consider then the map on fibres if we only apply (−)ét to 7.4.5.

f ib((p1)ét) f ib((p2)ét)

(B(Gk/H, Gk, ∗))ét (B((Gk × Gk)/∆Gk, Gk, ∗))ét

(BGk)ét (BGk × BGk)ét

(p1)ét (p2)ét

(7.4.6)
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Since the lower vertical maps p1 p2 and in 7.4.5 are smooth being merely projections
away from the homogenous spaces we can apply 6.2.7 with the constant sheaf Z/l to obtain
isomorphisms on cohomology:

H∗( f ib((p1)ét); Z/l) ∼= H∗((Gk/Hk)ét; i∗(Z/l))

H∗( f ib((p2)ét); Z/l) ∼= H∗(((Gk × Gk)/∆Gk)ét; i∗(Z/l))

However the geometric fibres are known to be isomorphic as varities by the Lang map so
we have an isomorphism between the fibres of the étale topological types of p1 and p2. Now
applying holim ◦ (Z/l)∞ we would like to show a Z/l cohomology isomorphism between
the fibres of the maps holim ◦(Z/l)∞(pét) and ζ.

holim ◦(Z/l)∞ f ib((p1)ét) holim ◦(Z/l)∞ f ib((p2)ét)

holim ◦(Z/l)∞((B(Gk/H, Gk, ∗))ét) holim ◦(Z/l)∞((B((Gk × Gk)/∆Gk, Gk, ∗))ét)

P

holim ◦(Z/l)∞((BGk)ét) holim ◦(Z/l)∞((BGk × BGk)ét)

holim ◦(Z/l)∞(p1)ét holim ◦(Z/l)∞(p2)ét
ζ

(7.4.7)
The fibre of ζ is the same as that of holim ◦(Z/l)∞(p2)ét as it is a pullback so we are

left with showing a Z/l cohomology isomorphism between holim ◦(Z/l)∞ f ib((p1)ét) and
holim ◦(Z/l)∞ f ib((p2)ét). We then consider the two fibrations with the intent of showing
isomorphism on the Z/l cohomology groups of the fibres.

f ib((p1)ét) holim ◦(Z/l)∞ f ib((p1)ét)

B(Gk/H, Gk, ∗)ét holim ◦(Z/l)∞B(Gk/H, Gk, ∗)ét

(BGk)ét holim ◦(Z/l)∞(BGk)ét

(p1)ét holim ◦(Z/l)∞((p1)ét)

Now by the previous lemma the pro-space B(Gk/H, Gk, ∗)ét is weakly equivalent to
BH and so, since H is finite so that BH ' K(H, 1) and therefore nilpotent, we have that
there is a Z/l cohomology isomorphism between the total spaces. We claim that there is
a Z/l cohomology isomorphism of the base spaces as well. This isomorphism can be seen
by recalling the base change maps are weak equivalences after pro−l completion and the
results in 7.3.3 so that we have a series of maps all inducing Z/l cohomology isomorphisms.
A Z/l cohomology isomorphism on the fibres now follows by the mod-C class theory of
Serre and the Serre spectral sequence. A similar argument applies with p2 in place of p1. So
we’ve deduced:
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H∗( f ib((pi)ét); Z/l) ∼= H∗(holim ◦(Z/l)∞( f ib((pi)ét)); Z/l)

for i = 1, 2. Combining these with the previously deduced isomorphism H∗( f ib((p1)ét); Z/l) ∼=
H∗( f ib((p2)ét); Z/l) we have that there is a Z/l cohomology isomorphism on the fibres in
7.4.7 so that a Z/l cohomology isomorphism on the induced map holim ◦(Z/l)∞B(Gk/H, Gk, ∗)ét →
P follows by the next lemma.

We finish by restating this result in terms of topological space. Applying the previ-
ous lemma to replace (B(Gk/H, Gk, ∗))ét with (BH)ét and the result of 7.3.3 to replace
holim ◦(Z/l)∞((BGk)ét) with (Z/l)∞Sing (BG(C)) we now have that there is a homotopy
commutative square which suffices to calculate Z/l cohomology on:

BH (Z/l)∞Sing (BG(C))

(Z/l)∞Sing (BG(C)) (Z/l)∞Sing (BG(C)× BG(C))

∆
id×ϕq

Note the right hand vertical map is indeed the diagonal map as p2 was just the projection.
We prove later what the map 1× ϕq is on cohomology.

Lemma 7.4.8. Suppose there are two nilpotent fibrations and maps between them such that the map
on fibres is an isomorphism on Z/l (co)homology as is the induced map on the bases:

F1 E1 B1

F2 E2 B2

f e b

then so is the induced map on the Z/l homology of the total spaces.

Proof. Since the fibrations are nilpotent we can apply the Bousfield-Kan Z/l-completion
functor and have it preserve the fibration property.

(Z/l)∞(F1) (Z/l)∞(E1) (Z/l)∞(B1)

(Z/l)∞(F2) (Z/l)∞(E2) (Z/l)∞(B2)

(Z/l)∞( f ) (Z/l)∞(e) (Z/l)∞(b)

Since we have cohomology isomorphisms with Z/l coefficients for the maps f and b the
maps are (Z/l)∞( f ) and (Z/l)∞(b) are weak equivalences, by the property of Bousfield-
Kan completions, and so, by the five lemma, is (Z/l)∞(e) hence e induces (co)homology
isomorphisms again with Z/l coefficients.

7.5 The Cohomology of GLn(Fq)

In this section we calculate, by means of the Eilenberg-Moore spectral sequence and a
simplification thereof, the cohomology of GLn(Fq) away from the characteristic. This sim-
plification will come in the form of the ‘Big Collapse Theorem’ which gives an explicit form
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for the E2 page and the knowledge that this agrees with the E∞ page. We first describe the
form of this spectral sequence using as a reference [McC01, §7]. Suppose that we have a
fibration p : E→ B with fibre F and a map f : X → B, then we consider the pullback square:

F F

E f E

X B

p

f

(7.5.1)

The statement of the Eilenberg-Moore spectral sequence is then the following:

Theorem 7.5.2 (Eilenberg-Moore Spectral Sequence). Suppose the fibre F is connected and that
the system of local coefficients on B determined by π is simple. Then there is a second quadrant
spectral sequence converging to the cohomology H∗(E f ; R) with E2 page given by:

E∗,∗2 := TorH∗(B;R)(H∗(X; R), H∗(E; R))

Recall the conclusion of the previous section was that for the puposes of cohomology
calculations with coefficients in Z/l, i.e. away from the characteristic, we may say there is a
pullback square:

BGLn(Fq) (Z/l)∞Sing (BGLn(C))

(Z/l)∞Sing (BGLn(C)) (Z/l)∞Sing (BGLn(C)× BGLn(C))

∆
id×ϕ

(7.5.3)

Here we have taken our reductive linear algebraic group GZ to be GLn,Z and ϕ to be
the Frobenius so that when we consider the group GLn,k, where as before k is algebraically
closed of characteristic p and the Frobenius raises coefficients to the q = pd power, we have
that the fixed points is the group GLn,Fq .

Let us take 7.5.3 as our pullback square in 7.5.1. To use this spectral sequence we must
then know firstly the cohomology of BG(C) with coefficients in Z/l and secondly the
algebra structures of H∗(E; Z/l) and H∗(X; Z/l) as H∗(B; Z/l) algebras. In other words
we need to know the effect of the maps ∆ and id× ϕ on cohomology. Note the cohomology
of the product space of B is determined by the Kunneth theorem as we are taking coefficients
in a field.

We denote by R[a1, a2, . . . , an] the polynomial algebra over the ring R with generators
a1, . . . , an.

Proposition 7.5.4. The cohomology of BGLn(C) with integer coefficients is given by the polynomial
algebra over Z with generators the c2i in degree 2i for i ∈ {1, 2, . . . , n}.

H∗(GLn(C); Z) = Z[c2, c4, . . . c2n]
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Proof. By Gram-Schmidt orthogonalisation we have a deformation retract of GLn(C) onto
U(n) so we can instead calculate the cohomology of U(n) which is known to be a polyno-
mial algebra generated by the Chern classes c2i in degree 2i for 1 ≤ i ≤ n.

Replacing Z by Z/l we also obtain:

H∗(GLn(C); Z/l) = Z/l[c2, c4, . . . , c2n]

So the cohomology groups in question are given by:

H∗(E; Z/l) ∼= Z/l[e2, e4, . . . , e2n]

H∗(X; Z/l) ∼= Z/l[x2, x4, . . . , x2n]

H∗(B; Z/l) ∼= Z/l[b2, b′2, b4, b′4, . . . , b2n, b′2n]

where the letters e, b, x serve to indicate which algebra they belong to but they should be
thought of as coming from the Chern classes so that the b′2i also reside in degree 2i. For
determining the algebra structure note the map ∆ is the diagonal map so that b2i 7→ e2i
and b′2i 7→ e2i. It is also clear that under (id × ϕ)∗ we have b2i 7→ x2i so we are left with
determining the map ϕ∗. For this we use a proposition.

Proposition. Let i : T→ GLn(C) be the inclusion of a maximal torus of GLn(C). Then the induced
map i∗ : H∗(GLn(C); Z/l)→ H∗(T; Z/l) is an injection.

Proof. Either [Ben91, Lem 2.9.2] or [Qui72, Lems 12 & 13].

Taking S1 as a torus we have T = ∏n
1 S1. Recall from the introduction we have a covering

space S∞ → CP∞ with S1 acting on S∞ so that CP∞ is a model for BS1, hence we have the
cohomology is the polynomial algebra:

H∗
(

n

∏
1

BS1; Z/l

)
= Z/l[s2, s′2, s′′2 , . . . s(n)2 ]

where s(i)2 is a generator in degree 2. A consequence of the proposition is that the effect
of ϕ on this polynomial algebra determines the effect on H∗(BGLn(C); Z/l) by means of
the commuting diagram:

H∗(BGLn(C); Z/l) H∗(BGLn(C); Z/l)

H∗(T; Z/l) H∗(T; Z/l)

ϕ∗

ϕ∗
(7.5.5)

It then suffices to determine the effect of ϕ∗ on H∗(BS1; Z) = Z. By considering the
sequence of pro−L weak equivalences of homotopy types that were established:

(BGk)ét → (BGR)ét ← (BGC)ét ← (BGC)s.ét → Sing (BG(C))

we see that since G = S1 and on the left we have the Frobenius the induced map on
the right is going to be homotopic to the map x 7→ xq since this map is defined on GL1(C)
(the map raising elements of GLn(C) to the power q is not well defined for n ≥ 2) and so
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induces multiplication by q on degree 2 cohomology. By the cup product structure we have
ϕ(s2k) = ϕ(sk

2) = ϕ(s2)
k = (q.s2)

k = qk.s2k, more generally if we consider the maximal torus
of GLn(C), taking cohomology coefficients to be Z/l then ϕ acts on a homogenous element
of degree 2k by multiplication by qk.

Replacing the cohomology by their polynomial rings the square 7.5.5 becomes:

Z/l[c2, c4, . . . , c2n] Z/l[c2, c4, . . . , c2n]

Z/l[s2, s′2, . . . , s(n)2 ] Z/l[s2, s′2, . . . , s(n)2 ]

ϕ∗

ϕ∗

from which we determine that the upper map ϕ∗ must also act in degree 2k by multipli-
cation by qk. This concludes the determination of the algebra structures of the cohomology
algebras. Calculations involving the Eilenberg-Moore Spectral Sequence can become rather
involved so we follow Kleinerman’s calculation, [Kle82], and simplify using a theorem of
Smith.

Definition 7.5.6. A Borel Ideal of a ring R is an ideal generated by a finite sequence of elements
(r1, r2, . . . , rn) such that r1 is not a zero divisor in R, r2 is not a zero divisor in R/ < r1 > and
more generally rk is not a zero divisor in R/ < r1, r2, . . . , rk−1 > for all k.

We state the Big Collapse Thoerem of Smith keeping the notation defined for the
Eilenberg-Moore spectral sequence and writing ΛR[e1, e2, . . . , en] for the exterior algebra
over R on the generators e1, e2, . . . , en. In terms of the calculation this is a large simplifi-
cation as it avoids any need for finding a projective resolution of the H∗(B; Z/l) algebra
H∗(E; Z/l). In [McC01] a general construction is detailed where a projective resolution of
the graded algebra is given in degree n by the bar construction:

B−n(H∗(B; Z/l), H∗(E; Z/l)) := H∗(B; Z/l)⊗H∗(B; Z/l)⊗ . . .⊗H∗(B; Z/l)⊗H∗(E; Z/l)

where there are n copies of H∗(B; Z/l) the algebra without unit. This quickly becomes
unmanageable when the algebras are polynomial rings with multiple generators.

Theorem (Big Collapse Theorem). Let F be a field and suppose the following are satisfied:

1. p∗ : H∗(B; F)→ H∗(E; F) is surjective

2. ker(p∗) ⊂ H∗(B; F) is a Borel ideal

3. f ∗(ker(p∗)) generates a Borel ideal of H∗(X; F) which we denote J

then we have the following conclusions:

1. The spectral sequence collapses at the E2 page, i.e. E∗,∗2
∼= E∗,∗∞

2. E2 = H∗(X; F)/J ⊗ΛF[e1, e2, e3, . . .] with all ei in degree −1.

Proof. [Smi67, Part II, Thm 3.1]
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To be more explicit for a minimal set of generators for H∗(X; F)/J we have ei for each, the
an element x ∈ H∗(X; F)/J has bidegree (0, deg(x)) and the ei have bidegree (−1, deg(gi))
for the corresponding element gi of the minimal generators.

We state again the notation that k is an algebraically closed field of characteristic p and
q = pd. Let r be the least positive integer such that qr ≡ 1(mod l). We verify the conditions
of the Big Collapse Theorem. p∗ is surjective since b2i 7→ e2i, ker(p∗) is generated by the
elements b2i − b′2i and the sequence (b2 − b′2, b4 − b′4, . . . , b2n − b′2n) clearly defines a Borel
ideal which shows the first two conditions. For the third the image of the generators b2i− b′2i
under 1× ϕ∗ is given by (1− qi)x2i as ϕ acts by multiplication by qi. If r divides i this image
is 0. Since Z/l is a field we have the image is generated by the x2i where r does not divide
i. And these give a Borel ideal.

We restrict to l 6= 2, the reason being that by [Smi67, Part II, Cor 3.3] there is an algebra
isomorphism E2 = E∞. The preceding discussion immediately gives the corollary:

Corollary 7.5.7. The cohomology of GLn(Fq) with coefficients in Z/l, l 6= 2, is given by:

H∗(GLn(Fq); Z/l) = Z/l[{x2jr}]⊗ΛZ/l[{y2jr−1}]

where as before r is the least positive integer with qr ≡ 1(mod l) and 1 ≤ jr ≤ n with subscripts
denoting the degree.

We would only have this result at most as an associated grading for l = 2 by this method.
Quillen gives relations for the algebra structure in [Qui72] where it splits into two cases:
a typical case which behaves as above and an exceptional case where generators of the
exterior algebra no longer square to 0.

We also mention here the two other cases we shall need firstly note that since the
groups GLn(Fq) are finite the cohomology groups are torsion and annhilated by the order
of GLn(Fq) so that rational cohomology is trivial. The case where l = p (divides the order
of the characteristic) is not known in general however we do have a vanishing range, [Qui72,
Thm 6].

Theorem 7.5.8. There is a vanishing range, for 0 < i < d(p− 1) we have:

Hi(GLn(Fq); Z/p) = 0
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8 The K-Theory of Finite Fields

8.1 A Brief Discussion of K-Theory

For the initial discussion in the following we refer to [Hat] for topological K-theory and
[Ros94] for algebraic K-theory. The results stated in this section can be found in either of
the two cited works.

Recall that topological K-theory is a cohomology theory on compact Hausdorff spaces

represented by the classifying space BU ×Z, or BU for the reduced case
∼
K. The former is

the Grothendieck group completion of the monoid of vector bundles on X where E1− E′1 =
E2 − E′2 iff E1 ⊕ E′2 ≈s E2 ⊕ E′1 i.e. isomorphic after adding a trivial bundle of the same
dimension to both sides. The latter is the group with elements the vector bundles over X
subject to E1 ∼ E2 whenever E1 ⊕ εn ∼= E2 ⊕ εm. This cohomology theory can be shown to
be 2-periodic with K1(X) = K0(S1 ∧ X).

Similar to above given a ring R we can consider the semigroup Proj(R) of finitely
generated projective R-modules and define K0(R) to be the Grothendieck group completion
of Proj(R). With this notation we have the following theorem and corollary of Swan.

Theorem 8.1.1 (Swan). Let X be compact Hausdorff and C(X) := { f : X → R | f continuous},
then there is a 1-1 correspondence between vector bundles over X and finitely generated projective
C(X)-modules given by sending a vector bundle to the module of its sections Γ(X).

Corollary 8.1.2. There is an isomorphism K0(X)
∼=→ K0(Γ(X)).

There is then a natural question of given that topological K-theory extends to a coho-
mology theory on spaces can something similar be done with the algebraic K0? As further
motivation a relative form of K0 can be defined such that there is an exact sequence resem-
bling the exact sequences of a pair of topological spaces. We take I C R to be an ideal and
then there is an exact sequence of the form:

K0(R, I)→ K0(R)→ K0(R/I)

Further this is natural in (R, I) and the relative K0 group is isomorphic to K0(I) (this
is the Excision theorem). These algebraic analogues were found in degrees 1 and 2 and
defined algebraically. We give constructions here.

We define the infinite general linear group over a commutative, unital ring R to be
the colimit of GLn(R) with maps the inclusion of GLn(R) into the first n × n entries of
GLn+1(R).

GL(R) := colim (GL1(R) ↪→ GL2(R) ↪→ GL3(R) ↪→ GL4(R) ↪→ . . .)

Recall that a group G is said to be perfect if its abelianization Gab := G/[G, G] is trivial.
We can also define the elementary subgroup of GLn(R) generated by those matrices of the
form In + rδij for i 6= j. The elementary subgroup is a perfect normal subgroup of GLn(R).
Similarly to the above we define the infinite elementary subgroup E(R) and the following
theorem says it is also perfect and normal in GL(R).

Proposition 8.1.3 (Whitehead). [GL(R), GL(R)] = E(R) = [E(R), E(R)]

Bass introduced a group now called K1(R) defined to be the quotient K1(R) := GL(R)/E(R).
The above result of Whitehead says that K1 is the abelianization of the infinite general linear
group over the ring R.
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Example 8.1.4. Take the field F4 := F2[X]/(X2 + X + 1). We denote the elements of F4 also by
{0, 1, X, X2}. The determinant homomorphism takes all elementary matrices to 1 so in K1(F4) the
element of GL(F4) represented by (X) cannot be in E(F4) as it has determinant X. Similarly for
X2, thus there must be at least 3 cosets so that |K1(F4)| ≥ 3. In fact it is 3 as will be shown later
and so isomorphic to Z/3. Similarly for Fq there are q− 1 invertible elements so

∣∣K1(Fq)
∣∣ ≥ q− 1,

which again is an equality and a cyclic group of order q− 1.

More generally it is a fact that if R is a field the first K group is the group of invertible
elements of the field, K1(R) = R×. The K1 groups extended the natural exact sequence on
K0 above to a natural exact sequence:

K1(R, I)→ K1(R)→ K1(R/I)→ K0(R, I)→ K0(R)→ K0(R/I)

Milnor’s K2 is defined to be the kernel of a ring map ϕ : St(R) → E(R) where St(R),
the Steinberg group of R, is the group freely generated by elements xij(r) whenever i 6= j
and r ∈ R quotiented by relations corresponding to those appearing in E(R). The map ϕ is
then just xij(r) 7→ In + rδij (we abuse notation here slightly to give a map into GLn(R) and
therefore into GL(R)). So K2(R) is detecting extra relations amongst the infinite elementary
group.

Quillen’s work sought to find a definition of the higher algebraic K groups rooted in
homotopy theory, for instance arising as homotopy groups of some space, and in [Qui71]
he gave the following definition for i ≥ 1.

Ki(R) := πi(BGL(R)+) (8.1.5)

This definition agrees in degrees 1 and 2 with those given by Bass and Milnor but not in
degree 0, this can be repaired by instead defining Ki(R) := K0(R)× πi(BGL(R)+) although
we will later consider the case R = Fq where K0 is of little interest (modules over a field are
just vector spaces, and so all are projective).

With this definition in terms of homotopy groups a long exact sequence of these K-
groups should then arise as the long exact sequence of a fibration, and indeed relative forms
of these are defined to be homotopy fibres of appropriate maps so that there is such a long
exact sequence which extends those of the above, [Ros94, Def 5.2.14].

The following section is a sketch of the calculation Quillen gave in [Qui72] for the
K-theory of finite fields.

8.2 Quillen’s Higher K Groups and Calculations for Finite Fields

Theorem 8.2.1. Let X be a connected topological space and N E π1(X) a perfect, normal subgroup.
Then there exists a topological space X+ and map ρ : X → X+ such that π1(X+) = π1(X)/N and
ρ∗ is a homology isomorphism. Moreover this map is initial amongst all maps X → Y sending N to
0.

Proof. [Hat03, Prop 4.40]

In fact as defined (−)+ is a functor. Recall that when G is discrete K(G, 1) is a model for
B so that π1(BG) = G.

We have the Adams operations Ψq which are ring endomorphisms Ψq : K∗(X)→ K∗(X)
and which can be represented as a homotopy class of maps [BU, BU] which we pick a
representative of and call σq.
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The claim is that there is a space FΨq and map BGL(Fq)+
∼→ FΨq which is a homotopy

equivalence where FΨq is a homotopy theoretic fixed point set of the Adams operation
which can be shown to be homotopy equivalent to a fibre and so its homotopy groups are
easily calculated by means of the long exact sequence on homotopy groups of a fibration:

. . .→ πn(F)→ πn(E)→ πn(B)→ πn−1(F)→ πn−1(E)→ πn−1(B)→ . . . (8.2.2)

The two interpretations of FΨq as homotopy fixed points and as a fibre are given by the
two diagrams, the first expressing it as homotopy fixed points.

FΨq BU I

BU BU × BU

γ

ϕ ∆

(id,σ)

(8.2.3)

This is a pullback diagram with ∆ sending a path in BU I to its endpoints. For the
second diagram the difference operation (a, b) 7→ a− b can also be represented by a map
d : BU2 → BU and it can be chosen such that some point b ∈ BU is an identity element.

FΨq BU I PBU

BU BU × BU BU

γ

ϕ

dI

∆ p

(id,σ) d

We recall that pullbacks of fibrations are fibrations so that since ∆ is a fibration so is
ϕ, the right hand map is the path space fibration. Choosing the element b in the lower left
BU it’s images along the lower horizontal maps are (b, b) and b by the choices of d and σ
outlined above and the fibres over each of these are clearly homotopic to ΩBU.

ΩBU ΩBU ΩBU

FΨq BU I PBU

BU BU × BU BU

γ

ϕ

dI

∆ p

(id,σ) d

We claim that FΨq is the pullback of p along d ◦ (id, σ). Suppose we have maps f : D →
BU and g : D → PBU with d ◦ (id, σ) ◦ f = p ◦ g. Then the two dashed arrow can clearly
be found by first using the property of pullback in the right hand square and then in the
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second, which gives us existence of a map D → FΨq making 8.2.4 commute.

D Pa,bBU Pa,bBU

FΨq BU I PBU

BU BU × BU BU

f

γ

ϕ

dI

∆ p

g

(id,σ) d

(8.2.4)

There is an issue of uniqueness however, suppose we are given two maps j, k : D → FΨq

making 8.2.4 commute and such that γ ◦ j = γ ◦ k then it is necessarily the case that j = k
as the left hand square is a pullback so it will suffice to show there is only one map after
composing with γ. The fibre of the map ∆ over the point (a, b) ∈ BU × BU is the space of
paths ξ : a b in BU and similarly for the fibre of p over a, we write this fibre as Pa,bBU. If
we let ξ := γ(j(d)) and ξ ′ := γ(k(d)) be paths in BU I they are certainly equal after applying
dI as this composite is just the map g. But then since the map on the fibres over (a, b) and
a is an isomorphism and the paths are equal after applying dI they must also be equal in
BU I so γ ◦ j = γ ◦ k which shows uniqueness. So we have shown FΨq is the pullback of the
composite of the two squares.

Thus we have that FΨq is the homotopy fibre of the composite d ◦ (id, σ) so we can now

consider the long exact sequence of 8.2.2 applied to the fibration FΨq → BU 1−Ψq
→ BU. The

homotopy groups of BU are the K-theory groups of the spheres:

πn(BU) = [Sn, BU] =
∼
K(Sn) =

{
Z n even
0 n odd

Further we have the Adams operation Ψq induces multiplication by q on
∼
K(S2) = π2(BU)

and therefore by qn on π2n(BU). The long exact sequence then gives short exact sequences:

0 π2n(FΨq) Z Z π2n−1(FΨq) 0
1−qn

The middle map is injective for n ≥ 1 and so we obtain:

Ki(Fq) =


Z i = 0
Z/(qn − 1) i odd
0 i > 0 even

We still have to explain the homotopy equivalence BGL(Fq)+
∼→ FΨq. It follows from

the long exact sequence 8.2.2 applied to FΨq → BU 1−Ψq
−→ BU that FΨq is a simple space

and BGL(Fq)+ is simple since it is a H-space, see [Ada78, §3.2] or [Ros94, Thm 5.2.12], and
so it suffices by the Hurewicz and Whitehead theorems to show the map is a homology
isomorphism in integral coefficients. We can split this into showing homology isomorphisms
with coefficients in Q, Fp, and Fl for all l which are prime and coprime to p where p is the
characteristic of the field. An explanation of this can be found in the appendix.
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8.3 The Homology Isomorphism of Quillen

This section details the construction of the map BGL(Fq) → FΨq. Via a series of con-
structions we will pass from virtual Fq representations of a finite group G to virtual C

representations from which there is a map to the elements of reduced K-theory of BG fixed
by the Adams operations, the first few results show this to be equivalent to homotopy classes
of maps BG → FΨq. We do not show this map is a homology isomorphism here but we will
show in the next section a cohomology isomorphism by the techniques of Friedlander.

Theorem 8.3.1. There is a homology isomorphism BGL(Fq)+ → FΨq

We explain how this map arises. Recall that the representation ring of a group G over the
field F is defined to be the group completion of the character ring which is denoted RF(G).
This map will then appear from elements of the representation rings of GLn(Fq) over the
field Fq. Elements of the representation ring will be referred to as virtual representations.
Since the space FΨq is simple finding the above map is equivalent to giving a map:

BGL(Fq)→ FΨq

This shall be built from compatible maps on the finite subgroups GLn(Fq):

BGLn(Fq)→ FΨq

Quillen shows homotopy classes of such maps are isomorphic to fixed points under
the Adams operation of the reduced K-theory of BGLn(Fq). More precisely we have the
following lemma (Lemma 1 (ii) in [Qui72]):

Lemma 8.3.2. Let ϕ : FΨq → BU be the map of the preceding section and X a space with
[X, ΩBU] = 0 then we have:

ϕ∗ : [X, FΨq]
'→ [X, BU]Ψ

q

Proof. Surjectivity follows since FΨq is a pullback so a map in [X, FΨq] is equivalent to maps
g : X → BU and X → BU I with a homotopy relating g to σ ◦ g, but σ represents Ψq so this
lands in the fixed points of the Adams operation on reduced K-theory, i.e. [X, BU]Ψ

q
.

For injectivity note since we have a fibration:

FΨq ϕ→ BU
d◦(id,σ)−→ BU

we obtain a long exact sequence:

. . .→ [X, ΩBU]→ [X, ΩBU]→ [X, FΨq]
ϕ∗→ [X, BU]→ . . .

so if ϕ∗ weren’t injective then [X, ΩBU] 6= 0 but we assumed the contrary, so ϕ∗ is injective.

To apply this to the space BGLn(Fq) one needs to know that [BGLn(Fq), ΩBU] = 0
which follows from the Atiyah-Segal completion theorem of equivariant K-theory, [AS69].
If G-equivariant topological K-theory is denoted K∗G then this results says that for a G-space
X there is an isomorphism:

K∗G(X)̂I
∼=→ K∗(X×G EG)
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between the completion of G-equivariant K-theory with respect to the augmentation
ideal I and the standard topological K-theory of X ×G EG. Taking X as a point this result
relates the K-theory of BG and a completion of the complex character ring RCG. The result
[BG, ΩBU] = 0 now follows by the loop space adjunction and the equalities (we are taking
reduced K-theory):

K1(BG) = K1
G(∗)̂I = K0

G(S
1)̂I

where the first equality is the completion theorem and the second the suspension iso-
morphism and now observe that:

K0
G(S

1) = K0(S1)⊗ RC(G) = 0

since the action of G on S1 is trivial and K0(S1) = 0.
So we are now left with describing a map of the right hand side in:

[BGLn(Fq), FΨq]→ [BGLn(Fq), BU]Ψ
q

Such a map will be found by lifting (virtual) representations over Fq to (virtual) repre-
sentations over C. Let’s note first how a C representation will give a class in K-theory. If
G → GLn(V) is an actual representation over C then we can form an element in unreduced
K-theory which we can then map to reduced K-theory. The element is given by the class of
the vector bundle:

EG×
G

V → BG

So this gives a map from the representation ring of G over C to the reduced K-theory of
BG.

RC(G)→ [BG, BU]

We are left with extending this to a map from RFq(G) to [BG, BU] and showing it lands
in the fixed points of the Adams operations. The extension is given by the Brauer lift.

Fix an embedding τ : Fq
× → C× of multiplicative groups. From an Fq representation

G → GLn(V, Fq) of a finite group G one can define the Brauer character. Denote by {λi}
the set of eigenvalues for the representation (with repeats accounting for multiplicity) the
Brauer character is the class function given by:

χ(g) := ∑
i

τ(λi)

Green shows that this character is in fact a character of a unique complex virtual repre-
sentation, [Gre55, Thm 1] , and this element of RC(G) is called the Brauer lift. Given then
instead a Fq representation we can extend this to its algebraic closure by tensoring Fq⊗Fq −
and then take the Brauer lift, this gives a map from Fq representations to C representation
which then extends by group completion to a map RFq(G)→ RC(G).

Denote the Brauer lift on V by BR(V). The Adams operations are also defined on the
representation rings and the effect on characters of a representation ρ with character χρ is
given by χΨqρ(g) = χ(gq). Moreover they are compatible with the Adams operations on K-
theory in the sense they commute with the map RC(G)→ [BG, BU]. Since the eigenvalues
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of a Fq representation are fixed under the Frobenius morphism we have that ΨqBR(Fq ⊗Fq

V) = BR(Fq ⊗Fq V). So in fact we have a map:

RFq(G)→ RC(G)Ψq

Combining this with the previous maps and isomorphisms we obtain a map:

RFq(G)→ [BG, FΨq]

which to summarise is formed by the following composites:

Fq ⊗Fq (G)− : RFq → RFq
(G)

BR(−) : RFq
(G)→ RC(G)Ψq

B : RC(G)Ψq → [BG, BU]Ψ
q

(ψ∗)
−1 : [BG, BU]Ψ

q → [BG, FΨq]

Then taking G = GLn(Fq) and applying the composite to the standard representation
we obtain a homotopy class of maps

BGLn(Fq)→ FΨq

Moreover these maps are compatible so that we can form the colimit over them to obtain
finally a map:

BGL(Fq)→ FΨq

Equipped with these last two maps and knowledge of the (co)homologies H∗(FΨq; Z/l)
Quillen sets about calculating the (co)homologies of the BGLn(Fq) and BGL(Fp).

8.4 The Cohomology Isomorphism of Friedlander

The preceding discussion set up the framework Quillen used to show a homology isomor-
phism. In the following we show how the cohomology isomorphism BGL(Fq)+

'→ FΨq

follows from the cohomological pullback squares 7.4.1, in a somewhat more simple fashion,
for all n. We will still have need for the vanishing range described above and the vanishing
of cohomology with Q coefficients. This theorem features as [Fri82, Thm 12.7].

Theorem 8.4.1. There is a cohomology isomorphism BGL(Fq)+ → FΨq.

Proof. We are left with showing the case for Z/l coefficients, for l coprime to p. We can
construct the following commutative cube:

BGL(Fq) (Z/l)∞(Sing (GL(C)))

(Z/l)∞(FΨq) (Z/l)∞(Sing (GL(C)))

(Z/l)∞(Sing (GL(C))) (Z/l)∞(Sing (GL(C)× GL(C)))

(Z/l)∞(Sing (GL(C))) (Z/l)∞(Sing (GL(C)× GL(C)))

θ
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The back square is the colimit over n of 7.4.1 and the front square is (Z/l)∞ applied to
the pullback square 8.2.3. Since all spaces in 8.2.3 were simply connected on application of
(Z/l)∞ this gives another pullback square hence the dashed arrow θ exists, where we have
taken the other maps between the squares to be identities. This commutative cube gives
us a map between the Eilenberg Moore Spectral Sequences for the two squares with Z/l
coefficients and since the three non-dashed horizontal arrows are identities we obtain an
isomorphism on the spectral sequences, hence that θ is a Z/l-cohomology isomorphism.

8.5 Some Brief Comparisons

This section serves to draw some brief comparisons between the étale homotopy method
devloped within leading up to the cohomology and K-theory calculations and the approach
of Quillen in determining the same.

An obvious first remark to make is that both methods at some point make a transition
to the more familiar characteristic 0 algebraically closed scenario. Recall this manifested
itself for Friedlander’s method in the form of 7.3.1, which stated for the purposes of étale
cohomology calculations with coefficients in Z/l we can replace the classifying scheme
BG with the easily understood BGC. More specifically it appeared as the base change
map R → F where R was the Witt vectors of F := Fq. The corresponding transition to
characteristic 0 in [Qui72] occurs by introducing the Brauer lift.

The method of constructing the cohomological pullback square also has the immediate
advantage of being much more applicable. Many more group cohomologies can be obtained
from the cohomological pullback square, e.g. [Kle82] and further more if we replace GL with
SO or Sp, the special orthogonal and symplectic groups, we can define real oriented and
symplectic K-theories and calculate these for finite fields with a little more work, see [Fri82,
Chp 12] and [Fri76]. Much of the input in Quillen’s calculation has also been employed in
Friedlander’s - Eilenberg-Moore spectral sequence and the restriction to maximal tori for
instance - and many more powerful results from algebraic geometry have been incorporated
to achieve this generality.
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A Coskeleta

Theorem. Let C admit all fibre products and have a terminal object then the m-truncation functor
admits a right adjoint cosk m.

When we write ((∆/[n])≤m for the m-truncated under category we do allow n > m, only
the domain [k] of objects need have k ≤ m.

Proof. We will first define what each stage should be and then show these assemble to give
a simplicial object, finally we’ll demonstrate the adjunction. Let X• ∈ snC .

Step 1 – Consider the category (∆/[n])≤m, (note n ≥ m is possible). For k ≤ m and an
object (ϕ : [k]→ [n]) ∈ (∆/[n])≤m we have Xn(ϕ) = Xk.

To a morphism α in this category we can associate a map αn,∗ : Xn(ϕ)→ Xn(ϕ′) to just
be α∗ : Xk → Xk′ . We then define the nth stage by (cosk mX)n := lim(∆/[n])≤m

Xn.

[k′] [k]

[n]

α

ϕ′ ϕ

Step 2 – We now assemble these into a simplicial object, given a map θ : [n] → [l] we
must show there is an induced map (cosk mX)l → (cosk mX)n.

Giving this map is equivalent to giving maps from (cosk mX)l to the Xn(ϕ) commuting
with the maps Xn(ϕ)→ Xn(ϕ′). We define the structure maps by

γϕ : (cosk mX)l = lim
(∆/[l])≤m

Xl → Xl(θ ◦ ϕ) = Xk = Xn(ϕ)

to be the projection onto Xl(θ ◦ ϕ) followed by identifying Xk with Xl(θ ◦ ϕ) and Xn(ϕ).
We have commutativity in the form αn,∗ ◦ γϕ = γϕ′ . The left triangle commutes by the

defining property of the limit and the right square by examination: the horizontal maps
are the identity and the vertical maps are equal. So we have an induced map (cosk mX)l →
(cosk mX)n.

(cosk mX)l Xl(θ ◦ ϕ) Xn(ϕ)

Xl(θ ◦ ϕ′) Xn(ϕ′)

Step 3 – It remains to show the adjunction τm a cosk m, i.e. a natural isomorphism

HomsmC (τmY, X) ∼= HomsC (Y, cosk mX) (A.0.1)

First we note that τm(cosk mX) ∼= X as objects in smC : for n ≤ m the degree n part
(cosk mX)n is certainly isomorphic to Xn as the index category (∆/[n])≤m has terminal object

([n] id→ [n]) so the limit is identified with Xn([n] → [n]) = Xn. With this identification
the induced map of Step 2 is exactly θ∗ (assuming n, l ≤ m) : we can ignore all objects in
the index category bar the terminal object where the structure map γid[n] corresponds to
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the map Xl(id[l]) → Xl(θ ◦ id[l]) and so the induced map is exactly θ∗. So to a morphism
X → cosk mT we obtain a morphism τmX → τmcosk mY ∼= Y, this is one half of the bijection.

Suppose now we have a morphism f : τmX → Y, to define a morphism X → cosk mY
is equivalent to giving maps ζϕ : Xn → Yn(ϕ) for each ϕ ∈ (∆/[n])≤m which also satisfy
commutativity conditions with the induced maps from θ : [n]→ [l].

Xl Xn

Yl(θ ◦ ϕ) Yn(ϕ)

Yl(θ ◦ ϕ′) Yn(ϕ′)

ζ l
θ◦ϕ′

θ∗

ζ l
θ◦ϕ

ζn
ϕ

αl,∗

ζn
ϕ′

αn,∗ (A.0.2)

A priori we should expect the morphism X → cosk mY to be extending the morphism
f : τmX → Y and so the projection ζn

id[n]
(for n ≤ m) to the terminal object Yn(id[n]) is fn.

With this in mind the back square of A.0.2 becomes ζ l
θ = fn ◦ θ∗ and we take this as our

definition when the domain [n] of θ has n ≤ m. We in fact need only define ζ l
θ with this

condition on θ. Commutativity of the subdiagrams involving the Xi now follows easily: e.g.
the left triangle —

αl,∗ ◦ ζ l
θ◦ϕ = α∗ fk(θ ◦ ϕ)∗ = fk′α

∗(θ ◦ ϕ)∗ = fk′α
∗ϕ∗θ∗ = fk′(ϕ ◦ α)∗θ∗ = fk′ϕ

′∗θ∗ = ζ l
θ◦ϕ′

Where we use that the m-truncated simplicial structure on both X and Y for the second
equality as k, k′ ≤ m. Thus we have the two maps in the adjunction A.0.1 which are
evidently inverse: one is given by extending and the other by truncating, and we note
that the extension is unique by construction. Note we have not shown naturality of the
adjunction.
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B Homology Isomorphisms

We prove here that a map f : X → Y inducing an isomorphism in homology with integral
coefficients is equivalent to inducing isomorphism in homology with Q coefficients and
Z/p coefficients for all primes p.

Proposition B.0.1. Let f : X → Y be a map of simple spaces. Then f∗ is an isomorphism in
homology with Z coefficients iff it is an isomorphism in homology with Q and Z/p coefficients for
all primes p.

We write C( f ) for the cofibre of the map f and M f for the mapping cylinder of f so that
we have a cofibration:

X → M f → C( f )

Associated to this is a long exact sequence on homology groups for any ring R:

. . .→ Hn(X; R)→ Hn(M f ; R)→ Hn(C( f ); R)→ Hn−1(X; R)→ Hn−1(M f ; R)→ . . .

There is also for any space W a Bockstein long exact sequence for the prime p determined
by the short exact sequence on coefficients:

0→ Z
·p→ Z→ Z/p→ 0

The Bockstein long exact sequence is then:

. . .→ Hn(W; Z)
·p→ Hn(W; Z)→ Hn(W; Z/p)

β→ Hn−1(W; Z)
·p→ Hn−1(W; Z)→ . . .

Lastly we have the universal coefficient theorem stating:

Theorem B.0.2 (UCT). For A an abelian group and W a space we have:

0→ Hi(W; Z)⊗ A→ Hi(W; A)→ Tor1(Hi−1(W; Z), A)→ 0

We use these to prove the proposition.

Proof. First note the forward direction follows simply from UCT since Z/p and Q are both
fields so that the Tor term vanishes and so the result follows from the five lemma:

0 Hi(X; Z)⊗ A Hi(X; A) Tor1(Hi−1(W; Z), A) 0

0 Hi(Y; Z)⊗ A Hi(Y; A) Tor1(Hi−1(Y; Z), A) 0

∼=f∗ ∼=



67

For the reverse direction consider the long exact sequence for the cofibration X → M f →
C( f ):

. . . Hn(X; R) Hn(M f ; R) Hn(C( f ); R) Hn−1(X; R) Hn−1(M f ; R) . . .

Hn(Y; R) Hn−1(Y; R)

∼= ∼=

which shows the Z/p and Q homology of C( f ) is trivial since f∗ is inducing isomorphisms
with these coefficients for all p. Consider next the Bockstein of the cofibre C( f ) with multi-
plication by p:

. . . Hn+1(C( f ); Z/p) Hn(C( f ); Z) Hn(C( f ); Z) Hn(C( f ); Z/p) . . .

0 0

β

∼=
·p

So that we have multiplication by p is an isomorphism on the homology of the cofibre for
all p, i.e. the homology groups with Z coefficients are Q vector spaces. But as shown above
H∗(C( f ); Q) is trivial and therefore so is H∗(C( f ); Z), i.e. f∗ induces an isomorphism on Z

homology.

Corollary B.0.3. If f : X → Y is a map of simply connected spaces inducing isomorphisms on
homology with Z/p and Q coefficients then it is a weak equivalence.
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