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Abstract

The main goal of the present project is to give a sketch of the calculation
of the algebraic K-theory of a finite field. Not all the details are developed,
but several references are given where detailed proofs may be found. However,
the main source of the project is D.J. Benson’s book on ”Representations and
Cohomolgy: Cohomolgy of groups and modules” [4]. Section 1 is an introduction
to principal G-bundles and uses them in order to define classifying spaces.
Special attention is given to the fiber bundles coming from the Stiefel and
Grassmann manifolds. These are later used to define the space BU as the union
of complex Grassmann manifolds of with the weak topology. Section 2 goes
further and uses BU to give a general definition of topological K-theory for
paracompact spaces. Certain fundamental properties of topological K-theory
are presented in this section as Bott periodicity and Adam’s operations. Section
3 gives a brief introduction to homotopy fixed points and how to give to this
space and additive structure. Furthermore, it is shown that one can think of
the Adam’s operations ψq as self-maps of BU, and the space Fψq is defined
as the homotopy fixed points of such self-maps. Moreover, it is shown that
Fψq is the fiber of a give fibration BU → BU and thus its homotopy groups
are easily calculated from the long exact sequence in homotopy. At the end
of the section, it is shown that one can construct a map BGL(Fq) → Fψq

well defined up to homotopy, that induces a homology isomorphism. Section 4
defines Quillen’s plus construction and his definition of the algebraic K-groups
for an arbitrary ring. Finally, Section 5 blends the results of all the previous
sections in order to calculate the algebraic K-groups of a finite field by means
of the map BGL(Fq)→ Fψq constructed previously.
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1 Principal G-bundles and the Classifying Space

1.1 Principal G-bundles

Definition 1.1 (Fiber bundle). A fiber bundle structure on a space E with fiber F
consists on a projection map p : E → B and an open cover {Uα} of B together with
homeomorphisms ϕα : p−1(U)→ U × F such that the following diagram commutes

p−1(Uα)

Uα

Uα × F

p

ϕα

π1

where π1 is the projection map onto the first factor.

Definition 1.2 (Principal G-bundle). Let G be a topological group. A (locally
trivial) principal G-bundle is a fiber bundle p : E → B with fiber homeomorphic to
G and a right G action on the total space (• : E × G → E) such that there is an
open cover {Uα} of B, together with homeomorphisms φα : U × F → p−1(U) such
that the following diagram commutes

Uα ×G

Uα

p−1(Uα)(b, g)

(b • g)

φα

p
•

Note that the action on the total space induces an action on the base space.

Definition 1.3 (Structure group). Let ξ = (p : E → B) be a principal G bundle
such that the action of G over F defines a continuous map G × F → F . Define
the space E ×G F = (E × F )/ ∼, where ∼ is the equivalence relation generated by
(xg, y) ∼ (x, gy). Define ξ[F ] to be the bundle ξ[F ] = (pF : E ×G F → B) where
the projection map is given by pF (x, y) = x. This construction makes ξ[F ] into a
fiber bundle with fiber F . Thus ξ[F ] is called the fiber bundle with structure group
G and fiber F.

Definition 1.4 (Pullback bundle). Let ξ = (p : E → B) be a fiber bundle. Given
a map f : B′ → B we define the pullback bundle f∗(ξ) to be the bundle with total
space E′ = {(x, y) ∈ B′ × E|f(x) = p(y)} and projection map p′ : E′ → B′ given by
p′(x, y) = x.

The pullback bundle f∗(ξ) is a fiber bundle with the same fiber as ξ. Moreover,
if ξ is a principal bundle then the same is true for f∗(ξ).
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Remark 1.5. Let p : E → B and p′ : E′ → B′ be n and m dimensional vector
bundles respectively. Then the pullback

E′′ E′

E B

p

p′

y

gives a (n+m)-dimensional vector bundle E′′ → B which is called the Whitney sum
of the bundles and denoted as E ⊕ E′.

Proposition 1.6. Let ξ = (p : E → B) be a principal G-bundle. Let f, g : B′ → B
be maps of base spaces. If B′ is paracompact and f and g are homotopic, then
f∗(ξ) ∼= g∗(ξ) as principal G-bundles over B′.

Proof. Let ξ′ = p : E′ → B′ × I be a be a bundle over B′ × I. Define a map
ρ : B′ × I → B′ × I as ρ(b, t) = (b, 1). We will construct a map θ such that the
following diagram commutes.

E′ E′

B′ × I B′ × I

θ

p p

ρ

(1.1)

Note that this commutative diagram induces a bundle isomorphism ξ′ ∼= ρ∗(ξ′) since
the maps θ and p in the diagram, factor through the total space of the pullback
bundle ρ∗(ξ′).

Since I is a compact space and B′ is paracompact, then we may choose an open
cover {Uα} of B such that the restriction of ξ′ to each subspace {Uα} is a product
bundle i.e. we can choose homeomorphisms ϕα : p−1(Uα × I) → Uα × I × G such
that p = π ◦ϕα, where π denotes the projection onto Uα× I. Let φα : Uα× I ×G→
p−1(Uα× I) be the inverse of ϕα, then we have the following commutative diagram.

p−1(Uα × I)

Uα × I

Uα × I ×G

p

φα

π

Moreover, again by paracompactness of B′ we can assume that the cover Uα is locally
finite. Then we can find a partition of unity {fα} subordinate to {Uα}. Since fα(x)
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is different from zero for finitely many α we can define a new family of functions
{f ′α} by setting f ′α(x) = maxα {fα(x)}. Note that maxα {f ′α(x)} = 1. Then define

θα(φα(x, t, g)) = φα(x,max
{
f ′α(x), t

}
, g)

ρα(x, t) = (x,max
{
f ′α(x), t

}
)

Notice that θα and ρα fit into a commutative diagram like the one given in dia-
gram 1.1. Outside of Uα the diagram commutes trivially and inside Uα we have the
following by diagram 1.1

φα(x, t, g) φα(x,max {f ′α(x), t} , g)

p(φα(x, t, g)) = (x, t) (x,max {f ′α(x), t}) = p(φα(x,max {f ′α(x), t} , g))

θα

p p

ρα

We can order the index family {α} and define θ and ρ via infinite compositions

θ = θα1 ◦ θα2 ◦ θα3 . . .

ρ = ρα1 ◦ ρα2 ◦ ρα3 . . .

Note that since {Uα} is locally finite then these compositions make sense, since
for every point we can find a neighborhood where only finitely many maps are not
the identity map. Note that this defines ρ as desired and it makes diagram 1.1
commute.

Now to proof the proposition, it’s enough to consider a homotopy h : B′×I → B
between f and g and let ξ′ = h∗(ξ), then we get that ξ′ ∼= ρ∗(h∗(ξ)) ∼= g∗(ξ). By
considering the inverse homotopy h(x, t) = h(x, 1−t) we get that ξ′ ∼= f∗(ξ) proving
the statement.

Corollary 1.7. Let B be a contractible paracompact space. Then every principal
G-bundle over B is isomorphic to the product bundle B ×G

Proof. Let ξ = p : E → B be a principal G-bundle over B. Since B is contractible,
then have that the map f : B → B given by f(b) = b0 is homotopic to the identity
map. Then by the proposition the bundle ξ is isomorphic to the trivial bundle

1.2 Classifying Spaces

Definition 1.8. Let [B;BG] denote the homotopy classes of maps B → BG and
PrincG(B) denote all principal G-bundles over B. A universal G-bundle ξG : EG→
BG is a principal G-bundle such that for all paracompact spaces B the following
map is a bijection.

[B;BG] −→ PrincG(B)

f 7−→ f∗(ξG)
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Proposition 1.9. Let B and B′ be paracompact spaces. Let ξG : E → B and ξ′G :
E′ → B′ be universal G-bundles. Then there is a homotopy equivalence f : B → B′

such that ξG = f∗(ξ′G)

Proof. We have bijections [B′, B] ↔ PrincG(B′) and [B,B′] ↔ PrincG(B). Let
f : B′ → B and f ′ : B → B′ be the maps corresponding to ξ′G and ξG respectively,
i.e. f∗(ξG) = ξ′G and f ′∗(ξ′G) = ξG. Then we have that (f ◦ f ′)∗(ξ′G) = f∗(ξG) =
ξ′G = id∗B′(ξ

′
G) and (f ′ ◦ f)∗(ξG) = f ′∗(ξ′G) = ξG = id∗B(ξG). Thus f ◦ f ′ ' idB and

f ′ ◦ f ' idB′ .

Definition 1.10. Let X and Y be topological spaces. The join X*Y is defined to
the the quotient space X × I × Y/ ∼ where ∼ is the equivalence relation generated
by

(x, 0, y) ∼ (x′, 0, y) ∀x, x′ ∈ X, y ∈ Y
(x, 1, y) ∼ (x, 1, y′) ∀x ∈ X, y, y′ ∈ Y

Definition 1.11 (Milnor’s construction of EG). Let G be a topological space. Define
the space EG to be the infinite join G ∗G ∗G ∗G ∗ . . ..

Note the elements of EG can be regarded to be of the form (t1g1, t2g2, t3g3, . . .)
for ti ∈ I, ti 6= 0 for finitely many i and

∑
ti = 1, where we identify the pairs

(t1g1, t2g2, t3g3, . . .) ∼ (t1g
′
1, t2g

′
2, t3g

′
3, . . .), if when ti 6= 0 then gi = g′i.

Remark 1.12. If the topological group G is a CW-complex then EG is also a CW-
complex. Moreover there is a free action of G on EG given by (t1g1, t2g2, t3g3, . . .)g =
(t1g1g, t2g2g, t3g3g, . . .)

Definition 1.13 (Milnor’s construction of BG). Let G be as above. The classifiying
space of G is the quotient space BG = EG/G.

Remark 1.14. Let pG be the quotient map from EG to BG. Then the construction
above makes ξG = pG : EG→ BG a locally trivial principal G-bundle.

Remark 1.15. Let EG and BG be given as in definitions 1.11 and 1.13 the principal
G-bundle ξG = pG : EG→ BG is a universal G-bundle

Proposition 1.16. The space EG as constructed in definition 1.11 is weakly con-
tractible.

Proof. Let f : Sn → EG be a map of spaces. Since Sn is a compact space, then
the image of f lies on a compact subspace of EG = G ∗G ∗G . . . so it is contained
in a some finite join Gn = G ∗ G ∗ G . . . ∗ G n-times. However the cone Gn ∗ 1G
is naturally contained in Gn+1 and then it is contractible. So the map f can be
factored as f : Sn → Gn → Gn ∗ 1G ↪→ Gn+1 ↪→ EG where the first inclusion map
is nullhomotopic, thus f is nullhomotopic.

Remark 1.17. Note that if G has the homotopy type of a CW-complex then the
same holds for EG and so by Whitehead’s theorem this later space is contractible.
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Theorem 1.18. Let G have the homotopy type of a CW-complex. Let ξ = E(ξ)→
B(ξ) be a principal G-bundle where B(ξ) has the homotopy type of a CW-complex.
Then ξ is a universal G-bundle if and only if E(ξ) is contractible.

Proof. Let ξ = E(ξ)→ B(ξ) be a universal bundle, then by proposition 1.9 there is a

homotopy equivalence BG
'→ B(ξ) and then EG and E(ξ) are homotopy equivalent.

Thus, by proposition 1.16 E(ξ) is contractible.
Now, let ξ = E(ξ) → B(ξ) be a bundle with E(ξ) contractible. Then we have

the following commutative diagram.

E(ξ) E(ξ)× EG EG

B(ξ) (E(ξ)× EG)/G BG

p pG

Notice that the horizontal maps are fibrations with fiber EG and E(ξ) which are
contractible. Thus in the long exact sequence in homotopy these maps are weak ho-
motopy equivalences. Since by theorem 1.15 the bundle pG : EG→ BG is universal,
then ξ is also a universal bundle.

1.3 Stiefel and Grassman Manifolds

Definition 1.19 (Stiefel and Grassman Manifolds). The space of n-frames in Rk
i.e. n-tuples of orthonormal vectors in Rk with the subspace topology with respect
to n copies of the unit sphere is the real Stiefel manifold Vn(Rk). The real Grassman
manifold Gn(Rk) is defined as the space of n-dimensional vector subspaces of Rk.
The complex Stiefel manifold Vn(Ck) and the complex Grassman manifold Gn(Ck)
are defined in a similar way using the hermitian inner product in Ck.

Now, note that there are natural projections p : Vn(Rk) → Gn(Rk) and p′ :
Vn(Ck)→ Gn(Ck) by sending each n frame to the subspace it spans in Rk and Ck.
Thus we can topologize Gn(Rk) and Gn(Ck) as quotient spaces of Vn(Rk) and Vn(Ck)
respectively. Now the fiber of p are n-tuples of orthonormal vectors in a fixed n-plane
in Rk. Thus the fiber is homemorphic to Vn(Rn). An n-tuple of orthonormal vectors
in Rn is equivalent to an orthogonal matrix and thus the fiber of p is the orthogonal
group O(n). In the same way, the fiber of p′ is the unitary group U(n). Note that we
can extend this definitions to the case where k =∞ by setting Vn(R∞) = ∪kVn(Rk),
Gn(R∞) = ∪kGn(Rk), Vn(C∞) = ∪kVn(Ck) and Gn(C∞) = ∪kGn(Ck). Moreover,
the projection map p is actually a principal O(n)-bundle and the projection map p′

is a principal U(n)-bundle.

Lemma 1.20. The O(n)-bundle Vn(R∞)→ Gn(R∞) and the U(n)-bundle Vn(C∞)→
Gn(C∞) are universal. Thus, we denote EO(n) = Vn(R∞), BO(n) = Gn(R∞),
EU(n) = Vn(C∞) and BU(n) = Gn(C∞).
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Proof. Given that Vn(R∞), Gn(R∞), Vn(C∞) and Gn(C∞) can all be given a CW-
complex structure, then it’s enough to show that Vn(R∞) and Vn(C∞) are con-
tractible spaces. The argument is exactly the same in both the real and the com-
plex spaces. So we will analize the real case. The idea is to write a contraction of
Vn(R∞). To do this first define a homotopy ht : R∞ → R∞ by ht(x1, x2, x3, .....) =
(1− t)(x1, x2, x3, .....) + t(0, x1, x2, x3, .....). Note that ht is linear with trivial kernel.
Thus, we can apply ht to an n-frame and obtain and n-tuple of linearly indepen-
dent vectors to which we can apply the Gram-Schmidt process in order to make it
orthonormal and thus get a deformation retraction of Vn(R∞) onto the space of n-
frames with first coordinate zero. We can iterate this process n times in order to get a
deformation retraction of Vn(R∞) into the space of n-frames with first n coordinates
equal to zero. Now, we will compose this deformation with the deformation that
takes one of this n-frames, say (v1, v2, ..., vn) to (1− t)(v1, v2, ..., vn) + t(e1, e2, ..., en)
where ei is the i-th standard vector basis in R∞. This last deformation sends lin-
early independent vectors to linearly independent vectors, so via de Gram-Schmidt
process we can write this deformation via n-frames. Then, the composition of this
two deformations gives a contraction of Vn(R∞).

Definition 1.21. We will denote V̂n(R∞) and V̂n(C∞) for the space of n-tuples of
all linearly independent vectors in R∞ and C∞ respectively.

Now, in a similar way than before we have natural projections p : V̂n(R∞) →
Gn(R∞) and p′ : V̂n(C∞)→ Gn(C∞) which are then principal GLn(R) and GLn(C)

bundles respectively. Also, V̂n(R∞) and V̂n(C∞) are contractible spaces, by the same
arguments as for Vn(R∞) and Vn(C∞) . So, these bundles are also universal. Thus
we have that BGLn(R) = Gn(R∞) = BO(n) and BGLn(C) = Gn(C∞) = BU(n).

Lemma 1.22. There is a one to one correspondance between principal GLn(R)-
bundles over B and rank n real vector bundles over B. There is also one to one
correspondance between principal GLn(C)-bundles over B and rank n complex vector
bundles over B.

Proof. Let p : E → B be a principal GLn(R)-bundle. Then we can form the bundle
with structure group GLn(R) and fiber Rn, ξ[Rn]. Then the homeomorphisms φα :
p−1(Uα)→ Uα×Rn are linear on each fiber and thus the fiber bundle ξ[Rn]→ B is a
real rank n vector bundle. Now, on the opposite way let p′ : E′ → B be a rank n real
vector bundle i.e. a vector bundle with fiber Rn. We can form the vector bundle over
B with fibers Hom(Rn,Rn) ∼= Mn(R) in a canonical way. Then, the subbundle whose
fibers are isomorphisms from Rn to Rn is the principal GLn(R)-bundle p : E → B.
The complex case follows in the same way.

Theorem 1.23. Let B be a paracompact space. There is a one to one correpondance
between rank n real vector bundles over B and homotopy classes of maps f : B →
Gn(R∞).

Proof. From lemma 1.22 we know that there is a one to one correspondance between
principal GLn(R)-bundles over B and rank n real vector bundles over B given by
associating a principal GLn(R)-bundle ξ with the bundle ξ[Rn] with structure group
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GLn(R) and fiber Rn. Let ξ = V̂n(R∞) → Gn(R∞). Then, ξ[Rn] = Ĝn(R∞) →
Gn(R∞) where

Ĝn(R∞) = (V̂n(R∞)× Rn)/GLn(R) = (V̂n(R∞)× Rn)/O(n)

Thus to the map f : B → Gn(R∞) we can associate the rank n-vector bundle

correspoding to the one obtained by pulling back the cannonical bundle Ĝn(R∞)→
Gn(R∞).

Theorem 1.24. Let B be a paracompact space. There is a one to one correpondance
between rank n complex vector bundles over B and homotopy classes of maps f :
B → Gn(C∞).

Proof. The same proof as in the real case holds, where the vector bundle corre-
sponding to f is the pullback bundle obtained from the cannonical bundle ξ[Cn] =

Ĝn(C∞)→ Gn(C∞). In this case, the canonical bundle is bundle of structure group

GLn(C) and fiber Cn obtained from the bundle ξ = V̂n(C∞) → Gn(C∞). Thus we
have that:

Ĝn(C∞) = (V̂n(C∞)× Cn)/GLn(C) = (V̂n(C∞)× Cn)/O(n)

1.4 Properties of the Classifying Space

Theorem 1.25. The Milnor’s construction of the classifying space BG has the
following properties:

i. There is a homotopy equivalence ΩBG
'→ G.

ii. πi(BG) ∼= πi−1(G).

iii. If G is discrete then BG is an Eilenberg-MacLane space i.e. BG = K(G, 1)
and EG is it’s universal cover.

Proof. To prove i consider the path-loop fibration ΩBG → PBG → BG and the
pullback

X EG

PBG BG

pG

y
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Then we have the following diagram of fibrations

ΩBG X EG

ΩBG PBG BG

G G

idΩBG pG

idG

Thus ΩBG ' ΩBG× EG ' X ' G× PBG ' G
To prove ii consider the long exact sequence for the fibration G→ EG→ BG

. . .→ πn(EG)→ πn(BG)→ πn−1(G)→ πn−1(EG)→ . . .

Since EG is contractible we have that πi(BG) ∼= πi−1(G).
To prove iii if G is discrete we have a map K(G, 1) → BG which is an isomor-

phism on the fundamental group. Let K̃ be the universal cover of K(G, 1), then
this is a contractible space as well as EG. Thus we have a lift K̃ → EG of the map
K(G, 1) → BG. This induces a commutative square in higher homotopy groups,
showing that πn(BG) = 0 ∀n ≥ 2. Thus BG and K(G, 1) are weakly equivalent
and by Whiteheads theorem we have the desired result.

Thus we can define the cohomology of an arbitrary topological group G by
Hn(G,R) = Hn(BG,R) and the previous theorem shows that this is in fact a gen-
eralization of the definition of group cohomology given through Eilenberg-MacLane
spaces for discrete groups.
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2 Topological K theory

2.1 Basic Constructions

Definition 2.1. Let B be a compact space. We write K(B) for the additive group
with generators [E] correponding to the complex vector bundles E → B and with
relators [E] + [E′] = [E′′] whenever E′′ → B is the Whitney sum of E → B and
E′ → B

We have canonical inclusion Gn(Cm) ↪→ Gn+1(Cm+1) giving rise to inclusion
maps BU(n) ↪→ BU(n+1). Thus we set BU =

⋃
n≥1BU(n) with the weak topology

coming from these inclusion maps.

Proposition 2.2. If B is a compact space, then K(B) ∼= [B;BU × Z]

Proof. Note that both K(B) and [B;BU × Z] are additive in each connected com-
ponent. So we can assume with out loss of generality that B is connected. In this
scenario, a map B → BU × Z is represented by a map B → BU and an integer.
Now, recall that there is a one to one correspondance between rank n complex vector
bundles and maps B → BU(n) where BU(n) = Gn(C∞). Thus there is clearly a
map K(B)→ [B;BU ×Z] that takes a generator [E] that corresponds to a complex
vector bundle E → B it’s corresponding map B → BU(n) ↪→ BU and to the con-
stant map B → Z at n ∈ Z. Now, to obtain the inverse map [B;BU × Z] → K(B)
take an element of [B;BU × Z] given by a map B → BU and an integer m. Since
B is compact, then the image of B → BU lies on BU(n) for some n and thus cor-
responds to a complex vector bundle E → B of dimension n. Then, we can add or
subtract a trivial bundle in order to obtain a bundle of dimension m and thus a well
defined element of K(B).

Remark 2.3. Consider a map of compact spaces f : B′ → B. Then we can take the
pullback of vector bundles and obtain a map f∗ : K(B)→ K(B′).

Definition 2.4 (Reduced K-theory). Let B be a compact space with base point
x. The maps x ↪→ B � x gives rise to maps Z = K(x) → K(B) → K(x) = Z
whose composition equals the identity map. Define K̃(B) to be the kernel fo the
map K(B)→ Z. Note that K(B) ∼= K̃(B)⊕ Z

2.2 Fundamental Properties of K(B)

Lemma 2.5. Let B be a compact space, and let B′ be a closed subspace of B. Then
the maps B′ ↪→ B � B/B′ induce the following exact sequence

K̃(B/B′)→ K̃(B)→ K̃(B′)

Proof. It is clear that by construction the composition map is zero. Now, every
element of K̃(B), K̃(B′) and K̃(B/B′) are represented by actual bundles. Consider
a bundle over B, whose restriction as a bundle over B′ is represented by the zero
element in K̃(B′). Then, this restricted bundle is equivalent to a trivial bundle by
adding a suitable trivial bundle. From this trivialization (which is not unique) we
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can contruct a vector bundle over B/B′ such that when taking the pullback over
the map B → B/B′ we obtain a bundle over B which is represented by the original
element chosen in K(B).

This definition of K(B) and the last stated property allows us to understand
K̃(B) as the zeroth part of a generalized cohomology theory and thus define higher
K-groups via the following definition.

Definition 2.6 (Higher K-groups). Let B be a compact space and ∗ be an inde-
pendent point. We define for n ≥ 0

K̃−n(B) = K̃(SnB), K−n(B) = K̃−n(B∪̇ {∗})

Now, that we have defined the topological K-groups as part of a reduced co-
homology theory we need a way to calculate Kn(B) for n sufficiently large, as the
definition given in 2.6 allows to calculate these groups in the negative direction. We
are able to do so by means of the following theorem, which is deep result in topo-
logical K-theory. The proof of this theorem goes beyond the scope of this project,
for a detailed proof refer for example to [12] or [7].

Theorem 2.7 (Bott Periodicity). There are natural isomorphisms

K−n−2(B) ∼= K−n(B)

Moreover, via the adjunction between S and Ω together with proposition 2.2 the
Bott Periodicity theorem can be restated as:

Ω2BU ' BU × Z

One can see that:

K0({∗}) ∼= [∗, BU × Z] ∼= Z⊕ Z ∼= K̃({∗})⊕ Z

Thus we have that K̃0({∗}) ∼= Z. Moreover, in the same way, we have that:

K̃(Sq) ∼= [Sq;BU ] = πq(BU)

Theorem 2.7 shows that these homotopy groups are periodic (of period two). Thus in
order to calculate all the coefficient groups K̃(Sq) it’s enough to calculate π1(BU).
The homotopy equivalence G ' ΩBG gives:

πq(BG) = [Sq;BG] ∼= [Sq−1; ΩBG] ∼= πq−1(G)

Therefore, it is enough to calculate π0(U, 1). We have an epimorphism πq(U(n −
1), 1)→ πq(U(n), 1). Moreover, U(1) = S1 and π0(U(1), 1) = 0. Thus we have that:

K̃0({∗}) = Z

K̃−1({∗}) = K̃0(S1) = 0

Thus the Bott periodicity theorem gives us a way to define functors Kn from the
category of compact spaces to the category of groups ∀n ≥ 0; and understanding
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K̃0 as the zeroth part of a reduced cohomology theory, we can extend this definition
in the negative direction.

The next goal is to calculate the K-theory of BG for G a compact Lie group,
and Atiya’s completion theorem will provide an answer to this question. Firstly, we
have defined K(B) for B a compact space only. However, BG is a CW-complex and
thus paracompact and we can extended the previous definition to all paracompact
spaces following result 2.2.

Definition 2.8. Let B be a paracompact space. We define

K(B) = [B;BU × Z]

However, if B is a CW-complex and Bn is it’s n-th squeleton it is not true
that K(B) = lim←−K(Bn). Nevertheless, we can apply Milnor’s sequence [4], [12] to
definition 2.8 and obtain

0→ lim←−
1K−1(Bn)→ K(B)→ lim←−K(Bn)

Moreover, if B is the classifying space of a finite group or a compact Lie group, then
the term lim←−

1K−1(BGn) vanishes [4] and thus we have that K(B) ∼= lim←−K(Bn).
Thus, we can relate each element of K(BG) with an element of the K(BGn) for
some n. Thus, each vector bundle over B gives rise to an element of K(B). Now, let
R(CG) be the Grothendieck ring of finite dimensional complex representations [3],
then we have a natural map

R(CG)→ K(BG)

This map is not an isomorphism, however it induces an isomorphism when taking
the completion of this ring as it is stated in the following important theorem. The
proof of this theorem is out of the scope of this project see for example [1] or [2].

Theorem 2.9 (Atiyah completion theorem). Let R(CG) be the Grothendieck ring of
finite dimensional complex representations. Let IG be the kernel of the augmentation
map that sends each representation to it’s dimension R(CG) → Z. Let R(CG)∧

denote the completion of R(CG) with respect to this ideal. That is

R(CG)∧ = lim←−R(CG)/InG

Then, K1(BG) = 0 and the natural map R(CG)→ K(BG) induces an isomorphim
R(CG)∧ ∼= K(BG)

Via the Whitney sum and tensor product of vector bundles we can give an
algebra structure to K(B) and K̃(B). Moreover, we can also define a special kind
of ring homomorphisms the Adam’s operations which we will define now.

Proposition 2.10 (Adam’s operations). Let B be a compact Hausdorff space. Then
∀n ≥ 0 n ∈ Z there are ring homomorphims ψk : K(B)→ K(B) with the following
properties:

1. Let f be a map f : B → B′, then ψkf∗ = f∗ψk.
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2. If L is a line bundle, then ψk(L) = Lk.

3. ψk ◦ ψl = ψkl

Proof. A sketch of the proof will be presented now. The basic idea is to construct
these ring homomorphisms based on the exterior powers of E, λi(E). Recall that
from the properties of vector spaces and exterior powers [11] that we know that:

• λk(E ⊕ E′) ≈ ⊕i(λi(E)⊗ λk−i(E′))

• λ0(E) = 1 where 1 represents the trivial line bundle

• λ1(E) = E

• λk(E) = 0 for k greater than the maximum dimension of the fibers of E

If E = L1⊕L2...⊕Ln where Li is a line bundles ∀ 1 ≥ i ≥ n, one can construct
a polynomial with integral coefficients sk such that sk(λ

1(E), λ2(E)...., λn(E)) =
Lk1 +Lk2 + ...+Lkn for k ≥ 0 [8]. Then, we define for an arbitrary element [E] of K(B)
ψk(E) = sk(λ

1(E), λ2(E)...., λn(E)). Now, in order to show that this definition
satisfies the required properties, we shall make use of the following principle.

Lemma 2.11 (Splitting Principle). Let B be a compact Hausdorff space and E → B
be a given vector bundle. There is a compact Hausdorff space B′ and a map p : B′ →
B such that the induced map p∗ : K(B)→ K(B′) is injective and the pullback p∗(E)
splits as the sum of line bundles.

For a proof of the splitting principle refer for example to [8] . From the properties
of exterior algebras we know that f∗(λi(E)) = λi(f∗(E)) and thus property 1 follows
clearly. Property 2 follows from the defintion of ψk and the construction of sk. Now,
to observe that property 3 holds one must first notice that this definition of the
Adam’s operation is additive, in the sense that ψk(E⊕E′) = ψk(E) +ψk(E′). This
holds since by the splitting principle one can pullback and split E and then pullback
again in order to split E′. Now, since this operations are additive, it is enought to
show that property 3 holds for an arbitraty line bundle L; but in this case we have
that ψk(ψl(L)) = ψk(Ll) = Lkl = ψkl(L)
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3 The spaces Fψq and BGL(Fq)

We have defined the Adam’s operations on K(B) in the previous section, for B com-
pact. In a similar fashion we can define Adam’s operations on K̃(B) as homomor-
phisms ψq : K̃(B)→ K̃(B). Now, we can interpret ψq as natural transformations on
K̃(B) and since K̃(B) is representable as [B;BU ] we wish to apply Yoneda’s lemma
in order to view the Adam’s operations ψq as maps BU → BU . However, BU is
not a compact space and thus we can not directly apply our definition of Adam’s
operations to K̃(BU). Nevertheless, BU can be given a CW-complex structure with
cells only in even dimension [8]. Then we have that BU =

⋃
Xm where Xm = Xm+1

∀m ∈ 2Z,m ≥ 0. Now we can apply an inductive argument in order to show that
K̃−1(Xm) = 0 ∀m ∈ Z,m ≥ 0. First, via the Bott periodicity theorem we have
shown that:

K̃−1(X0) = K̃−1({∗}) = 0

K̃−1(X1) = K̃−1(X0) = 0

Let K̃−1(X2m) = 0, then we have that K̃−1(X2m+1) = K̃−1(X2m) = 0. Now
consider the inclusion X2m ↪→ X2m+2. Since BU has only cells in even dimension,
then we have that X2m+2/X2m ' ∨αS2m+2 where α runs over the (2m + 2)-cells
of BU . Then by lemma 2.5 and since K̃n defines a reduced cohomology theory we
have the following exact sequence:

K̃−1(∨αS2m+2)→ K̃−1(X2m+2)→ K̃−1(X2m)

Moreover, by the wedge axiom we have that

K̃−1(∨αS2m+2) ∼=
∏
α

K̃−1(S2m+2) ∼=
∏
α

K̃−1({∗}) = 0

Then, we have that K̃−1(X2m+2) = 0. Thus, the functor K̃−1 vanishes in the
squeleta of BU and thus we can apply the Milnor exact sequence to this scenario

0→ lim←−
1K̃−1(Xm)→ K̃(BU)→ lim←− K̃(Xm)→ 0

and obtain that K̃(BU) ∼= lim←− K̃(Xm). Thus we can define the Adam’s operations

on K̃(BU) via this isomorphism and then interpret them as maps BU → BU .

3.1 Homotopy fixed points

Recall the definition of fixed points of a self-map

Definition 3.1. Let ∆ : X → X ×X denote the diagonal map. Let φ : X → X be
a self-map of a space. The fixed points of φ denoted as Xφ are obtained by taking
the following pullback.

Xφ X

X X ×X

∆

(1, φ)

y
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In a similar fashion, we will define the homotopy fixed points of a map by re-
placing the diagonal map by a homotopy equivalent fibration. Let ∆̃ : XI → X ×X
denote the map that takes a path to it’s end points. Note that this map is a fibra-
tion. Moreover, recall that the inclusion X ↪→ XI which takes a point in X to the
constant path in XI is a homotopy equivalence; and note that the composition of

this inclusion with ∆̃ i.e. X ↪→ XI ∆̃→ X ×X gives the diagonal map ∆.

Definition 3.2. Let ∆̃ be defined as above. Let φ : X → X be a self-map of a
space. The homotopy fixed points of φ denoted as Xhφ are obtained by taking the
following pullback.

Xhφ XI

X X ×X

∆̃

(1, φ)

y

Note that the vertical maps in this diagram are fibrations with fiber the loop
space of X i.e. ΩX.

We want to give more structure to the space of homotopy fixed points.

Definition 3.3. Let (X, ∗) be a space with base point. We say (X, ∗) has an additive
structure if there is map + : X ×X → X, the addition map, that is associative and
commutative up to homotopy and a map ε : X → X which behaves as an additive
inverse up to homotopy.

Note that the composition of these two maps d : X ×X (1,ε)→ X ×X +→ X gives
a subtration map d on (X, ∗).

Lemma 3.4. If X has an additive struture, then Xhφ is the homotopy fiber of the
map 1− φ.

Proof. Let PX be the path space of X, which is contractible. Let λ : XI → PX be
the map given by λ([t 7→ ω(t)]) = [t 7→ d(ω(t), ω(0))]; this is the map that changes
the starting point of a path to the origin {∗}. Let η : PX → X be the map that
sends each path to it’s end point i.e. η([t 7→ ω(t)]) = ω(1). Then we can extend the
previous pullback diagram to the following diagram:

Xhφ XI PX

X X ×X X

λ

d(1, φ)

∆̃ η

Thus we can see that the space of homotopy fixed points Xhφ is the homotopy
fiber of the map 1− φ = d ◦ (1, φ).
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Lemma 3.5. If X has and additive struture, then so does Xhφ.

Proof. Let P1−φ = {(x, ω)|x ∈ X,ω : I → X,ω(1) = d(x, φ(x))}. Then P1−φ is ho-
motopy equivalent to X and the map P1−φ → X that sends (x, ω) 7→ ω(1) =
(1−φ)(x) is a fibration with fiber Xhφ. Then, the addition map on X gives addition
maps as in the following diagram which thus define an addition map on Xhφ.

P1−φ × P1−φ P1−φ

X ×X X

Xhφ ×Xhφ Xhφ

+

+

In the same way, the inverse map on X, gives maps as in the following diagram and
defines an inverse map in Xhφ.

P1−φ P1−φ

X X

Xhφ Xhφ

ε

ε

Proposition 3.6. Let X be a space with additive structure and φ : X → X be
a self-map. Let Y be a space such that every map Y → ΩX is homotopic to the
constant map. Let [Y ;X]φ denote the fixed points of [Y ;X] under composition with
φ. Then [Y ;Xhφ] ∼= [Y ;X]φ

Proof. Note first that a map f̃ : Y → Xhφ is equivalent to a map f : Y → X
and a homotopy between f and φ ◦ f . Thus, we can construct a surjective map
Φ : [Y ;Xhφ] → [Y ;X]φ by setting Φ(ξ) = p ◦ ξ where p is the fibration p : Xhφ →
X. Now, by using the additive structures in X and Xhφ it can be seen that this
map is in fact a surjective homomorphism. Let ξ ∈ KerΦ, then by the homotopy
lifting property of the fibration p : Xhφ → X, the map ξ is homotopic to a map
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ξ̃ : Y → Xhφ with image in the fiber of p which is the loop space ΩX.

Y × 0 Xhφ

Y × I X

Y ΩX
ξ̃

Since all maps Y → ΩX are homotopic to the constant map, then so is ξ and thus
the kernel is trivial showing that [Y ;Xhφ] ∼= [Y ;X]φ.

3.2 The space Fψq

In the previous section we have shown that we can interpret the Adam’s operations
ψq on K̃(BU) as self-maps BU → BU . Thus we can consider the space of homotopy
fixed points of these maps, Quillen denoted this space Fψq

Fψq BU I

BU BU ×BU
(1, ψq)

∆̃

y

(3.1)

Proposition 3.7. The homotopy groups of Fψq are given by

π2j−1(Fψq) = Z/(q2j − 1) π2j(Fψ
q) = 0

Proof. As seen in the previous section, Fψq is the homotopy fiber of the map 1−ψq :
BU → BU . Thus we have a long exact sequence in homotopy

...→ πj(BU)
(1−ψq)∗−→ πj(BU)→ πj−1(Fψq)→ πj−1(BU)

(1−ψq)∗−→ ...

Now recall that:

πj(BU) = [Sj ;BU ] = K̃(Sj) =

{
Z if j is even
0 if j is odd

Moreover, by our definition of ψq one can see that this map acts as multiplication
by q on K̃(S2) and then by Bott periodicity it acts as multiplication by qj on K̃(Sj)
which gives the desired result.

Lemma 3.8. Fψq is a simple space

Proof. We can analize the long exact sequence above as a sequence of modules
over π1(Fψq) and since π1(BU) = K̃(S1) = 0 the action of π1(Fψq) is trivial on
πn(Fψq).
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3.3 Relation between BGL(Fq) and Fψq

The aim of this section is to find a well defined map between these two spaces
BGL(Fq)→ Fψq which we will later show is a homology isomorphism. This map is
fundamental in the calculation of the algebraic K-groups of the finite field Fq.

Lemma 3.9. There is a well defined map R(FqG)→ [BG;Fψq]

Proof. Recall that there is a well defined map R(CG)→ K0(BG) = [BG;BU × Z].
We can compose this map with the projection map to reduced K-theory K0(BG)→
K̃0(BG) = [BG;BU ] to obtain a map R(CG) → K̃0(BG) = [BG;BU ]. We have
defined Adam’s operations on K0(BG) and K̃0(BG) and in a similar fashion they
can be defined in R(CG) [3]. In this sense, this composition map commutes with the
Adam’s operations i.e. we have the following commutative diagram

R(CG) K̃0(BG)

R(CG) K̃0(BG)

ψq ψq

Thus, we we a well defined map R(CG)ψ
q → [BG;BU ]ψ

q
. Now by Atiyah’s

completion theorem (2.9) together with the fact that ΩBG ∼= G we have that

0 = K̃1(BG) = [BG;U ] ∼= [BG; ΩBU ]

Thus we can apply proposition 3.6 and hence [BG;BU ]ψ
q ∼= [BG;BUψ

q
] thus we

have a well defined map [BG;BU ]ψ
q → [BG;BUψ

q
]. Moreover, the Brauer lift ([3]

gives an isomorphism R(FqG) ∼= R(CG)ψ
q
. Then the composition

R(FqG)
∼=→ R(CG)ψ

q → [BG;BU ]ψ
q → [BG;BUψ

q
] = [BG;Fψq]

gives the desired map. Note then, that give a finitely generated FqG-module, we can
obtain a map BG→ Fψq well defined up to homotopy.

Now, we can embedd GLn(Fq) ↪→ GLn+1(Fq) by sending a matrix A to the
augmented matrix which agrees with the identity matrix in the last row and colum.
Then set GL(Fq) =

⋃
n≥1GLn(Fq) with the given inclusions. There is a natural

(n + 1)-dimensional module struture for GLn+1(Fq) which restricts to the natural
n-dimensional module structure of GLn(Fq) and a trivial module. Thus, we can
construct a map BGLn(Fq) → BGLn+1(Fq) and we can compose this map with
the map obtained above via the Brauer lift BGLn+1(Fq) → Fψq. Thus with these
definitions we get a map θ : BGL(Fq)→ Fψq well defined up to homotopy.
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Theorem 3.10 (Quillen). Let p be a primer number and let q = pd for some d ≥ 1.
Let l be a prime number that does not divide q and let r be the multiplicative order
of q modulo l. Let n = mr+ e such that 0 ≤ e < r. Let C be a cyclic group of order
qr − 1. Then:

i The ring H∗(Fψq;Fl) is generated by classes cjr and ejr with degrees deg(cjr) =
2jr and deg(ejr) = 2jr − 1 under the relations:

e2
jr =

{
0 for the typical case∑jr

a=0 cac2jr−1−a for the exceptional case

where the typical case is give by l odd or l = 2, q ≡ 1 mod 4 and the exceptional
case is give by l = 2 and q ≡ 3 mod 4.

ii There are restriction maps

H∗(Fψq;Fl)→ H∗(GLn(Fq);Fl)→ (⊗mH∗(C;Fl)Z/r)Σm

The first map is surjective. The second map is injective and for l 6= 2 it is an
isomorphism.

iii The ring H∗(GLn(Fq)) is generated by the classes cjr and ejr for 1 ≤ j ≤ m
subject to the same relations as in i.

Proof. A proof of this theorem will not be provided, refer to [9] and [4]. However,
the idea of the proof is the following. The space Fψq has been defined as a given
pullback as shown in diagram 3.1. Thus we can apply the Eilenberg-Moore spectral
sequence to this scenario. Via the Serre spectral sequence, one can calculate the
cohomology of BU , BU I and BU × BU and use this result to build the E2 page
of the the Eilenberg-Moore spectral sequence of the pullback diagram 3.1. This
is a second quadrant spectral sequence, and the differentials go from the second
to the first cuadrant, thus we have that E2 = E∞ from which one can obtain the
cohomology groups of Fψq i.e. Hn(Fψq;Fl). Thus, it is left to find the ring structure
of H∗(Fψq;Fl). In order to do this, consider a cyclic group C as given above; then
C ∼= F×qr. Thus Cm has a faithful representation of dimension mr over Fq giving rise
to an embedding Cm ↪→ GLn(Fq). Now, this together with the map coming from
the Brauer lift as shown above gives us a sequence of maps

B(Cm)→ BGLn(Fq)→ Fψq

This sequence induces the desired restriction in cohomology.

Theorem 3.11. The map θ : BGL(Fq) → Fψq as defined above induces iso-
mophisms Hn(BGL(Fq))→ Hn(Fψq) ∀n ≥ 0, n ∈ Z

Proof. Quillen’s calculation given in theorem 3.10 gives that the map θ is a mod
l cohomology isomorphism for all primes l 6= p. Now, Quillen also shows [9] that
the mod p cohomology vanishes in positive degrees of at most d(p-1). On the other
hand, from proposition 3.7 it follows that there is no p-torsion in π∗(Fψ

q) and
then by the p-local version of the Hurewicz theorem it follows that Hi(Fψ

q;Fp) =



3 The spaces Fψq and BGL(Fq) 21

0 for i > 0. In the same way, the Hurewicz theorem in characteristic zero gives
that Hi(Fψ

q;Q) = 0 for i > 0. Therefore, the map θ : BGL(Fq) → Fψq induces
cohomology isomorphims Hn(Fψq;Fp) → Hn(BGL(Fq);Fp) for all primes p and
all n ≥ 0 and a cohomology isomorphism Hn(Fψq;Q) → Hn(BGL(Fq);Q) for all
n ≥ 0. Then, by the relative version of the universal coefficient theorem, the map
θ induces cohomology isomorphisms Hn(Fψq;Z) → Hn(BGL(Fq);Z) and thus it
induces homology isomorphisms Hn(BGL(Fq);Z) → Hn(Fψq;Z) for all n ≥ 0 as
desired.
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4 Quillen’s Algebraic K-theory

In this section we will define algebraic K-theory for an arbitrary ring and order to
do so we will first introduce Quillen’s plus construction.

4.1 The plus constuction

Given a CW-complex X, the aim of Quillen’s plus construction is to build a new
space X+ by attaching cells to X in order to kill a perfect subgroup of π1(X) while
preserving homology.

Theorem 4.1 (Quillen). Let X be a connected CW-complex. Let H be a perfect
normal subgroup of π1(X) (i.e. H E π1(X) and [H;H] = H). Then there is an
inclusion ι : X ↪→ X+ with the following properties:

i. X+ is a CW-complex construted from X by attaching 2-cells and 3-cells only.

ii. ι∗ : π1(X)→ π1(X+) is surjective with kernel Ker(ι) = H.

iii. Let p+ : X̃+ → X+ and p : X̃ → X be a covering spaces, such that
ι∗ ◦ p∗π1(X̃) = p+

∗ π1(X̃+). Then the lift ι̃ : X̃ → X̃+ is a homology
isomorphism.

Moreover, let f : (X,xo)→ (Z, zo) be a map of connected spaces with
Ker(f∗ : π1(X)→ π1(Z)) = H. Then:

iv. There is a map f ′ : (X+, xo)→ (Z, zo) such that f ′ ◦ i ' f

v. If f∗ is surjective and has the properties given in iii for i∗, then the map f ′

of iv is a homotopy equivalence. This implies in particular that X+ is unique
up to homotopy.

The following lemma will be useful for the proof of the theorem

Lemma 4.2. Let f : X → Y be a map between connected CW-complexes that
induces an isomorphim on fundamental groups. If the lift to universal covers f̃ :
X̃ → Ỹ is a homology isomorphism, then f is a homotopy equivalence.

Proof. The universal covers X̃ and Ỹ are simply connected, thus a lift f̃ exist. More-
over, since f̃ is a homology isomorphim then by Hurewicz theorem it is also a homo-
topy equivalence and thus it induces isomorphisms in all homotopy groups. Now, the
projection maps induce isomorphisms in all higher homotopy groups πn ∀n ≥ 2.

πn(X̃) πn(Ỹ )

πn(X) πn(Y )

f̃∗
∼=

pX∗ ∼= pY ∗∼=

f∗

Therefore f induces isomorphisms in all homotopy groups and by Whitehead’s
theorem it is a homotopy equivalence.
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Proof of theorem 4.1. The space X+ will be constructed from the space X by first
attaching 2-cells in order to kill the required subgroup of the fundamental group,
and then attaching 3-cells to this later space in order to reconstruct the homology
of X. The details are as follows.

Choose generators of H of the form [α̃j ; β̃j ] where α̃j , β̃j ∈ H E π1(X). Then,
α̃j , β̃j define homotopy classes of maps αj , βj : (S1, s0) → (X,xo). Define via com-
position of loops the map λj : αj �βj �αj �βj where αj and βj denote the inverse loops
of αj and βj respectively. Note that λj is well defined up to homotopy. Let Y be
obtained from X by attaching one 2-cell for each generator of H via the attaching
map λj , that is

Y = X
⋃
λj

j∈J

e2
j

Moreover, note that by cellular approximation, the maps λj can be choosen to
have image lying in the 1-skeleton of X making the space Y a CW-complex. Then,
the inclusion X ↪→ Y induces a map in fundamental groups that sends each element
of H to a trivial loop in Y by Van Kampen’s theorem. Thus this later map is just
the quotient map π1(X) → π1/H (i.e. π1(X) → π1(Y ) is a surjective map with
kernel H).

Now, the attaching maps λj define characteristic maps Φj : e2
j → Y by consid-

ering the composition of maps Φj : e2
j ↪→ X

∐
e2
j

q1,j−→ X ∪λj e2
j ↪→ Y where q1,j

is the quotient map defined by λj . Let Bj be the quotient space of e2
j formed by

identifying the boundary parts correspoding to αj and αj in opposite directions.
Then the characteristic map Φj factors through X

∐
Bj as shown in diagram 4.1

where q2,j is the quotient map that identifies an interval of the open cylinder Bj
with X via the loop αj and the boundary circles of Bj to X via the loops βj and
βj .

e2
j X

∐
e2
j X ∪( λj)e

2
j Y

X
∐
Bj

q1,j

q2,j

(4.1)

Then q2j defines a map µ̃j : Bj → Y . Moreover since β̃j ∈ H then the loops
βj and βj are nullhomotopic in Y , thus the map µ̃j can be extended to a map
µj : (S2, so) → (Y, yo) by filling the boundary circles of Bj (i.e. capping the open
ends of Bj). Let X+ be obtained from Y by attaching one 3-cell for each generator
of H via the attaching map µj , that is

X+ = Y
⋃
µj

j∈J

e3
j

Again by cellular approximation X+ can be construted as a CW-complex.
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Now we will show that X+ has the desired properties. Property i is fulfilled by
construction. Moreover, by Van-Kampen’s theorem, attaching cells of dimension 3
and higher to a CW-complex does not affect the fundamental group. Therefore the
inclusion ι : X ↪→ X+ enjoys property ii.

Now, to show property iii, let X̃ be a covering space of X of covering group G.
Let Ỹ and X̃+ be the correponding covering spaces of Y and X+ respectively i.e.
both with covering group G/H ≥ π1(X)/H. Recall that the number of sheets in X̃
is [G : π1(X)]. Thus the covering translations are in one to one correspondance with
the number of cosets of G in π1(X). Let ϕg be covering translation corresponding to
a coset of G with representative g. Then, by the constructions above we can build
Ỹ and X̃+ from X̃ as follows.

Ỹ = X̃
⋃

ϕg(λj)

j∈J
g∈π1(X)/G

e2
j,g

X̃+ = Ỹ
⋃

ϕg(µj)

j∈J
g∈π1(X)/G

e3
j,g

Since X̃+ is build from X̃ by attaching 2-cells and 3-cells only, then the relative
homology groups of the pair (X̃+, X̃) are concentrated in levels 2 and 3. More
explicitly, the cellular chain complex of the pair is given by

. . .→ C3(X̃+, X̃)
∂3−→ C2(X̃+, X̃)→ 0→ 0

Let e3
i for i ∈ I be the 3-cells of X. By definitions of the n-chains of a pair and

cellular homology [6] we have that

C3(X̃+, X̃) = C3(X̃+)
/
C3(X̃)

= H3((X̃+)3, (X̃+)2)
/
H3((X̃)3, (X̃)2)

= Z[e3
j,g]
⊕

Z[e3
i ]
/
Z[e3

i ]

∼= Z[e3
j,g]

Then, C3(X̃+, X̃) is the free abelian group (or free Z-module) with generators
e3
j,g j ∈ J, g ∈ π1(X)/G. In the same way C2(X̃+, X̃) is the the free abelian

group with generators e2
j,g j ∈ J, g ∈ π1(X)/G. Thus it is clear that both groups

are isomorphic. Finally, by the way the attaching maps of e3
j where constructed, one

can see that the boundary map takes generators to generators i.e. ∂3(e3
j,g) = e2

j,g.

Thus, ∂3 is an ismorphism. Then Hn((̃X+), (̃X)) = 0 ∀n ≥ 0; thus the inclusion
map ι̃ : (̃X) ↪→ (̃X+) ∀ is a homology isomorphism ∀n ≥ 0.

Now, to show property iv let f : (X,x0)→ (Z, z0) such that Ker(f∗ : π1(X)→
π1(Z)) = H. Let (Z+, z0) be the following pushout
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(X,x0) (X+, x0)

(Z, z0) (Z+, z0)

ι

f f+

ι′
p

Note that

Z+ = X+
∐

Z
/
ι(x) ∼ f(x)

= X
⋃
λj

j∈J

e2
j

⋃
µj

j∈J

e3
j

∐
Z
/
ι(x) ∼ f(x)

= Z
⋃

f◦λj ,j∈J
e2
j

⋃
f◦µj
j∈J

e3
j

Thus the space Z+ follows the construction of X+ via the attaching maps f ◦λj
and f ◦ µj which are nullhomoptopic since λj , µj ∈ H and Ker(f∗) = H. Then the
map ι′ : Z → Z+ enjoys properties i and ii with respect to the trivial subgroup of
π1(Z). Thus, ι′∗ : π1(Z) → π1(Z+) is an isomorphism. Moreover, let Z̃ and Z̃+ be
the universal covers of Z and Z+ respectively. Since the covers are simply connected,
inclusion map ι lifts to a map of universal covers ι̃′.

(Z̃, z̃0) (Z̃+, z̃0)

(Z, z0) (Z+, z0)

ι̃′

ι′

By property ii the map ι′ is a homology isomorphism and and thus by lemma
4.2 the inclusion ι′ is a homotopy equivalence. Now let γ : (Z+, z0)→ (Z, z0) be the
homotopy inverse of ι′. Let f ′ = γ ◦ f+, then f ′ ◦ ι = γ ◦ f+ι = γ ◦ ι′ ◦ f ' f

Moreover, by construction f ′∗ : π1(X+, xo)→ π1(Z, z0) has trivial kernel. Hence,
if f has the properties ii and iii then f ′ is an isomorphism on fundamental groups
and it’s lift to universal covers f̃ ′ : X̃+ → (̃Z) is a homology isomorophism, then
again by lemma 4.2 f ′ is a homotopy equivalence, which proves property v.

4.2 Algebraic K-groups

Let R be a ring, and GLn(R) ↪→ GLn+1(R) be the inclusion using the upper left
corner. Let GL(R) denote the direct limit limnGLn(R) as a discrete group i.e.
regard GL(R) as the union of GLn(R) with the given inclusions. Let E(R) denote
the normal subgroup generated by elementary matrices (i.e. matrices that differ
from the identity matrix in a single non-diagonal entry).
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Lemma 4.3. The commutator subgroup of GL(R) is E(R), that is E(R) = [GL(R);GL(R)]

Proof. First recall that the commutator of GL(R) is a normal subgroup and that
every elementary matrix in GL(R) can be expressed as the commutator of two ma-
trices. Since E(R) is the smallest normal subgroup generated by elementary matrices
then E(R) ⊆ [GL(R);GL(R)]. Now, for the other inclusion it’s enough to show that
every commutator in GLn(R) can be writen as a product of elementary matrices in
GL2n(R). Now let A,B ∈ GLn(R), we have that(

ABA−1B−1 0
0 I

)
=

(
A 0
0 A−1

)(
B 0
0 B−1

)(
(BA)−1 0

0 BA

)
(
A 0
0 A−1

)
=

(
I A
0 I

)(
I 0
A−1 I

)(
I A
0 I

)(
0 −I
I 0

)
(

0 −I
I 0

)
=

(
I 0
I I

)(
I −I
0 I

)(
I 0
I I

)
Thus E(R) ⊇ [GL(R);GL(R)]

Definition 4.4. The algebraic K groups of a given ring R as defined as

Ki(R) = πi(BGL(R)+)

where the plus construction is taken with respect to E(R) which is a perfect normal
subgroup of π1(BGL(R)) = GL(R).

Remark 4.5. It can be shown that this construction defines a sequence of functors
Kn from the category of rings to the category of groups [4], [10].

In the next chapter we will sketch the calculation of the algebraic K-groups of a
finite field. In order to do so the following lemma will prove very useful.

Lemma 4.6. BGL+(R) is a simple space.

Proof. It’s enough to show that BGL+(R) is an H-space and for this is enough to
note that multiplication by the identity element is nullhomotopic. Multiplication on
BGL(R) comes from multiplication in GL(R). In this scenario, when multipliying
an matrix A with the identity matrix we spread the original matrix in between
colums and lines that coincide with that identity matrix. Now, note that such an
operation can be written in terms of conjugation with elementary matrices and thus
by definition of BGL+(R) this map is nullhomotopic.
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5 K-theory of a finite field

The main goal of the present project is to sketch a calculatio of the algebraic K-
theory of a finite field. In this section, all the results of the previous sections will be
blended together in order to obtain the desired result.

5.1 Algebraic K groups of a finite field

We will calculate the algebraic K-groups of a finite field by means of the map
θ : BGL(Fq)→ Fψq constructed theorem 3.11.

Theorem 5.1. There is a homotopy equivalence BGL(Fq)+ → Fψq and thus the
algebraic K-groups of a finite field are given by

K2j−1(Fq) = Z/(q2j − 1) K2j−1(Fq) = 0

Proof. Theorem 3.11 give a map θ : BGL(Fq) → Fψq that is a homology isomor-
phism. These spaces are connected, thus the Hurewicz map from the fundamental
group to the first homology group is the abelianization homomorphism[?]. Since the
Hurewicz map is natural we have the following commuting diagram.

π1(BGL(Fq)) π1(Fψq)

H1(BGL(Fq)) H1(Fψq)

θ∗

h1 h2
∼=

θ∗

∼=

Since π1(BGL(Fq)) = GL(Fq) and π1(Fψq) = Z/(q − 1), then h2 is an isomor-
phism. Thus, h1 is surjective and by lemma 4.3 Ker(h1) = [GL(Fq);GL(Fq)] =
E(Fq). So θ∗ : π1(BGL(Fq)) → π1(Fψq) is surjective with Ker(θ∗) = Ker(h1) =
E(Fq), thus by theorem 4.1 iv there is a map θ′ : BGL(Fq)+ → Fψq such that the
following diagram commutes up to homotopy.

BGL(Fq)+

BGL(Fq) Fψq

θ′

θ

ι

Since ι and θ are homology isomorphisms, then θ′ is also an homology isomorphism.
Furthermore, by lemmas 4.6 and 3.8, BGL(Fq)+ and Fψq are simple spaces. So, by
Whitehead’s theorem, θ′ is a homotopy equivalence. Thus,Ki(Fq) = π1(BGL(Fq)+) =
π1(Fψq) and proposition 3.7 gives the desired result.
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