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0.1 Abstract

English

This project is mainly concerned with the construction of the classical Steen-
rod operations, i.e. stable cohomology operations for Fp cohomology of topo-
logical spaces. First we shall de�ne cohomology operations in general, and
then we state the properties of the Steenrod operations, so that we know
what we are aiming at. Then the construction itself will follow. This will
be done at space level, and not on cochain level as some references prefer.
It is then veri�ed that the construction we make actually gives rise to the
Steenrod operations, with the exception of some properties in the case p odd
- there will not be space for this in the project. A few immediate applications
are given, before we turn to a short discussion of the construction we have
made, and propose some further development from here. Finally there are
some technical details, which are not included in the main text in order to
keep the exposition as smooth as possible, but nonetheless are needed for our
construction to work.

Dansk

Dette projekt omhandler hovedsageligt konstruktionen af de klassiske Steen-
rod operationer, i.e. stabile kohomologioperationer for Fp kohomologi af
topologiske rum. Først de�nerer vi kohomologioperationer generelt, og efter-
følgende angiver vi egenskaberne for Steenrod operationerne, så vi ved hvad
vi sigter efter. Derefter følger selve konstruktionen. Den bliver foretaget på
rumniveau, og ikke på kokædeniveau som nogle referencer ellers foretrækker.
Vi veri�cerer så at konstruktionen vi har lavet faktisk giver anledning til
Steenrod operationerne, med undtagelse af nogle af egenskaberne i tilfældet
p ulige - der vil ikke være plads til dette i projektet. Et par umiddelbare
anvendelser bliver givet før vi fortsætter med en kort diskussion af den kon-
struktion vi har lavet, og foreslår nogle videreudviklinger herfra. Endeligt
er der medtaget nogle tekniske detaljer som er undladt i hovedteksten for at
holde fremstillingen så glidende som mulig, men som ikke desto mindre er
nødvendige for at vores konstruktion fungerer.
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0.2 Introduction

As a general motivation algebraic topology seeks to provide algebraic tools
to distinguish topological spaces. The cohomology ring H∗(X;R) for a space
X being one example of this, turns out to be particularly interesting. Here
we get the additional ring structure, not immediately provided by homology
groups, and we can compute these ring with greater ease than the homotopy
groups, which otherwise holds lots of information of the underlying space.
Moreover, it turns out that we get even more structure, if we choose the
coe�cient ring R to be one of the �nite �elds of the form Fp, for a prime p.
In this case N. E. Steenrod introduced the stable cohomology operations1, i.e.
natural transformations θ : Hn(−,Fp)⇒ Hm(−,Fp) with certain properties,
which turn out to interact such that they generate an algebra.

The Steenrod algebra, as it is named, turns out to be interesting in its
own right and may be studied without ever considering topological spaces,
but the fact that cohomology operations with these properties can be explic-
itly constructed for any topological space, then impose further constraints on
the existence and behavior of such spaces, and has given lots of previously
inaccessible information about these.

I have chosen to follow the approach of [Hat02], to the construction of the
operations, where most notation is also adopted from. This is because the
construction works equally well for p = 2 and p odd, and can be done with
fairly basic tools.

The reader is assumed to be somewhat familiar with the material cov-
ered in [Hat02], including some of the �optional� sections, and to have a
basic understanding of functors. The most advanced machinery in play
will be the natural bijection 〈X,K(G, n)〉 ' Hn(X;G), relating homotopy
classes of maps into Eilenberg-MacLane spaces and cohomology, and the map
H∗(X;F ) ⊗ H∗(X;F ) → H∗(X × X;F ) given by the cohomological cross
product, which is an isomorphism when certain conditions are meet. Also
for a single argument we shall need Serre's spectral sequence for homology,2

but this is postponed to the appendix.

1The classical reference is [Ste62], which I include for good measure
2Introduced in [Hat].
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Chapter 1

The Steenrod operations

1.1 Properties of the Steenrod operations

Here we shall brie�y introduce the operations, and list the de�ning properties
of them.

De�nition 1.1.1. We de�ne cohomology operations as natural transforma-
tions of functors Θm,n,R,S : Hm(−;R) ⇒ Hn(−;S), where the cohomology
functors are considered as functors from the category of topological spaces
into the category of sets. I.e. we have a commutative diagram

Hm(Y,R)
Θm,n,R,S //

f∗

��

Hn(Y, S)

f∗

��
Hm(X,R)

Θm,n,R,S // Hn(X,S)

for all spaces X, Y , and maps f : X → Y .

Prior to introducing the Steenrod operations, we know the Bockstein
homomorphisms as examples of cohomology operations. We recall that these
are de�ned as connecting homomorphisms for the long exact sequence in
cohomology associated to a short exact sequence of coe�cient groups.1 In
particular from the coe�cient sequence

0 // Zp
p // Zp2

// Zp
// 0

we obtain βp : Hn(X,Zp) → Hn+1(X,Zp) for any space X. Naturality
follows form the fact that this is a connecting homomorphism in a long exact
sequence for cohomology.

1[Hat02] p. 303.
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De�nition 1.1.2. The Steenrod operations are cohomology operations

Sqi : Hn(−,Fp)⇒ Hn+i(−,Fp), for all n ∈ N

for p = 2, and

P i : Hn(−,Fp)⇒ Hn+2(p−1)i(−,Fp)
βp : Hn(−,Fp)⇒ Hn+1(−,Fp)

both for all n ∈ N

for p odd. For a �xed space X, we get components of the transformation, i.e.
maps (also denoted)2 Sqi : Hn(X,Fp) → Hn+i(X,Fp) which are subject to
the following:

Sq0(x) = x (1.1)

Sqi(x) = 0, i < 0 (1.2)

Sqi(x+ y) = Sqi(x) + Sqi(y) (1.3)

Sqi(xy) =
∑
j

Sqj(x)Sqi−j(y) (1.4)

Sqi(σ(x)) = σ(Sqi(x)) (1.5)

Sqi(x) = 0, i > n (1.6)

Sqn(x) = x2 (1.7)

SqiSqj(x) =
∑
k

(
j − k − 1

i− 2k

)
Sqi+j−kSqk(x), for i < 2j (1.8)

Sq1 = β2 (1.9)

where σ is the suspension map. The P i's are subject to the same conditions
(1.1) - (1.5), and the somewhat similar

P i(x) = 0, 2i > n (1.10)

P i(x) = xp, 2i = n (1.11)

P iP j(x) =
∑
k

(−1)i+k
(

(p− 1)(j − k)− 1

i− pk

)
P i+j−kP k(x), i < pj

(1.12)

P iβpP
j(x) =

∑
k

(−1)i+k
(

(p− 1)(j − k)

i− pk

)
βpP

i+j−kP k(x)

−
(

(p− 1)(j − k)− 1

i− pk − 1

)
P i+j−kβpP

k(x), i ≤ pj (1.13)

We shall now construct cohomology operations that satisfy the properties
above.

2The underlying space X will be implicit.
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1.2 Construction of Steenrod operations

The goal of this chapter is to construct cohomology operations, by building
the components at X, for any space X. To do this, we will consider a class
in Hn(K(Zp, n),Zp) as a map K(Zp, n) → K(Zp, n). From this map, we
construct a new one with certain properties, which by some further work
will translate back to an appropriate class in cohomology. Then we extend
this construction by naturality to all cohomology classes, and �nally we may
de�ne operations from whatever emerges on the other side.

1.2.1 Preliminary functors

We begin the actual construction here by �rst de�ning some functors. We
shall only de�ne them on objects here, in order to get to the point of the
construction slightly faster, and refer to the appendix A.1 for more details.

Let (X, x0) and (Y, y0) be pointed spaces. Recall that the smash of two
pointed spaces is given by X ∧ Y := (X × Y )/(X ∨ Y ), a quotient of the
product space. Now

(X, x0) 7→ (X∧n, [(x0, . . . , x0︸ ︷︷ ︸
n

)])

de�nes a functor Fn on the category of pointed spaces.

Example 1.2.1 The functor Fn is illustrated below for n = 3.

x0
F3

X

[(x0, . . . , x0)]

X∧3

Figure 1.1: The fat lines indicate the points being identi�ed to the

new basepoint [(x0, . . . , x0)].

Now let G be a �nite (discrete) group, acting freely on Y , and acting on X
�xing x0. De�ne a functor Y ×G−, by mapping X to Y ×GX := (Y ×X)/G,
the orbit space under the diagonal action of G. We will eventually specialize
this to the Borel construction,3 but for now consider the following example.

3[Bau06] chapter 7.
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Example 1.2.2 For any space X, there is a Zn action on FnX given by
permutation of the n identical factors. A map f : X → X ′ will then give us
a Zn-equivariant map Fnf : FnX → FnX

′. We also have a free Zn action on
S1 given by rotating S1 by 2π/n. So the composition of functors S1×Zn FnX
makes sense, and for n = 2 it can be illustrated as follows.

F Z2

S1

x0

X ∧X S1

X ∧X

Figure 1.2: The fat lines still indicate identi�cations to the new base-

point now denoted by x0. Light gray areas on left and right half of

the space indicate identi�cations such that each slice is identi�ed with

the �ipped slice translated by π along S1. The darker gray is just a

graphical indication of the overlap when seen from this point.

This example illustrates an important point in the construction which
we will see later. One of the key properties that we want (1.7), is that
the squaring operation in appropriate degree, should coincide with the cup
product square of an element. This connects to the smash product, which
can be obtained as �bre for the projection onto S1. Among other things, this
motivates that we consider the product �bre bundle Y × X π→ Y given by
the projection onto �rst factor. For this we have

Lemma 1.2.3. Let X, Y be a pair of pointed G-spaces as above, and further
let Y be Hausdor�. The product �bre bundle Y × X

π→ Y induces a �bre

bundle Y ×G X
π→ Y/G, with �bre X.

The proof of this lemma is rather tedious, and the content is not inter-
esting related to this construction. Hence it can be found in the appendix
A.1 in order to move things along here.

The action on X �xes the basepoint x0, so the inclusion Y ×{x0} ↪→ Y ×X
induces an inclusion Y/G ↪→ Y ×G X, such that the composition Y/G ↪→
Y ×G X → Y/G is the identity. We thus have a section of the �bre bundle,
and may consider the quotient Y ×GX/(Y/G) where this particular section is
collapsed. The �bres X are still embedded in this quotient, as each �bre only
has a single point collapsed, when forming the quotient by the section. We
may thus de�ne a functor ΛY,G,n that sends a space X to (Y ×GX∧n)/(Y/G).
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Further, the �bres X∧n from the induced �bre bundle in Lemma 1.2.3 are
embedded in ΛY,G,nX. In particular p a �xed prime, we may consider

ΓY := Y ×Zp (−)∧p and ΛY := ΛY,Zp,p

Here the Zp action on X∧p is generated by the map T : X∧p → X∧p per-
muting the factors once cyclically, and hence the action �xes the basepoint.
Continuing on example 1.2.2 from before, ΛS1 may be illustrated as follows
for p = 2.

ΛZ2

S1

x0

F2X

S1

Figure 1.3: Legend as for �gure 1.2, but the bottom S1 is now collapsed.

1.2.2 A map with a certain property

Having de�ned the functors ΓY and ΛY , we will now continue by using the
natural bijection µ : 〈X,K(G, n)〉 ∼−→ Hn(X;G), where 〈−,−〉 denotes ho-
motopy classes of pointed maps. This bijection only holds when X is a
CW-complex,4 but as we show in A.2, this is an assumption we can make
on all the spaces involved. I will mostly suppress µ in the notation, and
whenever we apply µ to a map, it is of course meant to be the homotopy
class of the map.

Adopting the notation from [Hat02], we de�ne for n > 0, Kn to be a
CW-complex, which is an Eilenberg-MacLane space K(Zp, n) with (n − 1)-
skeleton a single point, and n-skeleton Sn. Also in most of this section we
will suppress the coe�cient ring in the notation for cohomology, but it is
assumed to be Fp, for the appropriate p.

The goal of this section is then to construct a map ΛS∞Kn → Knp, by
�nding a homotopy on K∧pn , which de�nes a map on ΓS1 . Then composing
this with the quotient map to ΛS1 and extending to all of ΛS∞ . This map

4as seen in [Hat02] p. 393
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will play a central role in the actual de�nition of the Steenrod operation in
the next section.

Let ιn ∈ Hn(Kn) be the fundamental class given by µ(idKn). There is a

reduced cross product H̃∗(Kn)⊗ H̃∗(Kn)
×−→ H̃∗(Kn ∧Kn), by which in our

case is an isomorphism since we are using �eld coe�cients and Hk(Kn) is
�nitely generated for all k.5 This is referred to as either the cross product
isomorphism, or the Künneth formula. We shall only deal with cohomology
in positive degree, so it will not always be speci�ed whether we are using
reduced or unreduced cohomology.

Due to the above isomorphism we identify ι⊗pn with ι×pn ∈ H̃np(K∧pn ), and
by µ above, we can consider ι⊗pn and ι⊗pn T as representatives for classes of
pointed maps K∧pn → Knp. With this approach we have

Proposition 1.2.4. The two maps ι⊗pn and ι⊗pn T : K∧pn → Knp are homotopic
relative to the basepoint.

Proof. Recall that the map T : K∧pn → K∧pn permutes the p factors cyclically.
This is also the case when just considering the np-skeleton of K∧pn , which by
de�nition is (Sn)∧p ' Snp. Note that T is cellular, so restricting it to the
np-skeleton, we get a map T ′ between np-spheres. But we have that T ′p =
idSnp , so degT ′p = (degT ′)p = 1. Thus for p odd, T ′ has degree 1, and is
homotopic to the identity.

For p = 2 both ι⊗pn and ι⊗pn T restrict to maps S2n → K2n. Since by
de�nition π2n(K(Z2, 2n)) = Z2, either they are null-homotopic, or not. T ′

having degree ±1 is not null-homotopic, so neither is T . Thus if ι⊗pn is not
null-homotopic then neither is ι⊗pn T , and of course if ι⊗pn happens to be null-
homotopic then so is ι⊗pn T . With the homotopy de�ned on the np-skeleton
we may simply extend this to all of I×K∧pn , by the extension lemma [Hat02]
p. 348.

The homotopies may indeed be taken to be basepoint preserving in either
case, as Spn is simply connected as n ≥ 1 and p ≥ 2.

This proposition can be said to carry the entire construction, as we will
return to in section 3.1.

Now letting H denote the homotopy produced by the proposition with
ι⊗pn (x) = H(1, x), we shall see that this gives rise to a map on ΓS1Kn, where
the Zp-action is given by rotating S1 by 2π/p.

First we note that since H(0, x) = ι⊗pn T (x) = H(1, T (x)), we get a map
on the quotient I×K∧pn /(0, x) ∼ (1, T (x)). From the de�nition of ΓS1Kn, we

5The reduced cross product is described in [Hat02] p. 218-219.
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see that it can be written as I ×K∧pn /∼, where we make the identi�cations
( j
p
, T j(x)) for j = 0, 1, . . . , p. Here we have encoded an excess of relations,

and actually have just [0, 1
p
]×K∧pn /(0, x) ∼′′ (1

p
, T (x)). This we recognize as

ΓS1Kn, by stretching [0, 1
p
] to I.

Since the basepoint is preserved by H, we can now collapse this segment
of ΓS1Kn corresponding exactly to the section S

1×{x0} as described on page
4, and now get a map H̃ on ΛS1Kn. This is a subcomplex of ΛS∞Kn, with
the Zp action on S∞ being rotation by 2π/p in every coordinate. Note that
S1 is a subcomplex of S∞ with coherent action. Now we wish to extend H̃
to a map λ de�ned on the whole complex.

We shall use ΛS∞ a lot, and therefore abbreviate it to just Λ from here.

Proposition 1.2.5. The map H̃ extends to a map λ : ΛKn → Knp, with
the property that the restriction to the each �bre K∧pn (cf. Lemma 1.2.3) is
homotopic to ι⊗pn .

Proof. ΛKn − ΛS1Kn has only cells of dimension greater than np + 1, as
seen in section A.2. By the extension lemma6, H̃ extends to a map λ since
πi(Knp) = 0 for i > np. The restriction of H̃ to the �bres K∧pn is given
by H̃(t0, x) for some �xed t0 ∈ I. Thus such restrictions has the desired
property, by de�nition of H̃.

Now when extending H̃ to λ, this property also holds for the �bres not
over S1/Zp as the base space L

∞ is connected, and the �bres therefore home-
omorphic. We can simply choose a homeomorphism to a �bre over the S1/Zp

where H̃ is de�ned, and the composition will then be homotopic to ι⊗pn . The
whole thing is summed up in the following commutative diagram

K∧pn //

'
��

ΓS∞Kn
// ΛKn

λ

##HHHHHHHHH

K∧pn //

::

ΓS1Kn
//

?�

OO

ΛS1Kn
H̃

//
?�

OO

Knp

where the horizontal maps are, �rst inclusions of �bres, and then quotient
maps to get Λ from Γ. The compositions across respectively top and bottom
thus become the restrictions to the �bre.

Now we extend this by the naturality coming from the functor Λ. For an
element α ∈ Hn(X) we de�ne λ(α) to be the map making the triangle in the
�rst of the following diagrams commute.

6[Hat02] p. 348
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X
Λ //

α

��

ΛX

Λα

��

λ(α)

""
Knιn

++

Λ
// ΛKn λ

//
λ

// Knp

X∧p
� � //

α∧p

��

ΛX

Λα

��

λ(α)

""EEEEEEEEEEEEE

K∧pn

ι⊗p
n

44
� � // ΛKn

λ // Knp

I.e. λ(α) = (Λα)∗λ. We note that λ(ιn) = (ΛidKn)∗λ = λ, so this generalizes
our construction λ, and also that by our bijection µ, we have λ = λ∗(ιnp).

The second diagram shows that the restriction of λ(α) to the �bre X∧p

is homotopic to α×p. By the naturality of the cross product7, we have that
α∧p ∗(ι×pn ) = α∗(ιn)×p = α×p

The following lemma suggest that our knowledge of λ(α) on the �bre, will
be helpful later.

Proposition 1.2.6. Let X be a CW-complex, such that the np-skeleton of
ΛX is contained in X∧p. A map f : ΛX → Knp is uniquely determined up
to homotopy, by the restriction to the �bres X∧p.

Proof. f de�nes an element of Hnp(ΛX). Restricting f to X∧p, we then
de�ne an element of Hnp(X∧p), and so restriction de�nes a map Hnp(ΛX)→
Hnp(X∧p). By cellular cohomology we see that this map must be injective
since the np-skeleton of ΛX is contained in X∧p. Two cocycles assigning the
same values to np-cells in X∧p will then also do this in ΛX, and are thus
equal in Hnp(ΛX).

1.2.3 De�ning operations

All the preliminary work done, we now de�ne some cohomology operations.
The map T from above is just the identity on the diagonal of X∧p, so the

embedding S∞ × X ↪→ S∞ × X∧p with X sent to the diagonal, induce an
inclusion L∞ ×X ↪→ ΓS∞X.

Now composing with the quotient map ΓS∞X → ΛX, we get a map
∇ : L∞×X → ΛX inducing ∇∗ : H∗(ΛX)→ H∗(L∞×X). Since H∗(L∞) is
�nitely generated in each degree, and we are still working with Fp coe�cients,
the unreduced cross product gives an isomorphism like the reduced above did,
and we get H∗(L∞ ×X) ' H∗(L∞)⊗H∗(X).

7[Hat02] p. 275, the topological Künneth formula gives a natural short exact sequence,
where the �rst map is the cross product.
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So for an element α ∈ Hn(X), we �rst get an element λ(α) ∈ Hnp(ΛX),
and then ∇∗(λ(α)) ∈ Hnp(L∞×X). Due to the cross product isomorphism,
this can then be written as

∇∗(λ(α)) =
∑
i

ω(p−1)n−i ⊗ θi(α)

with ωj a generator of Hj(L∞) and θi(α) ∈ Hn+i(X).

In order to get a unique element θi(α) for any α, we have to choose the
ωj's in a consistent way. For p = 2 there is only one generator in each de-
gree, and for odd p we choose ω1 to be the class dual to the 1-cell in L

∞ with
the normal cell structure, i.e. one cell in each dimension. We choose ω2 to
be βω1, and from these two we de�ne the rest to be ωj2 in even degree (2j),
and ω1ω

j
2 in odd degree (2j + 1).

Theorem 1.2.7. The θi's de�ne cohomology operations:

θi : Hn(−,Fp)⇒ Hn+i(−,Fp)

Proof. For any space X, each θi de�nes a map Hn(X,Fp) → Hn+i(X,Fp).
We now check naturality, and �rst note that for any map f : X → Y , the
following diagram commutes

L∞ ×X
∇

��

id×f // L∞ × Y
∇

��
ΛX

Λf
// ΛY

Since ∇ is a diagonal embedding, followed by a quotient map, and Λf is
de�ned diagonally. That gives us commutativity of

Hnp(L∞ ×X) Hnp(L∞ × Y )
(id×f)∗oo

Hnp(ΛX)

∇∗
OO

Hnp(ΛY )
(Λf)∗

oo

∇∗
OO

and so for α ∈ Hn(X) we have∑
i

ωn(p−1)−i ⊗ θi(α) = ∇∗(λ(α))

= ∇∗((Λα)∗λ(ιn))

= (id× α)∗(∇∗(λ(ιn)))
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Expanding this last expression through the cross product isomorphism �nally
yields

∑
i ωn(p−1)−i ⊗ α∗θi(ιn), and thus θi(α

∗(ιn)) = α∗(θi(ιn)).
So for a �xed space X, the θi gives us the component at X, of a natural

transformation, that we also denote θi.

We can now verify that these cohomology operations are in fact the Steen-
rod operations.

Theorem 1.2.8. In the case p = 2 we have θi = Sqi, the Steenrod squares.
For p odd, we have c · θ2i(p−1) = P i and c · θ2i(p−1)+1 = βP i, the Steenrod
powers, where c is a normalization constant.

Proof. The �rst claim will be veri�ed in the following section. The second
will remain a claim in this thesis.

1.3 Veri�cation of properties

Although the ideas for verifying the properties listed in section 1.1, are basi-
cally the same in the case p = 2 and p odd, the odd case takes signi�cantly
more work than the even, and introduces new tools on the way. It is not
�just similar�. I have therefore chosen to do the even case by means that
work in general, and branch of to this case as late as possible. This is done
not to use up too much space, but at the same time leaves us with a solid
foundation to take up the task of verifying the properties for the Steenrod
powers at another time.

1.3.1 Basic properties

We shall �rst verify the properties (1.1)-(1.7), which by lack of better name,
we shall call the basic properties.

For property (1.2) we need the following lemma, which describes coho-
mology operations in general.

Lemma 1.3.1. Let ι ∈ Hm(K(G,m);G) be a fundamental class, and

Θ : Hm(−;G)⇒ Hn(−;H)

a cohomology operation. The map ϕ given by mapping Θ 7→ ΘK(G,m)(ι),
de�nes a bijection between the set of all such cohomology operations, and
Hn(K(G,m);H).
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Proof. As noted in appendix A.2 we may assume that we work with CW-
complexes for cohomology purposes, so we may use our natural bijection
µ. By naturality of Θ we then have that Θ(α) = Θ(α∗(ι)) = α∗(Θ(ι)) for
any CW-complex X and class α ∈ Hn(X;G). Thus ϕ is injective, as Θ is
uniquely determined by Θ(ι).

For surjectivity, let α ∈ Hn(K(G,m);H) be given. By µ we have
α : K(G,m)→ K(H,n), and composition with α de�nes a natural transfor-
mation 〈−, K(G,m)〉 ⇒ 〈−, K(H,n)〉, which by µ is also a transformation
Θ : Hm(−;G) ⇒ Hn(−;H) with Θ(ι) = α. To check naturality, we let
f : X → Y be a map between CW-complexes, and note that the following
diagram commutes

〈Y,K(G,m)〉

f∗

��

Θ // 〈Y,K(H,n)〉

f∗

��

β
_
��

� // α ◦ β
_
��

β ◦ f � // α ◦ β ◦ f

〈X,K(G,m)〉
Θ

// 〈X,K(H,n)〉

simply by associativity of composition of maps.

Now it is seen that property (1.2) holds sinceK(G,m) is (m−1)-connected,
and hence by the Hurewicz theorem, only the trivial cohomology operations
can decrease dimension.

To show property (1.3) we will need some more work. First we consider
the following diagram.

ΛX
Λ(∆) //

∆
((QQQQQQQQQQQQQQQQQQ Λ(X ×X)

Λ(α×β) //

t

��

Λ(Kn ×Kn)
Λ(ιn⊗1+1⊗ιn) //

t

��

λ(ιn⊗1+1⊗ιn)

((RRRRRRRRRRRRRRRRRR
ΛKn

λ

��
ΛX × ΛX

Λα×Λβ
// ΛKn × ΛKn λ⊗1+1⊗λ

// Knp

In the right part of the diagram the unreduced cross product isomorphism
and the bijection µ, is implicit in the naming of the maps, and the map
t : Λ(X ×X)→ ΛX × ΛX, is induced by

(s, x1, y1, . . . , xp, yp) 7→ (s, x1, . . . , xp, s, y1, . . . , yp)

where s ∈ S∞ and x = (x1, . . . , xp) lies in the �rst copy of X and y =
(y1, . . . , yp) in the second. ∆ denotes the diagonal map, and α and β are both
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classes in Hn(X), and the maps in the diagram are those obtained through µ.

The left triangle and the center commutes by choice of t, and the upper
right triangle commutes by the de�nition of λ. To see that the bottom right
triangle commutes up to homotopy, we �rst note that the np-skeleton of
Λ(Kn × Kn) is contained in (Kn × Kn)∧p, and apply proposition 1.2.6. By
this, we only need to check commutativity when restricting to the �bre, but
here we know that λ is homotopic to ι⊗pn . So we have

(Kn ×Kn)∧p

t|(Kn×Kn)∧p

��

(ιn⊗1+1⊗ιn)⊗p

((QQQQQQQQQQQQQQQQQQQQQ

K∧pn ×K∧pn
ι⊗p
n ⊗1+1⊗ι⊗p

n

// Knp

By the Künneth formula, the restriction of t induce the isomorphism

t| ∗
(Kn×Kn) : H∗(Kn)⊗p ⊗H∗(Kn)⊗p → (H∗(Kn)⊗H∗(Kn))⊗p

on cohomology, so the composition across the bottom of the diagram is just
(ιn ⊗ 1)⊗p + (1 ⊗ ιn)⊗p. By de�nition the cup product of two classes α, β ∈
H∗(X), is α ` β = ∆∗(α× β), so pulling back by ∆ an appropriate number
of times we get

∆∗((ιn ⊗ 1)⊗p + (1⊗ ιn)⊗p) = (ιn ` 1)p + (1 ` ιn)p

= (ιn ` 1 + 1 ` ιn)p

= ∆∗((ιn ⊗ 1 + 1⊗ ιn)⊗p)

Where second equality is just the freshman's dream in the �eld Fp. The
homomorphism ∆∗ is injective, so we conclude that the triangle commutes
up to homotopy.

The map ΛX → Knp across the top of the previous diagram gives us the
class λ(α + β), and across the bottom it gives λ(α) + λ(β). Since the two
routes are homotopic these two classes are equal, and in conclusion each θi
is additive. This gives us property (1.3).

Property (1.4) is also known as the Cartan formula, and we shall only
consider the case p = 2 for this property. Much like above we will show this
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holds by considering the diagram

ΛX
Λ(∆) //

∆
((QQQQQQQQQQQQQQQQQ Λ(X ∧X)

Λ(α∧β) //

t

��

Λ(Km ∧Kn)
Λ(ιm⊗ιn) //

t

��

λ(ιm⊗ιn)

))SSSSSSSSSSSSSSSSS
ΛKm+n

λ

��
ΛX ∧ ΛX

Λα∧Λβ
// ΛKm ∧ ΛKn λ(ιm)⊗λ(ιn)

// Kmp+np

The only change from before, is that we now use the reduced cross product
isomorphism, and that α lies in Hm(X). All but the lower right triangle
commutes by same arguments as above, and to check the last triangle, it
will again su�ce to look at the �bre. Here the two maps are homotopic to
respectively (ιm⊗ ιn)⊗p and ι⊗pm ⊗ ι⊗pn . Applying ∆∗ gives us cup products of
the ι's, but in the case p = 2 this is commutative, so they are equal. Again
by injectivity of ∆∗, the triangle therefore commutes up to homotopy. We
identify the map ΛX → Kmp+np across the top of the diagram to represent
λ(α ` β), and across the bottom λ(α) ` λ(β). From this we �nally get∑

i

Sqi(α ` β)⊗ ωm+n−i = ∇∗(λ(α ` β))

= ∇∗(λ(α)) ` ∇∗(λ(β))

=
∑
j

Sqj(α)⊗ ωm−j `
∑
k

Sqk(β)⊗ ωn−k

=
∑
i

(∑
j+k=i

Sqj(α) ` Sqk(β)

)
⊗ ωm+n−i

Since ωi = ωi1 in the case p = 2 we can collect the terms of the sums in the
�nal equality. From this we conclude that property (1.4) holds.

Property (1.6) is satis�ed since ωi = 0 for i < 0 implies that ωn−i⊗θi = 0
for i > n, and we may choose θi = 0 in this case.

For property (1.7) and (1.11) we note that λ(α) restricts to α×p on
the basepoint �bre. But on this �bre, the map ∇ coincides with ∆, so we
get αp when restricting. Restriction to �bre corresponds to �xing the class
ω0 = 1 ∈ H0(L∞), and throwing away the other terms. So only option when
restricting to the �bre is 1⊗ θn(p−1)(α) = αp, as we wanted.

To verify property (1.1) we begin by doing it in the special case H1(S1).
For this property we shall only consider p = 2.
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Lemma 1.3.2. Let α be a class in H1(S1). Then Sq0(α) = α.

Proof. Let α be a generator of H1(S1). To identify the element ∇∗(λ(α)) ∈
H2(RP∞×S1) we check, using cellular cohomology, what values this cocycle
takes on the 2-cells of RP∞ × S1. Using the smallest possible cell structure,
there are only two such cells, namely RP2 × {s0} and RP1 × S1, with s0

the basepoint of S1. λ(α) lies in H2(ΛS1), and the entire RP∞ × {s0} is
collapsed to a point in ΛS1, and λ(α), being a 2-cocycle, is zero on a point.
Applying the homomorphism ∇∗ again gives us zero, so ∇∗(λ(α)) is zero on
RP2 × {s0}.

To evaluate ∇∗(λ(α)) on RP1×S1, we �rst note that ∇∗ factors through
H2(ΓS∞S

1) ' Hom(H2(ΓS∞S
1; F2). For the purpose of identifying 2-cycles,

we might as well consider H2(ΓS1S1) where it is more apparent that the
element represented by RP1×S1 is the same as the element represented by a
�bre S1∧S1. This is since the union of these two subspaces in ΓS1S1 is exactly
the boundary of the interior 3-cell, when taken modulo 2, as illustrated on
this �gure

ΓS1S1 3-cell

Figure 1.4: Bringing back the example used for �gure 1.2 we insert

S1 for X, and get a nice picture of ΓS1,2S
1. The interior 3-cell pointed

out to the right, with the two triangular ends constituting the �bre

S1 ∧ S1, and the large rectangular backside being the RP1 × S1.

So we may instead evaluate ∇∗(λ(α)) on S1 ∧ S1, where we can again
just look at what happens with λ(α) in H2(ΛS1). By construction this is
α×α on �bres, but since α is a generator of H1(S1), α×α is a generator of
H2(S1 ∧ S1), and hence takes the value 1 on S1 ∧ S1.

In conclusion ∇∗(λ(α)) = ω1 × α, which expanded through the cross
product isomorphism is just ω1 ⊗ α. So on H1(S1) we have Sq0(α) = α.

property (1.5) can now be veri�ed and thereafter property (1.1). The
suspension map σ : H∗(X) → H∗(S1 ∧X) is given by σ(α) = ε ⊗ α for ε a
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generator of H1(S1). So by the Cartan formula veri�ed above, we have

Sqi(σ(α)) = Sqi(ε⊗ α)

=
∑
j

Sqj(ε)⊗ Sqi−j(α)

= Sq0(ε)⊗ Sqi(α) = σ(Sqi(α))

since Sqj(ε) = 0 for j > 1 by property (1.6), Sq1(ε) = ε2 = 0 by prop-
erty (1.7), and Sq0(ε) = ε by lemma 1.3.2. This shows that property (1.5)
holds, and by this property Sq0 is the identity on Hn(Sn) for all n > 0.

property (1.1) follows now, since Sq0 is also the identity on the funda-
mental classes ιn as the n-skeleton of Kn is exactly Sn. This determines Sq0

on all other classes as seen in the construction.

Property (1.9) holds by the same type of argument. Let ω be a generator
of H1(RP2), then Sq1(ω) = ω2 by property (1.7). The Bockstein β2 on the
generator is calculated in the following lemma.

Lemma 1.3.3. Let X be a K(Zm, 1). The Bockstein homomorphism

βm : Hn(X; Zm) → Hn+1(X; Zm)

is an isomorphism for n odd, and zero for n even.

Proof. Consider the long exact sequence in cohomology related to the coef-
�cient sequence

0 // Z m // Z // Zm
// 0 (1.14)

and the associated Bockstein β̃ : Hn(X; Zm) → Hn+1(X; Z). This gives the
upper row of the following diagram

Hn(X; Z)
ρ // Hn(X; Zm)

βm ))RRRRRRRRR

β̃ // Hn+1(X; Z)
ρ

��

m // Hn+1(X; Z)

Hn+1(X; Zm)

where ρ is just the induced map from reduction modulo m. We show that the
triangle commutes, since we can then insert the cohomology (well-known) for
X and verify the statement.



1.3 Veri�cation of properties 16

There is a natural map from the short exact sequence (1.14) to the one
for βm given by reduction modulo m and m2.

0 // Zm
m // Zm2 // Zm

// 0

0 // Z m //

::ttttttttttt
Z //

99rrrrrrrrrrr Zm
//

99rrrrrrrrrrr
0

When determining the connecting homomorphisms for the long exact se-
quences we get βm = β̃ρ from this, as it induces ρ in one end, and the
identity in the other. Sketched for convenience.

Hn+1(X; Zm) // Hn+1(X; Zm2) // Hn+1(X; Zm)

Hn+1(X; Z)

ρ
::uuuuuuuuu

// Hn+1(X; Z)

::ttttttttt
// Hn+1(X; Zm)

99ttttttttt

Hn(X; Zm)

OO

// Hn(X; Zm2)

OO

// Hn(X; Zm)

OO

βm

jj

Hn(X; Z)

::uuuuuuuuu
//

OO

Hn(X; Z)

OO

::ttttttttt
// Hn(X; Zm)

OO

id

99sssssssss

β̃

jj

Knowing that the triangle commutes, we insert for n odd and get

0 // Zm

βm %%KKKKKKKKKKK
β̃ // Zm

ρ

��

m // Zm

Zm

Here we see that β̃ is surjective by exactness, and ρ being induced by re-
duction modulo m is also surjective. We conclude that βm is surjective and
hence an isomorphism when n is odd. For n even, we see that βm factors
through zero, and hence is zero.

By this β2(ω1) = ω2 as there is only this one generator, so Sq1 and
β2 coincide on ω1. By property (1.5) they agree on all suspensions of ω1.
Now since RP2 is the 2-skeleton of RP∞, which again is a K(Z2, 1), we may
suspend RP2 n times, to get the n+2 skeleton of Kn+1. Then β2 agrees with
Sq1 on the fundamental class, and we are done.
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1.3.2 The Adem relations

In this section, the general approach of section 1.2.1 will pay o�. The prop-
erty (1.8) is called the Adem relations, and we will show that this holds on
ιn, and thereby on all classes by naturality.

We will �rst try to naively iterate our construction of the operations by
considering the composition

L∞ × L∞ ×Kn
id×∇ // L∞ × ΛKn

∇ // Λ(ΛKn)
λ(λ) // Knp2

This yields

(id×∇)∗(∇∗(λ(λ))) = (id×∇)∗

(∑
i

ωnp(p−1)−i ⊗ θi(λ)

)
=
∑
i

ωnp(p−1)−i ⊗∇∗θi(λ∗(ιnp))

=
∑
i

ωnp(p−1)−i ⊗ θi(∇∗λc(ιn))

=
∑
i

ωnp(p−1)−i ⊗

(∑
j

ωn(p−1)−j ⊗ θj(ιn)

)
=
∑
i,j

ωnp(p−1)−i ⊗ θi(ωn(p−1)−j ⊗ θj(ιn))

Assuming p = 2 we have the Cartan formula, which then gives∑
i,j

ω2n−i
1 ⊗ Sqi(ωn−j1 ⊗ Sqj(ιn)) =

∑
i,j

ω2n−i
1 ⊗

∑
k

Sqk(ωn−j1 )⊗ Sqi−kSqj(ιn)

We can compute the Sqk(ωn−j1 ) terms by introducing the total Steenrod
square, Sq :=

∑
i Sq

i. By property (1.6) only �nitely many of the squares
are non-zero on a given class, so the total square is well-de�ned. Rewriting
the Cartan formula in terms of Sq then gives Sq(α ` β) = Sq(α) ` Sq(β).
Now for α ∈ H1(X; Z2) we then get

Sq(α) = α + α2 = α(1 + α)

and further∑
i

Sqi(αn) = Sq(αn) = Sq(α)n = αn(1 + α)n =
∑
i

(
n

i

)
αn+i
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So for each i we have Sqi(αn) =
(
n
i

)
αn+i. From this we get Sqk(ωn−j1 ) =(

n−j
k

)
ωn−j+k1 , and de�ning n− j + k = 2n− l we end up with∑

i,j

ω2n−i
1 ⊗

∑
k

Sqk(ωn−j1 )⊗ Sqi−kSqj(ιn)

=
∑
i,j,k

(
n− j
k

)
ω2n−i

1 ⊗ ωn−j+k1 ⊗ Sqi−kSqj(ιn))

=
∑
i,j,l

(
n− j

n+ j − l

)
ω2n−i

1 ⊗ ω2n−l
1 ⊗ Sqi+l−n−jSqj(ιn)) (1.15)

This involves Sqi+l−n−jSqj, mixed square factors that we wish to investigate,
but for now we cannot say much more about it. We need another way to
arrive at something similar, so we shall make a small detour.

The group Zp × Zp acts freely on S∞ × S∞, each Zp rotating the corre-
sponding S∞ just as above. It also acts on X∧p

2
, if we write points as (xij)

1 ≤ i, j ≤ p, and let �rst factor permute the i-index cyclically, and the sec-
ond factor permutes the j-index likewise. This action �xes the basepoint,
and thus we have the functor Λ′ := ΛS∞×S∞,Zp×Zp,p2 . We can now more or
less repeat the construction made in section 1.2.2.

Consider ι⊗p
2

n : K∧p
2

n → Knp2 . The action of Zp×Zp restricts to S
1×{s0}

and to {s0}×S1, and here it is just a Zp-action on S1. Let Ti be the map that
permutes just the index i of (xij) cyclically, corresponding to the restriction
of the action. Similar for the index j.

Analogous to proposition 1.2.4 we now get that ι⊗p
2

n and ι⊗p
2

n Ti are ho-
motopic. The two homotopies are basepoint preserving, and thus de�nes an
extension of ι⊗p

2

n to the union of ΛS1×{s0},Zp×Zp,p2Kn and Λ{s0}×S1,Zp×Zp,p2Kn.
From here we attach cells of dimension greater than np2 + 1 to get to
ΛS∞×S∞,Zp×Zp,p2Kn, so analogous to proposition 1.2.5, we can extend fur-
ther to a map λ′ : Λ′Kn → Knp2 . This has the property that the restriction

to the �bres K∧p
2

n is homotopic to ι⊗p
2

n .
We shall also need ∇′ : L∞ × L∞ × X → Λ′X, the analogue map to

∇. This is the obvious construction, namely the quotient of the diagonal
embedding S∞ × S∞ ×X → S∞ × S∞ ×X∧p2 composed with the quotient
map ΓS∞×S∞,Zp×Zp,p2X → Λ′X.

Examining Λ′X and Λ(ΛX), we see that they may be considered as quo-
tients of respectively S∞ × S∞ ×Xp2 and S∞ × (S∞ ×Xp)p, where we �rst
identify all points having at least one X-coordinate equal to the basepoint
x0, and then factor out the action by respectively Zp × Zp and the wreath
product Zp o Zp. As described above Zp × Zp acts diagonally, and Zp o Zp



1.3 Veri�cation of properties 19

acts as follows. The Zp
p part acts by letting each factor act diagonally on

the corresponding factor of (S∞ × Xp)p by rotation in �rst coordinate and
permuting the p X factors. The quotient Zp then acts by rotating the �rst
S∞, and permuting the p factors of (S∞ ×Xp)p.

This is a more direct approach, as opposed to our previous construction
where we �rst make smashes of the products, then factor out by the group
actions, and �nally again identify points in the basepoint section, which we
did in order to factor through the spaces given by the Γ-functors. We needed
those in the construction to get the �rst extension of ι⊗pn as a homotopy, but
having done that we can now disband that approach for the new one.

The point of this, is that we want to be able to de�ne a map u : Λ′Kn →
Λ(ΛKn) such that the square of the following diagram commutes

L∞ × L∞ ×Kn

id×∇
��

∇′ // Λ′Kn

u

��

λ′ // Knp2

L∞ × ΛKn ∇
// Λ(ΛKn)

λ(λ)

::ttttttttt

Where the lower route through the diagram is seen to be the composition we
worked at earlier.

Now Zp × Zp lies as a subgroup in Zp o Zp, which we obtain if we restrict
the action of the quotient Zp on Zp

p to the diagonal Zp where it is trivial.

The map v : S∞ × S∞ ×Xp2 → S∞ × (S∞ ×Xp)p given by

(s, t, x11, . . . , xpp) 7→ (s, t, x11, . . . , x1p, . . . , t, xp1, . . . , xpp)

then induce a map on the spaces, where we quotient out the basepoint rela-
tion, and then the action of Zp × Zp. If we compose this with the quotient
map to the space where we factor out by the entire Zp o Zp action, we get
our map u. It is straight forward to check that the square above commutes,
and instead we turn our attention to the triangle. If we can show that it
commutes up to homotopy we get a di�erent point of view at the map we
worked with before.

As before we can apply proposition 1.2.6 and restrict to the �bre K∧p
2

n ,
where we then have up to homotopy

K∧p
2

n

u|
K
∧p2
n

��

ι⊗p2

n // Knp2

(K∧pn )∧p

(ι⊗p
n )⊗p

;;wwwwwwwwwwwww
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The restriction of u induce the right isomorphism on cohomology just as t did
when verifying property (1.3), and we conclude that the diagram commutes
up to homotopy.

We shall need the following diagram also

L∞ × L∞ ×Kn

τ1

��

∇′ // Λ′Kn

τ2
��

L∞ × L∞ ×Kn ∇′
// Λ′Kn

where τ1 switches the L∞ factors, and τ2 switches the two Zp factors in the
action on the space. The diagram commutes since ∇′ maps the Kn diago-
nally into the smash K∧p

2

n . Switching the Zp's correspond to interchanging
the indices on the K∧p

2

n coordinates (xij), which is a permutation consist-
ing of p(p − 1)/2 transpositions of Kn factors. Thus restricting to �bres,
the class ι⊗p

2

n is sent to (−1)np(p−1)/2ι⊗p
2

n by an argument similar to that of
proposition 1.2.4. As we have seen λ′ is uniquely determined by the restric-
tion to the �bre, so we also get τ ∗2λ

′∗(ιnp2) = (−1)np(p−1)/2λ′∗(ιnp2). Now set
k = np(p− 1)/2, and note that class ∇′∗λ′∗(ιnp2) ∈ H∗(L∞ × L∞ ×Kn) can
be written as

∑
r,s ωr ⊗ ωs ⊗ ϕrs by the Künneth formula. From the square

above we then get∑
r,s

ωr ⊗ ωs ⊗ ϕrs = ∇′∗λ′∗(ιnp2)

= (−1)k∇′∗τ ∗2λ′∗(ιnp2)
= (−1)kτ ∗1∇′∗λ′∗(ιnp2)

= (−1)k
∑
r,s

(−1)rsωs ⊗ ωr ⊗ ϕrs

τ1 switches the L∞ factors, and this gives us the extra sign since the cross
product is graded commutative. Switching r and s in the summation, then
gives ϕrs = (−1)k+rsϕsr.

Returning to the calculation (1.15) we started earlier in the case p = 2,
the above result is just ϕrs = ϕsr. So we may switch i and l, and for every
choice of these, and all n ≥ 1 we obtain∑

j

(
n− j

n+ j − l

)
Sqi+l−n−jSqj(ιn) =

∑
j

(
n− j

n+ j − i

)
Sql+i−n−jSqj(ιn)

Now set n = 2r−1+s and l = n+s (note that j = k+s with these choices).
Then

(
n−j
n+j−l

)
=
(

2r−1−(j−s)
j−s

)
≡ 0 mod 2, unless j = s, by the following lemma.
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Lemma 1.3.4. Let r, x be integers. For �xed r we have that
(

2r−1−x
x

)
≡ 0

mod 2, for all x > 0.

Proof. With the convention that the binomial coe�cient is zero when it does
not make combinatorial sense, we may assume that 2x < 2r. We now write
out the binomial coe�cient

(
2r−1−x

x

)
= (2r−2x)···(2r−(x+1))

x!
, and compare 2-

powers in nominator and denominator.
In any sequence of x consecutive natural numbers there is at least

∑
ib

x
2i c

2's, and among 1, . . . , x there is exactly this number. We simply count the
even numbers, the 4-even, 8-even and so on. Note that if 2k is the largest
2-power occurring in 1, . . . , x then 2 · 2k will be in x+ 1, . . . , 2x.

Pair o� a single 2 from the all even numbers in one sequence with a single
2 from the evens of the other, then pair the remaining 2 from the 4-evens,
and so on. After k steps we will have depleted the 2's among 1, . . . , x, and
will still have a 2 left among x+ 1, . . . , 2x.

We now claim that there are at least the same 2's among 2r − 2x, . . . ,
2r − (x + 1) as there are among x + 1, . . . , 2x, if r > k. If x + i = 2mx′

for 1 ≤ i ≤ x and maximal m such that x′ is integer, then 2r − (x + i) =
2m(2r−m−x′). But since r > k ≥ m− 1 this shows the claim. The condition
r > k is always satis�ed in our case since 2k+1 ≤ 2x < 2r.

In conclusion there are strictly more 2's in the nominator than in the
denominator of (2r−2x)···(2r−(x+1))

x!
, so we are done.

So with the choices above we get

SqiSqs(ιn) =
∑
j

(
2r − 1 + s− j

2r − 1 + s+ j − i

)
Sqi+s−jSqj(ιn)

=
∑
j

(
2r − 1 + s− j

i− 2j

)
Sqi+s−jSqj(ιn)

Finally, if we show that(
2r − 1 + s− j

i− 2j

)
≡
(
s− 1− j
i− 2j

)
mod 2, for i < 2s, (1.16)

we have shown that the Adem relations hold on the classes ι2r−1+s. This
implies that they hold on all classes in same dimensions, and by property (1.5)
they hold for all classes since we can just suspend a class an appropriate
number of times to a dimension of this form.

If i < 2j then both sides of (1.16) is zero. Otherwise we have 2j ≤ i < 2s
so that s− j− 1 ≥ 0. If we apply Vandermonde's identity to the left side we
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then get(
2r − 1 + s− j

i− 2j

)
=

(
s− j − 1

i− 2j

)
+

2r∑
m=1

(
2r

m

)(
s− j − 1

i− 2j −m

)
Now

(
2r

m

)
≡ 0 mod 2, when 0 < m < 2r. Choosing r su�ciently large will give

us
(
s−j−1
i−2j−m

)
= 0 when m = 2r. So we have the congruence we wanted, and

have shown all the properties we set out to do. This �nishes the veri�cation
of our construction, and we shall now have a look at an application.
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Chapter 2

Applications

2.1

First example will not use the full power of the squares and in particular the
corollary could be achieved without them

Example 2.1.1 Consider the complex projective space CP2, which we give
the CW-structure as in [Bre93] example 8.9, i.e.

CP2 ' CP1 ∪h D4 ' S2 ∪h D4

with slight abuse of notation regarding the map h : S3 → S2. It is given
by mapping the complex coordinates (z0, z1) where |z2

0 | + |z2
1 | = 1, to the

homogeneous complex coordinates (z0 : z1 : 0). We know that CP2 6' S2∨S4

since one has trivial cup product and the other does not, so h is non-trivial.
As choice of notation suggests it must then be the Hopf map.

We know that H∗(CP2; F2) ' F2[x]/(x3) with |x| = 2, and by property
(1.7), Sq2(x) = x2 6= 0. Now consider the suspension ΣCP2 ' S3 ∪Σh D

5.
From (1.5) we know that Sq2 commutes with suspension, so also Sq2σ(x) =
σ(Sq2x) = σ(x2) 6= 0. Now if Σh is homotopically trivial then ΣCP2 ' S3 ∨
S5, and we get from naturality of Sq2 that the following diagram commutes

H3(S3; F2)

��

Sq2 // H5(S3; F2) = 0

��
H3(S3 ∨ S5; F2)

Sq2 // H3(S3 ∨ S5; F2)

The vertical maps are induced by the projection onto S3, so the left one is
an isomorphism. Thus Sq2 : H3(S3 ∨ S5; F2) → H5(S3 ∨ S5; F2) is zero,
which contradicts our previous calculation, so Σh is non-trivial. The same
argument can be made for any suspension Σkh : S3+k → S2+k.
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Corollary 2.1.2. πk+1(Sk) 6= 0 for all k ≥ 2.

Proof. From the example above, we have at least one non-zero class in
πk+1(Sk) for any k ≥ 2.

Second example is a bit more generic for the squares

Example 2.1.3 With the squares we can show that CP4/CP2 is not homo-
topy equivalent to S8 ∨ S6, even though H∗(CP4/CP2;R) ' H∗(S8 ∨ S6;R)
for any coe�cient ring R. From cellular cohomology we know that both
have cohomology groups R, in degree 0,6 and 8, and both must have trivial
product structures, by degree considerations.

We know that H∗(CP4; F2) ' F2[x]/(x5) for |x| = 2, so H6(CP4/CP2; F2)
is generated by x3, and H8(CP4/CP2; F2) by x4. Now by property (1.4), the
Cartan formula and (1.1) we have

Sq2(x3) = Sq0(x2)Sq2(x) + Sq1(x2)Sq1(x) + Sq2(x2)Sq0(x)

= x2 ` x2 + x ` Sq2(x2)

= x4 + x ` (Sq0(x)Sq2(x) + Sq1(x)Sq1(x) + Sq2(x)Sq0(x))

= x4 + x ` (x ` x2 + x2 ` x)

= 3x4 = x4 6= 0

On the other hand we have a diagram similar to the previous example

H6(S6; F2)

��

Sq2 // H8(S6; F2) = 0

��
H6(S6 ∨ S8; F2)

Sq2 // H8(S6 ∨ S8; F2)

showing that Sq2 : H6(S6 ∨ S8; F2) → H8(S6 ∨ S8; F2) is zero. Hence
CP4/CP2 6' S6 ∨ S8.

These were both fairly simple examples, and they were all I could �t in
here. There is a nice example in [Hat] (theorem 1.40) calculating homotopy
groups of spheres. That one shows more of the powerful tool they are, but
it is rather long.
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Chapter 3

Discussion

3.1 Key points in construction

This section is meant to be a brief comment on why what we have done
actually works.

First thing to notice is the important role the �bres from lemma 1.2.3
play, in giving the construction the appropriate properties, and letting us
verify these. Beginning our construction on the �bre with the cross product
power of the fundamental class, and extending from there give us just the
necessary control of the construction. That depends on the Borel construc-
tion (in our case S∞ ×G X∧p) and the subspaces and quotients of the Borel
construction made on the original space, and this construction can be gener-
alized a lot.

The second thing is something already hinted at during the construction.
What gets the whole thing going is proposition 1.2.4, the �rst extension
from the map de�ned on the �bre. The subsequent extensions were obtained
more or less for free through standard obstruction theory.

Other references1 typically make the construction of the Steenrod op-
erations on cochain level, instead of on space level as we have done here.
One advantage of that approach, is the transparency of the origin of the
operations. In [Bre93] it is claimed, that the Steenrod operations owe their
existence to the fact that the cup product is not graded commutative on
cochain level. It is illustrated by noting, that the �rst extension of a diago-
nal approximation (playing the same role as ιn ⊗ ιn in the case p = 2) can
be taken to be trivial if the cup product were graded commutative. It is
then claimed that this would lead to properties for the operations, which are

1E.g. [Bre93] chapter VI 16



3.2 Further development 26

known not to be true.
We can rediscover this in our construction as well. The corresponding

claim is that the homotopy ι⊗pn T ∼ ι⊗pn is not an equality. Consider the
composition

L1 ×Kn
� � // L∞ ×Kn

φ //

∇

44ΓS∞Kn
// ΛKn

λ // Knp

where we recall that φ was induced by id× d mapping Kn to the diagonal of
K∧pn by d. Had the homotopy been an equality, then for purpose of the above
composition, the action of Zp on S

∞ ×K∧pn could be taken to be trivial on
the second factor. In particular ∇∗(λ(ιn)) = (idL∞ × d)∗(ι⊗pn ) = 1⊗ ιpn when
expanded through the Künneth formula. But then

θi(ιn) =

{
ιpn i = n
0 i 6= n

and we know this is not the case. If we accept the claim that the non-triviality
of the homotopy correspond to the non-triviality of the chain homotopy given
in [Bre93], this shows that the existence of Steenrod operations is an obstruc-
tion to a graded commutative cup product at cochain level. The other way
around as claimed in [Bre93] is not evident from this.

Finally there is the correspondence between cohomology and maps into
Eilenberg-MacLane spaces, which we use in our construction all the time. But
with regard to the other references, this seems to be more of a convenient
thing to exploit, than a necessity for the construction.

3.2 Further development

Aside from the obvious task of verifying the properties of the Steenrod pow-
ers, I see at least two interesting further developments to pursue.

The �rst one is connected to the discussion above, namely to establish in
what other contexts we might expect to �nd similar operations, and maybe
even �nd su�cient and necessary conditions for their existence. Some of the
key points noticed in the construction we have made here might provide a
clue to this. For example [Lur] shares some of the traits.

It can be shown that it is in fact possible to make the cup product graded
commutative on cochain level if we consider cohomology with coe�cients in a
�eld of characteristic zero. As an example of the consequence of this, we may
consider singular cohomology with coe�cients in Q. From lemma 1.3.1 we
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see that the possible cohomology operations would correspond to elements
of Hm(K(Q, n); Q). It can be shown2 that

H∗(K(Q, n); Q) '
{

Q[x] |x| = n odd
ΛQ[x] |x| = n even

So for n even there are only the zero and the identity operations, and for
n odd there are the exponentiation operations as well (with respect to cup
product). These are however not stable (i.e. commuting with suspension)
as cup products of positive dimensional classes are zero in any suspension.
Simply consider the relative cup product in the following setting

Hk(ΣX,CX+)×H l(ΣX,CX−)
'

` // Hk+l(ΣX,CX+ ∪ CX−)
'

H̃k(ΣX, ∗)× H̃k(ΣX, ∗)
`

// H̃k+l(ΣX/ΣX)

with any coe�cient ring. CX+ and CX− are the two cones plus a small strip
so that they cover the suspension ΣX. The pairs are all good, so the vertical
maps are isomorphisms, and the bottom map shows that the cup product
vanishes on a suspension.

This shows that there are then no stable operations at all, when taking
cohomology with coe�cients in Q. In particular there are nothing similar to
the Steenrod operations as we also argued would be the case above.

On a related note, one could ask if there are any other stable cohomology
operations for Fp-cohomology, than those we already have mentioned in this
project. Steenrod himself showed, that the Steenrod operations are uniquely
determined by the properties (1.1) - (1.5) and respectively (1.6) - (1.7) or
(1.10) - (1.11), for squares respectively powers.3 But could there be others?

This also bring us to the second point to pursue. Namely the Steenrod
algebra, as mentioned already in the introduction, along with the structure
and applications of this. We de�ne the Steenrod algebra A2 as the F2-
algebra which is a quotient of polynomials in the non-commuting variables
Sq1, Sq2, . . . by the two-sided ideal generated by the Adem relations. Of
course there are similar Steenrod algebras Ap, for p odd. In this case in the
variables are βp, P

1, P 2, . . ., and the ideal is generated by the Adem relations
and the relation β2

p = 0.
For every space X, we then have that H∗(X; Fp) is a module over the

Steenrod algebra Ap, and examining this further will let us exploit the Steen-

2By use of the Serre spectral sequence [Hat] chapter 1, prop. 1.20.
3In [Ste62] chapter VIII, paragraph 3.
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rod operations to a much higher extend, and put further constraints on topo-
logical spaces. But more to the point of the question above, the introduction
of admissible monomials, and excess of those, leads to a theorem originally
by J. P. Serre,4 which has as a consequence that all stable cohomology oper-
ations with Fp coe�cients are polynomials in the Steenrod operations.

This connects the study of stable cohomology operations to that of the
Steenrod algebra. A common approach to ring theory, is to study the mod-
ules over a ring instead of the ring itself, which suggests that the study of
modules over the Steenrod algebra is worth a visit. For example [Sch94] looks
interesting.

4Theorem top of p. 500 [Hat02], proved in [Hat] section 1.3.
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Appendix A

Loose ends

A.1 Preliminary functors revisited

The �rst part of the construction presented a few functors, which were used
throughout the project. It is easily checked that they are in fact functors,
but it was only claimed so to make the exposition a bit smoother. Here we
will make some remarks on the would be functors, but not show them to be
so in full detail.

The �rst construction made was Fn mapping a pointed space (X, x0) to
X∧n. For a map f : (X, x0) → (Y, y0) we then de�ne Fnf([(x, . . . , x)]) =
[(f(x), . . . , f(x))]. This is easily seen to be well-de�ned and functorial.

Second construction was Y ×G − mapping a pointed G-space (X, x0) to
(Y × X)/G, whenever Y was a Hausdor� G-space with free action, and
x0 was �xed by G. For a G-equivariant map f : (X, x0)→ (X ′, x′0), we then
let Y ×G f = f̄ : Y ×G X → Y ×G X ′ be given by f̄([y, x]) = [y, f(x)].
We here check that this is well-de�ned, i.e. that if (x, y) = (g.y, g.x) then
(y, f(x)) = (g.y, f(g.x)) = (g.y, g.f(x)), since f is equivariant.

Clearly idX is sent to idY×GX and compositions are preserved, so we have
de�ned a functor.

Third and �nal construction was to pass to the quotient ΛY from ΓY . But
quotients are functorial, so having noted that the above construction is a
functor, this one is too.
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Also we postponed the proof of lemma 1.2.3, which we will include here.

proof of lemma 1.2.3. Clearly we get an induced map on the quotients since
the projection commutes with the group action, and we check that this is a
�bre bundle.

First we show that the quotient map p : Y → Y/G is a �bre bundle
with �bre G. For a point [y] ∈ Y/G, we construct an open neighborhood as
follows. Pick a representative y for [y]. For each g ∈ G we can choose an
open neighborhood Ugy of gy in Y , such that Ugy∩Uhy = ∅ for all h 6= g ∈ G.
This we can do since the action of G on Y is free, so h 6= g implies hy 6= gy,
and these distinct points can be separated as Y is Hausdor�. Now as p is
open and G is �nite, U[y] :=

⋂
g∈G p(Ugy) is an open neighborhood around

[y] in Y/G, and p−1(U[y]) =
∐

g∈G gU[y] ' G × U[y]. So on U[y] we have the
trivialization we wanted, showing that p : Y → Y/G is a �bre bundle with
�bre G.

Equivalently we can form a local section on U[y]. Note that U[y] is of
the form Z[y]/G for an open set Z[y] ⊂ Y , and consider one such section
s : Z[y]/G→ Y . This we will now use to de�ne our homeomorphism for the
local trivialization of π : Y ×G X → Y/G.

We have that π−1(Z[y]/G) = Z[y]×GX, and de�ne a map h : Z[y]/G×X →
Z[y] ×G X, by mapping ([z], x) 7→ [s([z]), x]. This is well de�ned since s only
depends on the class of z, and it is continuous since both s and the quotient
map q : Y ×X → Y ×G X are so. Note that �rst coordinate of q is just p.

Now assume that [s([z]), x] = [s([z′]), x′]. In particular there exists a
g ∈ G such that s([z]) = gs([z′]) and x = gx′, and if we apply p to this �rst
equation we get [z] = [z′] since s is a section for p. G acts freely on Y so this
implies that g = e, the identity, and further x = x′. Hence h is injective.

Finally we show that h is surjective, so we let [z, x] ∈ Z[y]×GX be given.
Since ps = id we know that there exists a g ∈ G such that gs([z]) = z. Now
h([z], g−1x) = [s([z]), g−1x] = [z, x], and h is surjective. h is also an open
map, since both s and q are open, so we conclude that h is a homeomorphism,
and it is evident from the above, that the �bre for π is indeed X.

A.2 CW structure of spaces involved

In section 1.2.2 we make the assumption that the space we construct the
Steenrod operations on has a CW structure. This we do in order to apply
the bijection 〈X,K(Zp, n)〉 ' Hn(X,Zp).
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As shown in Hatcher, we may replace a spaceX by a homotopy equivalent
one X ′ without changing the cohomology groups. By naturality of the cup
product also the ring structure is preserved. In particular the cohomology
ring is una�ected when we replace our pointed spaces by CW-approximations.

Having done this, it is fairly easy to check, that for a CW complex X
with basepoint x0 as zero cell, also ΓYX and ΛYX carries a CW structure
whenever Y is a CW complex such that also Y/G has a CW-structure. We
note that both these spaces arise from a series of product and quotient con-
structions both of which are given natural CW-structures as described in
[Hat02] p. 8 and p. 524-525.

A.3 Finite generation of Hk(Kn)

Finite generation in each degree is one of the prerequisites for the cross
product to give an isomorphism. This does not hold for arbitrary spaces,
and the observant reader will have noticed that the notation α×p has been
used in place of α⊗p otherwise used when handling the ιn's. These are classes
in H∗(Kn), and hence we must show that Hk(Kn) is �nitely generated for
all k and n.

Lemma A.3.1. If Hk(A; Z) and Hk−1(A; Z) are �nitely generated, then
Hk(A; Zp) is �nitely generated.

Proof. Assume that Hk(A; Z) and Hk−1(A; Z) are �nitely generated. Then
also Hk(A; Z)⊗ Zp and

TorZ(Hn−1(A; Z),Zp) ' Ker(Hn−1(A; Z)
p→ Hn−1(A; Z))

are so, and by the universal coe�cient theorem for homology1, Hk(A; Zp) is
�nitely generated. Now by the universal coe�cient theorem for cohomology
Hk(A; Zp) ' HomZp(Hk(A; Zp),Zp), but this is �nitely generated as it is just
the dual vector space to the �nitely generated Hk(A; Zp).

Thus having reduced our task to showing that homology is �nitely gener-
ated, we proceed by induction on n. The case n = 1 is known, as this is just
an in�nite lens space, which have homology groups Z,Zp and 0, in 0'th, odd
and even degrees. For n ≥ 2 we have to use somewhat more advanced tools.
One approach to this is to use Serre's spectral sequence for homology2, which

1[Hat02] p. 264.
2[Hat].
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we shall have to assume is well-known. Consider the path-loop �bration

ΩK(Zp, n) // PK(Zp, n) // K(Zp, n)

K(Zp, n− 1) pt.

and note that π1(K(Zp, n)) = 0 since n ≥ 2.
Inductively we assume that H∗(K(Zp, n − 1); Z) is �nitely generated in

every degree. We know that the sequence converges to the homology of a
point since the pathspace is contractible. So on the E∞-page we get �ltrations
of zero in every diagonal except in total degree zero, where we get Z. We
show by induction on k that Hk(K(Zp, n); Z) is �nitely generated for all k.
K(Zp, n) is connected as n > 0, so the base case is �ne.

Now assume inductively that Hm(K(Zp, n); Z) is �nitely generated for all
m < k. By the splitting given by universal coe�cient theorem we get that

E2
s,t = Hs(K(Zp, n);Ht(K(Zp, n− 1); Z))

' Hs(K(Zp, n); Z)⊗Ht(K(Zp, n− 1); Z)

⊕ TorZ(Hs−1(K(Zp, n); Z), Ht(K(Zp, n− 1); Z))

so all the E2 terms with s < k are �nitely generated, since each factor in the
tensor product is, by the two induction hypothesis. Then also the Er terms
with s < k are �nitely generated for any r > 2 as they are quotients of the
corresponding E2 terms.

We know that E∞k,0 = 0, and we can now recover E2
k,0 = Hk(K(Zp, n); Zp)

from the di�erentials, all with images in E∗-terms with s < k.
Concretely consider Er+1

k,0 = Kerdr ⊆ Er
k,0, and the standard short exact

sequence

0 // Er+1
k,0

// Er
k,0

dr // Imdr // 0 (A.1)

The dr di�erential lands in E
r
k−r,r−1, so by the induction hypothesis (k− r <

k), the image is �nitely generated. From (A.1) and the following lemma, we
conclude that Er+1

k,0 is �nitely generated if and only if Er
k,0 is. By downward

induction we get E2
k,0 �nitely generated as we wanted.
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Lemma A.3.2. Given a short exact sequence of abelian groups

0 // A
α // B

β // C // 0

with C �nitely generated, then A is �nitely generated if and only if B is.

Proof. First assume that B is �nitely generated. Then also A ' Imα ⊆ B is
�nitely generated. On the other hand, assume A is �nitely generated. Every
element b ∈ B represents a class of B/Kerβ ' C. Elements of each class
di�er only by a �nitely generated element as Imα ' Kerβ, and each class
can be presented in the �nitely many generators of C.

Thus also H∗(K(Zp, n); Z) is �nitely generated in every degree, and by
induction we conclude that H∗(K(Zp, n); Z) is �nitely generated in every
degree for all n. By lemma A.3.1 we conclude that also H∗(K(Zp, n); Zp) is
�nitely generated in every degree.

A.4 Note on the cross product

A few places in the construction it has been stated that something is ob-
tained by expanding through the cross product isomorphism. This we shall
elaborate a bit on here.

Let A,B,C,D be CW-complexes, such that at least A and C have �nitely
generated cohomology in every degree. Consider cohomology with coe�cients
in some �eld k, such that the cross product gives an isomorphism. For
maps f : A → C and g : B → D and arbitrary n ≥ 0, we get a map
(f × g)∗ : Hn(C × D; k) → Hn(A × B; k), and by naturality of the cross
product, a commuting square

H∗(C ×D; k)
(f×g)∗ // H∗(A×B; k)

H∗(C; k)⊗H∗(D; k)

× '

OO

// H∗(A; k)⊗H∗(B; k)

' ×

OO

The claim implicitly made during the construction, is that the bottom map of
this square is H∗(f)⊗H∗(g). We show this by verifying that the square actu-
ally commutes with this choice. It is enough to check for elements of the form
c ⊗ d with c ∈ H i(C; k) and d ∈ Hj(D; k), since these generate H i(C; k) ⊗
Hj(D; k), and we then extend linearly to get to H∗(C; k) ⊗ H∗(D; k). The
cellular cross product for cohomology maps c⊗ d to c× d ∈ H i+j(C ×D; k)
where (c×d)(ek×el) = c(ek)d(el) for all k, l ≥ 0. Here we use the convention
that a cellular cochain in degree n is de�ned on the whole complex, but only
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supported on n-cells. Then H i+j(f × g)(c × d) = H i(f)(c) × Hj(g)(d) ∈
H i+j(A×B; k).3

Going the other way around the square gives us �rst

(H∗(f)⊗H∗(g))(c⊗ d) = H i(f)(c)⊗Hj(g)(d)

which is then mapped to H i(f)(c) × Hj(g)(d) by the cross product. This
shows the claim.

3Although this looks quite innocent, it is a nontrivial fact proved in [Hat02] Lemma
3B.2
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