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Abstract

We study the space of maps from the classifying space of a finite p-group to the
Borel construction of a finite group of Lie type G in characteristic p acting on its
building. The first main result is a description of the homology with Fp-coefficients,
showing that the mapping space, up to p-completion, is a disjoint union indexed
over the group homomorphism up to conjugation of classifying spaces of centralizers
of p-subgroups in the underlying group G. We complement this description by
determining the actual homotopy groups of the mapping space. These results
translate to descriptions of the space of maps between a finite p-group and the
uncompleted classifying space of the p-local finite group coming from a finite group
of Lie type in characteristic p, providing some of the first results in this uncompleted
setting.

Resumé

Vi undersøger rummet af afbildninger fra det klassificerende rum af en endelig
p-gruppe til Borel konstruktionen af en endelig gruppe G af Lie type i karakteristik
p virkende på sin bygning. Det første hovedresultat er en beskrivelse af homologi
med Fp-koefficienter, der viser at afbildningsrummet op til p-fuldstændiggørelse
er en disjunkt forening indekseret over gruppehomomorfier op til konjungering af
klassificierende rum af centralisatorer af p-undergrupper i den underliggende gruppe
G. Vi udvider denne beskrivelse ved at bestemme de egentlige homotopigrupper
af afbildningsrummet. Disse resultater oversættes til beskrivelser af rummet af
afbildninger mellem en endelig p-gruppe og et ikke fuldstændiggjort klassificerende
rum for en p-lokal endelig gruppe stammende fra en endelig gruppe af Lie type i
karakteristik p, og giver nogle af de første resultater i dette ikke-fuldstændiggjorte
tilfælde.
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Introduction

For two groups H and G the space of unpointed maps Map(BH,BG) between
their classifying spaces encodes algebraic properties of the groups in a topological
setting.

For discrete groups H and G the set of homotopy classes of maps [BH,BG] is
in bijection with Rep(H,G), the set of group homomorphisms modulo conjugation
in the group G. A classical result states that there is a complementary description
of the homotopy type of the space Map(BH,BG) in the form for a homotopy
equivalence ∐

ρ∈Rep(H,G)B(CG(ρ(H))) Map(BH,BG)' ,

where the left-hand side consists of the centralizers in the underlying group. For a
group homomorphism ρ : H → G the homotopy equivalence from B(CG(ρ(H))) to
Map(BH,BG)Bρ is induced by the product map B(CG(ρ(H))) ·H → G by taking
the adjoint after going to classifying spaces.

Many generalizations of this result to the larger classes of groups have been
proved. Among them, Dwyer–Zabrodsky [16] showed that the map

∐
ρ∈Rep(Q,G)B(CG(ρ(Q))) Map(BQ,BG)

strong
mod-p

,

defined in an analogous way to the classical result is a strong mod-p-equivalence,
when p is a prime, Q is a finite p-group and G is a compact Lie group. Here, a
strong mod-p-equivalence is a bijection on connected components — an isomorphism
on the fundamental group for each component and an isomorphism in homology
with coefficients in the finite field Fp for the lift to universal covers. Several authors
have worked on relaxations of the conditions on the groups P and G as well as
replacing them with their p-completion, e.g. Notbohm [30] and Broto–Kitchloo [7].
These results are often in the form of mod-p-equivalences, i.e. maps that induce
isomorphism in homology with Fp-coefficients.

The p-completion of a space was defined by Bousfield–Kan [6] and is a functor on
spaces that embodies the properties detected by homology with Fp-coefficients, in
the sense that completion of a map is a homotopy equivalence if and only if it is a
mod-p-equivalence. The p-completion comes equipped with a natural transformation
from the identity functor to itself and for nice spaces — called p-good — the natural
map X → X∧p is a mod-p-equivalence. Thus for p-good spaces the p-completion can
be considered as a localization with respect to homology with Fp-coefficients. It
is worth noting that all spaces with finite fundamental group are p-good but even
spaces like the wedge of two spheres S1 is not p-good.

One of the first indications of what kind of information the p-completion of a
finite group G contains comes from a result by Mislin [29], who showed that for a
finite p-group Q the map

Rep(Q,G)
[
BQ,BG∧p

]∼=

is a bijection. This result of Mislin is the essential component to show that the
p-local structure of a group, i.e the conjugation action between p-subgroups, is
witnessed by the p-completion of its classifying space. In this thesis the focus will
be on a different space that similarly detects p-local information.
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For a finite group G we have that Sp(G) is the poset of nontrivial p-subgroups of G
ordered by inclusion. The G-conjugation action respects the inclusion making Sp(G)
into a G-poset. One of the most important properties of the poset Sp(G), from the
viewpoint of this thesis, is the idea proposed by Quillen [33] of considering Sp(G)
as a generalization of the Tits building [40]. A building is an abstract simplicial
complex with a very rigid structure. For groups acting simplicially on a building, the
group itself has a BN -pair structure (also called a Tits system) and vice versa for a
group G with a BN -pair there exists a building ∆(G,B) on which G acts. Thus, for
groups with a BN -pair the associated building is a combinational way of encoding
the group structure. A class of groups with a BN -pair of particular interest for this
thesis are the finite groups of Lie type in characteristic p, since for such groups G
the poset Sp(G) and the building ∆(G,B) are G-homotopy equivalent.

The geometric realization |Sp(G)| of the G-poset Sp(G) is a G-space. The main
focus of the thesis is on the Borel construction of Sp(G), i.e. the space

|Sp(G)|hG = |Sp(G)| ×G EG = (|Sp(G)| × EG)/G

where EG is the total space for the universal bundle EG → BG for G. Like any
G-invariant the map sending |Sp(G)| to a point will induce a map |Sp(G)|hG → BG,
called the Borel map, which is a fibration with fiber |Sp(G)|. The collection of
subgroups Sp(G) is ample in the sense of [17] when p divides the order of G, meaning
that the Borel map is a mod-p-equivalence. In particular it induces a homotopy
equivalence on the p-completions (|Sp(G)|hG)∧p → BG∧p , and thus by the result of
Mislin [29] the space |Sp(G)|hG also contains p-local information about the group
G. Furthermore |Sp(G)|hG could also encode more global information, which could
prove relevant for the applications of the space in modular representation theory,
among others the work of Grodal [20] on endotrivial kG-modules.

In this thesis we address the question of understanding the space |Sp(G)|hG by
studying the space of unpointed maps from a finite p-group to the Borel construction
|Sp(G)|hG in the case where G is a finite group of Lie type in characteristic p. The
first main is result is in form of a mod-p-equivalence.

Theorem A. Let G be finite group of Lie type in characteristic p, and let Q be a
finite p-group. Then the Borel map |Sp(G)|hG → BG induces a mod-p-equivalence

Map(BQ, |Sp(G)|hG) Map(BQ,BG).
p
v

The classical description of Map(BQ,BG) shows that this is a p-good space,
and thus an equivalent formulation of the above theorem is that the map after
p-completion

Map(BQ, |Sp(G)|hG)∧p Map(BQ,BG)∧p
'

is a homotopy equivalence. A consequence of this viewpoint is that the spaces
Map(BQ, |Sp(G)|hG)∧p and Map(BQ, (|Sp(G)|hG)∧p ) are homotopy equivalent, which
will not be true in general when mapping into infinite complexes. In particular,
Theorem A does not follow directly from the collection Sp(G) being ample.

An important corollary of Theorem A that mimics the classical description of
homotopy classes of map as well more modern generalizations is:

Corollary B. Let G be a finite group of Lie type in characteristic p, and let Q be
a finite p-group. Then there is a bijection [BQ, |Sp(G)|hG]→ Rep(Q,G).
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In the thesis we also describe the homotopy type of the spaces appearing in the
left hand side of Theorem A. For f ∈ Rep(Q,G) the corresponding component
Map(BQ, |Sp(G)|hG) is denoted Map(BQ, |Sp(G)|hG)f . Drawing inspiration from
the classical description of the mapping space between classifying spaces of groups,
these spaces can be considered to be the homotopical analog of centralizers of p-order
elements in the space |Sp(G)|hG.

Theorem C. Let G be a finite group of Lie type in characteristic p. For Q a finite
p-group and f ∈ Map(Q,G), let |Sp(G)| be a Q-space with the action induced by f .
If the Lie rank of G is 1 we have that

Map(BQ, |Sp(G)|hG)1 ' B(B)

Map(BQ, |Sp(G)|)f ' B(CG(f(Q))), f 6= 1

where B is a Borel subgroup of G. If the Lie rank of G is 2 we have that

Map(BQ, |Sp(G)|)1 ' B(Pα ∗B Pβ)

Map(BQ, |Sp(G)|)f ' B(CG(f(Q))), f 6= 1

where B is a Borel subgroup of G and Pα and Pβ are the maximal standard proper
parabolic subgroups over B.

If G has Lie rank at least three, we have for f the trivial map

πi(Map(BQ, |Sp(G)|hG)1
∼= πi(|Sp(G)|), i ≥ 2

π1(Map(BQ, |Sp(G)|hG)1
∼= G

and for f nontrivial we have for all i ≥ 2

πi(Map(BQ, |Sp(G)|hG)f ) ∼= Torp′(πi(|Sp(G)|)Q)

⊕
(
πi+1(|Sp(G)|)Q ⊗ (Zp/Z)

[
1

p

])
.

If the rank of G is at least 4 we have that

π1(Map(BQ, |Sp(G)|hG)f ) ∼= CG(f(Q))

while for rank 3 we have the following short exact sequence:

0→ π2(|Sp(G)|)Q ⊗ (Zp/Z)

[
1

p

]
→ π1(Map(BQ, |Sp(G)|hG)f )→ CG(f(Q))→ 0.

In the above Theorem we use the notation Torp′ for the subgroup of the torsion
group in an abelian group that is generated by elements of order prime to p.

The results in rank 1 and 2 are derived from the fact that in this case |Sp(G)|hG
is a classifying space of the Borel subgroup B in rank 1 and the given amalgamated
product Pα ∗B Pβ in rank 2. In higher rank it is never the case that |Sp(G)|hG is a
classifying space of a discrete group.

As mentioned above, the space |Sp(G)| for a finite group of Lie type G in
characteristic p is G-homotopy equivalent to the associated Tits building, and thus
all the given results could equivalently be formulated in terms of the building.
Furthermore according to the Solomon–Tits theorem[37], this implies that the
geometric realization of Sp(G) for finite groups of Lie type in characteristic p has
the homotopy type of a wedge of spheres, where the dimension of the spheres all
are one less than the Lie rank of the underlying group. Hilton proved in [21] how
the homotopy groups of arbitrary wedges of spheres can be presented in terms
of homotopy groups of spheres and thus the same is true for the fixed points
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π∗(|Sp(G)|)Q from Theorem C. In particular one should not expect a general
formula for the p prime part of the torsion groups of this group. Theorem C also
concerns groups of the form π∗(|Sp(G)|)Q⊗ (Zp/Z)[ 1

p ]. Here it is important that the
group (Zp/Z)[ 1

p ] is divisible. The isomorphism type of an abelian group A tensored
with a divisible group depends — by the classification of divisible groups — only
on the free rank of the group or the dimension of the rationalization A ⊗ Q as a
vector space over Q. This observation allows us to describe the divisible groups
π∗(|Sp(G)|)Q ⊗ (Zp/Z)[ 1

p ] from Theorem C in terms of dimensions of Lie algebras
and more specifically in terms of the Lie operad.

The main application in the thesis is translating all results into the setting of
p-local finite groups. Recall that a p-local finite group is a triple (S,F ,L), where
S is a finite p-group, F is a saturated fusion system on S and L a centric linking
system associated to F . A saturated fusion system on a finite p-group is a category
with objects the subgroups of S and morphisms generalized conjugation maps that
satisfy axioms of a similar nature to Sylow’s theorems for groups. The axiomatic
approach for fusion systems was originally presented by Puig in the nineties — he
called them Frobenius categories — but the work was first published in [32]. By
then the terminology and viewpoint of Broto–Levi–Oliver [9] had become standard
in the community. They introduced the centric linking system, which is a lift of the
category FS(G) and by the work of Chermark [15] it is an invariant of the fusion
system. In the thesis the geometric realization |L| is seen as the classifying space of
the associated p-local finite group (S,F ,L).

In [9] Broto–Levi–Oliver proved that for any p-local finite group (S,F ,L) and
finite p-group Q there is a bijection

[BQ, |L|∧p ] ∼= Hom(Q,S)/(F-conjugacy)

and each component of the mapping space Map(BQ, |L|∧p ) has the homotopy type
of the p-completion of the classifying space of another p-local finite group, which
can be seen as a generalization of centralizers to p-local finite groups.

A special case of p-local finite groups are those induced by the conjugation action
of a finite group G on a Sylow-p-subgroup S. They are denoted (S,FS(G),LcS(G)),
and it was shown by Broto–Levi—Oliver in [8] that the space |LcS(G)|∧p is homotopy
equivalent to BG∧p . In this thesis the focus is on on the case where G is a finite
group of Lie type in characteristic p. Here the uncompleted space |LcS(G)| has the
homotopy type of |Sp(Ḡ)|hḠ for the quotient group Ḡ of G modulo its center Z(G),
thus opening for the possibility of detecting more than just the p-local information
about G in the space |LcS(G)|. This also allows a formulation of Theorem A,
Corollary B and Theorem C for p-local finite groups of Lie type.

Theorem D. Let G be finite group of Lie type in characteristic p, and let S be a
Sylow-p-subgroup of G. Let (S,FS(G),LcS(G)) be the p-local finite group associated
to S, and Q be a finite p-group. The space Map(BQ, |LcS(G)|) is then p-good and
there is a homotopy equivalence

Map(BQ, |LcS(G)|)∧p Map(BQ,BG)∧p .
'

Corollary E. Let G be a finite group of Lie type in characteristic p, and let S be a
Sylow-p-subgroup of G. Let (S,FS(G),LcS(G)) be the p-local finite group associated to
S, and Q be a finite p-group. Then there is a bijection [BQ, |LcS(G)|]→ Rep(Q,G).
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Similarly we show results concerning the homotopy type of the components of
the mapping space, and provide a complementing view of the results in [9] in an
uncompleted setting.

Theorem F. Let G be finite group of Lie type in characteristic p, and let S be a
Sylow-p-subgroup of G. Let (S,FS(G),LcS(G)) be the p-local finite group associated
to S. Let Q be a finite p-group and let Map(BQ, |LcS(G)|)f be the component
corresponding to an f ∈ Rep(Q,G). Then the homotopy groups are given as follows.

If the Lie rank of G is 1 we have that

Map(BQ, |LcS(G)|)1 ' B(B/Z(G))

Map(BQ, |LcS(G)|)f ' B(CG(f(Q))/Z(G)), f 6= 1

where B is a Borel subgroup of G. If The Lie rank of G is 2 we have that

Map(BQ, |LcS(G)|)1 ' B((Pα/Z(G)) ∗(B/Z(G)) (Pβ/Z(G))

Map(BQ, |LcS(G)|)f ' B(CG(f(Q))/Z(G)), f 6= 1

where B is a Borel subgroup of G and Pα and Pβ are the maximal standard parabolic
subgroups over B.

If G has Lie rank at least 3, then the component corresponding to the trivial map
Map(BP, |LcS(G)|)1 has the following homotopy groups:

π1(Map(BQ, |LcS(G)|)1) ∼= G/Z(G)

πi(Map(BQ, |LcS(G)|)1) ∼= πi(|Sp(G)|), i ≥ 2.

If f is nontrivial we have for all i ≥ 2 that

πi(Map(BQ, |LcS(G)|)f ) ∼= Torp′(πi(|Sp(G)|)Q))⊕
(
πi+1(|Sp(G)|)Q ⊗ (Zp/Z)

[
1

p

])
.

Finally, the fundamental group fits into the following short exact sequence:

0→ π2(|Sp(G)|)Q⊗(Zp/Z)

[
1

p

]
→ π1(Map(BQ, |LcS(G)|)f )→ CG(f(Q))/Z(G)→ 0.

The results of the thesis could prove useful in modular representation theory. A
more direct future direction for the work is seeing whether the given techniques
can be used to describe other mapping spaces. In the thesis we only consider the
situation of a finite p-group and a finite group of Lie type in characteristic p. In
particular, the cross-characteristic case is still unexplored. The proof techniques
are based heavily on Sp(G) being homotopy equivalent to a building, and thus also
opens up the possibility that they could be used to describe the space of maps from
a finite p-group to some Borel construction on a more general building. A similar
idea in the setting of fusion systems is based on the fusion-chamber complex of
Onofrei[31] which may be seen as a (B,N)-decomposition of a fusion system with
an associated chamber complex. This covers examples such as the fusion system
of a finite simple group of Lie type in characteristic p extended by diagonal and
field automorphisms. The associated chamber complex will play the role of the Tits
building in the case of a finite group of Lie type, and thus might be accessible using
the techniques we present, and provide information about mapping spaces in the
case of p-local finite groups with a fusion-chamber complex.
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MAPPING SPACES, CENTRALIZERS, AND p-LOCAL FINITE
GROUP OF LIE TYPE

ISABELLE LAUDE

Abstract. We study the space of maps from the classifying space of a finite
p-group to the Borel construction of a finite group of Lie type G in characteristic
p acting on its building. The first main result is a description of the homology
with Fp-coefficients, showing that the mapping space, up to p-completion, is
a disjoint union indexed over the group homomorphism up to conjugation of
classifying spaces of centralizers of p-subgroups in the underlying group G. We
complement this description by determining the actual homotopy groups of the
mapping space. These results translate to descriptions of the space of maps
between a finite p-group and the uncompleted classifying space of the p-local
finite group coming from a finite group of Lie type in characteristic p, providing
some of the first results in this uncompleted setting.

1. Introduction

For discrete groupsH and G the space of unpointed maps between their classifying
spaces Map(BH,BG) has the homotopy type of∐

ρ∈Rep(H,G)

B(CG(ρ(H))),

where Rep(H,G) denotes the set of group homomorphisms modulo conjugation in
G. Generalizations of this result where H or G is allowed to be a compact Lie group
or the classifying space BG is replaced by its p-completion have attracted significant
attention. Notably in [16] Dwyer and Zabrodsky gave a mod-p description of the
space Map(BQ,BG) for Q a finite p-group and G a compact Lie group in terms of
centralizers in G, relaxations on H and G have been provided by several authors,
e.g. Notbohm [30] and Broto–Kitchloo [7].

With a different approach — generalizing work of Mislin [29] — Broto, Levi, and
Oliver showed in [9] that the space of maps Map(BQ, |L|∧p ) between the classifying
space of a finite p-group Q and the p-completed classifying space |L|∧p of p-local
finite groups (S,F ,L) has a mod-p description in terms of centralizer fusion systems.

For a prime p we let Sp(G) denote the G-poset of finite non-trivial p-subgroups of
G ordered by inclusion, where G acts by conjugation. This was originally introduced
by Brown in [10, 11] to compute the Euler characteristic and cohomology of groups,
and has since found many applications. The foundation is the work of Quillen in
[33] where he introduced the idea of considering the poset Sp(G) as a generalization
of a building. Notably in the case of a finite group of Lie type in characteristic p
the poset Sp(G) is G-homotopy equivalent to the Tits building.

In this paper we look at the Borel construction |Sp(G)|hG. When p divides the
order of G the collection Sp(G) of subgroups is ample (see [17]) meaning that after
p-completion the Borel map from |Sp(G)|hG to BG is a homotopy equivalence. The

10
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p-local structure of the group G is detected by the p-completion of its classifying
space according to Mislin’s result [29], and similarly the space |Sp(G)|hG encodes
much of the p-local information about G as well as possibly some global information.
The space |Sp(G)|hG also shows up in modular representation theory, as in the work
of Grodal [20] on endotrivial kG-modules.

In this paper we study the unpointed space of maps Map(BQ, |Sp(G)|hG), for
Q a finite p-group and G a finite group of Lie type in characteristic p. We will
refer to maps inducing isomorphisms on homology with Fp-coefficients as “mod-p-
equivalences”. Our first main result provides a mod-p description of the mapping
space:

Theorem 1.1. Let G be finite group of Lie type in characteristic p, and let Q be a
finite p-group. Then the Borel map |Sp(G)|hG → BG induces a mod-p-equivalence

Map(BQ, |Sp(G)|hG) Map(BQ,BG).
p
v

Both of the spaces in Theorem 1.1 are p-good and thus an equivalent formulation
of the theorem is that after p-completion the map

Map(BQ, |Sp(G)|hG)∧p Map(BQ,BG)∧p
'

is a homotopy equivalence. Here we use the notion of Bousfield–Kan p-completion
as defined in [6], but p-good spaces are exactly the spaces where the p-completion is
localization with respect to Fp-homology, so the statement could equivalently be
given in terms of localizations.

Another consequence of the formulation of Theorem 1.1 in terms of p-completions
is that the space Map(BQ, (|Sp(G)|hG)∧p ) is homotopy equivalent to the space where
we move the completion outside the mapping space. This is not true in general
when mapping into infinite complexes. This implies that Theorem 1.1 is a nontrivial
extension of the result where we p-complete both targets of the mapping spaces.

An important corollary in itself is

Corollary 1.2. Let G be a finite group of Lie type in characteristic p, and let Q
be a finite p-group. Then there is a bijection [BQ, |Sp(G)|hG]→ Rep(Q,G).

We can also determine the homotopy type of the spaces appearing in the left
hand side of Theorem 1.1. For f ∈ Rep(Q,G) we determine the homotopy type of
the corresponding component Map(BQ, |Sp(G)|hG), denoted Map(BQ, |Sp(G)|hG)f .
Note that these spaces can be considered the homotopical analog of centralizers of
p-order elements in the space |Sp(G)|hG.

Theorem 1.3. Let G be a finite group of Lie type in characteristic p. For Q a
finite p-group and f ∈ Map(Q,G), let |Sp(G)| be a Q-space with the action induced
by f . If the Lie rank of G is 1 we have that

Map(BQ, |Sp(G)|hG)1 ' B(B)

Map(BQ, |Sp(G)|)f ' B(CG(f(Q))), f 6= 1

where B is a Borel subgroup of G. If the Lie rank of G is 2 we have that

Map(BQ, |Sp(G)|)1 ' B(Pα ∗B Pβ)

Map(BQ, |Sp(G)|)f ' B(CG(f(Q))), f 6= 1
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where B is a Borel subgroup of G and Pα and Pβ are the maximal standard proper
parabolic subgroups over B.

If G has Lie rank at least three, we have for f the trivial map

πi(Map(BQ, |Sp(G)|hG)1
∼= πi(|Sp(G)|), i ≥ 2

π1(Map(BQ, |Sp(G)|hG)1
∼= G

and for f nontrivial we have for all i ≥ 2

πi(Map(BQ, |Sp(G)|hG)f ) ∼= Torp′(πi(|Sp(G)|)Q)⊕
(
πi+1(|Sp(G)|)Q ⊗ (Zp/Z)

[
1

p

])
.

If the rank of G is at least 4 we have that

π1(Map(BQ, |Sp(G)|hG)f ) ∼= CG(f(Q))

while for rank 3 we have the following short exact sequence:

0→ π2(|Sp(G)|)Q ⊗ (Zp/Z)

[
1

p

]
→ π1(Map(BQ, |Sp(G)|hG)f )→ CG(f(Q))→ 0.

In Theorem 1.3 we use the notation Torp′ for subgroup the of the torsion group
in an abelian group that is generated by elements of order prime to p.

A consequence of the Solomon–Tits theorems for spherical buildings [37] is that
|Sp(G)| has the homotopy type of a wedge of spheres of dimension one less than
the Lie rank of G. Hilton determined in [21] the homotopy groups of general
wedges of spheres in terms of homotopy groups of spheres. Theorem 1.3 shows
in the case where G has Lie rank at least three that the higher homotopy groups
of Map(BQ, |Sp(G)|hG)f are given by Q-fixed points of the homotopy groups of
|Sp(G)|, and split as a finite group of order prime to p and a divisible group. Thus
without a classification of homotopy groups of spheres no closed formula for the
p-prime part of the Q-fixed points of π∗(|Sp(G)|) should be expected. In this paper
we provide a description of the divisible part in terms of fixed points on a free Lie
algebra.

A consequence of Theorem 1.3 is that the Borel map |Sp(G)|hG → BG induces
homotopy equivalences on components corresponding to non-trivial maps in the
case of a finite group of Lie type of Lie rank either 1 or 2. It follows from Hilton’s
work [21] that this will never be the case in higher rank.

Recall that a p-local finite group is a triple (S,F ,L), where S is a finite group
and F and L are categories encoding a generalized conjugation maps on subgroups
of S. The category F is a saturated fusion system over S and L is a centric linking
system associated to F . Saturated fusion systems, called Frobenius categories, were
originally defined by Puig in the nineties but his work was first published in [32].
An equivalent definition together with the definition of centric linking system is
given by Broto–Levi–Oliver in [9].

In this article we will only work with a fusion system (S,FS(G),LcS(G)) coming
from a Sylow-p-subgroup S of a finite group G and refer to chapter 15 for definitions.
For p-local finite groups of this form, it was proved by Broto, Levi and Oliver in [8]
that the realization |LcS(G)| and BG are homotopy equivalent after p-completion,
and thus |LcS(G)| does contain the p-local information from G. By the work of
Chermak [15] the non-completed space |LcS(G)| is an invariant of the fusion system
FS(G) and in this paper we prove for a finite group of Lie type G in characteristic
p that the space |LcS(G)| is homotopy equivalent to |Sp(Ḡ)|hḠ for the quotient
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group Ḡ of G modulo its center Z(G). This allows for the possibility of the space
|LcS(G)| containing global information about the ambient group G, and thus makes
it relevant to compare the space of maps into it to the maps into the p-completion
of the underlying group.

The following statements are a translation of Theorems 1.1 and 1.3, as well as
Corollary 1.2 into the language of p-local finite groups.

Theorem 1.4. Let G be finite group of Lie type in characteristic p, and let S be a
Sylow-p-subgroup of G. Let (S,FS(G),LcS(G)) be the p-local finite group associated
to S, and Q be a finite p-group. The space Map(BQ, |LcS(G)|) is then p-good and
there is a homotopy equivalence

Map(BQ, |LcS(G)|)∧p Map(BQ,BG)∧p .
'

Corollary 1.5. Let G be a finite group of Lie type in characteristic p, and let
S be a Sylow-p-subgroup of G. Let (S,FS(G),LcS(G)) be the p-local finite group
associated to S, and Q be a finite p-group. Then there is a bijection [BQ, |LcS(G)|]→
Rep(Q,G).

Similarly we show results concerning the homotopy type of the components of
the mapping space, and provide an uncompleted version of the results in [9].

Theorem 1.6. Let G be finite group of Lie type in characteristic p, and let S
be a Sylow-p-subgroup of G. Let (S,FS(G),LcS(G)) be the p-local finite group
associated to S. Let Q be a finite p-group. Let Map(BQ, |LcS(G)|)f be the component
corresponding to an f ∈ Rep(Q,G). Then the homotopy groups are given as follows.

If the Lie rank of G is 1 we have that

Map(BQ, |LcS(G)|)1 ' B(B/Z(G))

Map(BQ, |LcS(G)|)f ' B(CG(f(Q))/Z(G)), f 6= 1

where B is a Borel subgroup of G. If The Lie rank of G is 2 we have that

Map(BQ, |LcS(G)|)1 ' B((Pα/Z(G)) ∗(B/Z(G)) (Pβ/Z(G))

Map(BQ, |LcS(G)|)f ' B(CG(f(Q))/Z(G)), f 6= 1

where B is a Borel subgroup of G and Pα and Pβ are the maximal standard parabolic
subgroups over B.

If G has Lie rank at least 3, then the component corresponding to the trivial map
Map(BP, |LcS(G)|)1 has the following homotopy groups:

π1(Map(BQ, |LcS(G)|)1) ∼= G/Z(G)

πi(Map(BQ, |LcS(G)|)1) ∼= πi(|Sp(G)|), i ≥ 2.

If f is nontrivial we have for all i ≥ 2 that

πi(Map(BQ, |LcS(G)|)f ) ∼= Torp′(πi(|Sp(G)|)Q))⊕
(
πi+1(|Sp(G)|)Q ⊗ (Zp/Z)

[
1

p

])
.

Finally, the fundamental group fits into the following short exact sequence:

0→ π2(|Sp(G)|)Q⊗(Zp/Z)

[
1

p

]
→ π1(Map(BQ, |LcS(G)|)f )→ CG(f(Q))/Z(G)→ 0.
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Now some words on the organization of the paper. After an overview of basic
definitions and properties of the essential objects in the paper, we determine in
Chapter 6 some homotopical properties of |Sp(G)| as well as the Borel construction
|Sp(G)|hG for the case of a finite group of Lie type of characteristic p. Most
importantly we show that when the Lie rank is 1 (respectively 2) the space |Sp(G)|hG
is a classifying space of a finite group (respectively an amalgamated product of
finite groups). As in the classical description of mapping spaces between classifying
spaces of discrete groups, Theorem 1.1 and 1.3 reduces in this case to a question of
comparing centralizers.

For a general amalgamated product ∗HGi determining the centralizer of a sub-
group of H is difficult. This question is discussed by Barkauskas in [4]. In this
paper we restrict ourselves to the situation of ∗HGi where the Gi’s are subgroups
of a finite group G with common intersection H. In chapter 7 we give conditions
sufficient for the canonical map ∗HGi → G to induce isomorphisms on centralizers
for some nontrivial subgroups of H. These conditions are in chapter 8 shown to be
satisfied in the case of the standard maximal proper parabolic subgroups in a finite
group of Lie type in characteristic p and Lie rank 2, which might be an interesting
result in its own right.

Theorem 1.7. For a finite group of Lie type G in characteristic p of rank 2, let S
be a Sylow-p-subgroup of G, B a Borel subgroup containing S and Pα and Pβ be the
two standard maximal proper parabolic subgroups over B. Then the canonical map
Pα ∗B Pβ → G induces isomorphism

CPα∗BPβ (Q) ∼= CG(Q)

for any nontrivial subgroup Q of S.

From the centralizer comparison we deduce Theorem 1.1 and 1.3 in rank 1 and 2
in chapter 9. For higher rank the space |Sp(G)|hG is never a classifying space of a
discrete group, and so a different approach is needed in that case. In chapter 10
we look at general spaces of map into a Borel construction and show Theorem 1.1
in the higher rank case, using a spectral sequence argument depending heavily on
the generalized Sullivan conjecture. It is worth noticing that the argument depends
on the space |Sp(G)| being simply connected, which is not the case for G a finite
group of Lie type of Lie rank 1 or 2. The proof of Theorem 1.3 in the high rank
case is based on a Sullivan square argument. In chapters 11 and 12 we prove the
necessary results to give the proof of Theorem 1.3 for G a finite group of Lie type
of rank at least 3, which we present in chapter 13. Chapter 14 is devoted to the
description in terms of Lie algebras of the divisible part of the higher homotopy
groups in Theorem 1.3 for groups G of Lie rank at least 3. We end the paper by
looking at applications of Theorem 1.1 and 1.3 for p-local finite groups of Lie type.

2. General definitions

For a group G, subgroup H ≤ G and g ∈ G, we will use the following notation
for the conjugate subgroup gH = {ghg−1 | h ∈ H} and write cg : H → gH for the
associated conjugation map.

Definition 2.1. • For subgroups P,Q of G the transporter set is

TG(P,Q) = {g ∈ G | gP ≤ Q}.
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• Let G be a finite group. Then the transporter category T (G) of G is a
category with objects all subgroups of G and morphism sets TG(P,Q) for
P,Q ≤ G

• For a subset H of subgroups in G, we let the transporter category TH(G)
on H be the full subcategory of T (G) with objects in H.

• For discrete groups H and G, the set Rep(H,G) is defined as

Hom(H,G)/{cg | g ∈ G}.

For a finitely generated abelian group A, we let Tor(A) denote the torsion
subgroup, and for a prime p we let Torp(A) be the subgroup of Tor(A) generated by
elements of order p. Similarly we let Torp′(A) be the subgroup of Tor(A) generated
by elements of order prime to p.

3. Finite group of Lie type

In the mathematical community there are several slight variations on what is
considered a finite group of Lie type. In this paper we will use the definition of
a finite group of Lie type from [18], which is slightly different to the one in [26].
Thus, according to [18, Definition 2.2.1] a finite group of Lie type in characteristic p
is the subgroup generated by p-order elements of the fixed points of a semisimple
Fp-algebraic group under a Steinberg endomorphism.

We will now list some properties for finite groups of Lie type and also fix the
notation for the rest of the paper. For explicit construction and proof of the
statements, we refer to [18].

A central property of finite groups of Lie type in characteristic p is that they
have a split BN -pair of characteristic p:

Definition 3.1. A split BN -pair of characteristic p on a group G is a pair of
subgroups B and N , and a finite set SW such that

• The groups B and N generate G.
• If we set H = B ∩N , then H is normal in N .
• The set SW is a set of involutions on the group W = N/H that generates
W .

• For every s ∈ SW , and w ∈W , we have that

sBw ⊆ BswB ∪BwB, sBs 6= B.

• For S = Op(B) there is a decomposition B = HS.
• ∩n∈NnB = H.

The group B is called the Borel subgroup and W the Weyl group associated to
the BN -pair. The Lie rank RkL(G) of a finite group of Lie type G is the cardinality
of the set SW of simple involutions generating the Weyl group. For a finite group of
Lie type G in characteristic p, we also have that S ∈ Sylp(G) and H is a group of
order prime to p.

In fact the Weyl group W can be seen as a Weyl group of a root system Φ.
In particular there is a basis of simple roots ∆, also known as the fundamental
system, such that every vector of Φ is a linear combination of vectors from ∆ with
the coefficients either all nonnegative or all nonpositive. We will call the roots
respectively positive and negative depending on the sign of their coefficients, and
use the notation Φ+ and Φ− for the sets of positive roots and negative roots. The
reflections corresponding to ∆ will be identified with the set SW . For any γ ∈ ∆ we
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let sγ be the corresponding reflection in SW . Furthermore for each γ ∈ Φ there is a
subgroup Uγ of G called the root subgroup of γ. Note that

S =
∏
γ∈Φ+

Uγ .

A word of warning concerning the definition of root systems. Following the
definitions from [18] we do not assume that a root system is crystallographic. In
fact there are finite groups of Lie type with a non-crystallographic root system, e.g.
the Ree groups of type 2F4(22n+1).

A subgroup of G is called parabolic, if it contains a subgroup conjugate to B.
For any γ ∈ ∆ we will pick tγ ∈ N , such that the image of tγ in W is sγ . For
any subset J ⊂ ∆ we let NJ = 〈tγ | γ ∈ J〉 and the standard parabolic subgroup
PJ be given as PJ = BNJB. This is in particular a parabolic subgroup and every
parabolic subgroup is conjugate to exactly one standard parabolic subgroup. Note
that P∅ = B and P∆ = G. A standard proper parabolic subgroup PJ is maximal if
|∆| = |J |+ 1.

For the rest of the paper, we will always assume that a finite group of Lie type in
characteristic p comes with a fixed split BN -pair of characteristic p, associated root
system Φ and root subgroups with the properties described above.

4. Amalgamated product of groups

To make the paper more accessible, we will recall some definitions concerning
amalgamated products of groups. The definitions coincide with the description in
[4].

Let (Gi)i∈I be a family of groups. Assume that for a group H and i ∈ I there
exists an injective group homomorphism fi : H → Gi. Then the amalgamated
product ∗HGi is the direct limit of the Gi’s over the fi’s. If we identify the group
H and the Gi’s with their image in ∗HGi, then every element in ∗HGi is a word of
the form

g = gn · · · g1

where for all 1 ≤ k ≤ n we have that gk ∈ Gik for some ik ∈ I. If g /∈ H we may
assume that gk ∈ Gik \H and ik 6= ik+1 for all 1 ≤ k < n. This is called the reduced
form for g, and n is its length. For an element in H the reduced form is just the
one letter word and the length defined to be zero. We call a reduced word gn · · · g1

cyclically reduced if the length n ≥ 2 and in 6= i1.
The reduced form of an element x /∈ H is not unique. To get uniqueness we pick

for each i ∈ I a transversal Ti for the right cosets H in Gi. Then the normal form
of a g ∈ ∗HGi is a decomposition

g = hg̃n · · · g̃1

where h ∈ H, and for 1 ≤ k ≤ n we have that g̃k ∈ Tik for some ik ∈ I, where
ik 6= ik+1 for all 1 ≤ k < n. Elements in B have normal form with n = 0. Every
element in ∗HGi has a unique normal form and n is called the length of g. In
particular elements in B have length zero. A normal form is called cyclically reduced
if the length n ≥ 2 and in 6= i1.

The process of transforming a reduced form of an element to its normal form
does not change the length, so the length of an element in ∗HGi may be determined
from the reduced form. Furthermore if g = gn · · · g1 is a reduced word, the normal
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form g = hg̃n · · · g̃1 will also satisfy that g̃k and gk both belong to the same group
Gik for all 1 ≤ k ≤ n. Thus the definition of being cyclically reduced for a reduced
word and its normal form coincide.

5. Posets of subgroups and the transporter category

For a collection C of subgroups of a group G, which is closed under conjugation,
we will consider it as a G-poset ordered by inclusion and with the conjugation action.
Recall that the Borel construction |C|hG is the G-coinvariant |C| ×G EG. The map
sending |C| to a point, induces a map |C|hG → BG. This map is the Borel fibration
and the fiber is |C|.

It is known that the homotopy type of Borel construction on G-poset of subgroups
can be determined by a transporter category. This observation will be central in
proving our main results and therefore we will include a proof for the sake of
completeness. First the following definition:

Definition 5.1. For a finite group G we let E(G) be the category with object set G
and exactly one morphism between each pair of objects. We will use the convention
of denoting the morphism from g to h by (g, h), where g, h ∈ G. We equip E(G)
with the G action induced by g(h) = hg−1. Similarly we let B(G) be the category
with one object ∗G and morphism set G.

We have that the geometric realization of E(G) is a model for EG, and the
realization of B(G) is a model for BG. We will use this particular model in the rest
of the paper. Furthermore we will use the notation |g| and |g, h| respectively to
denote the image of an object g of E(G) and a morphism (h, g) in E(G) under the
realization.

Lemma 5.2. Let G be a finite group and S ∈ Sylp(G). Let C be a collection of
p-subgroups in G which is closed under conjugation in G. Then |TC∩S(G)| ' |C|hG
and the Borel map |C|hG → BG corresponds to the map realization of the simplicial
map π : TC∩S(G)→ B(G) given by inclusion on the morphism sets.

Proof. By Sylows Theorems the poset C is the poset of all subgroups of G, which are
conjugate to the object of TC∩S(G). Thus it is well-known that |TC∩S(G)| ' |C|hG,
but to prove the last part of the statement we need to look into the details of the
homotopy equivalence. In this case we are using the description of the map from
the proof of Lemma 1.2 in [8].

Let C ×G E(G) be the product category modulo the G-action induced by the
free diagonal action of G on objects. Let TC(G) be the transporter category in G
with object set the same as C. Consider the map σ : C ×G E(G)→ TC(G) given by
(P, g) 7→ gP on objects and (P ↪→ Q, (g, h)) 7→ (chg−1 : gP → hQ) on morphisms.
We have that σ is a bijection on both objects and morphisms, and in particular a
equivalence of categories. Furthermore we let ι : TC∩S(G)→ TC(G) be the inclusion,
which is also an equivalence of categories, where the essentially surjective condition
is a consequence of Sylow’s theorems.

We let πC×GE(G) : C ×G E(G) → B(G) be the map given by (P, g) 7→ ∗G and
(P ↪→ Q, (g, h)) 7→ hg−1. Note that this is a well-defined map of categories. In
a similar way we let πTC(G) : TC(G) → B(G) and πTC∩S(G) : TC∩S(G) → B(G) be
the maps induced by the natural inclusion of the morphism sets into G. Then the
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following diagram commutes:

C ×G E(G) TC(G) TC∩S(G)

B(G)

σ ι

πC×GE(G) πTC(G)
πTC∩S(G)

By applying geometric realization we obtain the right hand side of the following
diagram:

|C|hG |C ×G E(G)| |TC(G)| |TC∩S(G)|

B(G) B(G) B(G) B(G)

|σ|
∼=

τ

∼=

|ι|

'

|πC×GE(G)| |πTC(G)| |πTC∩S(G)|ψ

In this case geometric realization of C ×G E(G) commutes with both the product of
categories as well as the quotient of the free G-action. Here, τ is the homeomorphism
that embodies this. Let ψ be the map induced by |C| 7→ ∗. Then the left-hand
square commutes as well, and the statement follows. �

6. Transporter categories and finite groups of Lie type

Recall that for a finite group G the G-poset of nontrivial p-subgroups with
conjugation action is denoted Sp(G). For a finite group of Lie type G in characteristic
p we will show that the poset Sp(G) is G-homotopy equivalent to a subposet
Dp(G). This allows us to calculate the homotopy type of |Sp(G)|hG using a smaller
transporter category as well as allowing us to identify Sp(G) with the Tits building
associated to G.

We start out by recalling some definitions.

Definition 6.1. A p-subgroup P of a finite group G is called p-centric if Z(P ) ∈
Sylp(CG(P )) or equivalently CG(P ) ∼= Z(P )×C ′G(P ) for a (unique) subgroup C ′G(P )
of order prime to p.

Definition 6.2. We let Dp(G) denote the poset of principal p-radical of subgroups
of G. That is, P ∈ Dp(G) if and only if P is p-centric p-subgroup of G and
NG(P )/PC ′G(P ) is p-reduced.

Recall that a group is p-reduced if it contains no nontrivial normal p-subgroup.
For a Sylow-p-subgroup of G, we use the notation T crS (G) for the transporter system
TDp(G)∩S(G).

Definition 6.3. We let Bp(G) denote the poset of non-trivial p-subgroups in G
which are p-radical in G, i.e. the quotient NG(P )/P is p-reduced.

We have that Dp(G) is a subposet of Bp(G) whereas the other inclusion does not
hold in general, not even when restricting to the subposet of p-centric subgroups of
Bp(G). A class for finite groups where the posets agree is the finite groups of Lie
type in characteristic p, where the following lemma gives a useful description of it.
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Lemma 6.4. Let G be a group of finite Lie type in characteristic p. Then as a
G-poset

Dp(G) = Bp(G) = {Op(K) | K proper parabolic subgroups of G}.

Furthermore the map NG(−) from Dp(G) to the opposite poset of proper parabolic
subgroups in G is a map of G-posets as well.

The rank of the posets is RkL(G)− 1.

Proof. First we will prove the claim:

Bp(G) = {Op(K) | K proper parabolic in G}.

A consequence of Borel-Tits theorem for finite groups of Lie type [18, Theorem
3.1.3] is that the set of p-radical subgroups of G is {Op(K) | K parabolic in G}.
Note that 1 = Op(G), and hence the non-trivial p-radical p-subgroups correspond
to the proper parabolic subgroups.

To show the first equality, we show that if P = Op(K), where K is a proper
parabolic subgroup in G, then P is p-centric. We have by [18, Theorem 2.6.5.] that
CG(P ) = Z(P )Z(G). Furthermore by [18, Proposition 2.5.9] we have that Z(G) is a
subgroup of H as defined in [18, Theorem 2.3.4]. In particular it is a group of order
prime to p, and hence we have that P is centric and Op′(CG(P )) = Z(G).

To prove the first equality we have to show that for a p-group P we have that
Op(NG(P )/P ) = 1 implies Op(NG(P )/PZ(G)) = 1. Assume for the purpose of
contradiction that Op(NG(P )/PZ(G)) 6= 1. Then there exists a normal p-subgroup
of NG(P )/PZ(G). This subgroup has the form K/PZ(G) where K is a normal
subgroup of NG(P ) containing PZ(G), satisfying that there is some n ∈ N such
that

pn = |K/PZ(G)| = |K|
|PZ(G)|

=
|K|

|P ||Z(G)|
.

Note that Z(G) E K with index |K : Z(G)| = |P |pn. As the index is a p-power,
we have that Z(G) is a normal p-complement, and hence K = K̃Z(G) for any
K̃ ∈ Sylp(K). We note that K̃ is normal in K̃Z(G) = K, and thus we conclude
that K has only one Sylow-p-group. By assumption we have that K E NG(P ), so
NG(P ) acts on Sylp(K) by conjugation. As Sylp(K) consists only of K̃, we have
that K̃ is normal in NG(P ) as well. As K̃ is the only Sylow-p-subgroup of K and
P is a p-subgroup of K, we have that P ≤ K̃. Furthermore the index satisfies
|K̃ : P | = pn. Thus we see that K̃/P is a normal p-group of NG(P )/P , and a
contradiction emerges.

From our description of Dp(G) it now follows from [19, remark 4.3] that the
correspondence between the poset Dp(G) and the opposite poset of proper parabolic
subgroups of G given by Op(−) is a bijection of G-posets with inverse NG(−).

Recall that the rank of a poset is the length of a maximal chain in it. For
a fixed BN -pair for G, any parabolic subgroup of G is conjugate to a standard
parabolic subgroup containing B. As this correspondence preserves inclusion the
rank of the poset of parabolic subgroups of G is the same as the rank of the poset
of parabolic subgroups containing B. The posets consisting of subsets of ∆ and
parabolic subgroups of G containing B are isomorphic by the map I 7→ PI for I ⊆ ∆.
Hence the rank of the poset of parabolic subgroups containing B is equal to the
cardinality of ∆. Thus we conclude that the rank of the poset of proper parabolic
subgoups is exactly |∆| − 1 = RkL(G)− 1. �
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Proposition 6.5. Let G be a finite group of Lie type in characteristic p and S a
Sylow-p-subgroup. Then the inclusion map of Dp(G) into Sp(G) is a G-homotopy
equivalence, and |Sp(G)|hG ' |T crS (G)| where the Borel map |Sp(G)|hG → BG
corresponds the the realization of the simpicial map T crS (G) → B(G) induced
by inclusion on morphism sets. Furthermore the map ϕ : |Sp(G)|hG → BG is a
mod-p-equivalence and |Sp(G)|hG is p-good.

Proof. By [5, Corollary p. 50] the collections of subgroups Bp(G) and Sp(G) are
G-homotopy equivalent via the inclusion map. By Lemma 6.4 the collections Bp(G)
and Dp(G) agree in this case. Then |Sp(G)|hG ' |Dp(G)|hG and using Lemma
5.2, we conclude that |Dp(G)|hG ' |T crS (G)| with the Borel map |Dp(G)|hG → BG
corresponding to the simpicial map T crS (G)→ B(G) given by inclusion on morphism
sets.

Since p divides the order of G, the collection Sp(G) of subgroups of G is ample
in the sense of [17, Definition 1.2] (see [17, Remark 6.4] for a discussion of the
various proofs of this fact). This means that the map |Sp(G)|hG → BG induced by
sending |Sp(G)| → ∗ is a mod-p-equivalence. Since G is a finite group, the classifying
space BG is p-good [2, III: Proposition 1.11]. This means that the completion map
is a mod-p-equivalence. We have that p-completion is a functor that comes with
a natural transformation from the identity to it. Hence we have the following
commutative diagram:

|Sp(G)|hG BG

(|Sp(G)|hG)∧p BG∧p

p
v

vp

'

Here two of the maps are mod-p-equivalences, and the third is a homotopy equivalence
according to [6, Lemma I.5.5]. Since homotopy equivalences are mod-p-equivalences,
we conclude that the last map is a mod-p-equivalence, and hence that |Sp(G)|hG is
p-good. �

The transporter category T crS (G) in the case of a finite group of Lie type has a
description in terms of the standard parabolic subgroups.

Corollary 6.6. Let G be a finite group of Lie type in characteristic p. For a subset
I ⊂ ∆ we set UJ = Op(PJ ). Then T crS (G) is the category with objects {UJ | J ( ∆}
and MorT crS (G)(UJ , UJ′) = PJ if J ⊆ J ′ and empty otherwise.

Proof. The objects of T crS (G) are exactly the subgroups inDp(G) which are contained
in S. Under the bijection from Lemma 6.4 these are mapped to the proper parabolic
subgroups of G containing B, i.e the subgroups of the form PI for I ( ∆. As
UI = Op(PI) we get the description of the objects while the morphism set follows
from by [19, equation (4.1)]. �

The standard parabolic subgroups are also essential in the definition of the Tits
building ∆(G,B) for a group G with a BN -pair structure. The building is defined as
the G-poset of G-cosets of standard proper parabolic subgroups ordered by reverse
inclusion. The map sending a coset gPJ to gPJ preserves inclusion, and so an
alternative description of the building ∆(G,B) is the poset of proper parabolic
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subgroups of G ordered with reverse inclusion. From this description we see directly
that |Dp(G)| is G-homotopy equivalent to the Tits building ∆(G,B) for G. From
Proposition 6.5 we get directly:

Corollary 6.7. For a finite group G of Lie type in characteristic p the posets Sp(G)
and ∆(G,B) are G-homotopy equivalent.

The Weyl group of G is finite, thus by [13, Chapter V 3] we have that the poset
of parabolic subgroups of G is a spherical building. Hence by the Solomon–Tits
Theorem [13, Theorem VI.5.2] we conclude that |Sp(G)| is homotopy equivalent to
a wedge of spheres. The dimension of the spheres is the rank of the poset of proper
parabolic subgroups of G, which is RkL(G)− 1.

The Sylow-p-subgroup S of G acts naturally on the poset Sp(G) by restricting
the G-action, thus inducing an S action on the space |Sp(G)|. We will now show
the following equivariant refinement of the Solomon–Tits Theorem, where we keep
track of the S-action.

In the proof we use the description of the Tits building as the flag complex of the
incident geometry of the maximal parabolic subgroups of G, where two maximal
parabolic subgroup are incident if their intersection is parabolic. Note that in this
description of the building ∆(G,B), the poset of proper parabolic ordered with
reverse inclusion is the set of simplices of ∆(G,B) ordered by inclusion, and thus
the set of parabolic subgroups corresponds to the barycentric subdivision of ∆(G,B)
and in particular the realizations agree.

Lemma 6.8. Let G be a finite group of Lie type in characteristic p of rank
RkL(G) = n and let S ∈ Sylp(G). Then |Sp(G)| with the induced action is S-
homotopy equivalent to

∨
S S

n−1, where the S action on the wedge sum of spheres
is induced by the left action on the set of indices.

Proof. By Corollary 6.7 it is suffient to detect the induced S action on the realization
of the building ∆(G,B). We first note that we may assume that B = NG(S). Let
C be a fundamental chamber corresponding to all maximal parabolic subgroups of
G containing B. Recall that the fundamental chamber is an (n− 1)-simplex with
vertices corresponding to the maximal parabolic subgroups over B. The G-action in
∆(G,B) is given by the conjugation action on maximal parabolic subgroups, hence
for g ∈ G we let gC be the simplex consisting of all maximal parabolic subgroups
containing gB.

Let W = N/H be the Weyl group from the BN -pair of G. Then Σ =
⋃
n∈N

nC
is a fundamental apartment and ∆(G,B) =

⋃
u∈S

uΣ, where for u ∈ S we have that
uΣ =

⋃
n∈N

unC.
For any x ∈ ∆(G,B) we let Sx be the stabilizer subgroup for the action of S on

x. For u ∈ S we set
fix(uΣ) =

⋃
ũ∈S\{u}

uΣ ∩ ũΣ.

A point in uΣ that is fixed by some nontrivial ũ ∈ S is a point in fix(uΣ). To identify
this set as the set points in the chamber uΣ with nontrivial stabilizer subgroup, we
observe using [23, Lemma 4] that

fix(uΣ) =
⋃

ũ∈S\{1}

uΣ ∩ ũ(uΣ) ⊂
⋃

ũ∈S\{1}

{y ∈ uΣ | ũ ∈ Sy} = {y ∈ uΣ | Sy 6= 1}.
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Furthermore as each intersection uΣ ∩ ũΣ for ũ ∈ S is a subcomplex consisting of
a union of chambers, the same is true for fix(uΣ). Based on [23, Lemma 1 and
Proposition 3] we see that

fix(uΣ) =
⋃

ũ∈S\{u}

uΣ ∩ ũΣ '
∨

ũ∈S\{u}

uΣ ∩ ũΣ

where all the wedge summands are contractible, and thus the subspace fix(uΣ) is
contractible as well.

Then for u, v ∈ S we observe that

(v fix(uΣ)) =
⋃

ũ∈S\{u}

vuΣ ∩ vũΣ =
⋃

ũ∈S\{vu}

vuΣ ∩ vũΣ = fix(vuΣ).

By combining [23, Lemma 1 and Proposition 3] we get that the map

∆(G,B) =
⋃
u∈S

uΣ→
∨
u∈S

uΣ/fix(uΣ)(1)

is a homotopy equivalence. As v fix(uΣ) = fix(vuΣ) for any u, v ∈ S we have an
induced S-action on

∨
u∈S

uΣ/fix(uΣ). This action freely permutes wedge summands
corresponding to the left S-action on the indexing set. Note that with the induced
S-action the map (1) is an S-map.

According to [23, Proposition 1 and 3] the space Σ/ fix(Σ) is homotopic to an
(n−1)-sphere. For a fixed choice of homotopy equivalence this extends to a homotopy
equivalence

∨
u∈S (uΣ/ fix(uΣ))→

∨
u∈S S

n−1. If we let
∨
u∈S S

n−1 be an S-space
where the S action on the wedge sum of spheres is induced by the left action on the
set of indices, then the composite

f : ∆(G,B)→
∨
u∈S

Sn−1

is an S-map and a homotopy equivalence.
To see that the map f is in fact an S-homotopy equivalence, it is sufficient to

show, by the equivariant Whitehead theorem, that the map on Q-fixed points for
any subgroup Q ≤ S is a homotopy equivalence. For a non-trivial Q the Q-fixed
point on

∨
u∈S S

n−1 is the wedging point, so we have to show that ∆(G,B)Q is
contractible.

For any u ∈ S let fixQ(uΣ) be the Q-fixed points in the chamber uΣ. Then
fixQ(uΣ) is a subcomplex of ∆(G,B)Q and ∆(G,B)Q =

⋃
u∈S fixQ(uΣ). So by [23,

Lemma 1] it is sufficient to prove that for any subset X of elements of S we have
that

⋂
x∈X fixQ(xΣ) ' ∗. Using [23, Lemma 4] we see that

fixQ(xΣ) =
⋂
q∈Q

qxΣ

and thus ⋂
x∈X

fixQ(xΣ) =
⋂
x∈X

⋂
q∈Q

qxΣ.

Since conjugation with an element of S is a homeomorphism on a G-simplicial
complex the above intersection is homotopy equivalent to an intersection

⋂
x∈X̃

xΣ,
where X̃ is a non-empty subset of S containing 1. Thus by [23, Proposition 3] it is
contractible. �
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The proof in [23] shows that the fixed points of the fundamental apartment of
any nontrivial subset Q of S consists of entire chambers and is closed with respect
to the order on Weyl group W , i.e if wC ∈ ΣQ and v ≤ w then vC ∈ ΣQ. By [1,
Corollary 1.75 and 6.47] the opposite chamber to C is w0C where w0 ∈ W is the
unique longest element. The stabilizer of w0C is w0B. According to [18, Theorem
2.3.8(d)] the intersection B ∩ w0B equals H, a maximal torus, and thus a p′-group.
In particular for any p-subgroup Q of B we have that Q * w0B. Thus, the chamber
w0C is not fixed by Q. The proof [23] uses this observation as it shows that removing
the chamber in ΣQ of the form wC, where w has maximal length in the Weyl group,
does not affect the homotopy type and thus ΣQ is homotopic to the chamber C
which is contractible.

It is worth noting that the result in [23] does not provide a canonical contraction
ΣQ onto C corresponding to the fact that there does not always exist a unique
minimal gallery of chambers between C and wC for a w ∈W . This is illustrated in
the following example.

Example 6.9. By [1, Corollary 1.75] a minimal gallery corresponds to a reduced
decomposition of elements of the Weyl group in terms of a fixed set of simple
reflections that generates W . By [18, Proposition 2.3.2] there exists a group G of
finite Lie type with Weyl group W of type B3. In particular note that G has rank 3.
Every element of W is a linear transformation of R3 given by a permutation of the
basis vectors possibly composed with multiplication with −1. Then the set of linear
transformations {213, 132, 123̄} generates W , where the bar indicates sign change of
particular basis vector. By calculations from [38] the element 312 ∈W has length
3 and can be written as both (132)(213)(132) and (213)(132)(213). Note that the
unique element of maximal length is 1̄2̄3̄ and this has length 9.

An alternative proof of the fact that ΣQ is homotopic to a point in the building
∆(G,B) may be found in [33, Theorem 3.1 part (b)]. Here the building ∆(G,B) is
equipped with a metric and the contraction given along unique geodesics.

Corollary 6.10. Let G be a finite group of Lie type in characteristic p and
S ∈ Sylp(G). Let P be a finite p-group and ϕ ∈ Hom(P,G) be non-trivial. Then
ϕ induces a P action on |Sp(G)|, and with respect to this action the fixed points
|Sp(G)|P are contractible.

Proof. According to Lemma 6.8 the space |Sp(G)| is S-homotopy equivalent to
X =

∨
S S

RkL(G)−1 where S acts by left multiplication on the index set. In particular
for any non-trivial subgroup of S acting on X the only fixed point is the wedging
point of X. An S-homotopy equivalence restricts to a homotopy equivalence on fixed
points for any subgroup of S and thus the fixed points of |Sp(G)| for a nontrivial
subgroup Q ≤ S must be contractible. Let ϕ ∈ Hom(P,G) be non-trivial. By
Sylow’s theorems we have that ϕ(P ) is conjugate to a non-trivial subgroup of S,
and as the conjugation map on Sp(G) induces a homotopy equivalence on |Sp(G)|,
we now conclude that |Sp(G)|ϕ(P ) is contractible. �

Lemma 6.11. Let G be a finite group of Lie type in characteristic p and assume
that the Lie rank of G is at least 3. Then |Sp(G)| is (RkL(G) − 2)-connected,
πRkL(G)−1(|Sp(G)|) ∼= Z|S| and all of the higher homotopy groups πn(|Sp(G)|) for
n ≥ 2 are finitely generated abelian groups.
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Proof. Recall that by Lemma 6.8 the space |Sp(G)| is homotopy equivalent to a
wedge of spheres of dimension RkL(G)− 1. We note that |Sp(G)| is connected and
by using the wedge point as base point, we have that |Sp(G)| is a pointed S-space.
By a special case of the Hilton–Milnor Theorem [21, Corollary 4.10] we see that

πn(|Dp(G)|) ∼=
∞∑
k=1

∑
Q(k,|S|)

πn(Sk(RkL(G)−2)+1).(2)

Here, Q is the Necklace polynomial and as function it is given using the Möbius
function µ by

Q(k, r) =
1

k

∑
d|k

µ(d)rk/d.

The value of the function Q(k, r) is the number of Lyndon words of length k in an
alphabet with r letters. In particular Q has non-negative values for k, r > 0 and
positive values when r > 1. Note that Q(1, r) = r.

The dimension of the spheres in (2) are increasing. As a sphere of dimension n
is (n− 1)-connected, we see that for a fixed n only a finite number of them have
nontrivial n’th homotopy groups. Since homotopy groups of spheres are all finitely
generated abelian, we conclude that the same holds for the space |Sp(G)|. An
n-sphere is (n− 1)-connected. The lowest dimensional spheres (2) are of dimension
RkL(G)− 1, and hence we conclude that |Sp(G)| is (RkL(G)− 2)-connected.

For the (RkL(G)− 1)th homotopy group, we see that

πRkL(G)−1(|Sp(G)|) ∼=
∏

Q(1,|S|)

πRkL(G)−1(SRkL(G)−1) ∼= Z|S|.

�

From Lemma 6.8 we see that the homotopical properties of |Sp(G)| are vastly
different depending on whether the Lie rank of G is 1, 2 or at least 3. This is
reflected in the homotopy type of |T crS (G)| ' |Sp(G)|hG, and so the three cases will
now be handled separately.

6.1. The homotopy type of transporter systems in rank 1. The rank 1 case
can easily be determined by from the description of T crS (G).

Proposition 6.12. Let G be a finite group of Lie type of rank 1. The category
T crS (G) consists of only one object, namely S, with morphism set B, and so in
particular |T crS (G)| ' B(B). In addition B(B) ' |Sp(G)|hG and the inclusion
B(B) → BG corresponds to the Borel map |Sp(G)|hG → BG under the given
homotopy equivalences.

Proof. By Corollary 6.6 the category T crS (G) has one object S and morphism set
NG(S) = B and thus |T crS (G)| ' B(B).

The homotopy equivalence |Sp(G)|hG ' |T crS (G)| from Proposition 6.5, comes
from the upper zig-zag from the diagram in Lemma 5.2 together with the inclusion
of Dp(G) → Sp(G). Thus, the map induced by |Sp(G)| → ∗ corresponds to
|πT crS (G)| under the homotopy equivalence |Sp(G)|hG ' |T crS (G)|. Finally, we note
that |πT crS (G)| is exactly the map from B(B) → B(G) induced by the inclusion
B → G. �
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6.2. The homotopy type of transporter systems in rank 2. In this part we
restrict ourself to the case where G be a finite group of Lie type of Lie rank 2
in characteristic p. The goal is to determine the homotopy type of |Sp(G)|hG '
|Dp(G)|hG . We will use the following notation:

Let Φ be the root system of G associated to the BN -pair and let ∆ = {α, β} be
the corresponding set of simple roots. Similarly let {sα, sβ} be the corresponding
set of reflections generating the Weyl group and tα, tβ be the corresponding lifts to
N . Note that the Weyl group W in this case is a finite dihedral group. We denote
by Pα and Pβ the standard parabolic subgroups of G associated to the subsets {sα}
and {sβ} of ∆. Then the Borel subgroup B is a subgroup of both Pα and Pβ .

We have by Lemma 6.4 that the G-poset Dp(G) is isomorphic to the inverse poset
of proper parabolic subgroups of G, which in our case consists of the G-conjugates
of B,Pα and Pβ . To determine the homotopy type of the transporter system we
will study the situation in more generality in the following proposition.

Proposition 6.13. Let G be a finite group generated by two subgroups Pα and Pβ .
Let B = Pα ∩ Pβ . Assume that Pα, Pβ and B are all self-normalizing and mutually
non-conjugate. Let D be the poset of G-conjugates of Pα, Pβ and B ordered by
inclusion. Then D is a G-poset by the conjugation action and with respect to this
we have |D|hG ' B(Pα ∗B Pβ).

Using the model |EG| for EG, we let the class [B, |1|] ∈ |D|hG = (|D|×EG)/Pα∗B
Pβ be the base point. Then under the given homotopy equivalence the Borel map
|D|hG → BG is induced by the map of fundamental groups φ : Pα ∗B Pβ → G
which is the inclusion on all elements in Pα and Pβ . Furthermore the kernel of
φ : Pα ∗B Pβ → G is a finitely generated free group.

Proof. We want to construct a contractible space X with a Pα ∗B Pβ covering space
action, such that the orbit space can be identified with |D|hG.

Serre defined a graph of groups (G,T ) in [36, I Chapter 4.4 Definition 8] as a
graph with groups associated to vertices as well as edges, together with injective
group homomorphisms such that a group associated to an edge can be seen as a
subgroup of the groups associated to its vertices.

We will first consider the following graph of groups (G,T )

Pα

B

Pβ

B B

By [36, I Chapter 4.4 example c] the graph (G,T ) has fundamental group G̃ :=

Pα ∗B Pβ . Let T̃ be the Bass–Serre covering tree for (G,T ) (see [36, I Chapter 5.3]).
Then the vertex set T̃ is the set of cosets gPα, gPβ and gB for g ∈ G̃. We denote
the vertices corresponding to the cosets by [gPα], [gPβ ] and [gB]. The set of edges
is given in the following way: For γ ∈ {α, β} there is an edge connecting [gB] and
[hPγ ] if there exists a k ∈ G̃ such that gB = kB and hPγ = kPγ . The G̃ action is
induced by the natural action on the cosets.

We claim that the tree T̃ is locally finite, i.e that every vertex of T̃ is contained
in a finite number of edges. First consider a vertex of type [gPγ ] for γ ∈ {α, β} and
g ∈ G̃. Then any adjacent vertex is of the form [hB] such that hPγ = gPγ . Thus
h = gk for some k ∈ Pγ . As Pγ is finite, the vertex [gPγ ] has finite degree. Likewise
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if we consider a vertex [gB] for some g ∈ G̃, then any adjacent vertex is of the form
[kPγ ] for some γ ∈ {α, β} and k ∈ G̃ satisfying that gB = kB. Then g = kb for
some b ∈ B, but since B ≤ Pγ , we have that gPγ = kPγ . Thus, the vertex [gB] is
only connected to [gPα] and [gPβ ].

Note that the G̃-conjugates of Pα, Pβ and B are exactly the stabilizer subgroups
of vertices in T̃ . In particular T̃ is a locally finite tree with finite stabilizer groups of
vertices, and thus the action of G̃ on T̃ is properly discontinuous in the sense that
every point in G̃ has a neighborhood U such that U ∩ g(U) is non empty for only
finitely many g ∈ G̃. The action is not a covering space action, since it is not free.

Consider the canonical group homomorphism φ : G̃→ G which is the inclusion
on all elements in Pα and Pβ . As G is generated by the subgroups Pα and Pβ ,
the map is surjective. Let K := ker(φ). We have that G̃ acts on T̃ , and so by
restriction the subgroup K acts on T̃ as well. We claim that the K action is free.
To see this we note that φ is injective on the subgroups Pα, Pβ and B. Since φ is
a group homomorphism, we deduce that φ is injective on all G̃-conjugates of Pα,
Pβ and B, and so all of these groups have trivial intersections with K. Note that
the G̃-conjugates of Pα, Pβ and B are exactly the stabilizer subgroups of vertices
in T̃ , and hence K acts freely on the vertices. As the G̃- action on T̃ is without
edge-inversion, we conclude that K acts freely on T̃ . Furthermore by [36, I Chapter
4 Theorem 8] every torsion element of G̃ is contained in a conjugate of Pα or Pβ ,
and thus we conclude that K is a free group.

Recall that EG is a contractible space, on which G acts freely and properly
discontinuously. Consider the space T̃ × EG with the G̃-action given by g(t, x) =

(gt, φ(g)x) for G ∈ G̃ and (t, x) ∈ T̃ × EG. We see that the G̃-action is free and
properly discontinuous and the quotient space (T̃ × EG)/G̃ is a classifying space
for G̃.

To identify the quotient space (T̃ × EG)/G̃ with |D|hG recall that since K is
normal in G̃, we have that

(T̃ × EG)/G̃ ∼= ((T̃ × EG)/K)/G ∼= (T̃ /K)hG.

Hence it is enough to identify the quotient space T̃ /K with |D|.
First we define a map on vertices π : Vert T̃ → Vert |D| given by [gQ] 7→ φ(g)Q

for Q ∈ {Pα, Pβ , B}. Note that this is well-defined as φ(g)Q does not depend on the
representative for gQ. Any pair of adjacent vertices in T̃ is of the form [gB] and
[gPγ ] for some γ ∈ {α, β}. As B ≤ Pγ , we have that φ(g)B ≤ φ(g)Pγ , hence π[gB]
and π[gPγ ] are adjacent in |D|. Since |D| is without multiple edges we get a unique
extension π : T̃ → |D|. Thus, the resulting map is onto. We want to identify the
orbit space T̃ /K with |D| via π. The map π is onto and identifies K-orbits, and so
it induces an onto map T̃ /K → |D|.

To see that T̃ /K ∼= |D|, we assume that π[gQ] = π[hR] for some h, g ∈ G̃ and
Q,R ∈ {Pα, Pβ , B}. Then φ(g)Q = φ(h)R, and hence Q and R are conjugate in
G and must agree by assumption. Furthermore φ(h−1g) ∈ NG(Q) = Q, and so
φ(g) = φ(h)q for some q ∈ Q. As φ(q) = q we see that there exists a k ∈ K such
that kg = hq. Then

[hR] = [hQ] = [hqQ] = [kgQ] = k[gQ] ∈ K[gQ].

Thus, π is exactly the map identifying K-orbits, and hence T̃ /K ∼= |D|.
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We now have that |D|hG ' (T̃ ×EG)/(G̃) where T̃ ×EG is the universal cover for
|D|hG. Using covering theory this implies that every element of g ∈ π1(|D|hG, [B, |1|])
is represented by the image of a path in T̃ × EG from g([B], |1|) to ([B], |1|) under
the covering map. As the fundamental group is the amalgamated product G̃ it is
generated by elements in Pα and Pβ , and hence we may restrict ourselves to the
case of an element g ∈ P where P is either Pα or Pβ . Then [gP ] = [P ], and so there
exist edges in T̃ from [B] to [P ] and from [gB] to [P ]. We denote these by e1 and eg
respectively. The following diagram represents a path from g([B], |1|) = ([gB], |g−1|)
to ([B], |1|):

([P ], |g−1|) ([P ], |1|)

([gB], |g−1|) ([B], |1|)

(e1, id)

(id, |g−1, 1|)
(eg, id)

This path is mapped to the following loop in |D|hG by the covering map:

[P, |g−1|] [P, |1|]

[gB, |g−1|] [B, |1|]

[gB ≤ P, id]

[id, |g−1, 1|]
[B ≤ P, id]

and hence this loop is a representative for g ∈ π1(|D|hG, [B, |1|]). Recall that the
Borel map |D|hG → BG can be identified with the realization of the simplical map
π : D ×G E(G) → B(G) given by (P, g) 7→ ∗G and (P ≤ Q, (g, h)) 7→ hg−1. Thus,
for any g ∈ Pα ∪ Pβ the loop representing g in π1(|D|hG, [B, |1|]) is mapped to the
loop at ∗G along the edge |g| in BG, which is the standard generator for the class
g ∈ π1(BG, ∗G) = G.

As G is a finite group, we have that |D| has only a finite number of vertices and
edges. The free group K acts freely on the tree T̃ with orbit space |D|, and so by [36,
I Chapter 3 Theorem 4’] we conclude that K is a finitely generated free group. �

An alternative proof of Proposition 6.13 comes from the work of Libman and Viruel
in [25], as we can identify |D|hG with the homotopy colimit over the subdivision
category of the following tree of Eilenberg-Maclane spaces:

K(Pα, 1)

K(B, 1)

K(Pβ , 1)

K(B, 1) K(B, 1)

The fact that |D|hG is homotopy equivalent to B(Pα ∗B Pβ) follows directly from
[25, Proposition 4.3]. We have chosen to present the argument based on graph of
groups given in the proof of Proposition 6.13, as it allows us to detect what happens
to the fundamental group under the Borel map as well proves interesting facts about
the kernel of φ : Pα ∗B Pβ → G using the work of Serre.

For G a finite group of Lie type of rank 2 in characteristic p the Weyl group
is a dihedral group. Assume that the Weyl group is dihedral of order 2L. The
next corollary shows that the kernel of a map φ : Pα ∗B Pβ → G essentially is the
lift of the relation (sαsβ)L in the Weyl group to Pα ∗B Pβ . We will need to keep
track of the different lifts in Pα ∗B Pβ of the longest word in W . These will be the
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two alternating words in {tα, tβ} of length L and we will now introduce a notation
allowing us to denote the lift starting or ending with a particular element. For the
alternating word of length L we let

αn = tαtβ · · ·︸ ︷︷ ︸
length L

, nα = · · · tβtα︸ ︷︷ ︸
length L

, βn = tβtα · · ·︸ ︷︷ ︸
length L

, nβ = · · · tαtβ︸ ︷︷ ︸
length L

.

In particular αn = nα when L is odd and αn = nβ when L is even.

Corollary 6.14. Let G be a finite group of Lie type of rank 2 in characteristic
p for which the Weyl group is isomorphic to D2L. Let φ : Pα ∗B Pβ → G be the
canonical map. Then the kernel of φ is a free group generated by the set

{snβφ((tαtβ)−L)αns
−1 | s ∈ S}

where φ((tαtβ)−L) ∈ B. In particular all generators are reduced words in Pα ∗B Pβ
of length 2L.

Proof. By [18, Theorem 2.6.5] we have that the subgroups Pα, Pβ and B are all
self-normalizing and non-conjugate. Furthermore, from the definition of standard
parabolic subgroups it follows that the intersection Pα ∩ Pβ is the Borel subgroup
B. Thus we are in the situation presented in Proposition 6.13. In particular we
have that the kernel K is a free group and it acts freely on the covering tree T̃ .

We have observed that the orbit space T̃ /K can be identified with |D|, where D
is the poset of G-conjugates of Pα, Pβ and B ordered by opposite inclusion. In this
case it is exactly the poset of proper parabolic subgroups of G ordered by opposite
inclusion. Recall that D is isomorphic to the poset of simplices of the building
∆(G,B) ordered by inclusion. Thus |D| is a subdivision of the realization of the
building, and hence |D| is homotopy equivalent to

∨
|S| S

1 by the Solomon–Tits
theorem (see Lemma 6.8). By the topological version of [36, Theorem 4’] we have
that the set of basis elements for K is in bijection with a set of generators of the
fundamental group of |D|, and so the basis for K consists of |S| elements.

The element φ((tαtβ)−L) belongs to N and is mapped to the trivial element
under the quotient map to the Weyl group, and thus belongs to H, a subgroup of B.
For s ∈ S we let ks be the element snβφ((tαtβ)−L)αns

−1 ∈ Pα ∗B Pβ . We note that
φ((tαtβ)−L) = φ(n−1

β αn
−1), and so ks belongs to the kernel K. As ks is a reduced

word of length 2L, it is nontrivial in Pα ∗B Pβ . To determine that {ks | s ∈ S} is
actually a generating set for K we will identify a tree of representatives inside T̃ .

Recall that in the building ∆(G,B) the standard choice of fundamental chamber
C̃ can be identified with the simplex:

Pα Pβ

For the complex |D| we let Cα be the edge between B and Pα and Cβ be the
edge between B and Pβ . Set C to be the union of these:

Pα

B

Pβ

Cα Cβ

Then C is the subdivision of fundamental chamber C̃ in ∆(G,B). Moreover,
Σ = ∪n∈NnC is the subdivision of the associated fundamental apartment, and
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|D| = ∪s∈SsΣ. The Solomon–Tits theorem implies that we obtain a maximal tree
in ∆(G,B) by removing all the chambers opposite to C̃, i.e. all chambers of the
form sn0C̃ where n0 ∈ N is the preimage of the longest word in the Weyl group.
Similarly we obtain a maximal tree TD in |D| by removing the set {snβCα | s ∈ S}.
Let T̃D be the lift of TD to T̃ such that the edge Cα is the edge between [Pα] and
[B]. The fundamental chamber Σ is lifted to the following graph, where the marked
edge corresponds to the edge nβCα not contained in TD.

[tαPβ ] [Pα] [Pβ ] [tβPα]

[tαB] [B] [tβB]

[nαPα] [nβPβ ]

[nβB]

[nβPα]

The lift of the other part of TD is obtained by the action of S on the above graph.
We may equip T̃ with an orientation of the edges consisting of all edges from [gB] to
[gPγ ] for g ∈ Pα ∗B Pβ and γ ∈ {α, β}. According to[36, Theorem 4’ (a)] we obtain
a basis for K by taking the k ∈ K for which there exist edges in T̃ that start in TD
and end in kTD with the given orientation of T̃ . By considering the graph |D| we
see that the edges connecting T̃D and a vertex not in the tree of representatives
are exactly the edges between [snβB] and [snβPα] and those between [snαB] and
[snαPα] for s ∈ S. Under the choice of orientation only the first type will belong to
the orientation, and so [36, Theorem 4’ (a)] implies that it is sufficient to show that
for s ∈ S we have

ks · [snαPα] = [snβPα](3)

as vertices of T̃ .
For this purpose we investigate the following claim: For every alternating word

w in tα and tβ inside Pα ∗B Pβ , the product of w̃w, where w̃ is the reverse word,
is an element of B ∩N ≤ Pα ∗B Pβ . This follows by induction on the length of w.
For length 0 we have that w = w̃ = 1, and hence the claim is clear. Let w be a
word of positive length and write w = vtγ . We assume that the claim holds for v.
As w̃w = tγ ṽvtγ , where ṽv ∈ B ∩N , this is an element of Pγ ∩N . The map φ is
injective on Pγ , and so it is enough to show that φ(w̃w) ∈ B ∩N . Since the Weyl
group is dihedral, the images of tα and tβ have order two in W , which implies that
the image of φ(w̃w) is mapped to the trivial element in W . Thus, φ(w̃w) belongs to
the kernel of N →W , which is exactly B ∩N . Note that nα is the reverse word of
αn, and so αnnα ∈ B ∩N ≤ Pα by the above claim. Since φ((tαtβ)−N ) ∈ B, we get

ks(snαPa) = snβφ((tαtβ)−L)αns
−1snαPα = snβPα

and thus showing the equality in (3).
Hence we conclude that {ks | s ∈ S} is a basis for K, and as the basis found

in this way consists of |S| elements, we furthermore conclude that all the ks’s are
distinct. �
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Corollary 6.15. Let g be a finite group of Lie type of Lie rank 2 in characteristic
p. Then |Dp(G)|hG ' B(Pα ∗B Pβ). In particular π1(|Dp(G)|hG) ' Pα ∗B Pβ .

Furthermore the Borel fibration |Dp(G)|hG 7→ BG corresponds to the canonical
map φ : Pα ∗B Pβ → G under this identification.

Proof. As shown in Lemma 6.4 we have that Dp(G) is equivalent to the G-poset D
consisting of G-conjugates of Pα, Pβ and B with inverse inclusion. As D is a poset
of rank 1 it is isomorphic to its opposite, and so we may identify it with its opposite.
This puts us in the situation given in Proposition 6.13.

Recall that [18, Theorem 2.3.4] shows that the group G has a BN -pair. It follows
from the definition of BN -pairs that G is generated by B and the preimages of
sα and sβ in N . By construction of the standard parabolic subgroups (see [18,
Definition 2.6.4]) we have that these preimages belong to Pα and Pβ respectively, and
hence G is generated by Pα and Pβ as well. By [18, Theorem 2.6.5] we have that the
subgroups Pα, Pβ and B are all self-normalizing and non-conjugate. Furthermore
the definition of standard parabolic subgroups implies that the intersection Pα ∩ Pβ
is the Borel subgroup B. Thus we conclude from Proposition 6.13 that |Dp(G)|hG
has the homotopy type of B(Pα ∗B Pβ) and that the Borel map |Dp(G)|hG → BG
is induced by the canonical map φ : Pα ∗B Pβ → G. �

Proposition 6.16. Let G be a finite group of Lie type of Lie rank 2 in characteristic
p. Then |Sp(G)|hG ' B(Pα ∗B Pβ) and the Borel fibration |Sp(G)|hG 7→ BG
corresponds to the canonical map φ : Pα ∗B Pβ → G under this identification.

Proof. Recall that in this case the inclusion of Dp(G) into Sp(G) is a G-equivalence
by Proposition 6.5, and induces a homotopy equivalence |Dp(G)|hG → |Sp(G)|hG,
and thus the result follows by Corollary 6.15. �

6.3. Lie Rank ≥ 3. We will finish the discussion of the homotopy type of |Sp(G)|hG
by looking at the case of a finite group of Lie type of rank at least 3.

Lemma 6.17. Let G be a finite group of Lie type in characteristic p of rank at
least 3. Then π1(|Sp(G)|hG) ∼= G and πk(|Sp(G)|hG) ∼= πk(|Sp(G)|).

Proof. Note that for the Borel fibration

|Sp(G)| → |Sp(G)|hG → BG

the fiber |Sp(G)| is by Proposition 6.8 homotopy equivalent to a wedge of (RkL(G)−
1)-dimensional spheres. In particular it is simply connected. Thus the result comes
directly from the long exact sequence in homotopy. �

The space |Sp(G)| is a wedge of spheres with homotopy groups given as in (2).
In particular |Sp(G)| will have nontrivial homotopy groups in arbitrarily large
dimension, when the Lie rank of G is a least 3. A direct consequence of Lemma 6.17
is that in the case of finite groups of Lie type in characteristic p of Lie rank at least
3, the space |Sp(G)|hG will never be a classifying space for a discrete group.

7. Centralizers and amalgamated products of groups

In the following we consider a group G with a family (Gi)i∈I of subgroups. Let H
be the common intersection ∩i∈IGi. The goal is to compare C∗HGi(x) with CG(x)
for any x ∈ H. The canonical map φ : ∗H Gi → G is the inclusion on H and in
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particular induces a map on centralizers C∗HGi(x) → CG(x) for any x ∈ H. Our
goal is find conditions for this map to be injective respectively surjective.

For a word g = gn · · · g1 ∈ ∗HGi we let g[k,`] = gk · · · g` ∈ ∗HGi for any 1 ≤ ` ≤
k ≤ n.

Definition 7.1. A subgroup S of H has finite transporter length in ∗HGi, if there
exists an L ∈ N, such that for any reduced word g = gL · · · g1 ∈ ∗HGi of length
L and x ∈ S satisfying g[k,1]x ∈ S for all 1 ≤ k ≤ L, we have that x is the trivial
element.

When talking about a subgroup with finite transporter length, we let L be the
smallest natural number that satisfies the condition. Note that the definition of
finite transporter length says that any non-trivial element of S after conjugating
with a reduced word of length L, will no longer be an element of S. A very restrictive
condition on the subgroup S, that implies finite transporter length in ∗HGi, is that
for every word g in ∗HGi of length L, for some L, the intersection S ∩ gS is trivial.
In general an equivalent condition is

Lemma 7.2. A subgroup S of H has finite transporter length in ∗HGi if and only
if for all words g̃ ∈ ∗HGi of length L we have that

S ∩ g̃[L,1]S ∩ g̃[L,2]S ∩ · · · ∩ g̃[L,L]S = 1.

Proof. The lemma follows from noticing that for any x ∈ S and g = gL · · · g1 ∈ ∗HGi,
the condition g[k,1]x ∈ S for all 1 ≤ k ≤ L is equivalent to

gx ∈ S ∩ g[L,1]S ∩ g[L,2]S ∩ · · · ∩ g[L,L]S.

�

For subgroups with finite transporter length the centralizer in ∗HGi has a simple
form:

Proposition 7.3. Let S be a subgroup of H, such that S has finite transporter
length in ∗HGi and gS ∩H ≤ S for any g ∈ ∪i∈IGi

Let x ∈ S be nontrivial. Then any g ∈ C∗HGi(x) either is in H or is of the form
g = g̃−1g0g̃ where g̃ = gk · · · g1 is a reduced word in ∗HGi satisfying the further
condition that g is a reduced word of length 2k + 1 < L.

Proof. Let x ∈ S and let g ∈ C∗HGi(x). We assume that g /∈ H. Every element in
the amalgamated product ∗HGi has a normal form, so in particular we may assume
g = hg̃n · · · g̃1 is the normal form for g. To simplify the argument we set gk = g̃k for
1 ≤ k ≤ n− 1 and gn = hg̃n. With this, we then have g = gn . . . g1.

Simplifying further, we set xi = g[k,1]x for 1 ≤ k ≤ n and x0 = x. Note that
xn = x as well. By [4, Proposition 2.9] we have that xk ∈ H for all k = 1, . . . , n.
As x1 = g1x is an element of g1S ∩H our assumptions imply that x1 ∈ S and thus
it follows that xk ∈ S for all k = 0, . . . , n.

The case when n = 0 corresponds to g ∈ H whereas n = 1 corresponds to g ∈ Gi
for some i ∈ I, where g is of the form g̃−1gg̃ with g̃ being trivial. We will first show
that if n > 1 and g is not cyclically reduced, then x is trivial. We assume that
n > 0 and g is not cyclically reduced. For any K ∈ N the concatenated word gK is a
reduced word of length Kn and for 1 ≤ ` ≤ Kn we have that g

K
[`,1]x = x` mod n ∈ S.

By choosing K such that Kn ≥ L we see that according to definition of finite
transporter length this implies that x is trivial.
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Now assume that n > 1 and g is cyclically reduced. By the previous observation
we have that xk ∈ S for all 0 ≤ k ≤ n. Thus by definition of finite transporter length
we conclude that n < L or x is trivial. Words of length two cannot be cyclically
reduced, so we can assume that n ≥ 3.

As before x1 = g1x ∈ S. From the assumption g ∈ C∗HGi(x) we get that
g1gn · · · g2 ∈ C∗HGi(x1). We note that g1gn ∈ Gin , and hence g1gn · · · gn−1 is an
element in the amalgamated product of shorter length. If g1gn ∈ Gin \H we are
in the case where gng1 · · · gn−1 has length n − 1. We observe that gng1 · · · gn−1

is not cyclically reduced. Since n − 1 > 1 we have by the previous observation
that x1 = 1, and thus x = 1. So we can assume that g1gn = b1 ∈ H. Now
b1gn−1 · · · g2 ∈ C∗HGi(x1) has length n − 2 and by repeated uses of the previous
argument we get that either x is trivial or there exist b0, . . . , bk ∈ H where n = 2k+1
such that b0 = 1 and b`−1gn+1−` = g`

−1b` for 1 ≤ ` ≤ k. Thus,

g = gn · · · g1 = b0gn · · · g1 = g−1
1 b1gn−1 · · · g1 = g−1

1 g−1
2 b2gn−3 · · · g1

= (gk · · · g1)−1(bkgk+1)(gk · · · g1)

We note that bkgk+1 is an element of Gik+1
\H, and so up to a re-indexing of the

above expression, we have shown that g is of the desired form. �

Note that we have not assumed that for i, j ∈ I the intersection Gi ∩Gj is equal
to H. If there exists a g ∈ (Gi∩Gj)\H then the map φ : ∗HGi → G is not injective,
but under our assumption on the subgroup S they will not be letters in centralizers
for nontrivial elements in S.

Lemma 7.4. Let S be a subgroup of H, such that S has finite transporter length
in ∗HGi and gS ∩H ≤ S for any g ∈ ∪i∈IGi.

If g ∈ (Gi ∩ Gj) \ H for i, j ∈ I with i 6= j, then gS ∩ H = 1. If x ∈ S and
g̃ = gn . . . g1 ∈ C∗HGi(x) is a word in normal form where some gk ∈ (Gi ∩Gj) \H
for i, j ∈ I with i 6= j, then x = 1.

Proof. Assume that there exists a g ∈ (Gi ∩Gj) \H for i, j ∈ I with i 6= j. If we
pick a x ∈ S such that gx ∈ H, then by assumption gx ∈ S. Let g̃ = g̃N · · · g̃1 where
g̃k = g for k odd and g̃k = g−1 for k even. Then g̃ is a reduced word in ∗HGi and
for all 1 ≤ k ≤ L we have that g[k,1]x is either x or gx and in particular elements of
S. As S has finite transporter length, we conclude that x is trivial.

If x ∈ S and g̃ = gn . . . g1 ∈ C∗HGi(x) is a word in normal form, then we see
using the argument from Proposition 7.3 that g[k,1]x ∈ gkS ∩H for all 1 ≤ k ≤ n.
Thus, if it satisfies that gk ∈ (Gi ∩Gj) \H for i, j ∈ I with i 6= j, then x = 1. �

Theorem 7.5. Let S be a subgroup of H, such that S has finite transporter length in
∗HGi and gS ∩H ≤ S for any g ∈ ∪i∈IGi. Then the canonical map φ : ∗H Gi → G
induces an injective map on C∗HGi(x)→ CG(x) for any nontrivial x ∈ S.

Proof. Let x ∈ S. As S ≤ H we have that φ(x) = x and φ does induce a map from
C∗HGi(x) to CG(x).

To prove that φ is injective on the centralizers, we consider g ∈ C∗HGi(x) and
assume φ(g) = 1. By Proposition 7.3 we have that either g ∈ H or g = g̃−1g0g̃ ∈
∗HGi is a reduced word of length 2k + 1. Here, g̃ = g1 · · · gk for some k ≥ 0 is a
reduced word of length k and g0 ∈ Gi for some i ∈ I. The map φ restricted to H is
the inclusion and in particular injective. Thus, if g ∈ H with φ(g) = 1 we have that
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g = 1. If g = g̃−1g0g̃ we see that

1 = φ(g) = φ(g̃−1g0g̃) = φ(g̃)−1φ(g0)φ(g̃) = φ(gk)−1 · · ·φ(g1)−1φ(g0)φ(g1) · · ·φ(gk)

and hence 1 = φ(g1) · · ·φ(gk)φ(gk)−1 · · ·φ(g1)−1 = φ(g0). As φ is injective on Gi
for all i ∈ I, we conclude that g0 = 1 which implies that g = 1. Thus we conclude
that φ is injective on C∗HGi(x). �

Corollary 7.6. Let S be a subgroup of H, such that gS∩H ≤ S for any g ∈ ∪i∈IGi.
If for all words g̃ ∈ ∗HGi of length L we have that

S ∩ g̃[L,1]S ∩ g̃[L,2]S ∩ · · · ∩ g̃[L,L]S = 1.

then the map φ : ∗H Gi → G induces an injective map on C∗HGi(x)→ CG(x) for
any nontrivial x ∈ S.

Proof. This is immediate by combining Theorem 7.5 with Lemma 7.2. �

The above Theorem implies that we may consider C∗HGi(x) as a subgroup of
CG(x) for x ∈ S under certain conditions. Note that the map being surjective
on centralizers is a stronger statement than φ : ∗H Gi → G itself being surjective.
In this case there exists a g̃ ∈ φ−1(g) for g ∈ CG(x), but we might have that x
and g̃x are not identified in ∗HGi and thus g̃ is not an element of C∗HGi(x). To
get an isomorphism, we therefore have to check surjectivity as well. The following
proposition will tackle the problem in more generality by giving a condition on when
conjugacies in G can be lifted to ∗HGi.

Proposition 7.7. Let (Gi)i∈I be a family of subgroups of a group G , and let
H = ∩i∈IGi. Let φ : ∗H Gi → G be the canonical map, and let P and Q be
subgroups of H. Then the map

φ : T∗HGi(P,Q)→ TG(P,Q)

is surjective if and only if for every g ∈ TG(P,Q) there exists a g̃ = g̃n · · · g̃1 ∈ ∗HGi
with φ(g̃) = g and φ(g̃[k,1])P ≤ H for all 1 ≤ k ≤ n.

Proof. Assume φ is surjective on the transporter set. Let g ∈ TG(P,Q) and g̃ ∈
T∗HGi(P,Q) with φ(g̃) = g. Pick an x ∈ P and set y = g̃x ∈ H. If g̃ = g̃n · · · g̃1 ∈
∗HGi is in normal form, then

g̃n · · · g̃1x = yg̃n · · · g̃1.

The right hand side is in normal form, while the left hand side is not if x is non-trivial.
Every element in ∗HGi has a unique normal form, so the normal form of the left
hand side is just the right hand side. Just as in the proof of [4, Proposition 2.9] this
implies that g̃[k,1]x are elements of H (seen as a subgroup of ∗HGi) for all 1 ≤ k ≤ n.
In particular they are identified with their image under φ.

Conversely let g ∈ TG(P,Q), and assume that there exists g̃ = g̃n · · · g̃1 ∈ ∗HGi
with φ(g̃) = g and φ(g̃[k,1])P ≤ H for all 1 ≤ k ≤ n. We need to show that for every
x ∈ P we have that g̃x = gx in ∗HGi. This follows directly from the following claim.

Let g̃[0,1] = 1. We want to show that for all 0 ≤ k ≤ n we have g̃[k,1]x = φ(g̃[k,1])x
is in H (seen as a subgroup of ∗HGi). For k = 0 the statement is clear, and we
assume it holds for a given 0 ≤ k < n. We have that g̃[k+1,1]x = g̃k+1(g̃[k,1]x). Here
g̃[k,1]x ∈ H and g̃k+1 ∈ Gi for some i ∈ I. As H ≤ Gi the conjugation g̃k+1(g̃[k,1]x)
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takes place inside Gi. The map φ is injective on Gi, and hence we have that
g̃k+1(g̃[k,1]x) is identified with its image under φ. Thus,

g̃[k+1,1]x = g̃k+1(g̃[k,1]x) = φ(g̃k+1(g̃[k,1]x)) = g̃k+1(φ(g̃[k,1])x) = φ(g̃[k+1,1])x.

We therefore conclude that g̃[k+1,1]x = φ(g̃[k+1,1])x ∈ H ≤ ∗HGi. �

Note that the condition for the trivial group reduces to the fact that φ itself is
surjective. The following proposition will provide a sufficient condition for the map
on transporter sets to be surjective for nontrivial subgroups.

Proposition 7.8. Let (Gi)i∈I be a family of subgroups of a group G, and let
H = ∩i∈IGi. Let φ : ∗H Gi → G be the canonical map. Assume there exists a
subgroup S of H, such that for any g ∈ G there exists a g̃ = g̃n · · · g̃1 ∈ ∗HGi with
φ(g̃) = g and

S ∩ gS = S ∩ φ(g̃[n,1])S ∩ φ(g̃[n,2])S ∩ · · · ∩ φ(g̃[n,n])S.

Then for any non-trivial subgroups P,Q ≤ S the map

φ : T∗HGi(P,Q)→ TG(P,Q)

is surjective.

Proof. Let P and Q be non-trivial subgroups of S and let g ∈ TG(P,Q). Pick a
g̃ = g̃n · · · g̃1 ∈ ∗HGi satisfying the conditions in the Proposition. According to
Proposition 7.7 we need to show that φ(g̃[k,1])P ≤ H for all 1 ≤ k ≤ n. For k = n
we see

φ(g̃[n,1])P = φ(g̃)P = gP ≤ S ≤ H
We fix a k ∈ {1, . . . , n− 1}. Now

φ(g̃)P ≤ S ∩ gS ≤ φ(g̃[n,k+1])S

and thus φ(g̃[k,1])P =
φ(g̃−1

[n,k+1]
g̃)
P ≤ S ≤ H. �

Corollary 7.9. Let (Gi)i∈I be a family of subgroups of a group G, and let H be the
intersection ∩i∈IGi. Let φ : ∗H Gi → G be the canonical map. Assume there exists
a subgroup S of H, such that for any g ∈ G there exists a g̃ = g̃n · · · g̃1 ∈ ∗HGi
with φ(g̃) = g and

S ∩ gS = S ∩ φ(g̃[n,1])S ∩ φ(g̃[n,2])S ∩ · · · ∩ φ(g̃[n,n])S.

Then for any non-trivial subgroups P ≤ S the maps

φ : N∗HGi(P )→ NG(P ), φ : C∗HGi(P )→ CG(P )

are surjective.

Proof. Setting P = Q in Proposition 7.8 is sufficient to ensure that φ is surjective
on normalizers. For centralizers, recall that for subgroups P and Q of H, they
can be identified with their image under φ. Then, for any g ∈ T∗HGi(P,Q) the
conjugation maps cg and cφ(g) agree as maps between subgroups of ∗HGi. So the
map of normalizers restricts to a map of centralizers. In particular, it is surjective
when the map on normalizers is surjective. �

8. Centralizers and finite groups of Lie type

In this section we will show how the centralizers of p-subgroups in a finite group of
Lie type of rank 1 or 2 can be be determined using the proper parabolic subgroups.
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8.1. The rank one case. For a finite group of Lie type in characteristic p of rank
1, we let B be a Borel subgroup of G and S := Op(B). Note that S ∈ Sylp(G).

Lemma 8.1. Let G be a finite Lie group of rank 1 in characteristic p. For any
nontrivial subgroup P ≤ S and g ∈ G we have that if gP ≤ S, then g ∈ B.

Proof. Let P be a nontrivial subgroup of S and let g ∈ G such that gP ≤ S. As
we assume G is a finite group of Lie type of rank 1, the Weyl group is isomorphic
to Z/2. Let t ∈ N ≤ G be a preimage of the generator of the Weyl group. By the
Bruhat decomposition for G [18, Proposition 2.3.5], we have that G = B t BtB.
Assume, for the purpose of contradiction, that g ∈ BtB, i.e that there exist b, b̃ ∈ B
such that g = btb̃. Since S is normal and a Sylow-p-subgroup of B, it consists of all
p-elements of B. Thus, we have that gP ≤ S ∩ gS, and

gP ≤ b
(
S ∩ tb̃S

)
= b

(
S ∩ tS

)
.

In the case of rank 1, we have that t is the longest word in the Weyl group, and
hence by [18, Theorem 2.3.8 (c)] we have that S ∩ tS = 1. This implies that P
is trivial, which is a contradiction. Thus, we conclude that g /∈ BtB and by the
Bruhat decomposition we get that g ∈ B. �

Corollary 8.2. Let G be a finite group of Lie type of rank 1 in characteristic p.
For any nontrivial p-subgroup P of S we have that CB(P ) = CG(P ).

Proof. As B is a subgroup of G, the inclusion induces a injective map CB(P ) →
CG(P ). By Lemma 8.1 this is surjective as well, when P is nontrivial. �

Corollary 8.3. Let G be a finite group of Lie type of rank 1 in characteristic p.
Let ι : B → G be the inclusion. For any p-group P we have that βP : Rep(P,B)→
Rep(P,G) given by [ρ] 7→ [ι ◦ ρ] is a bijection that is natural in P .

Proof. Let P be a p-group, and βP be given as above. Clearly βP is well-defined.
As S is a Sylow-p-subgroup of both B and G we have that any image of P in either
group is conjugate to a subgroup of S. This implies that every class in Rep(P,B)
as well as Rep(P,G) has a representative in Hom(P, S). The map βP is the identity
on representatives in Hom(P, S) and thus surjective by the above remark.

To see that is it injective as well, we consider [ρ1], [ρ2] ∈ Rep(P,B) where
ρ1, ρ2 ∈ Hom(P, S) and assume that [ρ1] = [ρ2] ∈ Rep(P,G). Then there exists a
g ∈ G, such that ρ1 = cg ◦ ρ2. If ρ2 is the trivial map, then the same is true for
ρ1 and clearly [ρ1] = [ρ2] ∈ Rep(P,B). If we assume that ρ2 is nontrivial, then
the subgroup P ′ := ρ2(P ) is a nontrivial subgroup of S such that g(P ′) = ρ1(P )
is a subgroup of S as well. By Lemma 8.1 this implies that g ∈ B, and thus
[ρ1] = [ρ2] ∈ Rep(P,B).

It follows immediately from the definition of βP that precomposing with any
homomorphism of p-groups makes this natural in P . �

8.2. Centralizers of amalgamated products of parabolic subgroups in fi-
nite groups of Lie type. In this part we restrict ourselves to the case where G is
a finite group of Lie type in characteristic p of rank 2. We let ∆ = {α, β} be a basis
of simple roots for the root system for the Weyl group of G and for all γ ∈ ∆ we let
Pγ = P{γ} be the associated parabolic subgroup. Then B is a subgroup of Pγ for
all γ ∈ ∆ and we can consider the amalgamated product Pα ∗B Pβ . Note that in
this case B = Pα ∩ Pβ .
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Our goal is to compare CPα∗BPβ (Q) with CG(Q) for any non-trivial subgroup
Q in S ∈ Sylp(G). This is motivated by the fact that |Sp(G)|hG in this case is a
classifying space for Pα ∗B Pβ .

First, we give a description of the words in Pα ∗B Pβ .

Lemma 8.4. For γ ∈ ∆ let Uγ be the root subgroup associated to γ. Then the set
{1, tγx | x ∈ Uγ} is a transversal for the cosets B\Pγ .

Proof. For any γ ∈ ∆ recall that the parabolic subgroup satisfies Pγ = B∪BtγB. A
variation on the Bruhat normal form [18, Theorem 2.3.5] implies that every element
in Pγ is an element of B or can be written uniquely as btγx where b ∈ B and x ∈ Sγ ,
where the group Sγ by [18, Theorem 2.3.8] is a product of root subgroups of positive
roots that are made negative by the action of sγ . According to [18, Theorem 1.8.3]
we have that Sγ is exactly the root subgroup Uγ . Thus, the set {1, tγx | x ∈ Uγ} is
a set of representatives of the cosets B\Pγ . �

If we use the transversals for the cosets from the above lemma to define the
normal form of an element, then every g ∈ Pα ∗B Pβ has a unique form

btγkxγk · · · tγ1xγ1
where b ∈ B and for 1 ≤ i ≤ k we have that γi ∈ ∆, xγi ∈ Uγi and γi 6= γi+1.

Recall that the Weyl group is a dihedral group in the case of a finite group of Lie
type of Lie rank 2. When the Weyl group W is a dihedral group of order 2L, the
following proposition gives an alternative form of elements of length at most L. It
shows that the Bruhat normal form in G lifts to Pα ∗B Pβ . The proof is similar to
the process for finding the Bruhat normal form for an element, but care needs to be
taken to ensure that the identifications still hold in the amalgamated product.

Proposition 8.5. Let G be a finite group of Lie type of Lie rank 2. Let L be the
length of the longest word in the Weyl group W , i.e W ∼= D2L. For g = gk · · · g1 a
reduced word in Pα ∗B Pβ of length k ≤ L, we let n = tk · · · t1 be the word in tα
and tβ of length k such that ti and gi belongs to the same parabolic subgroup Pi.
Let w be the image of n in the Weyl group.

Then there exists a b ∈ B and x ∈
∏
{γ∈Φ+|w.γ∈Φ−} Uγ such that

g = bnx ∈ Pα ∗B Pβ .

Proof. Recall that the root system Φ is the disjoint union of the positive roots
Φ+ and the negative roots Φ−. An element w ∈ W permutes the roots, and for
convenience we let

Φ(w) = {γ ∈ Φ+ | w.γ ∈ Φ−}.
If w = sn · · · s1 is a reduced expression and for 1 ≤ i ≤ n we fix γi ∈ ∆ such that
si = sγi , then according to [18, Theorem 1.8.3 (e)] we have

Φ(w) = {γ1, s1 · · · sk.γk+1 | 1 ≤ k ≤ n− 1}.
In particular if a word of the form w̃sγ̃ is reduced, the above description implies
that

Φ(w̃sγ̃) = sγ̃ .Φ(w̃) ∪ {γ̃}.
For k = 0 the claim is immediate, as elements of length zero are in B. Assume

that for some k ≤ N we have that every element in Pα ∗B Pβ of length k− 1 has the
given form. Let g be a word of length k. Writing g in normal form, we have that

g = g̃tγ̃xγ̃
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where g̃ has length k − 1 and γ̃ ∈ ∆ and xγ̃ ∈ Uγ̃ . Using our assumption on g̃, we
have that there exists an alternating word ñ in tα and tβ of length k− 1 with image
w̃ ∈W , such that

g̃ = bñx, b ∈ B, x ∈
∏

γ∈Φ(w̃)

Uγ .

Furthermore, the word ñ does not end in tγ̃ . Thus, ñtγ̃ must be an alternating word
of tα, tβ of length k. The image of ñtγ̃ in the Weyl group is w̃sγ̃ . This is a reduced
word, and thus the length with respect to the basis ∆ is also k. According to [18,
Theorem 1.8.3 (d)] this implies that w̃.γ̃ ∈ Φ+. In particular we have that γ̃ /∈ Φ(w̃).
The only positive root made negative by sγ is γ itself by [18, Theorem 1.8.3 (c)],
and so

sγ̃ .Φ(w̃) ⊂ Φ+.

Recall that conjugating a root subgroup Uγ by tγ̃ is described by the sγ̃-action on
the associated root following [18, Theorem 2.3.8 (b)]. Thus, we have that ∏

γ∈Φ(w̃)

Uγ

 tγ̃ = tγ̃

 ∏
γ∈Φ(w̃)

Usγ̃ .γ

 .

The product
∏
γ∈Φ(w̃) Usγ̃ .γ is a product of root subgroups over positive roots, and

thus a subset of B. In particular we have that there exists x̃ ∈
∏
γ∈Φ(w̃) Usγ̃ .γ , such

that xtγ̃ = tγ̃ x̃. This is an equation of elements of B, and hence we also have that
xtγ̃ = tγ̃ x̃ ∈ Pα ∗B Pβ . We conclude that as elements of Pα ∗B Pβ we have that

g = bw̃tγ x̃x.

Here x̃x is an element in the product of root subgroups corresponding to roots in
set sγ̃ .Φ(w̃) ∪ {γ̃}. The proposition now follows, since we observed that Φ(w̃sγ̃) =
sγ̃ .Φ(w̃) ∪ {γ̃}. �

Injectivity. First we will use the result from chapter 7 on generalized amalgamated
products to prove that the induced map between the two centralizers is injective.

Proposition 8.6. Let G be a finite group of Lie type of Lie rank 2 of characteristic
p. Then S (seen as a subgroup of Pα ∗B Pβ) has finite transporter length as defined
in Definition 7.1 with L the maximal length of a word in the Weyl group W .

Proof. Let g be an element of Pα ∗B Pβ of length L. Then it has a Bruhat form in
Pα ∗B Pβ in the sense of Proposition 8.5, i.e. there exist b, b̃ ∈ B such that g = bnb̃
where n is a reduced word in tα, tβ of length L. In particular φ(n) ∈ N ≤ G and
under the map to the Weyl group it is mapped to the longest element w0.

We want to show that the intersection S ∩ gS is trivial in Pα ∗B Pβ . The map φ
is injective on B. As this intersection in contained in B, it is suffient to show that
the image is trivial in G. Using the fact that S is normalized by B, we see that

φ(S ∩ gS) = S ∩ φ(g)S = b
(
S ∩ φ(n)S

)
.

We observed that φ(n) is mapped to the longest element in W , and hence it follows
directly by [18, Theorem 2.3.8 (c)] that the given intersection is trivial in G. We
see that

S ∩ g̃[L,1]S ∩ g̃[L,2]S ∩ · · · ∩ g̃[L,L]S ≤ S ∩ gS = 1

and conclude by Lemma 7.2 that S has finite transporter length in Pα ∗B Pβ . �
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Using Theorem 7.5 we will now provide a description of the centralizers in
Pα ∗B Pβ .

Corollary 8.7. Let G be a finite group of Lie type of Lie rank two. Then the
canonical map φ : Pα ∗B Pβ → G induces an injective map on CPα∗BPβ (x)→ CG(x)
for any non-trivial x ∈ S.

Proof. We have that S is a normal Sylow-p-subgroup of B, and thus it consists of
exactly all elements of p-power order in B. For any g ∈ Pα or Pβ we have that
gS ∩B is a p-subgroup of B, and in particular we see that gS ∩B ≤ S.

By Proposition 8.6, S has finite transporter length in Pα ∗B Pβ , and hence the
statement now follows directly from Theorem 7.5. �

Surjectivity. To solve the question concerning surjectivitity, we will use the de-
composition of S into root subgroups in connection with the action of the Weyl
groups on the roots. The following lemma is about general root systems, but will
be central to our further arguments.

Lemma 8.8. Let Φ be a root system, W its Weyl group and ∆ a basis for Φ. Let
w = sk · · · s1 where si ∈ {sα | α ∈ ∆}. If the given expression for w is reduced, then
ω.Φ+ ∩ Φ+ ⊂ sk · · · s2.Φ

+ ∩ Φ+.

Proof. Let w = sk · · · s1 be reduced. Recall that an expression in terms of elements
in the Weyl group associated to the basis elements from ∆ is reduced if it is of
minimal length. Then w̃ = sk · · · s2 is reduced as well, and has length k− 1. By [18,
Theorem 1.8.3(d)] we have that w̃.α ∈ Φ+, and thus

w.α = (w̃s1).α = w̃.(−α) = −w̃.α ∈ Φ−.

The only positive root made negative by sα is α itself by [18, Theorem 1.8.3(c)],
and so sα.Φ+ = Φ+ \ {α} ∪ {−α}. From this it follows that

w.Φ+ = (w̃s1).Φ+ = w̃.(Φ+ \ {α} ∪ {−α}) = w̃.(Φ+ \ {α}) ∪ {w.α}.

Thus we conclude that

w.Φ+ ∩ Φ+ = w̃.(Φ+ \ {α}) ∩ Φ+ ⊂ w̃.Φ+ ∩ Φ+.

�

Lemma 8.9. Let G be a finite group of Lie type in characteristic p. Consider
any n ∈ N of the form n = tk · · · t1 with ti ∈ {tα | α ∈ ∆} for 1 ≤ i ≤ k. Let
n` = tk · · · t` for 1 ≤ ` ≤ k. If the corresponding element w = sk · · · s1 ∈ W is
reduced, then

S ∩ nS = S ∩ n1S ∩ n2S ∩ · · · ∩ nkS.

Proof. By [18, Theorem 2.3.6] the group S decomposes as the product of the root
subgroups corresponding to the positive roots, i.e S =

∏
γ∈Φ+ Uγ . Note that the

product can be taken in any given order. The element n is mapped to w in the
Weyl group W = N/(N ∩B). Recall that the action of n on a root subgroup Uγ is
described by the w-action on the associated root, in the form of nUγ = Uw.γ by [18,
Theorem 2.3.7 (b)]. From this we get that

nS =
∏
γ∈Φ+

nUγ =
∏
γ∈Φ+

Uw.γ
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In the decomposition of S we may assume that the ordering of the roots is such that

nS =

 ∏
γ∈w.Φ+∩Φ+

Uγ

 ∏
γ∈w.Φ+∩Φ−

Uγ

 .

Let S− be the Sylow-p-subgroup of the opposite Borel group B−. Then S− is the
product of all the root subgroup associated to negative roots Φ−. By [18, Theorem
2.3.8(c)] we have that S ∩ S− = 1, and hence

S ∩ nS =
∏

γ∈w.Φ+∩Φ+

Uγ .

Let w2 = sk · · · s2. By Lemma 8.8 we have that w.Φ+ ∩ Φ+ ⊂ w2.Φ
+ ∩ Φ+ and

therefore
S ∩ nS =

∏
γ∈w.Φ+∩Φ+

Uγ ⊂
∏

γ∈w2.Φ+∩Φ+

Uγ ⊂ n2S.

Thus, S ∩ nS = S ∩ nS ∩ n2S. By repeated application of this argument, the lemma
now follows. �

Corollary 8.10. Let G be a finite group of Lie type in characteristic p of Lie rank
2. Let φ : Pα ∗B Pβ → G the canonical map. For any g ∈ G there exists a word
g̃ = g̃k · · · g̃1 ∈ Pα ∗B Pβ with φ(g̃) = g and

S ∩ gS = S ∩ φ(g̃[k,1])S ∩ φ(g̃[k,2])S ∩ · · · ∩ φ(g̃[k,k])S.

Proof. Let g ∈ G. By the Bruhat normal form for G there exist b, b̃ ∈ B and n ∈ N
such that g = bnb̃. As N is generated by tα ,tβ and N ∩ B, we may write this as
n = tk · · · t1 where ti ∈ {tα, tβ} for 1 ≤ i ≤ k. Without loss of generality we may
assume that the corresponding expression sk · · · s1 ∈W is reduced.

Now we consider g̃ = btk · · · t1b̃ ∈ Pα ∗B Pβ . Observe that φ(g̃) = g. Since S is
normal in B the desired result now follows from Lemma 8.9. �

Corollary 8.11. Let G be a finite group of Lie type in characteristic p of Lie rank
two. Then for every subgroup P,Q ≤ S the canonical map φ : Pα ∗BPβ → G induces
a surjective map on

TPα∗BPβ (P,Q)→ TG(P,Q), NPα∗BPβ (P )→ NG(P )

CPα∗BPβ (P )→ CG(P ).

Proof. The group G is generated by Pα and Pβ , and so the map φ itself is surjective.
Thus, in the induced map for P the trivial element is surjective.

Let P and Q be non-trivial subgroups of S. Then the maps on transporter set,
normalizers as well as centralizers is surjective by Proposition 7.8 and Corollary 7.9
in connection with Corollary 8.10. �

Based on the previous results we are now able to provide the desired description
of the centralizers of non-trivial p-subgroups of a finite group of Lie type of rank 2.

Theorem 8.12. Let G be a finite group of Lie type in characteristic p of Lie rank
2. Let Q be a nontrivial p-subgroup of S. Then the canonical map φ : Pα ∗B Pβ → G
induces an isomorphism on CPα∗BPβ (Q)→ CG(Q).
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Proof. As Q is a non-trivial subgroup of S, we get using Corollary 8.7 and 8.11 that
the map φ : CPα∗BPβ (x)→ CG(x) is an isomorphism for x ∈ Q \ {1}. This implies

CPα∗BPβ (Q) =
⋂

x∈Q\{1}

CPα∗BPβ (x) ∼=φ

⋂
x∈Q\{1}

CG(x) = CG(Q),

which completes the proof. �

Note that for the trivial group the corresponding map is φ itself, which is surjective
but not injective.

Lemma 8.13. Let G be a finite group of Lie type in characteristic p of Lie rank 2
and φ : Pα ∗B Pβ → G the canonical map. Then for any finite p-group P the map
FP : Rep(P, Pα ∗B Pβ) → Rep(P,G) given by [ρ] 7→ [φ ◦ ρ] is a bijection that is
natural in P with respect to homeomorphisms.

Furthermore, any class in both Rep(P, Pα ∗B Pβ) and Rep(P,G) has a represen-
tative in Hom(P, S) and restricting FP to such representatives is induced by the
identity on Hom(P, S).

Proof. For every ρ : P → Pα∗BPβ and g ∈ Pα∗BPβ we have that φ(cgρ) = cφ(g)(φρ).
Thus, the given map Rep(P, Pα ∗B Pβ)→ Rep(P,G) is well-defined.

As P is a p-group and S ∈ Sylp(G) we conclude by Sylow’s theorems that every
[ρ] ∈ Rep(P,G) has a representative satisfying that ρ(P ) ≤ S. Likewise consider a
ρ : P → Pα ∗B Pβ . Then the image ρ(P ) is a finite group, and by [36, I 4.3] we have
that ρ(P ) is conjugate to a subgroup of Pα or Pβ . We have that ρ(P ) is a p-group
and S is a Sylow-p-subgroup of both Pα and Pβ , and hence it follows by Sylow’s
theorems that ρ(P ) is conjugate in Pα ∗B Pβ to a subgroup of S. In particular every
class [ρ] ∈ Rep(P, Pα ∗B Pβ) has a representative with ρ(P ) ≤ S. Furthermore,
φ is the identity on S, and so the map is question is induced by the identity on
Hom(P, S). From this is follows clearly that the map is surjective.

To prove injectivity consider [ρ], [ρ̃] ∈ Rep(P, Pα ∗B Pβ) with ρ, ρ̃ ∈ Hom(P, S),
such that [ρ] = [ρ̃] ∈ Rep(P, S). Then there exists a g ∈ G such that cgρ = ρ̃. If
ρ is the trivial map, then clearly [ρ] = [ρ̃] ∈ Rep(P, Pα ∗B Pβ), and hence we may
assume ρ is non-trivial.

Now g ∈ TG(ρ(P ), S) with ρ(P ) a non-trivial subgroup of S. According to
Proposition 7.8 in connection with Corollary 8.10 the map TPα∗BPβ (ρ(P ), S) →
TG(ρ(P ), S) induced by φ is surjective. Thus, there exists a g̃ ∈ Pα ∗B Pβ such that
g̃ρ(P ) ≤ S ≤ Pα ∗B Pβ and φ(g̃) = g. We conclude that cg̃ρ = cgρ = ρ̃ as maps
from P to Pα ∗B Pβ . In particular [ρ] = [ρ̃] ∈ Rep(P, Pα ∗B Pβ) and hence the map
is injective. �

9. Mapping spaces and finite groups of Lie type of low rank

First a general lemma, which is useful in the case where |Sp(G)|hG is the classifying
space of a discrete group. Recall that for discrete groups H and G, the set Rep(H,G)
is defined as Hom(H,G)/{cg | g ∈ G}. It is a classical result that for discrete groups
H and G there is a bijection χ̃H,G : Rep(H,G)→ [BH,BG] given by sending the
class [ρ] to the class [Bρ] for ρ : H → G. This extends to a homotopy equivalence:

χH,G :
∐

ρ∈Rep(H,G)

BCG(ρ(H))→ Map(BH,BG).(4)
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See [7, Proposition 7.1] for a proof. This decomposition allows for a way of checking
whether a map Map(BH,BG)→ Map(BH,BG̃) induced by a group homomorphism
in Hom(G, G̃) is a mod-p-equivalence or a homotopy equivalence.

Lemma 9.1. Let H,G and G̃ be discrete groups, and φ ∈ Hom(G, G̃). Consider
the map Φ: Map(BH,BG)→ Map(BH,BG̃) induced by post-composing with Bφ.
With respect to the map χ̃ the map Φ on the set of components is just the map
Rep(H,G)→ Rep(H, G̃) given by [ρ] 7→ [φ ◦ ρ]. Furthermore for any ρ : H → G we
have that Φ restricted to

Map(BH,BG)Bρ → Map(BH,BG̃)B(φρ)

is identified with the restriction of Bφ to

BCG(ρ(H))→ BCG̃(φρ(H))

under (4).

Proof. The statement on the set of components is that the following diagram
commutes:

Rep(H,G) [BH,BG]

Rep(H, G̃) [BH,BG̃]

χ̃H,G

χ̃H,G̃

φ ◦ − Φ

By checking the definitions the diagram commutes since B is a functor on the
category of discrete groups.

For any ρ : H → G to show that Φ on the component Map(BH,BG)Bρ is
identified with the restriction of Bφ to

BCG(ρ(H))→ BCG̃(φρ(H))

under (4), we need to look at how (4) is constructed.
For the homeomorphism ρ : H → G we consider the product map

(incl, ρ) : CG(ρ(H))×H → G.

We then have the following commutative diagram:

CG(ρ(H))×H G

CG̃(φ ◦ ρ(H))×H G̃

(incl, ρ)

(incl, φ ◦ ρ)
φ× id φ

After applying the functor B and taking adjoints we get the commutative diagram:

B(CG(ρ(H))) Map(BH,BG)Bρ

B(CG̃(φ ◦ ρ(P ))) Map(BH,BG̃)B(φ◦ρ)

Ad(B(incl, ρ))

Ad(B(incl, φ ◦ ρ))

Bφ Bφ ◦ −
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According to [7, Proposition 7.1] the horizontal maps are the homotopy equivalence
from (4) restricted to the component associated to ρ and φ ◦ ρ. The right vertical
map is Φ on these components, and thus it is identified with the restriction of Bφ to

BCG(ρ(H))→ BCG̃(φρ(H)).

�

In the case where G is a finite group of Lie type in characteristic p of Lie rank
either 1 or 2, we have proven that the space |Sp(G)|hG is a classifying space of a
discrete group, which allows us to prove our main theorems in this situation.

Theorem 9.2. Let G be a finite group of Lie type of rank 1 in characteristic p.
For any p-subgroup P the map Φ: Map(BP, |Sp(G)|hG)→ Map(BP,BG) induced
by the Borel map |Sp(G)|hG → BG is a mod-p-equivalence.

Moreover, the map (4) induces homotopy equivalences

Map(BP, |Sp(G)|hG) '
∐

ρ∈Rep(P,B)

BCB(ρ(P ))

as well as Map(BP,BG) '
∐
ρ∈Rep(P,G)BCG(ρ(P )) and the map Φ agrees with the

map induced by inclusion ι : B → G under the given identifications. Furthermore the
map Φ is a homotopy equivalence on all components corresponding to ρ ∈ Rep(P,B)
with ρ(P ) non-trivial.

Proof. Let P be a p-group. To prove that Φ is a mod-p-equivalence we need to
show that it is a bijection on components and that it induces an equivalence on
Fp-homology on the components.

According to Proposition 6.12 we have that |Sp(G)|hG ' B(B) and the Borel
map |Sp(G)|hG corresponds to the inclusion ι : B → G. Thus we have that Φ is
post composition with Bι. Moreover, the components of Map(B(P ), |Sp(G)|hG)
are in bijection with Rep(P,B) by sending [ρ] to the component containing Bρ.
Similarly we get that the set of components of Map(B(P ), B(G)) is identified with
Rep(P,G). Furthermore the induced map of Φ on π0 under this identification
is exactly βP : Rep(P,B) → Rep(P,G) by Lemma 9.1. Thus we conclude by
Corollary 8.3 that Φ is a bijection on π0.

To tackle the components themselves, we have by Lemma 9.1 that for any
ρ : P → B the restriction of Φ on component

Map(BP,B(B))Bρ → Map(BP,BG)B(ιρ)

with respect to the homotopy equivalences is the map

Bι : BCB(ρ(P ))→ BCG(ιρ(P )).

By Corollary 8.2 we conclude that this is a homotopy equivalence when ρ(P )
is nontrivial. If ρ(P ) = 1 then the corresponding map is simply Bι, which is a
mod-p-equivalence by Lemma 6.5. In both cases we have that the map induces
isomorphisms on Fp-homology and by the above this is exactly Φ on the particular
component. �

Theorem 9.3. Let G be a finite group of Lie type of rank 2 in characteristic p.
For any p-subgroup P the map Φ: Map(BP, |Sp(G)|hG)→ Map(BP,BG) induced
by |Sp(G)|hG → BG is a mod-p-equivalence.
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Moreover there is a commutative diagram∐
ρ∈Rep(P,Pα∗BPβ)BPα∗BPβ (ρ(P )) Map(BP, |Sp(G)|hG)

∐
ρ∈Rep(P,G)BCG(ρ(P )) Map(BP,BG)

'

φ Φ

'

such that the map Φ agrees with the map induced by φ : Pα ∗B Pβ → G under the
given identifications. Furthermore the map Φ is a homotopy equivalence on all
components corresponding to a ρ ∈ Rep(P, Pα ∗B Pβ) with ρ(P ) non-trivial.

Proof. By Corollary 6.16 we have that |Sp(G)|hG ' B(Pα ∗B Pβ) and that the Borel
fibration |Sp(G)|hG → BG corresponds to the canonical map φ : Pα ∗B Pβ → G on
the fundamental groups.

Using the homotopy equivalence (4) we get a commutative diagram as in the
theorem, where according to Lemma 9.1 the map of components corresponds to
Rep(P, Pα ∗B Pβ)→ Rep(P,G) given by [ρ] 7→ [φ ◦ ρ], and for any ρ : P → Pα ∗B Pβ
we have Φ restricted to

Map(BP, |Sp(G)|hG)Bρ → Map(BP,BG)B(φρ)

is identified with the restriction of Bφ to

BCPα∗BPβ (ρ(P ))→ BCG(φρ(P )).

By Lemma 8.13 the map on the set of components is a bijection. For the
individual components the map is a homotopy equivalence when ρ is non-trivial by
Theorem 8.12, whereas by Lemma 6.5 it is a mod-p-equivalence in the case of the
trivial map. �

10. Mapping spaces and finite groups of Lie type of high rank

In the previous section we showed that the Borel map |Sp(G)|hG → BG induces a
mod-p-equivalence from Map(BP, |Sp(G)|hG) to Map(BP,BG) for a finite p-group
P and finite group of Lie type G in characteristic p and of rank 1 or 2. We will in
this section show that this result holds groups of higher rank. The argument will be
of a very different nature, since |Sp(G)|hG will not be a classifying space of discrete
group.

10.1. The mod-p-homology type of Map(BP,XhG). To begin we focus on the
more general case of the space of maps Map(BP,XhG) where X is a G-space and
P is a finite p-group. For any G-space the homotopy orbit space XhG is the Borel
construction

EG×G X = (EG×X)/〈(v, x)− g(v, x) | (v, x) ∈ EG×X, g ∈ G〉.
The homotopy orbit space fits into the Borel fibration:

X XhG BGπ

Here the map π : XhG → BG is induced by sending X to a point. The homotopy
fixed point space XhG is dually defined as MapG(EG,X), i.e the space of equivariant
maps, and is homotopy equivalent to the space of sections for the Borel fibration
π : XhG → BG.

We will now study the induced map Φ: Map(BP,XhG) → Map(BP,BG). By
[2, corollary 1.6] we have that [BP,BG] is in bijection with Rep(P,G), and so every
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component of Map(BP,BG) contains an element of the form Bf for some f ∈
Hom(P,G). We let Map(BP,XhG)f denote the space of maps f̃ : BP → XhG such
that π◦f̃ ' f , i.e Map(BP,XhG)f is the preimage of the component Map(BP,BG)f
under Φ.

For a G-space Y the G-coinvariant is YG is the orbit space Y/G. We will use the
notation [y]G for the image of y ∈ Y under the quotient map Y → YG.

Lemma 10.1. Let P be a finite group and let f : P → G be a group homomorphism.
For any G-space X we consider X as a P -space via f . Then the restriction
Φ: Map(BP,XhG)f → Map(BP,BG)f is a fibration with fiber homotopy equivalent
to XhP .

The map XhP → Map(BP,XhG)f is given by sending a g ∈ XhP to the
map BP → XhG defined by identifying BP with EP/P and sending [v]P 7→
[Ef(v), g(v)]G for any v ∈ EP .

Proof. As the Borel map π : XhG → BG is a fibration the induced map

Φ: Map(BP,XhG)f → Map(BP,BG)f

is a fibration as well.
To understand the fiber, we will use the approach of [7, Lemma 7.4]. Recall

that we are using the model |E(G)| for EG, where E(G) is defined in Definition 5.1.
The construction is functorial in G, and induces a map Ef : EP → EG. Note that
this map is P -equivariant in the sense that for all q ∈ P and v ∈ EP we have
that Ef(qv) = f(q)Ef(v). Let ψ : XhP → XhG be the map given by ψ[v, x]P =
[Ef(v), x]G. Since the P action on X is induced by f , the map ψ is easily seen to
be well-defined.

Then the following diagram commutes:

XhP XhG

BP BG

ψ

proj π

Bf

By [7, Lemma 7.4] it is enough to show that it is a homotopy pullback. In this
case the fiber over f can be identified with the space of sections of the homotopy
pullback, which is homotopy equivalent to XhP . The homotopy is given by sending
g ∈ XhP = MapP (EP,X) to the section of XhP → BP defined by [v]P 7→ [v, g(v)]P
using the model EPP for BP .

As the map π is a fibration, the inclusion of the pullback of the diagram into the
homotopy pullback is a homotopy equivalence, and it is therefore sufficient to give a
homotopy equivalence from EP ×P X to the pullback:

BP ×BG XhG = {(a, b) ∈ BP ×XhG | Bf(a) = π(b)}.

Let h : XhG → BP ×BG XhG be the map given by the universal property of the
pullback. Using the model EPP for BP as well as EG ×G X for XhG we get a
description of the pullback as

BP ×BG XhG = {([v]P , [Ef(v), x]G) ∈ BP ×XhG | v ∈ EP, x ∈ X}.

This description shows that h is a homotopy equivalence by providing an inverse
BP ×BG XhG → XhP given by ([v]P , [Ef(v), x]G) 7→ [v, x]P . �



MAPPING SPACES, CENTRALIZERS, AND p-LOCAL FINITE GROUP OF LIE TYPE 45

Proposition 10.2. LetX be a G-space. Let P be a finite p-group and let f : P → G
be a group homomorphism. Then X is a P -space via f . Assume that XP is
Fp-acyclic. If X is a simply-connected finite G-CW -complex then the preimage
Map(BP,XhG)f is path-connected and the restriction of Φ to

Φ: Map(BP,XhG)f → Map(BP,BG)f

is a mod p-equivalence.

Proof. We have that the map XP → ∗ is a mod-p-equivalence. By the property of
the Bousfield-Kan p-completion [6, Lemma I 5.5] this implies that the induced map
(XP )∧p → ∗∧p is a homotopy equivalence. Since X is a finite P -CW complex and P a
finite group, it follows from the Generalized Sullivan conjecture (proved in the 80’s
see [24] and [28]) that the map (XP )∧p → (X∧p )hP is a weak homotopy equivalence.

Since X is simply-connected we conclude by [16, Lemma 2.4] that the natural map
XhP → (X∧p )hP induces an isomorphism on homology with Fp coefficients. Both
homotopy equivalences as well as weak homotopy equivalences induce isomorphism
on homology with Fp-coefficients and so we have that H∗(XhP ;Fp) ∼= H∗(∗;Fp). In
the fibration

XhP → Map(BP,XhG)f → Map(BP,BG)f

the base space is path-connected and the homology of the fiber is H∗(∗;Fp). In
particular the fiber is path-connected as well, and hence by the long exact sequence
in homotopy for fibrations we conclude that Map(BP,XhG)f is path-connected.
It now follows that the fundamental group of the base space acts trivially on the
Fp-homology of the fiber. The Serre spectral sequence for Fp-homology

E2
p,q = Hp(Map(BP,BG)f ;Hq(∗;Fp)) =⇒ Hp+q(Map(BP,XhG)f ;Fp)

degenerates to the zero line. The identification of the second page of the spectral
sequence is induced by Φ so the collapse shows that Φ is a mod p-equivalence. �

The mapping space Map(BP,BG) contains the component containing B1, where
1: P → G is the trivial map. The previous proposition requires that XP = X
is contractible, which is too restrictive for our purpose. Thus we now tackle this
component separately.

Proposition 10.3. Let G be finite group and X a finite G-CW -space. For a
finite group P we let 1: P → G denote the trivial group homomorphism. Let
Map(BP,XhG)1 be the preimage of Map(BP,BG)B1 under Φ. Then the map
XhG → Map(BP,XhG) given by sending x ∈ XhG to the constant map at x is a
weak homotopy equivalence and furthermore the diagram

XhG BG

Map(BP,XhG)1 Map(BP,BG)B1
Φ

commutes and the right vertical map is a homotopy equivalence. In particular we
have that Φ: Map(BP,XhG)1 → Map(BP,BG)B1 is a mod-p-equivalence if and
only if the map XhG → BG is.

Proof. Consider the fibration from Lemma 10.1

XhP Map(BP,XhG)1 Map(BP,BG)1
π



46 ISABELLE LAUDE

where X has the trivial P action. Then we have that XhP ∼= Map(BP,X) and the
map XhP → Map(BP,XhG) coincide with postcomposition with X → XhG. For a
space Y we let cY : Y → Map(BP, Y ) be the map given by sending a point of y ∈ Y
to the constant map BP → Y with image y. We get the induced commutative
diagram:

X XhG BG

Map(BP,X) Map(BP,XhG)1 Map(BP,BG)1

cX cXhG cBG

Φ

The left vertical map is a homotopy equivalence by the Sullivan’s conjecture in the
trivial action case, see [28, Example 1] for a formulation in this language. Likewise
the map YBG : BG → Map(BP,BG)B1 is a homotopy equivalence by a classical
result, see [7, Proposition 7.1]. The upper sequence is the Borel fibration. Both
fibrations admit a long exact sequence in homotopy and the given maps induces
a map between them. By successive applications of the 5-lemma we deduce that
cXhG : XhG → Map(BP,XhG)1 is a weak homotopy equivalence. A weak homotopy
equivalence induces isomorphisms on homology and cohomology with any coefficients,
and is in particular a mod-p-equivalence. The rest of the proposition now follows
from the commutative diagram. �

Theorem 10.4. Let G be a finite group and X a finite G-CW -space which is
simply connected. Let P be a finite p-group and assume that for any non-trivial
ϕ ∈ Hom(P,G) the induced P action on X satisfies that the set of fixed-points XP

is Fp-acyclic. If the map XhG → BG is a mod-p-equivalence, then the same is true
for the induced map Φ: Map(BP,XhG)→ Map(BP,BG).

Proof. We need to check that the preimage under Φ of each path-component of
Map(BP,BG) is path-connected and the restriction of Φ to each component is a
mod-p-equivalence. As every component of Map(BP,BG) contains an element of
the form Bf for some f ∈ Hom(P,G) the theorem follows from Propositions 10.2
and 10.3. �

10.2. Mod-p-equivalence for finite groups of Lie type in high rank. Now
we will restrict our focus to the G-CW -complex Sp(G), where G is a finite group of
Lie type in characteristic p and apply the previous results.

Theorem 10.5. Let G be a group of finite Lie type in characteristic p of Lie
rank at least 3. For any p-subgroup P of G the map Φ: Map(BP, |Sp(G)|hG) →
Map(BP,BG) induced by |Sp(G)|hG → BG is a mod-p-equivalence.

Proof. As the group G is finite the realization of a poset of subgroups |Sp(G)| is
a finite G-CW-complex. From Lemma 6.11 we have that |Sp(G)| is (RkL(G)− 2)-
connected. In particular we have by the assumptions that |Sp(G)| is simply connected.
From Corollary 6.10 we conclude that |Sp(G)|ϕ(P ) is contractible for any nontrivial
ϕ ∈ Hom(P,G), and in particular Fp-acyclic.

The theorem now follows directly from Theorem 10.4 using Lemma 6.5. �

Corollary 10.6. let G be a finite group of Lie type in characteristic p of rank at
least 3. For a finite p-group P there is a bijection [BP, |Sp(G)|hG] → Rep(P,G)
induced by the Borel map |Sp(G)|hG → BG.
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Proof. A mod-p-equivalence induces a bijection on components, and so the corollary
follows directly from Theorem 10.5 by identifying the components of Map(BP,BG)
with Rep(P,G) �

11. Homotopy group of homotopy fixed points applied to localizations.

In this chapter we will — for a nilpotent space X and a finite p-group P —
determine the homotopy groups of (X∧` )hP for a prime ` different from p, as well as
(XQ)hP in terms of the homotopy groups of X. Here, ∧` is the `-completion in the
sense of Bousfield–Kan [6, Chapter VI].

Recall that the action of a group π on a group G is called nilpotent if there exists
a finite sequence of subgroups

1 = G1 ⊂ G2 ⊂ · · ·Gn−1 ⊂ Gn = G

such that the following conditions hold:
• The subgroup Gj is closed under the action of π.
• The subgroup Gj is normal in Gj+1 and the quotient Gj+1/Gj is abelian.
• The induced action of π on the quotient Gj+1/Gj is trivial.

If the conjugation action on a group is nilpotent, the group is called nilpotent.
For abelian groups this trivially holds, and they are all nilpotent.

A connected pointed space X is nilpotent, if the action of the fundamental group
π1(X) on all the homotopy groups is nilpotent. In particular all simply-connected
spaces are nilpotent.

Proposition 11.1. Let p be prime, and P be a finite p-group, and let X be a
connected P -space satisfying that πt(X) is a uniquely p-divisible abelian group for
all t > 0. Then we have that πt(XhP ) ∼= πt(X)P for all t and this isomorphism is
natural in X.

Proof. The result follows using the homotopical homotopy fixed point spectral
sequence. Recall that this spectral sequence is a special case of the spectral sequence
for homotopy groups of homotopy limits [6, Ch. XI §7].

For the P -space X we may consider the associated diagram X : I → Top, where I
is the one-object category with morphism set P and Top the category of topological
spaces. The homotopy limit of the diagram X is XhP .

For any t we have that πt(X) with induced P -action is a P -module. We let Ab
be the category of abelian groups with group homomorphisms. Let πt(X) denote
the associated diagram I → Ab given by mapping I to πt(X). Now the homotopical
spectral sequence for homotopy limits applied to X reduces to a spectral sequence
satisfying

Es,t2
∼= lim

I

s(πt(X)) =⇒ πt−s((X)hP ).

As in [6, Ch. XI 6.3] we may identify lims
I(πt(X)) with Hs(P, πt(X)) the classical

group cohomology of P with coefficients in πt(X).
Recall that being a uniquely p-divisible module means that every p-power is

invertible in the module. In particular the order of the group |P | is invertible in
πt(X) for all t. Thus, by [12, Corollary 10.2] all cohomology groups Hs(P, πt(X))
for s > 0 vanish, and hence the E2-page is trivial expect for the 0’th row, where for
all t

E0,t
2
∼= H0(P, πt(X)) = πt(X)P .
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The differentials in the spectral sequence have the form dr : Es,tr → Es+r,t+r−1
r .

Thus, the above spectral sequence collapses to the 0’th row and we conclude that
πt((X)hP ) ∼= πt(X)P for all t.

Lastly we observe that the spectral sequence as well as all the used isomorphisms
are natural in X, from which we get the naturality of the above isomorphism. �

For a nilpotent group N the classifying spaceK(N, 1) is an example of a connected
and nilpotent space. Using the notation from [6, Ch. VI] we define for a nilpotent
group N the Ext-completion as well as the Hom-completion to be

Ext(Zp∞ , N) = π1(K(N, 1)∧p )

Hom(Zp∞ , N) = π2(K(N, 1)∧p )

For N abelian this definition coincides with the classical one, if we let Zp∞ denote
the Sylow-p-subgroup of Q/Z. A concrete description of the group Zp∞ can be given
as the quotient of the subgroup{

a

pn
| a ∈ Z, n ≥ 0

}
over the integers.

The completion map K(N, 1) → K(N, 1)∧p induces the associated completion
map on the fundamental groups N → Ext(Zp∞ , N). A nilpotent group N is called
Ext-p-complete if the completion map N → Ext(Zp∞ , N) is an isomorphism and if
Hom(Zp∞ , N) = 0.

As remarked in [6, Ch. VI] a nilpotent group N that is Ext-p-complete, is
uniquely `-divisible for any prime ` different from p, but no proof is provided. For
completeness, we include a proof of this statement here.

Lemma 11.2. Let p be a prime and N an Ext-p-complete nilpotent group. Then
N is uniquely `-divisible for any prime ` 6= p.

Proof. First we consider the case where N is abelian. By definition of Ext-p-
completeness we have that the map N → Ext(Zp∞ , N) is an isomorphism. Hence
it is sufficient to prove that Ext(Zp∞ , N) is uniquely `-divisible. Note that Ext
does in this case agree with the classical definition as a right derived functor of
Hom(Zp∞ ,−).

For a prime ` 6= p let the multiplication by ` on Zp∞ be denoted by (·`) and note
that this is an isomorphism. Thus, the induced map Ext((·`)) on Ext(Zp∞ , N) is an
isomorphism as well. To identify the morphism Ext((·`)), first observe that for any
group homomorphism f : Zp∞ → B of abelian groups, we have that `f = f ◦ (·`).
By the definition of Ext as the derived functor of Hom we conclude that the
automorphism Ext((·`)) of Ext(Zp∞ , N) is in fact multiplication by `. As this is an
isomorphism we conclude that Ext(Zp∞ , N) is uniquely `-divisible.

For the general case of a nilpotent group recall that one of the definitions of
nilpotent group is that the upper central series of N stabilizes at N . By [6, Ch.
VI, 3.4 (ii)] we have that all abelian quotients of the upper central series are Ext-p-
complete and thus by the previous result uniquely `-divisible. Using the fact the
the upper central series stabilizes at N it now follows by the 5-lemma that N is
uniquely `-divisible. �
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Proposition 11.3. Fix a prime p. Let P be a p-group and X be a connected
nilpotent P -space with abelian fundamental group. Then for all t we have that

πt((XQ)hP ) ∼= πt(XQ)P .

If furthermore the fundamental group of X is finitely generated, then for any prime
` different from p the homotopy groups of (X∧` )hP satisfy that for all t

πt((X
∧
` )hP ) ∼= πt(X

∧
` )P .

Proof. For the rationalization XQ the homotopy groups satisfy that πt(XQ) ∼=
πt(X)⊗Q according to [6, Ch V Proposition 3.1]. In particular XQ is connected.
Since Q is uniquely p-divisible, we have in this case that the homotopy groups of
XQ are all uniquely p-divisible abelian groups. The statement now follows from
Proposition 11.1.

Now let ` be a prime different from p and consider the `-completion X∧` . We
have that the space X∧` is connected. The higher homotopy groups of X∧` are all
abelian. Based on [6, Ch. VI 5.2] the fundamental group π1(X∧` ) is isomorphic to
π1(X) ⊗ Z`, where Z` denotes the `-adic integers. In particular under the above
assumptions the fundamental group of X∧` is abelian.

Furthermore we have that X∧` is Z`-complete, and hence by [6, Ch. VI 5.4] the
homotopy groups πt(X∧` ) are Ext-`-complete as well. As ` 6= p we see from Lemma
11.2 that these groups are uniquely p-divisible for all t > 0. Now the second part of
the statement likewise follows from Proposition 11.1. �

Lemma 11.4. LetX and Y be connected pointed nilpotent spaces, and f : X → Y a
map between them. Then the following diagram commutes, where the the horizontal
maps are the canonical maps associated to the rationalization.

π∗(X)⊗Q π∗(XQ)

π∗(Y )⊗Q π∗(YQ)

∼=

(f∗)⊗1Q (fQ)∗

∼=

If furthermore all homotopy groups of X and Y are finitely generated abelian groups,
then for a prime ` the associated diagram for `-completion commutes as well.

π∗(X)⊗ Z` π∗(X
∧
` )

π∗(Y )⊗ Z` π∗(Y
∧
` )

∼=

(f∗)⊗1Z` (f∧` )∗

∼=

Proof. Using the funtoriality and naturality of rationalization of nilpotent spaces
from [6] we obtain the following commutative diagram where φ is the natural
transformation from the identity functor to the rationalization functor.

π∗(X) π∗(XQ)

π∗(Y ) π∗(YQ)

φ(X)∗

f∗ (fQ)∗

φ(Y )∗

Recall [6, Ch. V 2.5] that for a group H the natural map H → H ⊗Q is universal
for maps from H to Q-nilpotent groups. Using the universal property in connection
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with the above diagram, the diagram factors as:

π∗(X) π∗(X)⊗Q π∗(XQ)

π∗(Y ) π∗(Y )⊗Q π∗(YQ)

f∗ (f∗)⊗1Q (fQ)∗

By [6, V Proposition 3.1 (ii)] the right hand horizontal maps are exactly the canonical
isomorphism associated to rationalization and the first part of the lemma follows
directly.

For the second part of the lemma let ` be a prime number. Then the natural
transformation ψ from the `-completion gives rise to a similar diagram.

(5)
π∗(X) π∗(X

∧
` )

π∗(Y ) π∗(Y
∧
` )

ψ(X)∗

f∗ (f∧` )∗

ψ(Y )∗

Now recall that Z`-completion for finitely generated groups agrees with the `-profinite
completion. In particular for a finitely generated abelian group A the `-completion
is isomorphic to A⊗ Z`. The natural map A→ A⊗ Z` is universal for maps from
A to `-profinite groups.

For any nilpotent connected space Z with finitely generated homotopy groups
there is a sequence of isomorphisms

(6) πt(Z)⊗ Z` → Ext(Z`∞ , πt(Z))→ πt(Z
∧
` )

by [6, Ch. VI 5]. Using this isomorphism for the spaces X and Y , we see that all the
homotopy groups are Z`-complete, and the universal property factors the diagram
(5) in a similar fashion as before:

π∗(X) π∗(X)⊗ Z` π∗(X
∧
` )

π∗(Y ) π∗(Y )⊗ Z` π∗(Y
∧
` )

f∗ (f∗)⊗1Z` (f∧` )∗

The right hand horizontal maps coincide with (6) and are thus both isomorphisms.
�

Proposition 11.5. Fix a prime p. Let P be a finite p-group and X be a connected
nilpotent P -space with abelian fundamental group. Let XQ be a P -space with the
induced P -action. Then for any t the group P acts on the t’th homotopy group of
both X and XQ and the fixed points satisfy

πt(XQ)P ∼= πt(X)P ⊗Q.

Let ` be a prime different from p. Assume that all homotopy groups of X are finitely
generated abelian. Then the P -fixed points of the homotopy groups of both X and
X∧` satisfy

πt(X
∧
` )P ∼= πt(X)P ⊗ Z`

for all t.
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Proof. Recall that XQ is a P -space with the P -action induced by the one on X. In
particular if for g ∈ P the action on X is ϕ(g) ∈ Aut(X), then the induced action on
XQ by g is ϕ(g)Q ∈ Aut(XQ). By Lemma 11.4 the associated action on homotopy
groups satisfies

πt(X)⊗Q πt(XQ)

πt(X)⊗Q πt(XQ),

∼=

(ϕ(g)∗)⊗1Q (ϕ(g)Q)∗

∼=

where the vertical maps are the same isomorphism. As g only acts on the first factor
on the left hand side, we conclude that the g-fixed points πt(XQ)g are isomorphic
to πt(X)g ⊗Q and the isomorphism is induced by restriction of the canonical map
πt(X)⊗Q→ πt(XQ).

The set of rational numbers Q is flat as a Z-module, and thus tensoring with Q
commutes with finite intersection. In particular

πt(X)P ⊗Q =

⋂
g∈P

πt(X)g

⊗Q ∼=
⋂
g∈P

(πt(X)g ⊗Q) .

For all g ∈ P the maps from πt(X)g ⊗Q→ (πt(XQ))g are compatible and together
with the above observation they induce an isomorphism

πt(X)P ⊗Q ∼= πt(XQ)P .

In the case of `-completion X∧` for ` a prime different from p the P -action is
induced by the `-completion functor. For a g ∈ P the action on the homotopy
groups of X∧` is given by (ϕ(g)∧` )∗ ∈ Aut(π∗(X

∧
` ). Using the fact that the homotopy

groups of X are finitely generated abelian we get by Lemma 11.4 for any t the
commutative diagram

πt(X)⊗ Z` πt(X
∧
` )

πt(X)⊗ Z` πt(X
∧
` ),

∼=

(ϕ(g)∗)⊗1Z` (ϕ(g)∧` )∗

∼=

where the two isomorphisms agree. As before this implies that πt(X)g ⊗ Z` ∼=
πt(X

∧
` )g with the isomorphism induced by the canonical map πt(X)⊗Z` ∼= πt(X

∧
` ).

By observing that the `-adic integers Z` is torsion free and thus flat over Z, the
argument now follows the form of the rationalization case. �

Corollary 11.6. Fix a prime p. Let P be a finite p-group and X be a connected
nilpotent P -space with abelian fundamental group. Then for any t the homotopy
groups of (XQ)hP satisfies

πt((XQ)hP ) ∼= πt(X)P ⊗Q.

Let ` be a prime different for p. If all homotopies of X are finitely generated abelian,
then the homotopy groups of (X∧` )hP

πt((X
∧
` )hP ) ∼= πt(X)P ⊗ Z`

for all t.

Proof. The statement follows from Proposition 11.3 and Proposition 11.5. �
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12. Sullivan square with missing p-term and divisible groups

In [39] Sullivan presented his arithmetic square providing a connection between
localization at the rational numbers and completion at primes. For a finitely
generated abelian group A he showed that the commuting square

A
∏
p primeA⊗ Zp

A⊗Q
(∏

p primeA⊗ Zp
)
⊗Q

i

j

with i((gp ⊗ zp)p) = (gp ⊗ zp)p ⊗ 1 and j(g ⊗ q) = (g ⊗ 1)p ⊗ q is a fiber square, i.e
we have the following exact sequence

0 −→ A (A⊗Q)⊕
(∏

p primeA⊗ Zp
) (∏

p primeA⊗ Zp
)
⊗Q −→ 0

i−j

We will now fix a prime p and consider the square with missing p-term in the upper
right corner:

A
∏
` prime, 6̀=pA⊗ Z`

A⊗Q
(∏

` primeA⊗ Z`
)
⊗Q

i

j

In the following lemma we identify the kernel and cokernel of the restriction of i− j
to this situation.

Lemma 12.1. For a finitely generated abelian group A and a prime p we consider
the map

fA : (A⊗Q)⊕

 ∏
` prime
` 6=p

A⊗ Z`

→ (A⊗Qp)⊕


 ∏
` prime
` 6=p

A⊗ Z`

⊗Q


given by

(g ⊗ q)⊕ (g` ⊗ z`) 6̀=p 7→ (g ⊗ q)⊕ ((g ⊗ 1)` 6=p ⊗ q − (g` ⊗ z`) 6̀=p ⊗ 1).

Then ker(fA) = Torp′(A) and coker(fA) = A⊗ (Zp/Z)[ 1
p ].

Proof. Let A be a finitely generated abelian group. The map fA is the restriction
of i − j from the Sullivan arithmetic square to a subgroup, so the kernel is the
intersection between the kernel of i− j and the domain of fA. By the exactness of
the associated short exact sequence, ker(i− j) is isomorphic to A via the map

a 7→ (a⊗ 1)⊕ (a⊗ 1)` ∈ (A⊗Q)⊕

 ∏
` prime

A⊗ Z`

 .

For any a ∈ A the element (a ⊗ 1) ⊕ (a ⊗ 1)` belongs to the domain of fA if and
only if a⊗ 1 = 0 ∈ A⊗ Zp. Note that the kernel of A ↪→ A⊗ Zp is Torp′(A), and
hence we can identify the kernel fA with the p-prime part of Tor(A).

We have that A ∼=
⊕k

1 Ak where each Ak is a cyclic group. By the distributive
laws we have that coker(fk) ∼=

⊕k
1 coker(fAk). For finite groups the target is zero,
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and thus coker(fA) ∼= coker(fZ)Rank(A). Thus, it suffices to consider the case where
A = Z.

We first observe that every element of (y`)` 6=p ∈
(∏

` prime, 6̀=p Z`
)
⊗Q is in the

target of the map i− j. As i− j is surjective there exists an element (q, (x`)`) ∈ Q⊕(∏
p prime Zp

)
with (i− j)(q, (x`)`) = (y`). Note that fZ(q, (x`)` 6=p) = (q, (y`) 6̀=p).

Then every element of coker(fZ) has a representative of the form (y, 0) with y ∈ Qp.
Thus, the projection on the first factor induces a surjective map from coker(fZ) to
Qp. To identify the kernel we observe that for any q ∈ Q we have fZ(q, 0) = (q, q),
and hence (q, 0) = (0,−q) as elements of coker(fZ). The element (q, 0) is zero in
coker(fZ) exactly when q ∈ Q ∩ Z` for all primes ` 6= p, i.e. when

q ∈
⋂
` 6=p

Q ∩ Z` =
⋂
6̀=p

Z(`) = Z
[

1

p

]
.

We conclude that coker(fZ) ∼= Qp/(Z[ 1
p ]) = (Zp/Z)[ 1

p ]. The general result follows
from this. �

To further understand the cokernel of Lemma 12.1 we will look at (Zp/Z)[ 1
p ].

The following lemma is the first important steep.

Lemma 12.2. Let p be a prime number. There is a group isomorphism

Q/
(
Z
[

1

p

])
∼=

⊕
` prime
` 6=p

Z`∞

given by identifying the class represented by a
`k

in the group Z`∞ with the class

represented by a
`k

in Q/
(
Z
[

1
p

])
for every prime ` different from p.

Proof. The abelian group Q/Z is a torsion group and thus it is isomorphic to the
direct sum of its unique Sylow-`-subgroups, where ` ranges over all primes. More
explicitly the isomorphism ⊕

` prime

Z`∞ ∼= Q/Z

is given by identifying the class represented by a
`k

where a ∈ Z and k ≥ 0 in Z`∞
with the corresponding class epresented by a

`k
in Q/Z. By Noether’s isomorphism

theorem we conclude that

Q/
(
Z
[

1

p

])
∼= (Q/Z) /

(
Z
[

1

p

]
/Z
)
∼=

 ⊕
` prime

Z`∞

 /Zp∞ ∼=
⊕

` prime
6̀=p

Z`∞ .

�

Proposition 12.3. Let p be a prime number. The group (Zp/Z)[ 1
p ] is a divisible

abelian group and isomorphic to ⊕
` prime
6̀=p

Z`∞

⊕
(⊕

R
Q

)
.
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Proof. Recall that the quotient is (Zp/Z)[ 1
p ] which is isomorphic to Qp/Z[ 1

p ].
First consider the p-adic numbers Qp under addition. This is a divisible group

with no torsion, and thus by the structure theorem for divisible groups [22, Theorem
4] it is a vector space over Q. The cardinality of Qp is |R|, and hence the dimension
dimQ(Qp) must be infinite as well. To determine the dimension explicitly note that

|R| = |Qp| = |Q| · dimQ(Qp) = max{|Q|,dimQ(Qp)},

and observe that dimQ(Qp) must be |R|.
Considering Q as a subring of Qp gives rise to a choice of a Q-basis for Qp where

the subgroup Z[ 1
p ] is contained in only one factor of Q. Now,

Qp/Z
[

1

p

]
∼=
(
Q/Z

[
1

p

])⊕(⊕
R

Q

)
and the result follows from Lemma 12.2. �

Corollary 12.4. Let p be a prime number and A a finitely generated abelian group.
If A is a torsion group, then A⊗ (Zp/Z)[ 1

p ] = 0 and if Rank(A) ≥ 1 then

A⊗ (Zp/Z)

[
1

p

]
∼=

 ⊕
` prime
` 6=p

(Z`∞)
Rank(A)

⊕
(⊕

R
Q

)
.

Proof. By observing that the tensor product of a torsion group and a divisible group
is trivial, the corollary follows from Proposition 12.3. �

Divisible groups are injective Z-modules, therefore exact sequences of abelian
groups with a divisible factor behave nicely.

Lemma 12.5. Let

A1 A2 A3 A4 A5
f1 f2 f3 f4

be an exact sequence of abelian groups. If A2 is a divisible group, then

A3
∼= coker(f1)⊕ ker(f4).

Proof. Using the isomorphism theorem we observe that

im(f2) ∼= A2/ ker(f2)

and as A2 is divisible, the same is true for im(f2). Thus, im(f2) is a direct factor of
A3 and

A3
∼= im(f2)⊕ (A3/ im(f2)).

Using the exactness in connection with isomorphism theorem we identify the sum-
mands as

A3/ im(f2) ∼= A3/ ker(f3) ∼= im(f3) ∼= ker(f4)

as well as
im(f2) ∼= A2/ ker(f2) ∼= A2/ im(f1) = coker(f1).

�
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13. The homotopy type of the components of Map(BP,XhG)

Recall that for G a finite group and X a G-CW-space we are studying the fibration

Φ: Map(BP,XhG)→ Map(BP,BG)

induced by the Borel map XhG → EG. Let f : P → G be a non-trivial group
homomorphism. We consider X to be a P -space via the induced action. If X is a
simply connected finite CW-complex and the fixed points XP are contractible then
according to Proposition 10.2 the preimage of Map(BP,BG)f under Φ is connected.
As before we call this component Map(BP,XhG)f . The following theorem will
provide a description of the homotopy groups under further assumptions on X.

Theorem 13.1. Let G be a finite group and X a finite G-CW-complex. Assume
that X is simply-connected and all the higher homotopy groups πi(X) for i ≥ 2 are
finitely generated.

Let P be a finite p-group and f ∈ Map(P,G) be nontrivial. Let X be a P -space
via f , and assume that XP ' ∗. Then for all i ≥ 2

πi(Map(BP,XhG)f ) ∼= Torp′(πi(X)P )⊕
(
πi+1(X)P ⊗ (Zp/Z)

[
1

p

])
and for the fundamental group we have the following short exact sequence:

0→ π2(X)P ⊗ (Zp/Z)

[
1

p

]
→ π1(Map(BP,XhG)f )→ CG(f(P ))→ 0

Thus, if X is 2-connected we have that

π1(Map(BP,XhG)f ) ∼= CG(f(P )).

Proof. Given that X is a 1-connected space, it is also nilpotent. As all the homotopy
groups are finitely generated the arithmetic square from [6, Ch. VI, Lemma 8.1]

X
∏
` primeX

∧
`

XQ

(∏
` primeX

∧
`

)
Q

is a homotopy pullback.
Recall that the homotopy fixed-points functor (−)hP is the homotopy limit

over the diagram associated to the group P . By the Fubini Theorem[14, 31.5] for
homotopy limits, the homotopy fixed-point functor preserves homotopy pullback,
and thus we get the following homotopy pullback diagram.

XhP
(∏

` primeX
∧
`

)hP

(XQ)
hP

((∏
` primeX

∧
`

)
Q

)hP
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The homotopy pullback square induces a long exact sequence in homotopy

· · · πk+1

(((∏
` primeX

∧
`

)
Q

)hP)
πk(XhP )

πk

((∏
` primeX

∧
`

)hP)⊕
πk

(
(XQ)

hP
)

πk

(((∏
` primeX

∧
`

)
Q

)hP)
· · ·

fk+1

fk

To use this sequence to determine the homotopy groups of XhP we first need to
identify the other groups in the sequence.

We first observe that ∏
` prime

X∧`

hP

= MapP (EP,
∏

` prime

X∧` )

'
∏

` prime

MapP (EP,X∧` ) =
∏

` prime

(X∧` )
hP
.

As homotopy groups of a product are products of the homotopy groups of factors,
we conclude that

πk


 ∏
` prime

X∧`

hP
 ∼= ∏

` prime

πk((X∧` )hP ).

To identify the homotopy groups of πk((X∧` )hP ) we need to treat the case where
` = p on this own. Recall that the space X is a finite CW-complex on which the
finite p-group P acts cellulary. Using the generalized Sullivan conjecture, we infer
that there are weak homotopy equivalences

(X∧p )hP (XP )∧p ∗∧p ' ∗.

Thus the homotopy groups of (X∧p )hP vanish. For ` a prime different from p, we
use Proposition 11.6 to conclude that

πk


 ∏
` prime

X∧`

hP
 ∼= ∏

` prime, 6̀=p

πk(X)P ⊗ Z`.(7)

A direct application of Proposition 11.6 implies that

πk

(
(XQ)

hP
)
∼= πk(X)P ⊗Q.(8)
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Likewise the space
∏
` primeX

∧
` is 1-connected, and so by a similar argument as

above be see that

πk


 ∏

` prime

X∧`


Q

hP
 ∼= πk

 ∏
` prime

X∧`

P

⊗Q ∼=

 ∏
` prime

πk(X∧` )

P

⊗Q ∼=

 ∏
` prime

πk(X∧` )P

⊗Q

By Proposition 11.5 we see that

πk


 ∏

` prime

X∧`


Q

hP
 ∼=

 ∏
` prime

πk(X)P ⊗ Z`

⊗Q.(9)

We observe that all the groups in (9) are divisible and thus for all k ≥ 2 we can
apply Lemma 12.5 on part of the long exact sequence in homotopy to see that

πk(XhP ) ∼= coker(fk+1)⊕ ker(fk).

To determine the fundamental group of XhP , we first recall that the fundamental
group π1(X) is trivial, and thus the same is true for the P -fixed point sets. Thus
we have that the beginning of the long exact sequence is of the form:

· · ·
(∏

` prime π2(X)P ⊗ Z`
)
⊗Q π1(XhP ) 0

f2

Thus, by the isomorphism theorem and exactness of the sequence we conclude:

π1(XhP ) ∼= coker(f2).

To identify the maps fk we first notice that all the isomorphisms in (7), (8)
and (9) are based on the description of the homotopy groups of homotopy fixed
point space in terms of actual fixed points from Proposition 11.1. Thus the given
long exact sequence is the restriction of the long exact sequence for the arithmetic
square for X to the subgroups given in (7), (8) and (9). The map in question is just
like the map from Sullivan’s arithmetic square of groups given by the difference of
rationalization and formal completion, and thus the restriction fk equals fπk(X)P

from Lemma 12.1. Using Lemma 12.1 we conclude that for k ≥ 2 we have that

πk(XhP ) ∼=
(
πk+1(X)P ⊗ (Zp/Z)

[
1

p

])⊕
Torp′(πk(X)P ).

as well as

π1(XhP ) ∼= π2(X)P ⊗ (Zp/Z)

[
1

p

]
.

Recall that as shown in Lemma 10.1 the space Map(BP,XhG)f fits into a fibration

XhP → Map(BP,XhG)f → Map(BP,BG)f .

The space Map(BP,BG)f is known to be homotopic to the classifying space of the
group CG(f(P )). We now deduce directly from the long exact sequence associated
to the fibration that for all k ≥ 2 we have that

πk(Map(BP,XhG)f ) ∼= πk(XhP ).
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and the fundamental group fits into the following short exact sequence

0→ π1(XhP )→ π1(Map(BP,XhG)f )→ CG(f(P ))→ 0.

In particular if X is 2-connected, we have that

π1(Map(BP,XhG)f ) ∼= CG(f(P ))

�

An application of Theorem 13.1 allows for a description of the homotopy groups
of the components of Map(BP, |Sp(G)|hG) in the case where G is a finite group of
Lie type and of Lie rank at least three. Recall that in this case, there is a bijection
[BP, |Sp(G)|hG] with Rep(P,G) according to Corollary 10.6.

Theorem 13.2. Let G be a finite group of Lie type in characteristic p of Lie rank
at least three. Let P be a finite p-group and f ∈ Map(P,G).

For f the trivial map the homotopy groups are

πi(Map(BP, |Sp(G)|hG)1
∼= πi(|Sp(G)|), i ≥ 2

π1(Map(BP, |Sp(G)|hG)1
∼= G

and for f nontrivial we have for all i ≥ 2

πi(Map(BP, |Sp(G)|hG)f ) ∼= Torp′(πi(|Sp(G)|)P ))

⊕
(
πi+1(|Sp(G)|)P ⊗ (Zp/Z)

[
1

p

])
.

If the rank of G is at least four we have that

π1(Map(BP, |Sp(G)|hG)f ) ∼= CG(f(P ))

whereas for rank three we have the following short exact sequence:

0→ π2(|Sp(G)|)P ⊗ (Zp/Z)

[
1

p

]
→ π1(Map(BP, |Sp(G)|hG)f )→ CG(f(P ))→ 0.

Proof. Note that since G is a finite group the G-poset Sp(G) is finite and thus its
realization |Sp(G)| is a finite G-CW-complex.

For the trivial map 1 ∈ Hom(P,G) we have according to Proposition 10.3 that
the evaluation map Map(BP, |Sp(G)|hG)→ |Sp(G)|hG is a weak equivalence. The
homotopy groups of |Sp(G)|hG are determined in Lemma 6.17.

We conclude by Lemma 6.11 that |Sp(G)| is simply connected with all higher
homotopy groups finitely generated. Using Lemma 6.10 we see that for a non-trivial
f ∈ Hom(P,G) the fixed points |Sp(G)|P are contractible. The description of
homotopy groups now follows from Theorem 13.1. �

14. Calculating fixed points on homotopy groups over divisible groups

In the main theorem we get fixed points of homotopy groups π∗(|Sp(G)|) tensored
with different divisible groups. The key observation is that tensoring with a divisible
group eliminates all torsion, which will allow for a description using the free Lie
ring construction.

Recall that in the case of a finite group of Lie type G in characteristic p we have
that |Sp(G)| is S-homotopy equivalent to

∨
S S

RkL(G)−1 where S ∈ Sylp(G) and
S-acts on the on the index set. As we only consider P -fixed points of π∗(|Sp(G)|)
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for P a subgroup of S, the situation can be studied in a more general setting. After
the general discussion we return to |Sp(G)| at the end of the chapter.

For a finite group G and r ≥ 1 we define Xr
G to be

∨
G S

r+1, i.e a wedge of |G|
spheres of dimension r + 1, with the G-action given by multiplication on the left
of the index set. We will now study π∗(Xr

G)H ⊗D for any subgroup H ≤ G and
divisible group D.

First we fix the notation for the following. Let A be a Z-graded abelian group A.
Recall that the suspension map s : A → sA is given by s(A)k = Ak−1. For n ∈ Z
we define a degree n-Lie bracket on A a bilinear map [·, ·] : Ak × A` → Ak+`+n

satisfying:
• For x ∈ Ap, y ∈ Aq

[x, y] = (−1)n+1(−1)pq[y, x]

• For x ∈ Ap, y ∈ Aq, z ∈ Ar
(−1)pr[[x, y], z] + (−1)pq[[y, z], x] + (−1)qr[[z, x], y] = 0

A Z-graded abelian group A with a degree 0-Lie bracket is a graded Lie ring.
If A has a degree n-Lie bracket [·, ·] : Ak×A` → Ak+`+n, then the induced bracket

[s(x), s(y)] := (−1)ks[x, y]

for x ∈ Ak and y ∈ A` is a degree (n−1)-Lie bracket [·, ·] : (sA)k×(sA)` → (sA)k+`−1

on the suspension group sA. This makes the suspension map into a bijection of
Z-graded abelian groups with a degree n-Lie bracket and Z-graded abelian groups
with a degree (n−1)-Lie bracket. The inverse s−1 is given as follows. For a Z-graded
abelian group B with a degree (n− 1)-Lie bracket let s−1(B) be the graded abelian
group with s−1(Bk) = Bk+1 and Lie bracket

[s−1(x), s−1(y)] := (−1)1−ks−1([x, y])(10)

for x ∈ Bk and y ∈ B`. A graded Lie ring A of degree n is a Z-graded abelian group,
such that snA is a graded Lie ring. We have argued that this is equivalent to having
a degree n-Lie bracket as defined above. These definitions are slight variations on
the standard definitions for a degree n-Lie bracket. We have chosen them as they
apply more directly to homotopy groups.

Recall that for a pointed simply-connected CW-complex X the homotopy groups
π∗(X) with the Whitehead product is a Z-graded abelian group with a degree −1
Lie bracket. The desuspension s−1(π∗(X)) can be identified with the homotopy
groups π∗(ΩX) of the loop space ΩX with the Samelson product where the equation
(10) was proven by Samelson in [35]. In particular the homotopy groups of the loop
space ΩX is a Z-graded Lie ring.

Let G be a finite group. We let ZG denote the free abelian group generated by G
considered as a set. We write elements of ZG as formal sums

∑
g∈G ngg for ng ∈ Z.

Note that ZG is the additive part of the group ring Z[G] and thus has a natural
G-action coming from the multiplication in the group ring. Furthermore we will
consider ZG to be a Z-graded abelian group by the trivial grading giving every
element degree zero.

For a Z-graded abelian group A we let Lie(A) be the free graded Lie ring on A.
Note that even in the case where A is a free abelian group in each degree, the free
graded Lie ring Lie(A) may not be torsion free, as the product [x, x] of elements of
even degree is 2-torsion. For this reason it is more manageable to change to a rational
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setting. We let QG denote the left regular Q representation, i.e. a G-Q-vector space
with basis indexed by G and G-action induced by left multiplication on the basis
elements. Note that it agrees with the additive group of the group ring QG with
the induced G-action. Similarly we will consider QG to be a Z-graded vector space
concentrated in degree zero. For a Z-graded vector space V we let Lie(V ) be the
free graded Lie algebra on V .

Theorem 14.1. Let G be a finite group and r be an integer such that r /∈ {1, 3, 7}.
For g ∈ S let ιg : Sr+1 → Xr

G be the inclusion into the g’th factor of the wedge sum
and xg ∈ πr+1(Xr

G) be the corresponding class in homotopy. Let s (Lie (sr(ZG))) be
given the left G-action induced by the diagonal action on bracketed expressions.

Then the canonical map

ϕ : s (Lie (sr(ZG)))→ π∗ (Xr
G)

given by g 7→ xg is a G-equivariant inclusion of graded abelian groups with a degree
(−1) Lie bracket, such that the induced map

ϕ : s (Lie (sr(ZG))) /Tor(s (Lie (sr(ZG))))→ π∗ (Xr
G) /Tor (π∗ (Xr

G))(11)

is a G-equivariant isomorphism of graded abelian groups with a degree (−1) Lie
bracket.

Proof. The map ϕ from s (Lie (sr(ZS))) to π∗(Xr
G) given by g 7→ xg is clearly an

injective map of Z-graded abelian groups with a degree (−1) Lie bracket. The
induced S action on π∗(Xr

G) is the diagonal action on Whitehead products in the
sense that for g ∈ S, x ∈ πk(Xr

G) and y ∈ π`(Xr
G) we have that

[g.x, g.y] = g.[x, y].

In particular ϕ is a S-equivariant map.
As ϕ is an injective group homomorphism the map ϕ obtained by factoring out

the torsion elements will be injective as well. To prove subjectivity we want to
detect generators of the quotient π∗(Xr

G)/Tor(π∗(X
r
G)) using Hilton’s Theorem in

[21].
Recall that Hilton defines basic products recursively as successive Whitehead

products of elements of the form xg subject to some conditions. A basic product is
a suitably bracketed word in the xg’s. In this sense a basic product of length k is
an element of πkr+1(Xr

G). The number of basic products of length k is Q(k, |G|) =
1
k

∑
d|k µ(d)|G|k/d where µ is the Möbius function. Using Hilton’s Theorem in the

form of [21, Corollary 4.10] we have that for any n > 1

πn (Xr
G) ∼=

∞∑
k=1

∑
Q(k,|G|)

πn(Skr+1)

where the isomorphism is given by composing elements in πn(Skr+1) with the
associated basic product in πkr+1(Xr

G).
Recall that the group πk(Sn) is a torsion group except for the case πn(Sn) ∼= Z

generated by [1Sn ] and for n even π2n−1(Sn) ∼= Z⊕ T where T is a torsion group.
If n /∈ {2, 4, 8} the Whitehead product [[1Sn ], [1Sn ]] will generate the free summand.
For a sphere Skr+1 corresponding to a basic product b ∈ πkr+1(Xr

G) these specific
generators for free summands correspond — under the embedding from the Hilton
Theorem — to b and [b, b]. Both b and [b, b] are in the image of ϕ and thus the map
is surjective. �
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The above theorem is an integral version of the well-known fact that for r ≥ 1
the map

s (Lie (sr(QG)))→ π∗(X
r
G)⊗Q(12)

given by g 7→ xg ⊗ 1 where xg is the class corresponding to the inclusion of the g’th
wedge summand, is a G-equivariant isomorphism of graded Q-vector spaces with a
degree (−1) Lie bracket. The main difference in proving this statement compared
to Theorem 14.1 is that the Hopf invariant one maps do not complicate the matter
as [[1Sn ], [1Sn ]]⊗ 1 generates π2n−1(Sn)⊗Q for n even.

Corollary 14.2. Let G be a finite group and r be an integer such that r /∈ {1, 3, 7}.
Then for a subgroup H ≤ G and a divisible group D we have an isomorphism of
Z-graded abelian groups

π∗(X
r
G)H ⊗D ∼= s

(
Lie (sr(ZG))

H
)
⊗D

induced by the map ϕ⊗ 1, with ϕ as defined in Theorem 14.1.

Proof. By observing that tensoring with a divisible group eliminates torsion in
connection with the fact that it is left exact, we have that for any abelian group A
the quotient map induces an isomorphism A⊗D to (A/Tor(A))⊗D. Using the
isomorphism (11) from Theorem 14.1 we get that

π∗(X
r
G)⊗D π∗(X

r
G)/Tor(π∗(X

r
G))⊗D

s (Lie (sr(ZG)))⊗D s (Lie (sr(ZG))) /Tor(s (Lie (sr(ZG))))⊗D,

∼=

ϕ⊗1

∼=

ϕ⊗1

is a commuting square of S-equivariant isomorphisms of graded abelian groups.
Thus ϕ⊗ 1 restricts to an isomorphism on the H-fixed points. �

In the case of the rational numbers the corollary simplifies to the following.

Corollary 14.3. Let G be a finite group and r ≥ 1. Then for any subgroup H ≤ G
there is an isomorphism of Z-graded Q-vector spaces with a degree (−1) Lie bracket

π∗(X
r
G)H ⊗Q ∼= s

(
Lie (sr(QG))

H
)
.

Proof. The map (12) gives rise to a S-equviariant isomorphism s (Lie (sr(QG))) to
π∗(X

r
G)⊗Q that restricts to H-fixed points. �

The stated results until now have been in terms of isomorphisms between Z-
graded abelian groups with a degree −1 Lie bracket. If we for a divisible group D
only are interested in the structure of π∗(Xr

G)H ⊗D as a Z-graded abelian group,
the situation simplifies. By the classification of divisible groups [22, Theorem 4]
a divisible groups D is isomorphic to

⊕
p prime Z

αp
p∞ ⊕ Qβ where the cardinals αp

and β are uniquely determined. For a finitely generated abelian group A the tensor
product A ⊗ D is divisible and isomorphic to

⊕
p prime Z

α̃p
p∞ ⊕ Qβ̃ with cardinals

α̃p = Rank(A)αp and β̃ = Rank(A)β, where Rank(A) is the free rank of A. The
free rank of an abelian group A coincides with the dimension over Q of the rational
vector space A ⊗ Q. Thus the question of determining the isomorphism type of
A⊗D reduces to determining dimension in a rational vector space.
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Note that Corollary 14.3 reduces the question of determining the homotopy
groups of the homotopy fixed points of the rationalization |Sp(G)|Q to a calculation
of fixed points of a free graded Lie algebra.

The free graded Lie algebra can be expressed in terms of the Lie operad Lie, and
this reformulation allows for a more concrete description of the fixed points.

Recall that a Lie monomial in an alphabet A is a finite bracketed expression of
letters from A. A particular example is `(a1, . . . , an) given inductively by `(a1) =
a1 and `(a1, . . . , an) = [`(a1, . . . , an−1), an]. The Q-vector space with basis Lie
monomials in a1, . . . , an, which are linear in the generators, is the n’th component
of the Lie operad and is denoted Lie(n). Let Σn be the symmetric group on n
elements. We have that Lie(n) is a right Σn-module where the action for f ∈ Lie(n)
and σ ∈ Σn is given by

σf(a1, . . . , an) = f(aσ(1), . . . , aσ(n)).

For a Q-vector space V and n ≥ 1 we let V ⊗n be a left Σn-module with the following
action

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

Then the free Lie algebra over V can be described as

Lie(V ) =
⊕
n∈N
Lie(n)⊗Σn V

⊗n.

If V is a Z-graded rational vector space, the free graded Lie algebra over V can only
be given in terms of the Lie operad in the case where V is trivially graded. In the
trivially graded case where V0 = V , we have that Lie(sr(V )) depends on whether
or not r is odd or even. In the case where r is even we recover the ungraded case as

Lie(sr(V )) =
⊕
n∈N
Lie(n)⊗Σn (sr(V ))⊗n.

Looking at the graded component of the module Lie(sr(V )) when r > 0 we have
that for k ∈ N

Lie(sr(V ))kr = Lie(k)⊗Σk (sr(V ))⊗k

and all other components are trivial. In the case for r is odd we have by [3, 1.6.2]

Lie(sr(V ) =
⊕
n∈N
Lie(n)⊗Σn

(
(sr(V )⊗n ⊗ signn

)
.

Here V ⊗n ⊗ signn is isomorphic to V ⊗n as Z-graded vector spaces over Q, but the
action of the symmetric group Σn takes the sign of the permutation into account by
having σ ∈ Σn act by

σ(v1 ⊗ · · · ⊗ vn) = Sign(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

To reduce the calculation of fixed points in a free Lie algebra to the the components,
we first need a technical lemma. Recall that for a ring R and a R-moduleM on which
a group G acts, the G-invariantsMG are the G-fixed points while the G-coinvariants
are M/〈gm−m〉. Thus MG is the maximal G-invariant quotient of M . For m ∈M
let [m]G be the image under the quotient map M � MG. The norm map on M
given by m 7→

∑
g∈G gm induces a map

G ↑ : MG →MG
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by [m]G 7→
∑
g∈G gm. As MG is a submodule of M the composition

G ↓ : MG ↪→M �MG

is well-defined and both compositions are multiplications by the order of G. In
particular if G is invertible in R, the G-invariants and coinvariants are isomorphic.

Lemma 14.4. Let R be a ring and let M and N be R-modules. Let G and H be
finite groups such that G×H acts on both M and N . Assume that H acts trivially
on M and that |H| is invertible in R. Then the map

f : M ⊗G NH → (M ⊗G N)H

given by f(m⊗G n) = m⊗G n is an isomorphism.

Proof. Since the order of H is invertible in R, we have that H-invariants and
coinvariants are isomorphic. Thus, using this fact we reduce the question to involve
only coinvariants. Note that for R[G]-modules M and N we have that M ⊗G N
is the G-coinvariant (M ⊗ N)G. Let the map g be defined by the commutative
diagram

(M ⊗NH)G ((M ⊗N)G)H

(M ⊗NH)G ((M ⊗N)G)H

f

1
|H| ·H↓(1⊗H↑)G

g

Then g is given by [m⊗ [n]H ]G 7→ [[m⊗ n]G]H and factors through

(M ⊗NH)G → ((M ⊗N)H)G → ((M ⊗N)G)H .

As the action of H is trivial on M , the first map is an isomorphism while the second
map is an isomorphism since the actions of H and G commute. �

Corollary 14.5. Let G be a finite group and r ≥ 1. Then for a subgroup H ≤ G
and for k ∈ N

πkr+1(Xr
G)H ⊗Q ∼={

Lie(k)⊗Σk

(
Q⊗k

)H
, if r is even

Lie(k)⊗Σk

((
QS⊗k

)H ⊗ signk

)
, if r is odd

and πn(Xr
G)H ⊗Q is trivial for all n not of the form n = kr + 1 for some k ∈ N.

Proof. By Corollary 14.3 the homotopy groups satisfy

πn(Xr
G)H ⊗Q =

(
Lie (sr(QG))

H
)
n−1

for n ∈ N. Here the right hand side is the set of fixed points of a free graded Lie
algebra on a graded vector space concentrated in one degree. Note that H acts on
the graded components of the free Lie algebra Lie(sr(QG)). The graded components
can be described in terms of the Lie operad:

Lie (sr(QG))kr
∼=

{
Lie(k)⊗Σk

(
QG⊗k

)
, if r is even

Lie(k)⊗Σk

((
QG⊗k

)
⊗ signk

)
, if r is odd

and Lie (sr(QG))n is trivial for n not of the form kr for k ∈ N. For k ∈ N let
H act trivially on Lie(k) where the action on

(
QG⊗k

)
and

((
QG⊗k

)
⊗ signk

)
is

induced by the H-action on QG. Then the given isomorphisms of Lie (sr(QG))kr are
H-equivariant and hence induce an isomorphism on H-fixed points. We have that
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the H-action on QS⊗k as well as
((
QS⊗k

)
⊗ signk

)
commutes with the Σk-action.

Since the order of H is invertible over Q the statement follows from Lemma 14.4. �

Recall that the necklace polynomial provides a formula for the dimension of the
n-graded parts of the free Lie algebra Lie(sr(V )) in the case where r is even. This
allows for explicit upper and lower bounds for the dimension over Q of

πkr+1(Xr
G)P ⊗Q

in the case where r is even. The necklace polynomial is given as

Q(w, k) =
1

w

∑
d|w

µ(d)kw/d.

where µ denotes the Möbius function. The degree w-part of Lie(V ) has dimension
Q(w,dimQ(V )) over Q.

Proposition 14.6. For a finite group G with subgroup H, and r > 1 and even, we
have for k ∈ N

Q(k, [G : H]) ≤ dimQ(πkr+1(Xr
G)H ⊗Q) ≤ Q(k, |G|).

If H is a proper subgroup of G, then πkr+1(Xr
G)H ⊗Q is non-trivial for all k ∈ N .

Proof. When H is a subgroup of G there exist inclusions of rational vector spaces:

((QG)H)⊗k ↪→ (QG⊗k)H ↪→ QG⊗k.

The vector spaces have a compatible action of Σk and thus give rise to inclusions

Lie(k)⊗Σk ((QG)H)⊗k ↪→ Lie(k)⊗Σk (QG⊗k)H ↪→ Lie(k)⊗Σk QG⊗k

By noticing that that first and last vector spaces are the degree k pieces of the
free Lie algebra on (QG)H and QG respectively, their dimension can be calculated
using the necklace polynomial. The dimension over Q of (QG)H and QG is [G : H]
and |G| and thus the degree-k pieces have dimensions Q(k, [G : H]) and Q(k, |G|).
The statement now follows by Corollary 14.5 identifying Lie(k)⊗Σk (QG⊗k)H and
πkr+1(Xr

G)H ⊗Q.
The last statement follows from observing that the necklace polynomial Q(k, [G :

H]) has positive values whenever the index [G : H] > 1. �

To further understand the the fixed points of the rational homotopy groups
π∗(X

r
G)⊗Q using Corollary 14.5 we need to determine the fixed points of a subgroup

on the iterated tensor products of the regular representation.

Proposition 14.7. Let G be a finite group and H a subgroup of G. For any n ∈ N
let H act diagonally on Gn by left multiplication. Then the map

ϕ : H\Gn → (QG⊗n)H

given by
ϕ[g1 . . . , gn]H =

∑
h∈H

hg1 ⊗ · · · ⊗ hgn

is well-defined and the image is a Q-basis for (QG⊗n)H . In particular

dimQ((QG⊗n)H) =
|G|n

|H|
.
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Proof. It follows directly from the definition of ϕ that it is a well-defined map with
image in the H-fixed points of QG⊗n. To see that is a basis for (QG⊗n)H we reduce
to a vector space that is G-equviariant to QG⊗n.

Recall that for a finite-dimensional rational G-representation V with basis B we
have that IndG1 ResG1 V = QG⊗

⊕
B Q. According to [12, Proposition III (5.6)(a) ]

this implies that the map

f : QG⊗
⊕
B

Q→ QG⊗ V

given by g ⊗ 1v → g ⊗ gv for g ∈ G and v ∈ B is a G-equivariant isomorphism. In
particular for n ≥ 1 and V = (QG)⊗n−1 we have a G-isomorphism

f : QG⊗
⊕
Gn−1

Q −→∼= (QG)⊗n

given by
g ⊗ 1(g1,...,gn−1) → g ⊗ gg1 ⊗ · · · ⊗ ggn−1

for g, g1, . . . , gn−1 ∈ G.
Let the tensor product

⊕
Gn−1 QG be equipped with the diagonal G-action. Then

the map
g :

⊕
Gn−1

QG→ QG⊗
⊕
Gn−1

Q

given by g((x)(g1,...gn−1)) = x⊗ 1(g1,...gn−1) is a G-equivariant isomorphism.
For a subgroup H of G the H-fixed points are preserved under a G-equivariant

isomorphism and hence we have that⊕
Gn−1

(QG)H
f◦g−−→∼=

(
(QG)⊗n

)H
.

Consider an element
∑
g∈G qgg ∈ QG where qg ∈ Q for all g ∈ G. Note that it is

a H-fixed point if and only if the coefficients ag are constant for each right coset of
H\G. Thus the map

α : Q[H\G]→ QG
given by α(Hg) =

∑
h∈H hg has image QGH and will be a basis for QGH . Its

restriction to the image is an isomorphism. Thus by combining the three given maps
we get a monomorphism

β :
⊕
Gn−1

Q[H\G]→ (QG)⊗n

that for any g, g1, . . . , gn−1 ∈ G sends the basis vector (Hg)(g1,...,gn−1) to

β(Hg(g1,...,gn−1)) =
∑
h∈H

(hg ⊗ hgg1 ⊗ · · · ⊗ hggn−1) .

The image of β is the H-fixed points of (QG)⊗n, and β(Hg(g1,...,gn−1)) is a basis for
g, g1, . . . , gn−1 ∈ G. By noticing that β(Hg(g1,...,gn−1)) = ϕ[g, gg1, . . . ggn−1]H the
statement now follows. �

While (QGH)⊗n is a subspace of (QG⊗n)H , they only agree by the above Propo-
sition when n = 1 or H is the trivial group. Furthermore it is worth noticing that
the basis for (QG⊗n)H is given by the norm map on the basis of QG⊗n, when QG⊗n
is seen as an H-module.
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Corollary 14.8. Let G be a finite group and H be a subgroup of G. Then for
r ≥ 1 we have

πr+1(Xr
G)H ⊗Q ∼= Q[H\G].

Proof. By setting k = 1 in Corollary 14.5 we conclude that πr+1(Xr
G)H ⊗ Q is

isomorphic to the fixed points QGH independently of whether r is even or odd. The
fixed points are now determined by Proposition 14.7. �

To understand the group π∗(Xr
G)H⊗Q for higher degrees using the Lie operad we

need to understand how Σn acts on (QG⊗n)H for bigger values of n. The following
Proposition describes for a σ ∈ Σn the fixed points for σ on the basis for (QG⊗n)H

given in Proposition 14.7.

Proposition 14.9. Let G be a finite group and H a subgroup of G. For n ≥ 1 let
Σn act on Gn by

σ(g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)),

for any σ ∈ Σn and (g1, . . . , gn) ∈ Gn. Let H act diagonally on Gn by multiplication
from the left. Then the Σn-action on Gn induces an action of Σn on the orbit set
H\Gn.

For a σ ∈ Σn with cycle type (`1, . . . , `k) and standard form

σ =
(
x1, σ(x1), . . . , σ`1−1(x1)

)
· · ·
(
xk, σ(xk), . . . , σ`k−1(xk)

)
define the set

Gσ = Gk × {h ∈ H | hgcd(`1,...,`k) = 1}.
Let H act on Gσ by

h̃.(a1, . . . ak, h) = (h̃a1, . . . , h̃ak, h̃hh̃
−1)

for h̃ ∈ H and (a1, . . . ak, h) ∈ Gσ. Then the map

ψ : H\Gσ → (H\Gn)σ

given by setting ψ[a1, . . . ak, h] ∈ H\Gn to be the class [g1, . . . , gn] where

gσj(xi) = hjai

is a well-defined bijection.
Finally, the number of σ-fixed points of H\Gn is

|(H\Gn)σ| = |Gσ|
|H|

.

Proof. First we first prove that ψ is well-defined. Note that every number 1 ≤ m ≤ n
is of the form σj(xi) for a unique i ∈ {1, . . . k} where j is only uniquely determined
modulo `i. As h`i = 1 the element gσj(xi) does not depend on the choice of j. To
see that it does not depend on the representative in H\Gσ consider h̃ ∈ H and
(a1, . . . ak, h) ∈ Gσ and let ψ[a1, . . . ak, h] respectively ψ[h̃.(a1, . . . ak, h)] be given by
classes [g1, . . . , gn] and [g̃1, . . . , g̃n]. Now

g̃σj(xi) = (h̃hh̃−1)j h̃ai = h̃hjai = h̃gσj(xi)

and [g1, . . . , gn] and [g̃1, . . . , g̃n] are the same class in H\Gn.
For [a1, . . . ak, h] ∈ H\Gσ let the image ψ[a1, . . . ak, h] be represented by [g1, . . . gn].

Then the image of (g1, . . . , gn) under σ is given by

σ(g1, . . . , gn)σj(xi) = gσj−1(xi) = hj−1ai = h−1gσj(xi) = h−1(g1, . . . , gn)σj(xi).
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Hence ψ[a1, . . . ak, h] is fixed by σ.
To show that ψ is in fact a bijection, we now construct an inverse. An element

[g1 . . . , gn] ∈ H\Gn is fixed by σ if there exists a unique h ∈ H such that

(13) gσj(xi) = hgσj−1(xi)

for all i ∈ {1, . . . , k} and j ∈ {0, . . . , `k − 1}. By combining equation (13) for each
orbit of σ we conclude that h`i = 1 for all i ∈ {1, . . . , k}. Thus (gx1

, . . . gxn , h) is an
element of Gσ. Furthermore by changing the representative for [g1 . . . , gn] ∈ H\Gn
by h̃ ∈ H to (h̃g1, . . . h̃gn) we get the element h̃.(gx1 , . . . gxn , h) and this defines a
map (H\Gn)σ → H\Gσ. One easily sees that this is an inverse to ψ.

By observing that the H action on Gσ is free, the number of σ-fixed points follows
from the established bijection. �

Note that the above proposition for the trivial group is that an element of Gn is
a σ-fixed point if and only if it is constant on its σ-orbits.

The calculation of fixed points allows us to determine the dimension of the graded
component in degree two of Lie(QG)H when QG is concentrated in a fixed even
degree.

Lemma 14.10. Let G be a finite group with subgroup H. Let σ ∈ Σ2 be the
two-cycle (12). We have that Lie(2)⊗Σ2

(QG⊗QG)H has a Q-basis corresponding
to representatives of σ-orbits of (QG⊗QG)H of length two and thus the dimension
over Q is

|G|(|G| − |{h ∈ H | h2 = 1}|)
2|H|

.

Proof. We have that Lie(2)⊗Σ2
(QG⊗QG)H is a subspace of the degree-2 component

of the free Lie algebra Lie(QG). By [34, Theorem 4.9] the Hall polynomials form a
basis for Lie(QG) and in particular for the degree-2 component Lie(2)⊗Σ2 (QG⊗QG)
the basis is of the form [g1, g2] where g1 < g2 for some total order on G.

Recall that from Proposition 14.7 we have that (QG⊗2)H has a Q-basis given by

ϕ[g1, g2]H =
∑
h∈H

hg1 ⊗ hg2

where [g1, g2]H ∈ H\G2. The corresponding element in Lie(QG) is
∑
h∈H [hg1, hg2],

and ranging over [g1, g2]H ∈ H\G2 we get a generating set for Lie(2) ⊗Σ2
(QG ⊗

QG)H . If [g1, g2]H ∈ H\G2 is fixed by the two-cycle σ = (12) ∈ Σ2 we have that∑
h∈H [hg1, hg2] factors as sums [x, y] + [y, x] and possibly a factor of the form [x, x],

and hence the sum
∑
h∈H [hg1, hg2] = 0 in the graded Lie algebra Lie(QG). Similarly

if the σ-orbit of [g1, g2]H has length two the corresponding images ϕ[g1, g2]H and
ϕ[g2, g1]H in Lie(QG) are linearly dependent. Thus we get a generating set for
Lie(2) ⊗Σ2 (QG ⊗ QG)H by picking a representative for each σ-orbit of H\G2 of
length two and looking at the corresponding element of Lie(QG). Each image of
each such representative [g1, g2]H is a linear combination of basis vectors in Lie(QG)
and if two such representatives [g1, g2]H and [g̃1, g̃2]H include the same basis vector,
then there exists an h ∈ H such that [hg1, hg2] = [g̃1, g̃2] or [hg2, hg1] = [g̃1, g̃2],
which is a contradiction. Thus we conclude that the image of [g1, g2]H and [g̃1, g̃2]H
in Lie(QG) is a linear combination over disjoint sets of basis vectors, and hence we
conclude that the given generating set of Lie(2)⊗Σ2

(QG⊗QG)H is in fact a basis.
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Finally, the number of σ-orbits in H\G2 of length two is

|H\G2| − |(H\G2)σ|
2

which reduces to the formula using Proposition 14.9. �

In Theorem 13.2 the statement for finite groups of Lie type of Lie rank at least
three includes the groups πi(|Sp(G)|)P ⊗ (Zp/Z)[ 1

p ], where (Zp/Z)[ 1
p ] is a divisible

group. We are now able to determine the groups up to isomorphism in terms of
dimensions in a free Lie algebra.

Proposition 14.11. Let G be a finite group of Lie type in characteristic p of Lie
rank at least three. Let P be a finite p-group and f ∈ Map(P,G) be nontrivial. If
n is of the form n = k(RkL(G)− 2) + 1 for some k ∈ N then

πn(|Sp(G)|)P ⊗ (Zp/Z)

[
1

p

]
∼=

 ⊕
` prime
` 6=p

(Z`∞)αi

⊕
(⊕

R
Qαi

)

where

αn = dimQ

((
Lie

(
sRkL(G)−2(QS)

)P)
n−1

)
.

In fact for n = k(RkL(G)− 2) + 1 for a k ∈ N we have that

αn =

dimQ

(
Lie(k)⊗Σk

(
Q⊗k

)H)
, if RkL(G) is even

dimQ

(
Lie(k)⊗Σk

((
QS⊗k

)H ⊗ signk

))
, if RkL(G) is odd

For n not of the form n = k(RkL(G)− 2) + 1 for some k ∈ N then πn(|Sp(G)|)P ⊗
(Zp/Z)

[
1
p

]
is trivial.

Proof. By Lemma 6.11 the homotopy groups πn(|Sp(G)|) are finitely generated
abelian groups, so the same holds for the P -fixed points. By Corollary 12.4 the
group πn(|Sp(G)|)P ⊗ (Zp/Z)

[
1
p

]
is determined by the free rank of πn(|Sp(G)|)P .

The free rank coincides with the dimension of πi(|Sp(G)|)P ⊗Q as a rational vector
space. Using the notation from this chapter we have following Lemma 6.8 that
|Sp(G)| is S-homotopy equivalent to X

RkL(G)−2
S , where S ∈ Sylp(G). We may

assume that P is a subgroup of S and then πn(|Sp(G)|)P and πn(X
RkL(G)−2
S )P

are isomorphic as groups. Using Corollary 14.3 we observe that πn(|Sp(G)|)P ⊗Q
isomorphic to

(
Lie

(
sRkL(G)−2(QS)

)P)
n−1

. We use Corollary 14.5 to give the
alternative description using the Lie operad as well as to observe that the dimension
of the vector space is trivial for all n not of the form n = k(RkL(G)− 2) + 1. �

Corollary 14.12. Let G be a finite group of Lie type in characteristic p of Lie
rank at least four and even. Let P be a finite p-group and f ∈ Map(P,G) be
nontrivial. Assume that f(P ) is not a Sylow-p-subgroup of G. If i of the form
i = k(RkL(G)− 2) + 1 for some k ∈ N then

πi(|Dp(G)|)P ⊗ (Zp/Z)

[
1

p

]
is non-trivial.
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Proof. Follows directly from Proposition 14.11 and Corollary 14.6. �

15. Applications to p-local finite groups of Lie type.

First we recall a few definitions concerning p-local finite groups.

Definition 15.1. For a group G and a p-subgroup S of G for a prime p, the fusion
system FS(G) on S generated by G is the category of all subgroups of S with
morphisms

MorFS(G)(P,Q) = HomG(P,Q) = {cg | g ∈ TG(P,Q)}
for P,Q ≤ S.

The standard definition of the fusion system FS(G) is the restriction to the
case where G is a finite group and S ∈ Sylp(G). Then the fusion system FS(G) is
saturated (see [9, Definition 1.2]).

Definition 15.2. Let G be a finite group and S ∈ Sylp(G).
• A subgroup P ≤ S is FS(G)-centric if it is p-centric, i.e. Z(P ) ∈ Sylp(CG(P ))

or equivalently CG(P ) ∼= Z(P )× C ′G(P ) for a (unique) subgroup C ′G(P ) of
order prime to p.

• A subgroup P ≤ S is radical in FS(G) if NG(P )/(P · CG(P )) is p-reduced,
i.e if Op(NG(P )/(P · CG(P ))) = 1.

• The centric linking system associated to FS(G) is denoted LcS(G) and is a
category with objects the FS(G)-centric subgroups of S and morphism sets

MorLcS(G)(P,Q) = TG(P,Q)/C ′G(P ).

The centric radical linking system LcrS (G) is the restriction of LcS(G) to the
full subcategory of FS(G)-centric-radical subgroups.

• The p-local finite group associated to the Sylow-p-subgroup S in G, is the
triple (S,FS(G),LcS(G)).

Note that the above definitions are a special case of F-centric and F-radical
subgroups for general fusion systems in the case of fusion systems coming from a
finite group.

Definition 15.3. Let G1 and G2 be groups and for a prime p let S1 ≤ G1 and
S2 ≤ G2 be p-subgroups. An isomorphism ϕ : S1 → S2 is fusion preserving if for all
subgroups P and Q of S1 and α ∈ Hom(P,Q) it satisfies

α ∈ HomG1(P,Q) ⇐⇒ (ϕ|Q)α(ϕ|P )−1 ∈ HomG2(ϕ(P ), ϕ(Q))

Note that a fusion preserving isomorphism will induce an isomorphism of cate-
gories from FG1(S1) to FG2(S2). We have the following lemma

Lemma 15.4. Let G be a finite group of Lie type of rank 1 in characteristic p
with Borel subgroup B. Then the inclusion ι : B → G induces an equivalence of
categories FS(B) = FS(G) for S = Op(B).

Proof. It was essentially proven by [27], see [2, Proposition III: 1.15] for details, that
for the map f : G→ G̃ between finite groups, the restriction to Sylow-p-subgroups
is fusion preserving if and only if the induced map Rep(P,G) → Rep(P, G̃) is a
bijection for all p-groups P . From Corollary 8.3 we conclude that the inclusion
B → G is fusion preserving and thus FS(B) = FS(G). �
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Lemma 15.5. Let G be a finite group of Lie type of rank 2 in characteristic p. Let
Pα and Pβ be the maximal proper parabolic subgroups over a Borel subgroup B.
Then the map φ : Pα ∗B Pβ → G induces an isomorphism between the categories
FS(Pα ∗B Pβ) and FS(G) for S = Op(B).

Proof. The argument from [2, III Proposition 1.15] may be applied to the infinite
group Pα ∗B Pβ and in connection with Corollary 8.13 we conclude that the map
φ : Pα ∗B Pβ → G induces a isomorphism of categories between FS(Pα ∗B Pβ) and
FS(G). �

The centric-radical linking system is a quotient of the centric-radical transporter
system. By Proposition 6.5 the Borel construction |Sp(G)|hG we have been studying
up to this point is homotopy equivalent to the centric-radical transporter system.
This observation allow us to translate the previous results into the setting of p-local
finite groups.

Theorem 15.6. Let G be a finite group of Lie type in characteristic p with trivial
center and let P be a finite p-group. Then T crS (G) = LcrS (G) and the map from
Map(BP, |LcrS (G)|) to Map(BP,BG) induced by the simplicial map from LcrS (G) to
G given by inclusion on the morphism sets is a mod-p-equivalence.

Proof. The set of FS(G)-centric-radical subgroups of S coincides with the intersec-
tion Dp(G) ∩ S, where Dp(G) is defined in Definition 6.2. Following the proof of
Lemma 6.4 we have for any FS(G)-centric-radical subgroup Q that C ′G(Q) = Z(G),
and hence in our case C ′G(Q) = 1. By definition, the categories T crS (G) and LcrS (G)
agree. From Proposition 6.5 we have that |T crS (G)| ' |Sp(G)|hG, and so the result
follows from the three cases from Theorem 9.2, 9.3 and 10.5, as we identify the
Borel map |Sp(G)|hG → BG with the indicated simpicial map T crS (G)→ B(G) �

To understand the space of maps Map(BP, |LcrS (G)|) for a general finite group G
of Lie type in characteristic p, the strategy is to reduce to the trivial center case
by the quotient map G → G/Z(G). For general non-abelian groups the quotient
G/Z(G) need not have trivial center, but in the case of finite groups of Lie type
they do.

The quotient map for a central subgroup of order prime to p behaves nicely with
respect to p-fusion as shown in the following results.

Proposition 15.7. Let G be a finite group and p a prime number. Let H ≤ Z(G)
be a group of order prime to p and let π : G→ G/H be the associated quotient map.
For a subgroup P of G set π(P ) = PH/H. Then π induces a bijection of posets

π : {P ≤ G | P is a p-group} → {P̄ ≤ G/H | P̄ is a p-group}
where both sets are ordered by inclusion. For p-subgroups P and Q of G the group
H acts on the transporter set TG(P,Q) by multiplication on the right and the
quotient map induces bijection on transporter sets

Tπ(G)(π(P ), π(Q)) = TG(P,Q)/H.

For p-subgroups P the quotient map also induces isomorphisms on normalizers as
well as centralizers

Nπ(G)(π(P )) = π(NG(P )) = NG(P )/H

Cπ(G)(π(P )) = π(CG(P )) = CG(P )/H.
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Proof. Let P be a p-subgroup of G. Then the image π(P ) is a p-subgroup of G/H
with the same order as P . For a p-subgroup P̄ in G/H the preimage π−1(P̄ ) is a
subgroup of G of order |P̄ | · |H|. Then a Sylow-p-subgroup S of π−1(P̄ ) has the
same order as P̄ . The subgroup S is normal in 〈S,H〉. This is a group of order at
least |P̄ | · |H| and thus we conclude that 〈S,H〉 = π−1(P̄ ) and that S is normal in
π−1(P̄ ). In particular S is the unique Sylow-p-subgroup of π−1(P̄ ). By observing
that π−1(P̄ ) = SH it follows easily that the map P̄ 7→ Sylp(π−1(P̄ )) is an inverse
to π on the set of p-subgroups.

Let P and Q be p-subgroups of G. Since H is a subgroup of the center of G
we have that π maps TG(P,Q) to a subset of Tπ(G)(π(P ), π(Q)) and it induces an
injective map

TG(P,Q)/H → Tπ(G)(π(P ), π(Q)).

To verify that this is a bijection assume that gH ∈ Tπ(G)(π(P ), π(Q)). Then
gP ≤ (gP )H = g(PH) ≤ QH.

Since P is a p-subgroup we have that gP is contained in a Sylow-p-subgroup of QH.
By a similar argument we have that Q is the unique Sylow-p-subgroup of QH and
we therefore conclude that g ∈ TG(P,Q). For P = Q one sees easily that the map
of normalizers is a group homomorphism as well.

For a p-subgroup P of G the inclusion CG(P )/H ≤ CG/H(π(P )) follows from
H ≤ Z(G). For the other direction let gH ∈ CG/H(π(P )). The fact that gH
centralizes π(P ) together with H being central implies that for any q ∈ P we have
that gqg−1q−1 ∈ H. Since gH ∈ NG/H(π(P )) the previous argument implies that
g ∈ NG(P ) and thus gqg−1q−1 ∈ P . As the intersection H ∩P is trivial we conclude
that gqg−1q−1 = 1 and g ∈ CG(P ). �

Corollary 15.8. Let G be a finite group and p a prime number. Let H ≤ Z(G) be
a group of order prime to p and π : G → G/H the associated quotient map. Let
S ∈ Sylp(G). Then π(S) = SH/H ∈ Sylp(G/H) and the restriction π : S → π(S)
is a fusion preserving isomorphism.

Proof. Since the order of π(S) equals the order of S the map π is an isomorphism.
Furthermore, as H is a group of order prime to p, we have that π(S) is a Sylow-p-
subgroup of G/H. The definition of π : S → π(S) being fusion preserving reduces
to

cg ∈ HomG(P,G) ⇐⇒ cπ(g) ∈ HomG/H(π(P ), π(Q)).

By Proposition 15.7 we have that

g ∈ TG(P,Q) ⇐⇒ π(g) ∈ TG/H(π(P ), π(Q))

which implies the statement for the associated conjugation maps. �

To fully be able to restrict to the trivial center case, we also need to understand
how the quotient map of a central p-prime group behaves on the mapping space
Map(BP,BG) for a finite p-group P .

Lemma 15.9. Let G be a finite group and p a prime number. For a normal subgroup
H of order prime to p the quotient map π : G→ G/H induces a mod-p-equivalence
BG→ B(G/H).
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Proof. Using the model EG/H for BH we let BH be equipped with the induced
free G/H-action. Then BHh(G/H) is homotopy equivalent to BG and the associated
Borel fibration can be identified with

BH BG B(G/H).Bπ

Here H is an group of order prime to p, and so the order |H| is invertible in the finite
field Fp. Thus the higher homology groups Hk(BH;Fp) for k > 0 vanish according
to [12, III Corollary 10.2]. As BH is connected, we have that H0(BH;Fp) = Fp. In
particular the action of G/H on the homology of BH with Fp-coefficients is trivial
and the resulting Serre spectral sequence collapses to the zeroth line showing that
Bπ is a mod-p-equivalence. �

Proposition 15.10. Let G be a finite group and p a prime number. Let H ≤ Z(G)
be a group of order prime to p and π : G→ G/H the associated quotient map. Then
for any finite p-group P postcompostion with π induces a bijection Rep(P,G) →
Rep(P,G/H). Furthermore the map Map(BP,BG)→ Map(BP,B(G/H)) induced
by π is a mod-p-equivalence.

Proof. According to Corollary 15.8 the quotient map π is fusion preserving, and thus
based on [2, III Proposition 1.15] we conclude that the induced map Rep(P,G)→
Rep(P,G/H) is a bijection. Recall that

Map(BP,BG) '
∐

ρ∈Rep(P,G)

BCG(ρ(P ))

as well as
Map(BP,B(G/H)) '

∐
ρ∈Rep(P,G/H)

BCG/H(ρ(P )).

As described in Lemma 9.1, post composition with the map π under these homo-
topy equivalences corresponds to the induced map Rep(P,G)→ Rep(P,G/H) on
components and for a component associated to a map ρ ∈ Rep(P,G) we have the
following map BCG(ρ(P )) → BCG/H(π(ρ(P ))). Using Corollary 15.7 this corre-
sponds to the map induced by the quotient map CG(ρ(P ))→ CG(ρ(P ))/H which
is a mod-p-equivalence by Proposition 15.9. �

We are now ready to extend Proposition 15.6 to general finite groups of Lie type.

Theorem 15.11. Let G be a finite group of Lie type in characteristic p and P a
finite p-group. Then the inclusion of morphism sets induces a mod-p-equivalence
Map(BP, |LcrS (G)|)→ Map(BP,B(G/Z(G))).

Proof. For a finite group G of Lie type in characteristic p it follows from [18,
Theorem 2.6.6] that G/Z(G) is also a finite group of Lie type in characteristic
p. Note that according to [18, Theorem 2.6.6(c)] the group G/Z(G) has a trivial
center. Furthermore by [18, Proposition 2.5.9] we have that Z(G) is a subgroup
of H as defined in [18, Theorem 2.3.4]. In particular it is a group of order prime
to p. Thus we have by Corollary 15.8 that the quotient map from G to G/Z(G)
is fusion preserving. By the uniqueness of centric linking systems it induces an
equivalence of categories on the subcategories LcrS (G) ∼= LcrS (G/Z(G)). Note that
this equivalence of categories is given by the map on objects as well as morphisms
specified in Proposition 15.7. If we consider the following composition

Map(BP, |LcrS (G)|) Map(BP, |LcrS (G/Z(G))|) Map(BP,B(G/Z(G)))
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where the first map is induced by the equivalence of categories, while the second
is the mod-p-equivalence from Theorem 15.6, then the composition is a mod-p-
equivalence and it is the map induced by inclusion of morphism sets of LcrS (G) into
G/Z(G). �

Corollary 15.12. Let G be a finite group of Lie type in characteristic p and let P
be a finite p-group. Then there exists a zig-zag of mod-p-equivalences.

Map(BP, |LcrS (G/Z(G))|) Map(BP,B(G/Z(G)))

Map(BP, |LcrS (G)|) Map(BP,BG)

Proof. This follows from Theorem 15.11 Proposition 15.10. �

Corollary 15.13. Let G be a finite group of Lie type in characteristic p and let P
be a finite p-group. Then there is a bijection between [BP, |LcrS (G)|] and Rep(P,G).

Proof. A mod-p-equivalence induces an bijection on connected components, and
hence the zig-zag of maps from Corollary 15.12 induces a bijection between the
components of Map(BP, |LcrS (G)|) and Map(BP,BG), which may be identified with
[BP, |LcrS (G)|] and Rep(P,G) respectively. �

The stated results have so far only been about the centric radical linking system
associated to the fusion system FS(G). Generally the centric linking system has
been the object of focus when working with p-local finite groups. Furthermore for a
fusion system of the form FS(G) where S ∈ Sylp(G) there exists a linking system
on every collection H of subgroups of S that satisfies the following conditions:

• H is closed under G-conjugation and taking overgroups
• H contains all FS(G)-centric radical subgroups
• H is a subset of the set of all FS(G)-quasicentric subgroups of S.

Recall that in this case a subgroup P of S is FS(G)-quasicentric if and only if
Op(CG(P )) has order prime to p. An explicit construction is setting LH(G) to be
the category with objects H and morphism sets

MorLH(G)(P,Q) = TG(P,Q)/Op(CG(P ))

for P,Q ∈ H.

Corollary 15.14. Let G be a finite group of Lie type in characteristic p. Let
S ∈ Sylp(G) and P be a finite p-group. Then for any collection H of subgroups of
S satisfying the above conditions the space Map(BP, |LH(G)|) is p-good and there
is a homotopy equivalence

Map(BP, |LH(G)|)∧p Map(BP,BG)∧p .
'

Proof. By the definition of the category LH(G) it contains LcrS (G) as a full subcat-
egory. They are both linking systems associated to the saturated fusion system
FS(G), and thus by [2, III: Proposition 4.20] the inclusion LcrS (G) ↪→ LH(G) induces
a homotopy equivalence of spaces ι : |LcrS (G)| ↪→ |LH(G)|. By extending the zig-zag
from Corollary 15.12, we get a zig-zag of mod-p-equivalences connecting the spaces
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Map(BP, |LH(G)|) and Map(BP,BG). Hence using [6, I Lemma 5.5] we conclude
that the two spaces are homotopy equivalent after p-completion.

The space Map(BP,BG) is a finite disjoint union of classifying spaces of finite
groups. Since classifying spaces of finite groups are p-good, the same holds for
Map(BP,BG). Applying the p-completion functor to the zig-zag together with
the natural transformation from the identify functor to p-completion, the resulting
commutative diagram implies that all spaces are p-good by a repeated argument
similar to the proof of Proposition 6.5. �

Note that Corollary 15.14 covers the case of a centric linking system LcS(G). Thus
we have that for a finite group of Lie type G in characteristic p and a finite p-group P
the spaces of maps Map(BP, |LcS(G)|) and Map(BP,BG) have isomorphic homology
with Fp coefficients.

Since the homotopy type of |LH(G)| does not depend on the collection of sub-
groups H, we will only state the description of the homotopy groups for the compo-
nents of Map(BP, |LcS(G)|).

Theorem 15.15. Let G be a finite group of Lie type in characteristic p, and let
S be a Sylow-p-subgroup of G. Let (S,FS(G),LcS(G)) be the p-local finite group
associated to S and let P be a finite p-group. Then [BP, |LcS(G)|] ∼= Rep(P,G). Let
Map(BP, |LcS(G)|)f be the component corresponding to f ∈ Rep(P,G). Then the
homotopy groups are given by:

If RkL(G) = 1 then

Map(BP, |LcS(G)|)1 ' B(B/Z(G))

Map(BP, |LcS(G)|)f ' B(CG(f(P ))/Z(G)), f 6= 1

where B is a Borel subgroup of G. If RkL(G) = 2 then

Map(BP, |LcS(G)|)1 ' B((Pα/Z(G)) ∗(B/Z(G)) (Pβ/Z(G))

Map(BP, |LcS(G)|)f ' B(CG(f(P ))/Z(G)), f 6= 1

where B is a Borel subgroup of G and Pα and Pβ are the maximal standard parabolic
subgroups over B.

Moreover, if G has Lie rank at least 3, then the component corresponding to the
trivial map Map(BP, |LcS(G)|)1 has the following homotopy groups:

π1(Map(BP, |LcS(G)|)1) ∼= G/Z(G)

πi(Map(BP, |LcS(G)|)1) ∼= πi(|Sp(G)|), i ≥ 2.

Furthermore for all nontrivial f ∈ Rep(P,G) and all i ≥ 2 we have that

πi(Map(BP, |LcS(G)|)f ) ∼= Torp′(πi(|Sp(G)|)P )⊕
(
πi+1(|Sp(G)|)P ⊗ (Zp/Z)

[
1

p

])
.

Finally, the fundamental group fits into the following short exact sequence:

0→ π2(|Sp(G)|)P⊗(Zp/Z)

[
1

p

]
→ π1(Map(BP, |LcS(G)|)f )→ CG(f(P ))/Z(G)→ 0

Proof. The map zig-zag of mod-p-equivalences from Corollary 15.14 induces a
bijection on the set of components [BP, |LcS(G)|]→ Rep(P,G).

We consider an f ∈ Hom(P,G) and aim to identify the corresponding component
Map(BP, |LcS(G)|)f in terms of a Borel construction. Let π : G→ G/Z(G) be the
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quotient map. As Z(G) is a group of order prime to p, we have by Corollary 15.8
that π is fusion preserving. In particular the quotient map induces

Map(BP, |LcS(G)|)f ' Map(BP, |Lcπ(S)(π(G))|)π◦f .

Recall that the component of Map(BP, |Lcπ(S)(π(G))|) is defined using the Borel
map |Sp(π(G))|hπ(G) → B(π(G)) using the the homotopy equivalences

|Lcπ(S)(π(G))| ' |Lcrπ(S)(π(G))| ' |Sp(π(G))|hπ(G).

In particular

Map(BP, |LcS(G)|)f ' Map(BP, |Sp(π(G))|hπ(G))π◦f .

As described in [18, Theorem 2.6.6] we have that π(G) is also a finite group of
Lie type in characteristic p with the same Lie rank as G. The center of G is a
subgroup of H by [18, Proposition 2.5.9]. In particular Z(G) is a subgroup of both
the Borel group B and N in the fixed BN -pair for G. Thus, the split BN -pair of
characteristic p for G, (B,N,SW ), descends to a split BN -pair for π(G) of the form
(π(B), π(N),SW ). This implies that the standard parabolic subgroups of π(G) are
of the form π(P ) for a standard parabolic subgroup P of G.

The homotopy group Map(BP, |LcS(G)|)f now follows from Theorem 9.2, The-
orem 9.3 and Theorem 13.2, using the isomorphism on centralizers from Proposi-
tion 15.7 and the fact that the bijection Sp(G)→ Sp(π(G)) is an isomorphism of
P -posets where the action is induced by f and π ◦ f respectively. �
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