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Abstract

In the first part of the project, we define stable homotopy and
construct the category of CW-spectra, which is the appropriate setting
for studying it. CW-spectra are particular spectra with properties
that resemble CW-complexes. We define the homotopy groups of CW-
spectra, which are connected to stable homotopy groups of spaces, and
we define homology and cohomology for CW-spectra.

Then we construct the Adams spectral sequence, in the setting of
the category of CW-spectra. This spectral sequence can be used to get
information about the stable homotopy groups of spaces.

The last part of the project is devoted to calculations. We show
two examples of the use of the Adams sequence, the first one applied
to the stable homotopy groups of spheres and the second one to the
homotopy of the spectrum ko of the connective real K-theory.
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Introduction

The stable homotopy groups of spaces are quite complicated to compute
and this spectral sequence provides a tool that helps in this task. To get a
clean construction of the spectral sequence, instead of working with space,
we consider spectra, which are sequences of spaces (Xi) with structure maps
ΣXi → Xi+1 and soon we restrict our attention to CW-spectra. So we
construct a suitable category for these objects, in which many of the results
that hold for CW-complexes are true. The construction of the spectral
sequence is done following the approach of [Hat04].

Performing calculations of stable homotopy groups using of the Adams
spectral sequence is not a mechanical process. One has to compute free
resolutions over the Steenrod Algebra and the differentials of the spectral
sequence to obtain the E∞ page. Moreover, the E∞ term gives only sub-
quotients of the p-components of the stable homotopy groups for certain
filtrations of them. So one has still to solve the extension problem to get
the group itself. In Section 4, we show two examples of this process: the
first one regards the stable homotopy groups of spheres, the second one the
homotopy of the spectrum ko of the connective real K-theory. We work out
the cited free resolutions explicitly, by actually computing the generators of
each free module.

We assume that the reader is familiar with the material contained in
[Hat02]. The proofs of some of the results here presented could not fit into
this project: in such cases we sketch them and refer the reader to one of the
references for a more detailed treatment.
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1 Stable homotopy

1.1 Generalities

In this section, we will always consider basepointed topological spaces with
a CW-structure, i.e. pairs (X,x0) where the space X is a CW-complex and
the basepoint x0 ∈ X is a fixed 0-cell.

Definition 1.1. Given two basepointed spaces (X,x0) and (Y, y0), their
smash product is defined as

X ∧ Y = (X × Y )/(X ∨ Y ) = (X × Y )/(X × {y0} ∪ {x0} × Y ).

This is again a basepointed space, with basepoint the subspace we quotient
out.

For a basepointed space X, we consider (instead of the suspension) the
reduced suspension, which is

ΣX := (SX)/({x0} × I),

where SX is the suspension of X. The reduced suspension is again a base-
pointed space and it follows immediately for the definition that it can be ex-
pressed in terms of smash product with the sphere S1, namely ΣX = X∧S1.

Let us also note that, if X is a CW-complex, the reduced suspension is
homotopy equivalent to the unreduced one. In fact ΣX is obtained from
SX by collapsing the contractible subspace {x0} × I.

1.2 Stable homotopy groups

The term stable in Algebraic Topology is used to indicate phenomena that
occur in any dimension, without depending essentially on it, given that the
dimension is sufficiently large. [Ada74, Part III, Ch. 1]

Let us recall a classical result:

Theorem 1.2. (Freudenthal Theorem) Let X be a (n − 1)-connected CW-
complex. Then the suspension map πi(X) → πi+1(ΣX) is an isomorphism
for i < 2n− 1 and a surjection for i = 2n− 1.

If X is n-connected, then ΣX is (n+1)-connected and so the Freudenthal
theorem implies that, if X is a CW-complex of any connection and i ∈ N,
the morphisms in the sequence:

πi(X)→ πi+1(ΣX)→ · · · → πi+k(Σ
kX)→ . . .

will become isomorphisms from a certain point. The group to which the
sequence stabilized is called the ith stable homotopy group of X, denoted
πsi (X). This is the same as saying that:

πsi (X) = lim−→πi+k(Σ
kX),
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where lim−→ denotes the direct limit.

In particular, taking X = S0, πsi (S
0) is called the ith stable homotopy

groups of spheres and is denoted by πsi . By the Freudenthal Theorem, we
have:

πsi = πsi (S
0) ∼= πn+i(S

n),

for any n > i+ 1.
The composition of maps Si+j+k → Sj+k → Sk induces a product struc-

ture on πs∗ =
⊕

i π
s
i . We have the following:

Proposition 1.3. The composition product πsi × πsj → πsi+j given by com-
position makes πs∗ into a graded ring in which we have the relation αβ =
(−1)ijβα, for α ∈ πsi , β ∈ πsj .

Proof. See [Hat02, Proposition 4.56].

2 Spectra

2.1 Definition and homotopy groups

Definition 2.1. A spectrum E is a family (En)n∈N of basepointed spaces
Xn together with structure maps εn : ΣEn → En+1 that are basepoint-
preserving.

Example 2.2. Let X be a pointed space. If we set En = Σn(X) for all
n ∈ N and εn the identity of Σn+1 we get a spectrum, called the suspension
spectrum of X. In particular, taking X = S0, we get the sphere spectrum,
denoted S0. The nth space of this spectrum is homeomorphic to Sn.

A second example shows the connection of spectra with cohomology: by
the Brown Representation Theorem [Hat02, Thm 4E.1], for every reduced
cohomology theory K̃ on the category of CW-complexes with basepoint,
we have that the functor K̃n is natural equivalent to [−, En] for a family
of basepointed CW-complexes (En), where [X,En] denotes the set of the
homotopy classes of basepoint-preserving maps X → En. By the suspension
isomorphism for K, we have that: σ : K̃n(X) → K̃n+1(ΣX) is a natural
isomorphism. Hence we get the sequence of natural isomorphisms:

[X,En] ∼= K̃n(X) ∼= K̃n+1(ΣX) ∼= [ΣX,En+1] ∼= [X,ΩEn+1],

where the last equivalence comes from the adjunction between reduced sus-
pension and basepointed loops. By the (contravariant) Yoneda Lemma, the
natural equivalence [X,En] ∼= [X,ΩEn+1] must be induced by a weak equiv-
alence ε′n : En → ΩEn+1 which is the adjoint of a map εn : ΣEn → En+1 and
so (En) forms a spectrum.

If we take the reduced cohomology with coefficients in an abelian group
G, we get En = K(G,n) and the spectrum is called the Eilenberg-MacLane
spectrum for the group G and denoted HG.
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This can be slightly generalized by shifting dimension of an integer m and
taking Xm = K(G,n+m) with the same maps ΣK(G,n+m)→ K(G,n+
m+ 1). We will denote this shifted Eilenberg-MacLane with K(G,n).

It is possible to define homotopy groups for spectra in a quite natural
way:

Definition 2.3. Let E be a spectrum. We define the ith homotopy group of
E, denoted πi(E), as the direct limit of the sequence:

· · · → πi+n(En)
Σ−→ πi+n+1(ΣEn)

πi+n+1(εn)−−−−−−−→

πi+n+1(En+1)
Σ−→ πi+n+2(ΣEn+1)→ . . . .

In symbols: πi(E) = lim−→πi+n(En).

Example 2.4. The homotopy groups of the suspension spectrum of a space
are precisely the stable homotopy groups of that space, since the structure
maps εi are all identities. For the Eilenberg-MacLane spectrum, we already
know that ΣEn → En+1 is a weak equivalence for all n and the homomor-
phism πr+n+i(En+1) → πr+n+i+1(ΣEn+i) is an isomorphism in the range
given by the Freudenthal suspension theorem, so we have that, as for the
Eilenberg-MacLane spaces:

πi(HG) =

{
G, if i = 0,

0, if i 6= 0.

Note that, unlike in the definition of the stable homotopy group of a space,
this direct limit is not always attained.

Let us give the definition of a subobject of a spectrum, which will be
useful for the next section:

Definition 2.5. Given a spectrum E, a subspectrum A of E is a family of
spaces (An)n∈N such that An ⊆ En and εn(ΣAn) ∈ An+1 for all n ∈ N. In
particular, A is a spectrum if we take εn|ΣAn as structure maps.

2.2 CW-Spectra

Our aim now is to build a category with spectra as objects and use this
setting to study stable homotopy phenomena. To do this we will consider a
particular class of spectra, called CW-spectra, which have a structure that
resembles the one of CW-complexes.

Given a spectrum E in which the spaces En are a CW-complexes with a
0-cell as basepoint for all n ∈ N, we can apply the procedure that we sketch
here: first we make the structure maps cellular, via the cellular approxi-
mation theorem ([Hat02, Thm. 4.8]): since the structure maps of E map
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basepoints to basepoints and they are 0-cells in the CW-structures, we can
take the cellular maps to be also basepoint-preserving. Then we proceed
replacing each space En with union of the reduced mapping cylinders of the
maps in the composition1, which is again a CW-complex:

Σn(E0)
Σn−1ε0−−−−−→ Σn−1(E1)→ · · · → Σ(En−1)

εn−1−−−→ En.

For example, we begin the construction by replacing E1 with the homotopy-
equivalent space E′1 = Mε0 , so that we have an inclusion ΣE0 ↪→Mε0 . Then
we consider

Σ2(E0)
Σε0−−→ Σ(E1)

ε1−→ E2

and we have that ΣE′1 = MΣε0 ↪→MΣε0 ∪Mε1 'Mε1◦Σε0 = E′2 ' E2.
Proceeding this way we get a new spectrum in which all spaces are CW-

complexes with the basepoints as 0-cells and the structure maps are in-
clusions of subcomplexes. This construction gives motivates the following
definition:

Definition 2.6. A CW-spectrum is a spectrum E in which the spaces En
are CW-complexes with a 0-cell as basepoint for all n ∈ N and such that the
structure maps are inclusions of subcomplexes.

A CW-subspectrum of a CW-spectrum E is a subspectrum A as defined
earlier with the requirement that An is a subcomplex of En for all n ∈ N.

This way, for each cell ei of En, different from the basepoint, its suspen-
sion becomes a cell of dimension i+ 1 in En+1. We say that two cells eα of
En and eβ of Em, with n ≤ m are equivalent if eα becomes eβ by suspending
(and including) a suitable number of times. We will say that a stable cell of
E is an equivalence class under this relation. So, a stable cell consists of cells
en+k of En for all n ≥ n0. The dimension of such a stable cells is defined to
be k. This way, if we consider the suspension spectrum of a CW-complex
X, the cells of X coincide with the stable cells of the spectrum, together
with their dimensions.

The homology of a CW-spectrum E can be defined in terms of cellular
chains. We consider the cellular chain complexes relative to the basepoint
C∗(En;G): the structure maps ΣEi → Ei+1 induce inclusions C∗(En;G)→
C∗(En+1;G). If we take the union C∗(E;G) = ∪nC∗(En;G), it can be
checked that we get a chain complex with one G summand for every stable
cell of E, as for CW-complexes. Then we define Hi(E;G) to be the ith

homology group of this chain complex.
A CW-spectrum with finitely many stable cells is called finite. If the

number of cells in each dimension is finite, then the spectrum is of finite
type.

1in the union, we identify, for each space in the composition, its copy in the mapping
cylinders of the map from and to it.
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Remark 2.7. Note that a CW-spectrum can also have cells in negative
dimension: consider, for example, the CW-spectrum X defined by

Xn = S1 ∨ S2 ∨ . . .

for all n ≥ 0, with structure map the obvious inclusion

Σ(Xn) = S2 ∨ S3 ∨ . . . ↪→ Xn+1

and in which all the factors Si are realized as a disc Di with the boundary
glued on one point. This spectrum has one cell for each dimension k ∈ Z.

The Adams Spectral Sequence deals only with CW-spectra in which the
dimension of the stable cells is bounded below. A CW-spectrum with this
property is called connective.

The objects in the category we are going to build are of course CW-
spectra. Instead, it is not that easy to find a suitable class of maps and it
will require some work to get to a definition of morphism in our category. A
reasonable goal would be to have that a morphism between two CW-spectra
induces a homomorphism on homotopy.

The most obvious choice would be to take maps that commute with the
structure maps of the spectra. Namely, we can give the following definition:

Definition 2.8. If E and F are CW-spectra and r ∈ Z, a strict map2 of
degree r from E to F is a sequence of maps f = (fn)n∈Z with fn : En → Fn−r
a basepoint-preserving map for all n ∈ Z such that the following diagram
commutes for all n ∈ Z:

ΣEn - En+1

ΣFn−r

Σfn
?

- Fn−r+1.

fn+1

?

We will just say strict map when the degree is 0.

Since we define graded maps, it is more convenient to index the spaces
of the spectra over the integers rather than over N. We will see soon that
this does not cause any substantial difference.

Strict maps can be composed in the natural way and the identity of a
CW-spectrum is a strict-map. Moreover, if we take a CW-subspectrum E′

of a CW-spectrum E, the inclusion E′ ↪→ E is a strict map.
We can however weaken the requirements of the definition and still get

maps that induce homomorphisms on homotopy. In fact, if we had the maps
fn defined only for n ≥ n0 for some n0, we would still get an induced map
πi(E)→ πi−r(F ), since we can think of πi(X) as lim−→πi+n(En) and similarly
for πi(F ).

Actually, we can relax the condition some more. To do this, we first need
a definition:

2strict maps are called functions in [Ada74].
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Definition 2.9. A CW-subspectrum A of a CW-spectrum E is called cofinal
if, for all n ∈ N and for every cell ei of En, there exists a k ∈ N such that
Σk(ei) is a cell of An+k.

Lemma 2.10. If E′, E′′ are cofinal subspectra of a CW-spectrum E′, then
their intersection is also cofinal in E.

Proof. Let n ∈ N and let ei be a cell of En. By definition, there exist k1

and k2 such that Σk1(ei) is a cell of E′n+k1
and Σk2(ei) is a cell of E′′n+k2

.

Assume k1 ≤ k2: if we suspend the cell Σk1(ei) for k2 − k1 times, we get
that Σk2(ei) is a cell of E′n+k2

. This shows that E′ ∩ E′′ is cofinal.

Let E be a CW-spectrum and F a spectrum. Let E′, E′′ be cofinal
subspectra of E and f : E′ → F , g : E′′ → G strict maps of degree r. We
say that f and g are equivalent if there exists a cofinal subspectrum Ē of
E contained in E′ and E′′ on which f and g coincide. We leave it as an
exercise for the reader to check that this is an equivalence relation.

Definition 2.11. A map (of degree r) E → F of CW-spectra is an equiva-
lence class of strict maps (of degree r) defined on cofinal subspectra.

Note that the previous lemma tells us that, if we take a map defined
on a cofinal subspectrum E′, we get the same map restricting f to another
cofinal subspectrum E′′ ⊆ E′.

The composition of maps of CW-spectra is defined by taking represen-
tatives, choosing them in a way such that their composition is defined. It is
well defined by the following Proposition:

Proposition 2.12. (a) Let f : E → F be a strict map of degree r of CW-
spectra and F ′ ⊆ F a cofinal subspectrum. Then, there exists a cofinal
subspectrum E′ ⊆ E such that f(E′) ⊆ F ′.

(b) If E′ is a cofinal subspectrum of E and E′′ a cofinal subspectrum of
E′, then E′′ is a cofinal subspectrum of E.

Proof. (a) We set E′ to be the subspectrum made by the cells of the spaces
En which are mapped into F ′n−r. This is cofinal, in fact, if ei is a cell
in En, then it is mapped by f to a finite union of cells of Fn−r and
so, for some k, their k-fold suspension lies in F ′n−r+k, since F ′ cofinal.
f is a strict map and so it commutes with the structure maps. Then,
the Σk(ei) is mapped in F ′ by f and so it is in E′.

(b) This is a straightforward consequence of the definition.

To see that also a map f : E → F of CW-spectra induces a morphism
f∗ : πi(E) → πi−r(F ), assume that f is defined on the cells of a cofinal
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subspectrum E′ of E. If we take a map Si+n → Xn, its image is compact and
hence included in a finite subcomplex of Xn. If we suspend the cells of this
subcomplex enough times, they will lie in E′n+k (for some k) and f is defined
on them. The same process can be done for a homotopy Si+n × I → Xn.

We can now define homotopies between maps of CW-spectra, in a way
all similar to what is done for spaces: for a CW-spectrum E, we define the
cylinder spectrum E × I by

(E × I)n =
(En × I)

e0 × I
,

where e0 denotes the basepoint. Clearly we have Σ(En × I) = Σ(En) × I.
The structure maps of the cylinder spectrum are defined in the obvious way.
We have two obvious inclusion maps:

i0, i1 : E → E × I,

that correspond to the two ends of the cylinder.

Definition 2.13. If f, g : E → F are maps of CW-spectra, we say that they
are homotopic if there exists a map of CW-spectra H : E× I → F such that
f = H ◦ i0, g = H ◦ i1.

We leave to the reader to check that this is an equivalence relation and the
composition of maps defined earlier induces the composition for homotopy
classes, as in the familiar case of spaces.

The set of the homotopy classes of the maps E → F of degree r is
denoted [E,F ]r

We have finally obtained a satisfactory definition for the morphisms in
our category: the objects are CW-spectra and the morphisms of degree r
are homotopy classes of maps of degree r. We will just say morphism to
mean a morphism of degree 0. Note that a morphism f is an isomorphism
in this category if it is a homotopy equivalence of spectra.

Remark 2.14. If E′ is a cofinal subspectrum of a CW-spectrum E, we
already know that the inclusion E′ ↪→ E is a strict map and hence a map of
CW-spectra. Moreover, if we take the equivalence class of the identity of E′,
it is a map of CW-spectra E → E′, by definition, and one can easily check
that the composition of these two maps in any order gives identity. This
shows that every CW-spectrum is isomorphic to any of its cofinal subspectra.

Till now we have always considered spectra indexed over N, but, if
E = (En)n∈Z is a CW-spectrum indexed over Z, we can define E′ by

E′n =

{
En, if n ≥ 0,

{∗}, if n < 0.

E′ is a cofinal subspectrum of E and so they are isomorphic: this shows that
it does not really matter if we consider spectra indexed over N or over Z.
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Remark 2.15. We can always define a subspectrum E′ of E by setting

E′n = ΣEn−1 ⊆ En.

This is a cofinal subspectrum of E and so, by the previous remark, they are
isomorphic.

More generally, we can define the suspension ΣF of a spectrum F by
setting (ΣF )n = Σ(Fn). Then, the last assertion can be reformulated by
saying that any CW-spectrum E is isomorphic to ΣF where F is the spec-
trum defined by Fn = En−1. This spectrum F can be denoted by Σ−1E,
so that E = Σ(Σ−1E). This argument shows that any CW-spectrum is
isomorphic to the suspension of another CW-spectrum. In other words, the
suspension is invertible in our category. We can iterate this construction:
for m ∈ N, we define a CW-spectrum G by:

Gn = En−m.

This way we get that E ∼= ΣmG.

Recall that the sphere spectrum S0 is the suspension spectrum of the
sphere S0. The following Proposition is saying that our choice for morphisms
is actually reasonable:

Proposition 2.16. If E is the suspension spectrum for a finite CW-complex
K and F is any spectrum, we have that:

[E,F ]r = lim−→[En+r, Fn].

In particular, if K = S0:

πr(E) = [S0, E]r = [Sr, E]0.

Proof. If we start with a map (of spaces) f : Σn+rK → Fn, we can define a
map of spectra f̄ : E → F of degree r: f̄n+r : En+r → Fn is taken to be f
itself and, since we have ΣEn+r = En+r+1, we are forced to define, for all
m > 0:

En+r+m = Σm(En+r)
Σmf−−−→ Fn+m.

This defines a strict map on the cofinal subspectrum:

E′i =

{
Ei, if i ≥ n+m,

{∗}, if i < n+m.

If f : Σn+rK → Fn, g : Σm+rK → Fm are two maps which are equivalent
in the direct limit, it means that, for some p there exists a homotopy between
the maps:

Σp+rK
Σp−nf−−−−→ Σp−nFn → Fp,
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Σp+rK
Σp−mg−−−−→ Σp−mFm → Fp.

This homotopy induces a homotopy between the map of spectra correspond-
ing to f and g and so we have a map:

α : lim−→[En+r, Fn]→ [E,F ]r.

A map of CW-spectra E → F of degree r is a homotopy class of strict maps
defined on a cofinal subspectrum of E. Any of these strict maps is equivalent
to one defined on a subspectrum which has the form of E′ defined above
and so α is surjective. Moreover, if two maps of CW-spectra are homotopic,
the homotopy is induced by a homotopy of maps of spaces, therefore α is
injective. Therefore α is a bijection.

Remark 2.17. One of the reasons to consider spectra instead of spaces is
that, for E,F CW-spectra, the set [E,F ] is always an abelian group. This
is because, as we have seen, a CW-spectrum is always isomorphic to the
suspension of another CW-spectrum (and hence also to a double suspension),
in other words it can always be de-suspended as many times as we want,
allowing us to define an abelian sum operation using the extra coordinates
given by the suspension, as one does for homotopy groups of spaces.

Proposition 2.18. If E,F are CW-spectra, the suspension map

[E,F ]→ [ΣE,ΣF ]

is a group isomorphism.

Proof. See [Ada74, Part III, Theorem 3.7] or [Hat04, p. 10].

Another advantage of working with CW-spectra is that many results
which hold for CW-complexes also translate in this context. For instance
we have cellular approximation of maps, as for CW-complexes. We have
also a version of the Whitehead theorem:

Theorem 2.19. A morphism of CW-spectra f : E → F that induces iso-
morphisms f∗ : πi(E)→ πi(F ) for all i is an isomorphism and so a homotopy
equivalence between e and F .

Proof. See [Ada74, Part III, Corollary 3.5].

Another important result translate to the category of CW-spectra: the
Hurewicz theorem. It must be noted that it holds only for connective spectra:

Theorem 2.20. Let E be a connective CW-spectrum. It πi(E) = 0 for all
i < n, then there exists an isomorphism h : πn(E)→ Hn(E;Z).

Proof. See [Mar83, Theorem 6.9].
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2.3 Exact sequences for a cofibration of CW-spectra

In order to talk about cofibrations, we need to define mapping cylinders and
mapping cones for a map of CW-spectra.

If f : E → F is a map of CW-spectra, we can pick as a representative
for it a strict map f ′ : E′ → F defined on a cofinal subspectra E′ of E. Now
we can deform f ′n to be cellular as a map of CW-complexes for each n and
define the mapping cylinder of f to be the CW-spectrum Mf with:

(Mf )n = Mf ′n ,

where Mf ′n is a reduced mapping cylinder. This defines a CW-spectrum,
since f ′ is a strict map and ΣMf ′n = MΣf ′n . If we replace X ′ with a co-
final subspectrum, Mf is replaced with a subspectrum cofinal in it, hence
isomorphic. Therefore the definition depends uniquely only on f , up to
equivalence. The familiar deformation retraction of Mf ′n onto Fn, for each
n, give a deformation retraction of the spectrum Mf onto F .

The mapping cone, is built up the same way, taking the reduced mapping
cones of the maps f ′n instead of the cylinders. The resulting spectrum is
denoted Cf . For an inclusion of a subspectrum A ↪→ E, the mapping cone
can be written as X ∪CA, as one does for CW-complexes, defining the cone
cylinder CA similarly to what we did for the cylinder spectrum.

Definition 2.21. A subspectrum A of a CW-spectrum E is called closed
if, when a cell ei of En has an iterated suspension lying in An+k, then ei is
in An.

If A is a closed subspectrum of E, we can form the quotient spectrum
E/A setting (E/A)n = En/An. We have a map E ∪ CA → E/A, whose
components are the homotopy equivalences of CW-complexes En ∪ CAn →
En/An. We can then apply Theorem 2.19 to get a homotopy equivalence
X ∪ CA ' X/A.

As for spaces, from the inclusion of a subspectrum, we can form a cofi-
bration sequence:

A ↪→ E → E ∪ CA,

which can we extended to the right by taking the mapping cone of the last
inclusion:

A ↪→ E → E ∪ CA→ (E ∪ CA) ∪ CE

and we have that (E ∪ CA) ∪ CE ' (E ∪ CA)/E ' ΣA, so we can go on
extending the sequence with ΣA→ ΣE, just as for spaces:

A ↪→ E → E ∪ CA→ ΣA→ ΣE → · · · (2.1)

And, as for spaces, we have an associated exact sequence:

[A,F ]← [E,F ]← [E/A,F ]← [ΣA,F ]← [ΣE,F ]← · · · (2.2)
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But with CW-spectra we have also another exact sequence associated
to a cofibration, which is not present for cofibrations of spaces. The reason
is basically that we can always de-suspend spectra, which is is not true for
spaces.

Proposition 2.22. For a cofibration A ↪→ E → E ∪ CA, the following
sequence is exact:

[F,A]→ [F,E]→ [F,E/A]→ [F,ΣA]→ [F,ΣE]→ · · · (2.3)

Proof. The sequence (2.1) is built including each space in the mapping cone
of the map that is entering that space. So, it is enough to prove the exactness
of the sequence:

[F,A]→ [F,E]→ [F,E ∪ CA].

It is clear that the composition of the two maps is zero. Suppose now that we
have f : F → E that becomes nullhomotopic when including E into E∪CA.
This homotopy F × I → E ∪ CA gives a map H : CF → E ∪ CA (since
CF can be seen as the quotient of F × I where we mod out one face of the
cylinder) which forms a commutative square with f :

F ⊂ - CF

E

f

?
⊂ - E ∪ CA.

H

?

The two rows complete to cofibrations and we get the two next vertical maps
at the right of the square to fill the following diagram, which commutes up
to homotopy:

F
1- F ⊂ - CF - ΣF

1- ΣF

A ⊂ - E

f

?
⊂ - E ∪ CA.

H

?
- ΣA

k

?
Σi- ΣE.

Σf

?

By Proposition 2.18, k = Σl, for some l ∈ [F,A] and, by commutativity,
Σf ' Σ(i)Σ(l) = Σ(il). Since the suspension is an isomorphism, this implies
f ' il and then f is in the image of [F,A] → [F,E]. This completes the
proof of the exactness.

This exact sequence we built for a cofibration of CW-spectra is the anal-
ogous of the exact sequence [Y, F ]→ [Y,E]→ [Y,B] for a fibration of spaces
F → E → B. In other words, in the category of CW-spectra, cofibrations
are the same as fibrations.

Given two CW-spectra A and B we can form their wedge sum A ∨B in
the obvious way, setting (A ∨B)n = An ∨Bn for all n. The structure maps
come from pasting the ones of A and B, since Σ(An ∨Bn) is homeomorphic
to ΣAn ∨ΣBn. Moreover the inclusions of the two factors, A→ A∨B ← B
are strict maps of spectra.
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Remark 2.23. For cofibration of the pair (A ∨ B,A), the exact sequence
of Proposition 2.22:

· · · → [F,A]→ [F,A ∨B]→ [F,B]→ · · ·

has a splitting [F,B] → [F,A ∨ B] given by inclusion and so we have that
[F,A ∨B] ∼= [F,A]⊕ [F,B]. This clearly generalizes to finite wedge sums.

2.4 Cohomology for CW-spectra

Definition 2.24. Given a CW-spectrum E, we define the nth E-cohomology
of a CW-spectrum X as:

En(X) = [X,E]−n.

An element f ∈ [X,E]−n is a homotopy class of maps of spectra X → F
of degree −n. It corresponds to a strict map f ′ defined on a subspectrum
X ′ ⊆ X with components f ′i : Xi−n → Ei. As shown in Remark 2.15, the
spectrum X is isomorphic to ΣnY , where Y is the spectrum defined by
Yi = Xi−n for all i. Then we have:

[Σ−nX,E] = [Σ−nΣnY,E] = [Y,E],

and a map Y → E of degree 0 corresponds to a strict map f ′ defined on a
cofinal subspectrum Y ′ ⊆ Y with components f ′i : Yn = Xi−n → En. Thus,
En(X) can be also written as [Σ−nX,E].

One check easily that, for all n, En(X) is a contravariant functor from
the category of CW-spectra to abelian groups in the variable X.

The reason for the name “E-cohomology” is that En satisfies a series
of properties analogous to the axioms for a reduced cohomology theory on
spaces (see, for instance, [May99, Ch. 19] for a reference on them):

Proposition 2.25. If E is a CW-spectrum, the functor En satisfies the
following properties:

(a) For a cofibration A ↪→ X → X/A, the sequence:

En(X/A)→ En(X)→ En(A)

is exact.

(b) There is a natural isomorphism En(X)→ En+1(ΣX).

(c) For a finite wedge sum of CW-spectra A1 ∨ · · · ∨ Ak, there is an iso-
morphism

En(A1 ∨ · · · ∨Ak) ∼=
k∏
i=1

En(Ai).
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(d) A map of CW-spectra f : X → Y that is a weak equivalence induces a
isomorphism:

f∗ : En(Y )→ En(X).

Proof. (a) We can just use the exact sequence (2.2).

(b) Writing En(X) as [Σ−nX,E], we have:

En(X) = [X,E]−n ∼= [Σ−n(X), E] ∼=
[Σ−n−1(Σ(X)), E] ∼= [Σ(X), E]−n−1 = En+1(ΣX).

(c) By definition, En(A1 ∨ · · · ∨ Ak) = [A1 ∨ · · · ∨ Ak, E]−n. To a map
f : A1 ∨ · · · ∨ Ak → E we can associate, for 0 ≤ i ≤ k, fi : Ai → E by
pre-composing with the inclusion Ai → A1 ∨ · · · ∨Ak and, conversely,
a sequence of maps (fi : Ai → E) define a map from the wedge sum
A1 ∨ · · · ∨Ak to E.

(d) If f is a weak equivalence, by Theorem 2.19 it is an isomorphism and
so the induced map En(Y )→ En(X) is also an isomorphism.

It is interesting to look at the E-cohomology functors for a CW-spectrum
E that we know: given an integer n and an abelian group G, recall that we
have the shifted Eilenberg-MacLane spectrum K(G,m), with

K(G,m)n = K(G,m+ n).

Note that:3

HGn = K(G,m)n−m.

By Remark 2.15, HG is equivalent to Σ−mK(G,m). Hence, by Proposition
2.18, we have a natural isomorphism:

HGm(X) = [Σ−mX,HG] ∼= [X,ΣmHG] = [X,K(G,m)]. (2.4)

It is also possible to define a cohomology theory on CW-spectra in a more
direct way, as we did for homology, building the cellular cochain complexes
for stable cells and taking the cohomology of the complex, the same way
one does for CW-complexes. For example, [Hat04] follows this approach.
The resulting cohomology H∗(X;G) is isomorphic to the HG-cohomology
([Hat04, Prop. 2.4]). Moreover, if we apply this functor to the suspension
spectrum of a basepointed CW-complex X, it coincides with the ordinary
reduced cohomology of X with coefficients in G.

If one defines the spectra cohomology with the cellular cochain complex,
it is clear that, for a CW-spectrum of finite type, we get finitely generated

3HG is the Eilenberg-MacLane spectrum for the group G, defined in section 2.1.
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cohomology groups. Then, the HG-cohomology groups for a spectrum of
finite type are finitely generated.

Let us consider the natural transformations of functors:

HGm(−)→ HGs(−)

for an abelian group G and integers m, s. These natural transformation are
cohomology operations and, by (2.4), if we can apply the (contravariant)
Yoneda Lemma, we get that the set of them is in bijection with

HGs(K(G,m)) ∼= [K(G,m),K(G, s)] ∼= [HG,K(G, s−m)] ∼= HGs−m(HG)

Namely, a natural transformation HGm(X)→ HGs(X) corresponds to the
composition:

X → K(G,m)→ K(G, s). (2.5)

So, every natural transformation HG∗(−) → HG∗(−) is identified with an
element of HG∗(HG).

We have that HG∗(HG) is an abelian group, as in general for any [X,Y ],
and it is also a ring, with multiplication given by composing maps. It can
be easily checked that, for any CW-spectrum X of finite type, these facts
give to HG∗(X) a HG∗(HG)-module structure, with scalar multiplication
given again by the composition.

Setting G = Z/p for a prime number p, we define the modulo p Steenrod
Algebra:

Ap = (HZ/p)∗(HZ/p),

the algebra of stable cohomology operations with Z/p coefficients. It is a
Z/p-algebra and it is generated by the Steenrod operations: the Steenrod
squares Sqi, if p = 2, the Steenrod powers P k and the Bockstein map βp,
for p > 2 ([Ada74, Ch. III.12]).

In the construction of the Adams Spectral Sequence we will need an
improved version of the isomorphism seen in Remark 2.23, that works for
certain infinite wedges of CW-spectra. Note that here we get an isomorphism
between [X,∨iKi] and the direct product

∏
i[X,Ki], while for finite wedges

we have a direct sum.

Proposition 2.26. The natural map

[X,∨iK(G,ni)]→
∏
i

[X,K(G,ni)]

f 7→ (fi),

where fj is the composition of f with the projection ∨iK(G,ni)
pj−→ K(G,nj),

is an isomorphism if X is a connective CW-spectrum of finite type and
ni →∞ as i→∞.
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The proof of the Proposition is based on the two following lemmas. Recall
that, if X is a connective CW-spectrum of finite type, the dimension of its
stable cells is bounded below and X can be written as the increasing union
of its k-skeleta Xk. Since X has finite type, each Xk is finite.

Lemma 2.27. Let E∗ be the E-cohomology for a fixed CW-spectrum E and
X a connective CW-spectrum. Then there is an exact sequence:

0→ lim←−
1En−1(Xk)→ En(X)→ lim←−E

n(Xk)→ 0,

where Xk denotes the k-skeleton of X.

Recall that lim←−E
n(Xk) denotes the inverse limit of the groups Gk =

En(Xk), which can be seen as the kernel of the homomorphism:

δ :
∏
i

(Gk)→
∏
i

(Gk), δ((gi)) = (hi),

with hj = gj − i∗j+1(gj+i), where i∗k is the map induced on cohomology by

the inclusion Xk+1 → Xk. Here lim←−
1 is the cokernel of δ.

A result analogous to this Lemma, but for CW-complexes instead that
for CW-spectra, is proved in [Hat02, Thm. 3F.8]. and the argument can be
easily translated to CW-spectra. The second ingredient for the proof of the
proposition is the following algebraic lemma, whose proof is omitted from
this project:

Lemma 2.28 (Mittag-Leffler criterion). If, for each k, the images of
Gk+n → Gk are independent of n, for n big enough, then lim←−

1Gk = 0.

Proof (of Proposition 2.26). If X is a finite spectrum, every space Xj has
a finite number of cells. Hence, by cellular approximation, all the factors
K(G,ni) with ni bigger than the maximum dimension of the cells in the
spaces Xj can be omitted from the direct product and from the wedge sum
and so we get back to the finite case seen in Remark 2.23. For the general
case, we can see the spectrumX as the union of its skeletaXk, that are finite.
If we denote hn(X) = [Σ−nX,∨iK(G,ni)] is the cohomology associated to
∨iK(G,ni), by the previous lemma we have the exact sequence:

0→ lim←−
1 hn−1(Xk)→ hn(X)→ lim←−h

n(Xk)→ 0,

The third term of the spectral sequence lim←−h
n(Xk) is the product we are

interested in,
∏
i[X,K(G,ni)], because it is the inverse limit of the finite

product from the previous case. Then it is enough to show that the term
lim←−

1 hn−1(Xk) is zero to get the wanted isomorphism. We can apply the
Mittag-Leffler criterion: in fact we have that the images of the maps

HGi(Xk+n)→ HGi(Xk)

are independent of n when k + n > i. Then lim←−
1 hn−1(Xk) = 0 and the

proof is complete.
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3 The Adams Spectral Sequence

We begin the section doing the construction of an exact resolution of the
cohomology of a CW-spectrum, before moving on to the construction of
the Spectral Sequence. The spectral sequence deals with cohomology with
coefficients in Z/p, for a prime p. Hence in the following we will consider only
this cohomology, with the notation Hn(X) = (HZ/p)n(X) ∼= [X,K(Z, n)].

3.1 Exact resolutions

From now on we are restricting our attention to connective CW-spectra of
finite type, so that the cohomology groups are finitely generated.

The results of the previous section allow us to use CW-spectra in a much
similar way to CW-complexes, in the sense that we don’t need anymore to
look at the spaces composing a spectra. Instead, when looking at a sequence
of spectra, we will use the notation Xn to refer to one of the spectra in the
sequence.

Let X be a connective CW-spectrum of finite type. Our goal is to build a
free resolution of the cohomology H∗(X), seen as a module over the modulo
p Steenrod algebra Ap. The first step is to take αi generators for H∗(X),
with a finite number of them in each Hn(X). By (2.4), each αi can be seen
as an element of [X,K(Z/p, ni)] and so, by Proposition 2.26, they determine
a map

X → ∨iK(Z/p, ni).

We set K0 = ∨iK(Z/p, ni), that is a spectrum of finite type, and then,
replacing this map with an inclusion via the mapping cylinder construction,
we may form the quotient:

X1 = K0/X.

X1 is again a connective spectrum of finite type, then we can repeat the
construction with X1 in place of X to build K1 and X2 = K1/X1. This
yields the diagram:

X - K0
- K1

- K2
- · · ·

X1

-

-

X2

-

-

X3

-

-
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and, applying the cohomology functor, we get the diagram:

H∗(X) � H∗(K0) � H∗(K1) � H∗(K2) � · · ·

H∗(X1)
�

�

H∗(X2)
�

�

H∗(X3)
�

�

0
�

0
�

�

0
�

�

0

�

which gives a free resolution of H∗(X) as a Ap-module.
If we denote Xn = Σ−nXn and Kn = Σ−nKn, we can rewrite the previ-

ous diagram in the form:

...

X2
?

- K2

X1
?

- K1

X
?

- K0

by using (2.1) for the cofibrations Xs → Ks → Xs+1 we built above and
applying the suspension isomorphism of Proposition 2.18. The diagram is
called the Adams tower over X.

3.2 Constructing the spectral sequence

In the construction of the exact resolution we defined cofibrations:

Xs → Ks → Xs+1.

Then, by Proposition 2.22, we get exact sequences:

[ΣtY,Xs]→ [ΣtY,Ks]→ [ΣtY,Xs+1]→ [ΣtY,ΣXs]→ · · ·

Recall that we have the isomorphisms given by suspension (Proposition
2.18):

[ΣtY,ΣXs] ∼= [Σt−1Y,Xs],
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and so the exact sequences above fit together to form a so-called staircase
diagram:

- [Σt+1Y,Xs] - [Σt+1Y,Ks] - [Σt+1Y,Xs+1] - [Σt+1Y,ΣKs+1] - [Σt+1Y,Xs+2] -

- [ΣtY,Xs−1]
?

- [ΣtY,Ks−1] - [ΣtY,Xs]
?

- [ΣtY,ΣKs] - [ΣtY,Xs+1]
?

-

- [Σt−1Y,Xs−2]
?

- [Σt−1Y,Ks−2] - [Σt−1Y,Xs−1]
?

- [Σt−1Y,ΣKs−1] - [Σt−1Y,Xs]
?

-

? ? ?

Such a diagram determines an exact couple, which is one of the standard
ways to construct a spectral sequence (see [HS97, Chapter VIII] for a de-
scription of the construction in general).

Definition 3.1. The spectral sequence obtained from the previous staircase
diagram is called the modulo p Adams spectral sequence.

To simplify the writing, we introduce the notation:

πYt (X) = [ΣtY,X].

This way, taking Y equal to S0, the sphere spectrum, we have: πS
0

t (X) =
πt(X).

To identify the terms in the first pages of the spectral sequence, we pro-
ceed as follows: by construction, each Ks is a wedge of Eilenberg-MacLane
spaces and we know that its cohomology H∗(Ks) is a free Ap-module.

The elements of πYt (Ks) = [ΣtY,Ks] are tuples (αi) of maps αi : ΣtY →
K(Z/p, ni) or, in other words, αi ∈ Hni(ΣtY ). Since H∗(Ks) is a free
module, the natural map:

[ΣtY,Ks]
α∗−→ HomAp(H∗(Ks), H

∗(ΣtY ))

is an isomorphism. If we introduce the notation Homt to indicate the ho-
momorphism that lower degree by t, this can be rewritten as:

πYt (Ks) ∼= HomAp(H∗(Ks), H
∗(ΣtY )) ∼= Homt

Ap
(H∗(Ks), H

∗(Y )).

Therefore, the terms of the first page of the spectral sequence have the form:

Es,t1 = Homt
Ap

(H∗(Ks), H
∗(Y ))

and the differential d1 in this page is formed by the maps:

ds,t1 : Es,t1 → Es+1,t
1 ,
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induced by the map Ks → Ks+1, that we defined when constructing the
exact resolution of H∗(X). In fact Es,t1 = πYt (Ks) and Es+1,t

1 = πYt (Ks+1),
so we may view ds,t1 as a map πYt (Ks)→ πYt (Ks+1).

This means that the E1 page consists of the complexes

0→ Homt
Ap

(H∗(K0), H∗(Y ))
d0,ti−−→ Homt

Ap
(H∗(K1), H∗(Y ))

d1,ti−−→ Homt
Ap

(H∗(K2), H∗(Y ))→ . . . (3.1)

The terms of the next page E2 are, by definition:

Es,t2 = ker(ds,t1 )/ Im(ds−1,t
1 ),

hence, computing them amounts to compute the homology of the complexes
(3.1) and so, since the groups H∗(Ks) are an exact resolution of H∗(X), we
get the Ext groups:

Es,t2 = Exts,tAp
(H∗(X), H∗(Y )).

3.3 The main theorem

Our main result deals with the convergence of the Adams Spectral Sequence.

Theorem 3.2. Let X be a connective CW-spectrum of finite type. Then the
Adams Spectral Sequence with E2 terms of the form:

Es,t2 = Exts,tAp
(H∗(X), H∗(Y ))

is convergent to πY∗ (X) modulo the subgroup given by torsion elements of
order prime to p. In other words:

(a) The terms Es,t∞ are isomorphic to the successive quotients F s,t/F s+1,t+1

for a filtration of πYt−s(X) in which F s,t is the image of the map
πt(Xs)→ πt−s(X).

(b) ∩nF s+n,t+n is the subgroup of πYt−s(X) of the torsion elements of order
prime to p.

Note that the filtration can very well be infinite: this happens if πYt−s(X)

is infinite, since all the elements Es,tr of the spectral sequence are finite
dimensional Z/p vector spaces. In fact the terms on the E1 page are finite
dimensional, because they have the form Homt

Ap
(H∗(Ks), H

∗(Y )), and this
implies that all the terms in the next pages are finite dimensional as well.

Let us introduce the following terminology: a sequence of spectra (Li)
with maps Z → L0 → L1 → . . . such that the composition of two con-
secutive maps is nullhomotopic is called a complex on Z. A complex such
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that every spectrum L1 is a wedge of Eilenberg-MacLane spectra is named
Eilenberg-MacLane complex. If the sequence induced in cohomology:

0← H∗(Z)← H∗(L0)← H∗(L1)← . . .

is exact, then the complex is called resolution.
Let us prove a lemma that will be used in the proof of the theorem:

Lemma 3.3. If we are given a resolution of Z:

Z → L0 → L1 → . . . ,

an Eilenberg-MacLane complex:

X → K0 → K1 → . . .

and a map f : Z → X, then we can build maps fi forming the following
diagram, commutative up to homotopy:

Z - L0
- L1

- L2
- . . .

X

f

?
- K0

f0
?

- K1

f1
?

- K2

f2
?

- . . .

Proof. Since the composition of two consecutive maps is nullhomotopic, we
can factor the maps as in the diagram:

L0/Z = Z1 L1/Z1 = Z2

Z - L0
-

-

L1
-

-

-

L2
-

-

. . .

X

f

?
- K0

f0
?

- K1

f1
?

- K2

f2
?

- . . .

K0/X = X1

?

-

-

K1/X1 = X2

?

-

-

The map X → K0 = ∨K(Z/p, ni) corresponds to a sequence of αi : X →
K(G,ni) and we can view each αi as a class in Hni(X), by (2.4). Since the
map H∗(L0) → H∗(Z) is surjective (because the first row is a resolution),
there exist, for all i, some βi ∈ Hni(L0) such that f∗(βi) = αi. Each βi
gives a homotopy class in [L0,K(G,ni)], again by (2.4), and so we get a
map f0 : L0 → K0, forming a homotopy-commutative square. By exactness,
the map H∗(L1)→ H∗(Z1) is surjective, so we can repeat the argument to
build f1 and further for all the other fi’s.
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We can now prove out Theorem about the convergence of the Adams
spectral sequence.

Proof (of Theorem 3.2). We prove the theorem in the case of the ordinary
homotopy groups, in which Y is the sphere spectrum S0: the proof for an
arbitrary spectrum Y contains only minor changes. We start from (b) and
for the proof we take Y to be the sphere spectrum, so that H∗(Y ) = Z/p:
since the terms of the E1 page are Z/p vector spaces, as observed, they
have the form Es,t1 = πt(Ks) = Homt

A(H∗(Ks),Z/p). So, by exactness, the
vertical maps in the staircase diagram are isomorphisms on the torsion of
order prime to p, therefore we have that the torsion of order prime to p is
contained in ∩nF s+n,t+n.

To prove the other inclusion, we do first a special case: suppose that
π∗(X) is entirely of p-torsion. We want to build a Eilenberg-MacLane com-
plex over X: X → L0 → L1 → . . . as follows: take n such that πn(X) is the
first non-trivial homotopy group. Then take generators αi : X → K(Z/p, n)
for Hn(X) and let L0 be a wedge of Eilenberg-MacLane spectra K(Z/p, n),
one for each element αi. This way the map α : X → L0 induces isomorphism
on cohomology and also on homology. By the Hurewicz Theorem 2.20, on
homotopy it is the map πn(X) → πn(X) ⊗ Zp. Now, if we make the map
X → L0 into an inclusion and look at Z1 = L0/X, we have πi(Z1) = 0 for
i ≤ n and πn+1(Z1) = ker(πn(X) → πn(L0)), so πn+1(Z1) has a smaller
order than πn(X). Then we can repeat the process with Z1 in place of X
and build a map Z1 → L1 in the same way, with L1 a wedge of Eilenberg-
MacLane spectra. Turning this map into an inclusion, we form Z2 = L1/Z1,
whose first non-trivial homotopy group is πn+1(Z2) and it has a smaller or-
der than πn+1(Z1). Continuing the process for a finite number of steps, we
will get to Zk, with πi(Zk) = 0 for i ≤ n + k. At that point we consider
πn+k+1(Zk) and repeat the steps. This way we get the wanted complex
X → L0 → L1 → . . . . Now, if we denote Zi = Σ−iZi, we get the Adams
tower associated to the complex, with maps · · · → Z2 → Z1 → X. By
the previous construction, the map induced by Z1 → X on homotopy is an
isomorphism on all degrees except on πn for which it is the inclusion of a
proper subgroup. The same for Z2 → Z1, until we reach the step k for which
πn(Zk) = 0 and the inclusion of a proper subgroup is in degree n+ 1. The
tower continues: after another finite number of steps, πn+1(Zj) becomes
zero and so on: this implies that, for each i, πi(Z

j) is zero if j is big enough.
Now we can apply Lemma 3.3, to get a map from the resolution of X that we
used to build the spectral sequence and the complex X → L0 → L1 → . . . .
If we pass to the associated towers and apply homotopy, we get the diagram:

. . . - πi(X
2) - πi(X

1) - πi(X)

. . . - πi(Z
2)
?

- πi(Z
1)
?

- πi(X)

=
?
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If there was an element in πi(X) pulling back in all the groups in the first row,
it would do the same in the second row. But the Zi’s have been constructed
so that πi(Z

j) = 0 for j big enough, so this is impossible so the intersection
the groups F s,t = Im(πt(Xs) → πt−s(X)) = Im(πt−s(X

s) → πt−s(X) have
empty intersection, so (b) is proved in the case of π∗(X) entirely of p-torsion.
To prove this inclusion in general, let us consider an element α ∈ πn(X)
that is either of infinite order or of p-torsion. We shall prove that it is
not contained in the intersection ∩nF s+n,t+n. Since the order of α is either
infinite of pt for some t ≥ 0, we can pick a positive integer k such that α is
not equal to pk times another any other element of πn(X). If we consider the

identity map in [X,X] and add it to itself pk times, we get a map X
pk−→ X

and we can form a cofibration X
pk−→ X → H. By (2.1), we get a long exact

sequence in homotopy:

· · · → πi(X)
pk−→ πi(X)→ πi(H)→ . . .

in which the map pk is x 7→ xp
k
. By exactness, we have that πi(H) is entirely

of p-torsion for all i. We have a map X → H from the cofibration and so,
by the Lemma, we get a map from the tower over X associated with the free
resolution to the tower over H, as done in the previous case. By the way
we have chosen α and k, we have that α is mapped to a non-zero element
by the map πn(X) → πn(H), by looking at the previous exact sequence in
degree n. If our element α pulled back in all the groups πi(X

j) in the tower
over X, it would do the same in the tower over Z, but this is impossible by
the case we proved earlier, because π∗(Z) is entirely of p-torsion. Hence α
is not contained in the intersection ∩nF s+n,t+n and so (b) is proved.

For (a), we look at the rth derived couple associated to the staircase
diagram. We have the diagram:

Er

Es,tr
kr- Ar

Ar

Ar

ir
?

-

Ar

h

?

-

We shall prove that, if r is big enough, then ir is injective: injectivity on
elements of infinite order or on torsion elements of order prime to p come
from the exactness, since the in the E columns of the staircase diagram we
have Z/p vector spaces. For elements of p-torsion, we know from (b) that
As,tr does not contain such elements if r is sufficiently big, therefore the claim
is proved.
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This implies that, for r big enough, the map preceding ir in the exact
couple, kr, is zero, hence the differential dr at Es,tr is also zero. For the
differential dr mapping to Es,tr , we have that is is also zero if r is sufficiently
big, because it originates at a zero group, since the terms in the E column
of the staircase diagram are zero under some level. Hence Es,tr = Es,tr+1 from
a certain value of r, since the differentials become zero. Since kr is zero for
r big enough, then Es,tr is the cokernel of the map h in the diagram, which
is the inclusion F s+1,t+1 → F s,t and so Es,t∞ ∼= F s,t/F s+1,t+1.

We end this section with a result that will be useful for the calculations:
if we want to use the spectral sequence with the spectrum Y equal to the
sphere spectrum S0, as in the case of the computation of stable homotopy
groups, we have a way to simplify the calculation of Exts,tAp

(H∗(X),Zp): it

is to build a minimal free resolution for H∗(X). A free resolution

0← H∗(X)←M0 ←M1 ←M2 ← . . .

is called minimal if during the construction of the free modules, we take the
minimal number of generators for each Mi in each degree.

The following proposition, which can be proved via an algebraic argu-
ment, shows why it is convenient to build such resolutions:

Proposition 3.4. If a free resolution 0 ← H∗(X) ← M0 ← M1 ← . . . is
minimal, then all the boundary maps in the complex:

· · · ← Homt
A(M2,Z/p)← Homt

A(M1,Z/p)← Homt
A(M0,Z/p)← 0

are zero and so Exts,tA (H∗(X),Z/p) ∼= Homt
A(Ms,Z/p).

Proof. See [Hat04, Ch.2, Lemma 2.8].
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4 Calculations

4.1 Stable homotopy groups of spheres

One of the most classical applications of the Adams Spectral Sequence is
the computation of the stable homotopy groups of spheres. If we take both
X and Y equal to the sphere spectrum S0 in Theorem 3.2, we obtain in-
formation about the p-component of the stable homotopy groups of spheres

pπ
s
∗(S

0) = pπ
s
∗. In the calculation we will fix p = 2 and denote with A the

modulo 2 Steenrod Algebra. The following diagram, that presents a portion
of the page E2, is an example of the result of these calculations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

10

h0 h1 h2

The vertical axis of the diagram is the coordinate s and the horizontal
one t−s, this way each column gives information about one homotopy group:
namely, the column t− s contains information about πst−s. Every dot in the
diagram represents one factor Z/2 in E2.

The differential ds,tr in the page Er goes from Es,tr to Es+r,t+r−1
r . Hence,

in our diagram, dr goes one cell to the left and r cells upward.
It can be shown that the vertical lines in the diagram represent multi-

plication by p = 2 in πs∗, therefore, for instance, the infinite line of dots in
the column t − s = 0 corresponds to the fact that πs0 = Z and so one can
keep multiplying by 2 without getting a zero. As a consequence of Theo-
rem 3.2, each dot in this column is a quotient 2nZ/2n+1Z for the filtration
· · · ⊆ 2n+1Z ⊆ 2nZ ⊆ 2n−1Z ⊆ · · · of Z.

All the differentials in the portion of E2 drawn here are zero, hence all
the dots shown here stay till the spectral sequence converges. To see this,
one can use the fact that they are derivations and so satisfy the relation:

dr(xy) = xdr(y) + dr(x)y.
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This is not obvious, but it is true in our hypothesis as a consequence of
[Rav03, Theorem 2.3.3]. The multiplication operation in every page of the
spectral sequence corresponds to the graded multiplication that is present
inside the graded stable homotopy group πs∗:

πsi × πsj → πsi+j .

induced by the compositions Si+j+k → Sj+k → Sk (see Proposition 1.3).
The vertical solid lines in the diagram represent multiplication by h0.

Let us show how one can prove that the differential dr (in the page Er)
originating at (1, 1) is zero. This differential maps to the cell (0, r + 1) and
so, if we suppose that it is non-zero, it maps h1 to the non-zero element at
(0, r + 1): we would have dr(h1) = hr+1

0 . Then, by the derivation rule:

dr(h0h1) = h0dr(h1) + dr(h0)h1 = h0h
r+1
0 = hr+2

0 ,

and hr+2
0 is non-zero, because multiplication by h0 in the column t−s = 0 is

an isomorphism. But, looking at the diagram, we see that the product h0h1

is zero, and so the left hand side of the equality is zero, giving a contradiction.
Therefore, we must have dr(h1) = 0.

To get the picture of the E2 page that we have described, we need to
calculate the ExtA(Z/2,Z/2) terms and for this we may work out a minimal
free resolution

· · · →M2 →M1 →M0 → Z/2→ 0

of Z/2 as a A-module. The process begins by taking as M0 a copy of A,
with a generator A0 in degree zero that maps to the generator of Z/2, as
shown in the diagram of the next page. For the resolution to be exact, we
need to choose M1 so that it maps onto the kernel of the map M0 → Z/2,
that is composed by all the terms of the form SqI A0, where SqI , for I =
(i1, i2, . . . , in), denotes the product of Steenrod squares Sqi1 . . . Sqin . So we
need a generator B1 in M1 that maps to Sq1A0. This implies that Sq1B1

maps to Sq1 Sq1A0 = 0, by the Adem relations. Hence we need a new
generator B2 in the position s = 1, t− s = 1, mapping to Sq2A0.

The process continues like this: note that in the diagram, in the column
s, we have the elements of degree k in the row t − s = k − s. We use
coordinates s and t− s on the axes of the diagram to use the same notation
that is used in the spectral sequence. For this reason, the maps of the
resolution, which have degree 0, are sloping downward to the left. These
maps are displayed as arrows in the chart and are omitted for elements that
map to 0. An arrow with more than one head means that the element from
which the arrow originates maps to the sum of the elements pointed.

All the resolution can be computed inductively, proceeding row by row
and from left to right in each row: in every entry (s, t − s) of the diagram
we compute the boundary map on the elements that are already present
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B1 C2 D3 E4A0

Sq1 A0

Sq2 A0

Sq2,1 A0

Sq1B1

B2

Sq2B1

Sq2B2

Sq3 A0

Sq2,1B1

Sq3B1

Sq3,1 A0

Sq4B1

Sq3,1B1

Sq3B2

Sq4,1 A0 Sq4,1B1

Sq4B2

Sq4,2 A0 Sq4,2B1

Sq5,1B1

Sq1 C2

Sq2 C2

Sq2,1 C2

Sq3 C2

Sq3,1 C2

Sq4,1 C2

Sq5,1 C2

Sq1D3

Sq2D3

Sq2,1D3

Sq3D3

Sq3,1D3

Sq4,1D3

Sq5,1D3

Sq1 E4

Sq2 E4

Sq2,1 E4

Sq3 E4

Sq3,1 E4

Sq4,1 E4

Sq5,1 E4

Sq1 F5

Sq2 F5

Sq2,1 F5

Sq3 F5

Sq3,1 F5

Sq4,1 F5

Sq5,1 F5

F5

Sq1B2

Sq4,2,1B1

F0 F1 F2 F3 F4 F5

0

1

2

3

4

5

6

7

C4

Sq4 C2

Sq5 C2

Sq3 C4

Sq4,2 C2

Sq1 C4

t−s
s

Sq4,2D3

Sq4,2,1D3

Sq6,1D3

Sq5D5

Sq4,2 E4

Sq4,2,1 E4

Sq6,1 E4

Sq5 E4

Sq4,2 F5

Sq5 F5

Sq4 A0

B4

Sq2,1B2

Sq1B4

Sq3,1B2

Sq5B1

Sq2B4

Sq6B1

Sq2,1B4

Sq4,1B2

Sq5B2

Sq3B4

Sq6,1B1

Sq5,1B2

Sq5,2B1

Sq4,2B2

Sq7B1

Sq3,1B4

Sq6B2

Sq4B4

B8

Sq5 A0

Sq5,1 A0

Sq6 A0

Sq4,2,1 A0

Sq6,1 A0

Sq5,2 A0

Sq7 A0

Sq6 C2

Sq2,1 C5

Sq3,1 C4

Sq4 C4

Sq3 C5

C8

...

C5

Sq2 C4

Sq1 C5

Sq2 C5

Sq2,1 C4

Sq4,2,1 C2

Sq6,1 C2

Sq4,1 C4

Sq5 C4

Sq7 C2

Sq3,1 C5

C9

...

D6

Sq4D3

Sq1D6

Sq2D6

Sq6D3

Sq2,1D6

Sq3D6

D10

...

Sq4 E4

Sq6 E4

...

E11

Sq4 F5

Sq6 F5

...

...
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(and have the form SqI times a generator introduced in a previous row,
for all the admissible monomials SqI of the appropriate degree). Then, to
decide if we need a new generator in the cell, we look at the map going
from (s − 1, t − s + 1) to (s − 2, t − s + 2): if it is not injective, then we
have to introduce a new generator. It does not matter if in the next row
we will introduce new generators in (s − 1, t − s + 1), because generators
map injectively, so they are never in a kernel. This process makes use of
the Adem relations, to write the image of the product SqI X as admissible
monomials.

This example gives the feeling of how one uses this spectral sequence
for calculations: first there is the algebraic problem of building an exact
resolution for H∗(X) and computing the homology of the Hom complex of
the resolution, to get the terms Exts,tA (H∗(X), H∗(Y )). Then one has to
understand what differentials dr are non-trivial and to compute them to
understand the convergence of the spectral sequence. As shown, E∞ only
contains the successive quotients in filtrations of the homotopy groups, so
one has still to solve the group extension problem to recover the homotopy
groups.

4.2 The homotopy of the spectrum ko

In this section we will show a computation of the 2-component 2π∗(ko) of the
homotopy of the spectrum ko, the spectrum of real connective K-theory. In
this specific case, the computation of an exact resolution of H∗(ko) is easier,
because, via a certain change-of-ring isomorphism, we can avoid working
with the (mod 2) Steenrod algebra A and use instead the finite-dimensional
subalgebra A(1), which is defined as the subalgebra generated by Sq1 and
Sq2. This is a module (or, in other words, a vector space) over Z/2. By
an explicit computation of the products of elements of A(1), applying the
Adem relations, one sees that the following elements give an explicit basis
for it, so A(1) is 8-dimensional over Z/2:

B = {Sq0, Sq1, Sq2, Sq3, Sq2 Sq1,Sq3 Sq1,Sq2 Sq1 Sq2,Sq5 Sq1}.

We recall a shortened notation that is used to denote products of Steenrod
squares: Sqi1,..., n = Sqi1 . . . Sqin . In the following computations we will use
repeatedly the Adem relations, so we list here the ones that we are going to
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need:

Sq0 = 1 Sq1,1 = 0

Sq1,2 = Sq3 Sq1,3 = 0

Sq2,2 = Sq1,2,1 = Sq3,1 Sq2,1,2 = Sq2,3

Sq2,2,2 = Sq3,1,2 = Sq5,1 Sq2,1,2,1 = Sq5,1

Sq1,2,2 = Sq3,2 = 0 Sq2,2,1 = 0.

All elements in our basis forA(1) have degree lower or equal than 6, hence
every product of squares SqI where I = (i0, . . . , in) with i0 + · · · + in > 6
is automatically zero. As said, our aim is to compute the Adams Spectral
Sequence for p = 2 to compute 2π∗(ko). We will sketch here the reason for
which we can switch to A(1) in this case. For a more detailed explanation
of this, we refer the reader to [Rav03, Ch. 3.1].

By Theorem 3.2, the terms Es,t2 of the spectral sequence converging to
the 2-component of π∗(ko) are:

Es,t2 = Exts,tA (H∗(ko),Z/2).

Now, we have that H∗(ko) is a module over A(1) and, by [Ada74, Part III,
Prop. 16.6]:

H∗(ko) = A//A(1) = A⊗A(1) Z/2.

So we can substitute in the equation for the terms of E2 and apply a change-
of-ring isomorphism, obtaining:

Es,t2 = Exts,tA (A⊗A(1) Z/2,Z/2) = Exts,tA(1)(Z/2,Z/2).

Hence we can compute a free resolution of Z/2 as a A(1)-module to
compute this ExtA(1). To do this we proceed as we did in the previous
section for computing a minimal free resolution of Z/2 over A, but in this
case the computation is easier, since A(1) is finite dimensional.

We want to construct free A(1)-modules Mi such that

· · · →M2 →M1 →M0 → Z/2→ 0

is exact.
Our computation is displayed in the chart in the following page. Note

that the chart is indexed in the same way of the spectral sequence, with s
on horizontal axis and t− s on the vertical one. This choice is convenient to
translate the information to the spectral sequence, but we have to be careful
because this introduces a vertical shifting in the columns: the module Mi,
which is in the column i, has its part of degree k in the row k−s. For example,
the entry (3, 1) contains the 4-degree part of M3. Another consequence is
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B1 C2 D3 E4A0

Sq1 A0

Sq2 A0

Sq2,1 A0

Sq1B1

B2

Sq2B1

Sq2B2

Sq3 A0

Sq2,1B1

Sq3B1

Sq3,1 A0

Sq3B2

Sq3,1B1

Sq2,1B2

Sq2,1,2 A0 Sq2,1,2B1

Sq3,1B2

Sq5,1 A0 Sq5,1B1

Sq2,1,2B2

Sq1 C2

Sq2 C2

Sq2,1 C2

Sq3 C2

Sq3,1 C2

Sq2,1,2 C2

Sq5,1 C2

Sq1D3

Sq2D3

Sq2,1D3

Sq3D3

Sq3,1D3

Sq2,1,2D3

Sq5,1D3

Sq1 E4

Sq2 E4

Sq2,1 E4

Sq3 E4

Sq3,1 E4

Sq2,1,2 E4

Sq5,1 E4

Sq1 F5

Sq2 F5

Sq2,1 F5

Sq3 F5

Sq3,1 F5

Sq2,1,2 F5

Sq5,1 F5

Sq1G6

Sq2G6

Sq2,1G6

Sq3G6

Sq3,1G6

Sq2,1,2G6

Sq5,1G6

F5 G6 H7

Sq1B2

Sq5,1B2

F0 F1 F2 F3 F4 F5 F6 F7

0

1

2

3

4

5

6

7

C4

Sq2 C4

Sq3 C4

Sq2,1 C4

Sq3,1 C4

Sq2,1,2 C4

Sq1 C4

Sq5,1 C4

t−s
s

D7

Sq2D7

Sq3D7

Sq2,1D7

Sq3,1D7

Sq2,1,2D7

Sq1D7

Sq5,1D7

E8

Sq2 E8

Sq3 E8

Sq2,1 E8

Sq3,1 E8

Sq2,1,2 E8

Sq1 E8

Sq5,1 E8

E12

Sq2 E12

Sq3 E12

Sq2,1 E12

Sq3,1 E12

Sq2,1,2 E12

Sq1 E12

Sq5,1 E12

8

9

10

11

12

F9

Sq2 F9

Sq3 F9

Sq2,1 F9

Sq3,1 F9

Sq2,1,2 F9

Sq1 F9

Sq5,1 F9

F13

Sq2 F13

Sq3 F13

Sq2,1 F13

Sq3,1 F13

Sq2,1,2 F13

Sq1 F13

Sq5,1 F13

F14

Sq2 F14

Sq3 F14

Sq2,1 F14

Sq3,1 F14

Sq2,1,2 F14

Sq1 F14

Sq5,1 F14

13

14

15

Sq1H7

Sq2H7

Sq2,1H7

Sq3H7

Sq3,1H7

Sq2,1,2H7

Sq5,1H7

G10

Sq2G10

Sq3G10

Sq2,1G10

Sq3,1G10

Sq2,1,2G10

Sq1G10

Sq5,1G10

G14

Sq2G14

Sq3G14

Sq2,1G14

Sq3,1G14

Sq2,1,2G14

Sq1G14

Sq5,1G14

G16

Sq2G16

Sq1G16

H11

Sq2H11

Sq3H11

Sq2,1H11

Sq3,1H11

Sq2,1,2H11

Sq1H11

Sq5,1H11

H15

Sq2H15

Sq2,1H15

Sq1H15

Sq3H15

Sq3,1H15

Sq2,1,2H15

Sq5,1H15

Sq2,1G16

Sq3G16

Sq3,1G16

Sq2,1,2G16
...

H19

...
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that the maps of the resolution, which have degree 0, are sloping downward
to the left. These maps are displayed as arrows in the chart and are omitted
for elements that map to 0. An arrow with two heads means that the element
from which the arrow originates maps to the sum of the two elements.

The first step of the resolution is of course to take as M0 a copy of A(1)
with a generator A0 of degree 0 which is mapped to the generator 1̄ ∈ Z/2.
The generator A0 originates the 8 elements of the first column, given by
products with the elements of the basis B of A(1). In general, every time
that we introduce a generator in the cell (s, t − s), we get 8 elements that
reside in the entries from (s, t − s) to (s, t − s + 6). In the chart, we write
generators in red.

The kernel of the map M0 → Z/2 consists of the products SqI A0 for
SqI ∈ B except for Sq0 = 1. Then, we have to construct M1 so that it maps
on this kernel: to start with, we need a generator B1 of degree 1 mapping to
Sq1A0 in the first column. This defines the map on all the elements SqiB1:
for instance, we have that Sq1B1 maps to Sq1 Sq1A0 = 0 and Sq2B1 maps
to Sq2,1A0. Now one notes that no element is mapping to Sq2A0, therefore
we need a generator of M1 mapping to it. Since Sq2A0 has degree 2, so
does the generator, which we denote with B2. In general we respect the
convention that the subscript of a generator indicates its degree. Now we
can compute the map on the elements of M1 originating from B2 and we
see that we do not need any other generator in this column, because we are
already hitting the entire kernel of M0 → Z/2.

Then we can continue the process to compute every column of the chart:
since we want to obtain a minimal resolution, we introduce a new generator
only when it is needed to map on the kernel of the previous map.

After few columns, some patterns emerge: namely, we have a generator
in every entry of the row t− s = 0, while there is only the generator B2 for
s = 1 and only C4 mapping to Sq3B1 + Sq2B2.

One can proceed row by row in the calculation, going from left to right
in the row. In every cell (s, t − s), to decide if a new generator is needed,
we have to look at the map from (s − 1, t − s + 1) to (s − 2, t − s + 2): if
it is not injective, then we have to introduce a new generator. As said, it
does not matter if in the next row we have to introduce new generators in
(s− 1, t− s+ 1), because generators map injectively, so they are never in a
kernel.

We see that we need a generator D7 in s = 3, t− s = 4, mapping to the
sum Sq2,1,2C2 + Sq3C4. This causes the existence of the elements Sq2,1,2D3

and Sq1D7 in the cell below, that both map to Sq5,1C2. Therefore we have
to introduce a new generator in s = 4, t − s = 4, called E8, to kill these
two elements and so on for all the row t− s = 4: hence this row presents an
infinite tower beginning in s = 3. We can see inductively for the following
three rows that we do not need any new generator. When we come to s = 4,
t − s = 8 we have to introduce a new generator E12 and, for a similar
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argument as before, we get a whole new tower on this row.
Now, when we come to the row below, t−s = 9, we see that we are in the

same situation that is present in s = 1, t− s = 1: the generators of the row
t−s = 8 play the role of there was of the ones in the row t−s = 0: F14 maps
to Sq2 times the first generator in the tower. Hence the situation repeats and
we get the same pattern of the rows t−s = 0, 1, 2 in the rows t−s = 8, 9, 10,
shifted of 4 columns and 8 rows. Similarly, in s = 7, t− s = 12, we have the
generator H19 that corresponds to D7, shifted by the same number of rows
and columns and so again the situation repeats.

Hence the resolution is composed by this pattern that repeats periodi-
cally, every time shifted of 4 columns to the right and 8 rows up.

By Proposition 3.4, since our resolution is minimal, we have the following
pattern on the E2 page of the (mod 2) spectral sequence for 2π∗(ko):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

10

h0
h1

Also in this diagram, the vertical lines indicate multiplication by h0.
The only differential that could be non-trivial is the one going from the
column 8k + 1 to the column 8k, for k ∈ N. It is possible to see that it is
zero, using again the fact that, in our hypothesis, differentials satisfy the
derivation relation dr(xy) = xdr(y) + dr(x)y ([Rav03, Theorem 2.3.3]), as
we have done for the case of the homotopy groups of spheres. To see that
dr(h1) = 0, we can apply the derivation rule, which gives, since h0h1 = 0:

0 = dr(h0h1) = h0dr(h1) + dr(h0)h1 = h0dr(h1),

and so dr(h1) = 0, because multiplication by h0 is an isomorphism between
consecutive groups in the column t− s = 0.

Hence, the diagram is also a picture of the E∞ page.
As in the case of spheres, the vertical lines in the diagram represent

multiplication by 2. In the E∞ page, each dot in the ith column represents a
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successive quotient isomorphic to Z/2 in a filtration of 2πi(ko). The infinite
towers of connected dots in the columns t − s = 4k correspond to the fact
that one can keep multiplying by 2 without getting zero: since the homotopy
groups of a spectrum of finite type are finitely generated, one can prove
that these homotopy groups are isomorphic to Z. For t − s = 8k + 1 or
t − s = 8k + 2, we have only one quotient Z/2 in the filtration of the
homotopy group, which is then isomorphic to Z/2. The absence of dots
in the other columns implies that the corresponding homotopy groups are
trivial. In conclusion, we get, for n ≥ 0:

2πn(ko) =


Z, if n ≡ 0 (mod 4),

Z/2, if n ≡ 1 or 2 (mod 8),

0, otherwise.
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