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1 Introduction

1.1 A motivation behind Elmendorf’s Theorem

Working in the category of compactly generated spaces U , the basics from
the homotopy theory of spaces, such as the notion of homotopy, weak homo-
topy equivalence, CW-complex etc and the Whitehead Theorem, generalize
to an equivariant setting in the following natural way. Recall that in equiv-
ariant algebraic topology (see e.g. [15]) one considers G-spaces, i.e. spaces
with a continuous action by some topological group G, and G-maps, i.e.
maps between G-spaces which commute with the group actions. Denote
the category of G-spaces by UG. The product of two G-spaces X and Y in
U becomes with coordinatewise G-action the product X × Y in UG. Now,
a G-homotopy from a G-space X to a G-space Y is defined as a G-map
X × I → Y , where I denotes the unit interval considered as a G-space with
trivial action. Using the notion of a G-homotopy, one defines a G-homotopy
equivalence in the obvious way. Recall that a CW-complex is constructed
by attaching disks Dn along their boundaries Sn−1. To build up a G-CW-
complex one considers for closed subgroups H of G the homogeneous spaces
G/H and attaches G/H×Dn along G/H×Sn−1 in UG. A weak G-homotopy
equivalence is a G-map f : X → Y such that for any closed subgroup H of
G, the map fH : XH → Y H is a weak homotopy equivalence in U , where

(−)H : UG → U

denotes the H-fixed point functor, sending a G-space X to its H-fixed point
set

XH := {x ∈ X;hx = x for all h ∈ H}.

Then the G-Whitehead Theorem holds: A weak G-homotopy equivalence
between G-CW-complexes is a G-homotopy equivalence. Taking G to be
the trivial group {e} consisting only of the neutral element, the equivariant
homotopy theory of {e}-spaces is the same as ordinary homotopy theory of
spaces.

Let’s switch to a category theoretical viewpoint and to another gener-
alization of homotopy theory. Quillen introduced the notion of categories
which model a homotopy theory, called model categories. Roughly speaking,
a model category is a category C together with three distinguished classes of
morphisms of C, called fibrations, cofibrations and weak equivalences, which
satisfies certain axioms. For instance the category of spaces U with the
Quillen model structure is a cofibrantly generated model category, where
the fibrations are the Serre fibrations and the weak equivalences are the
weak homotopy equivalences. The category UG of G-spaces is a model cat-
egory with the fixed point model structure, where the fibrations and weak
equivalences are the G-maps which by each fixed point functor are taken to
fibrations and weak equivalences in U , respectively. Given a model category
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C and a small category D, there are some natural candidates of model cat-
egory structures for the functor category Fun(D, C) with weak equivalences
the levelwise weak equivalences, i.e. the natural transformations which eval-
uated in each object of D are weak equivalences in C. For instance if C is
cofibrantly generated, then Fun(D, C) admits the projective model structure,
where the fibrations and weak equivalences are the levelwise fibrations and
levelwise weak equivalences, respectively (see [8, Theorem 11.6.1]). Note
that the category of G-spaces can be identified with the category of continu-
ous functors from G to U . Hence, if G is a discrete group, then the category
UG is just the functor category Fun(G, C). Recall that in Fun(G, C) with the
fixed point model structure, the weak equivalences are not defined as the
levelwise weak equivalences. Thus from the perspective of model category
theory, equivariant homotopy theory looks artificial. This issue is resolved
by Elmendorf’s Theorem.

In [4], Elmendorf considered the orbit category OG, that is the full sub-
category of UG given by the homogeneous spaces (or orbit spaces) G/H for
H a closed subgroup of G. He showed that the homotopy theory of G-spaces
is reflected in a homotopy theory of the category UO

op
G of continuous dia-

grams of spaces indexed by the opposite of the orbit category. In model
category theoretical terms, Elmendorf’s Theorem is stated as follows (see
e.g. [7, Remark 1.3]).

Theorem 1.1. For any topological group G, there is a pair of Quillen equiv-
alences

Θ: UO
op
G � UG : Φ

between UO
op
G with the projective model structure and UG with the fixed point

model structure.

In fact, Elmendorf’s Theorem also holds if one considers any set F of
closed subgroups of G, which contains the trivial subgroup {e}, by equipping
UG with the F-fixed point model structure and replacing the orbit category
OG with the F-orbit category OF . That is, UG is the model category with
fibrations and weak equivalences the G-maps which by the H-fixed point
functors for H ∈ F are taken to fibrations and weak equivalences in U ,
respectively, and OF is the full subcategory of UG given by the orbit spaces
G/H for H ∈ F .

1.2 The main theorem

The goal of this paper is to show the following theorem.

Theorem 1.2. Let V be either the category U of compactly generated spaces
or the category Set of discrete spaces and correspondingly, let G be either a
topological group or a discrete group. Let F be a set of closed subgroups of G,
which contains the trivial subgroup {e}. Let C be a V-model category, which
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is cofibrantly generated. Suppose that for any H ∈ F the H-fixed point
functor (−)H : CG → C is cellular and that for all H,K ∈ F the functor
(G/K)H ⊗ − : C → C preserves cofibrations and acyclic cofibrations. Then
there is a pair of Quillen equivalences

Θ: CO
op
F � CG : Φ

between CO
op
F with the projective model structure and CG with the F-fixed

point model structure.

In §1.3, we elaborate briefly on the new terms. The theorem relates to
existing work as follows.

Suppose that in Theorem 1.2, the set F contains all closed subgroups
of G. If V is U and C is U , then any H-fixed point functor is cellular. If
in addition the topological group G is a compact Lie group or if G has the
discrete topology, then the condition on the functor (G/K)H ⊗ − holds.
Thus, in this case one recovers Elmendorf’s Theorem.

The case, where V is Set and again F contains all closed subgroups of
G, has been studied by Bert Guillou in [6]. In this setting the condition on
the functor (G/K)H ⊗ − is automatically satisfied since it is given by the
coproduct functor

∐
(G/K)H − : C → C.

1.3 Outline of this paper

The term V-model category mentioned in Theorem 1.2 will be defined in §2.1.
It will allow a unified treatment of topological model categories, i.e. U-model
categories, and ordinary model categories which will be the same as Set-
model categories. Roughly speaking, a V-model category is a model category
which as a category is enriched in V, i.e. is a V-category, such that the
enrichment is compatible with the model structure of V. By definition, every
V-model category C will come equipped with a tensor functor ⊗ : V×C → C.
This explains the notion of the functor (G/K)H ⊗− in Theorem 1.2.

To equip the category CO
op
F of V-functors (see B.8) from Oop

F to C in
Theorem 1.2 with the desired model category structure, a general existence
theorem for the projective model structure will be proved in §2.2.

In §3, we define the H-fixed point functors (−)H : CG → C and study
the F-fixed point model structure for the category CG of V-functors from
G to C considered in Theorem 1.2. The fibrations and weak equivalences
will be the morphisms which by each H-fixed point functor with H ∈ F
are taken to fibrations and weak equivalences in C, respectively. Under a
cellularity assumption on the fixed point functors and the same assumption
on the functor (G/K)H⊗− as in Theorem 1.2, an existence theorem for the
F-model structure will be proved.

In §4, we construct the mentioned pair of Quillen equivalences

Θ: CO
op
F � CG : Φ
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and thus prove Theorem 1.2.
As an example, it will be shown in §5, that for any small U-category

D and any topological group G, the category UD of U-functors from D to
U with the projective model structure is a cofibrantly generated U-model
category with cellular fixed point functors. Moreover, if G is a compact
Lie group or has the discrete topology then Theorem 1.2 applies, since the
condition on the functor (G/K)H ⊗− holds.

To prove each of the mentioned existence theorems of model category
structures, we use the generalized transport Theorem D.20 shown in §D.2 of
the appendix. It enables one to lift a cofibrantly generated model structure
from a category C to a category D not only along one left adjoint functor
but along a set of left adjoints from C to D.

The reader is assumed to have some basic knowledge of algebraic topol-
ogy and category theory such as treated for instance in [19] and Mac Lane’s
book [14], respectively. Properties of compactly generated spaces are listed
in §A. The for this paper necessary theory of categories enriched in U or
Set is quickly developed in §B. The basics of model categories and in par-
ticular of compactly generated model categories are summarized in §C and
§D, respectively.

1.4 Acknowledgements

A big thanks goes out to the topologists at the University of Copenhagen, in
particular to my fellow students for the numerous conversations and to the
organizers of the young topologists meeting for giving me the opportunity
to present the results of this thesis. I am grateful to my advisor, Jesper
Grodal, for all the helpful discussions and encouragement. I am thankful
to my supervisor, Karin Baur, for her kindness and the freedom I enjoyed
writing this thesis and to all other people involved making my stay as an
exchange student at the University of Copenhagen possible. I would like to
thank Bill Dwyer for pointing out that for a compact Lie group G and closed
subgroups H,K of G, the H-fixed point set of the homogeneous space G/K
has the structure of a CW-complex.

2 Topological and discrete model categories

Roughly speaking, a topological model category or U-model category is a
category enriched over the category of compactly generated spaces U to-
gether with a model category structure, which is assumed to be compatible
with the Quillen model structure of U (see D.29). A discrete model category
or Set-model category is just an ordinary model category, but which for a
unified treatment is considered as enriched over the full subcategory Set of
the category of topological spaces Top given by the discrete spaces.
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In this section, assuming that V is either the category U or the category
Set, we will make the notion of a V-model category precise. Thereafter,
we consider the category CD (see B.8) of V-functors from some small V-
category D to a V-model category C and study the projective model category
structure, where the weak equivalences and fibrations are defined to be the
levelwise weak equivalences and fibrations, respectively. It is well-known,
that if V is the category Set and C is cofibrantly generated, then CD admits
the projective model category structure (see e.g. [8, Theorem 11.6.1]). This
fact will be recoverd from Theorem 2.7, the main result of this section.
Moreover, in the case where V is the category U it will follow that CD
admits the projective model category structure provided that C is cofibrantly
generated and for any two objects d, d′ of D, the hom-space D(d, d′) (see B.1)
is cofibrant in U .

2.1 Definition and elementary properties of V-model cate-
gories

Let V be either the category U with the Quillen model structure or the
category Set with the trivial model structure (see C.8), where the cofibra-
tions are the isomorphisms and every map is both a fibration and a weak
equivalence.

Recall (from B.1) that a V-category C is a category, where every hom-set
HomC(A,B) of two objects A and B of C is topologized as a space C(A,B)
in V such that composition is continuous. Note that if the V-category C is
tensored and cotensored, then the tensors induce a V-functor ⊗ : V ×C → C
and the cotensors induce a V-functor [−,−] : Vop × C → C such that there
are isomorphisms

C(X ⊗A,B) ∼= V(X, C(A,B)) ∼= C(A, [X,B]),

which are natural in the objects A,B of C and X of V (see B.18).

Definition 2.1. A V-model category C is a tensored and cotensored V-
category C together with a model category structure on the underlying cat-
egory such that the tensor functor ⊗ : V × C → C satisfies the following
condition: (product-pushout axiom)

For any cofibration f : X → Y in V and any cofibration i : A → B in
C, the induced map from the pushout Y ⊗ A ∪X⊗A X ⊗ B to Y ⊗ B is a
cofibration in C, which is acyclic if either f or i is acyclic.

Example 2.2. The category U with the Quillen model structure is a U-
model category. Indeed, U is a tensored and cotensored U-category with
tensor functor the product functor U × U → U , since U is cartesian closed.
For a proof that the product-pushout axiom holds, the reader is referred to
[9, Proposition 4.2.11].
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By the following proposition, the product-pushout axiom is the analogue
of Quillen’s axiom SM7 in the definition of a closed simplicial model cate-
gory (see [16, p. 2.2]).

Proposition 2.3. Let C be a tensored and cotensored V-category equipped
with a model category structure on the underlying category. Then the fol-
lowing three conditions are equivalent:

i) The product-pushout axiom for the tensor functor holds.

ii) For any cofibration f : X → Y in V and any fibration p : C → D in C,
the induced map from the cotensor [Y,C] of Y and C to the pullback
[Y,D] ×[X,D] [X,C] is a fibration in C, which is acyclic if either f or
p is acyclic.

iii) For any cofibration i : A → B in C and any fibration p : C → D
in C, the induced map from the hom-space C(B,C) to the pullback
C(B,D) ×C(A,D) C(A,C) is a fibration in V, which is acyclic if either
i or p is acyclic.

Proof. Using the natural isomorphisms from Corollary B.18c), one shows
that the three lifting problems

Y ⊗A ∪X⊗A X ⊗B

��

// C

p

��
Y ⊗B // D

, A //

i

��

// [Y,C]

��
B // [Y,D]×[X,D] [X,C]

and
X

f

��

// C(B,C)

��
Y // C(B,D)×C(A,D) C(A,C)

are equivalent. Thus the claim follows by the characterization of the (acyclic)
fibrations and (acyclic) cofibrations via right and left lifting properties (see
C.9).

Example 2.4 (Set-model categories). Let V be the category Set. Let C be
a model category. Since by definition any model category is complete and
cocomplete, the category C is a tensored and cotensored Set-category (see
B.15) with tensor

∐
X A for an object A of C and an object X of Set. Recall

that Set is equipped with the trivial model category structure, where the
cofibrations are the isomorphisms and every morphism is a weak equivalence
and a fibration. In particular, every map in Set is also an acyclic fibration.
Hence C satisfies condition iii) of Proposition 2.3 and therefore C is a Set-
model category.
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Proposition 2.5. Let C be a V-model category. Then for any cofibrant
object X of V, the functor X ⊗− : C → C is a left Quillen functor.

Proof. The functor X⊗− is left adjoint to [X,−], where [−,−] : Vop×C → C
denotes the cotensor functor. We show that X ⊗ − preserves cofibrations
and acyclic cofibrations, assuming that X is cofibrant, i.e. that the unique
morphism from the initial object ∅ to X is a cofibration. Let i : A → B be
a cofibration in C. Since the functors −⊗A and −⊗B are left adjoints (see
B.18), they preserve initial objects. Thus

∅ ⊗A //

��

X ⊗A

��
∅ ⊗B // X ⊗A

is a pushout diagram and X ⊗ i is the induced map X ⊗ A → X ⊗ B. By
the product-pushout axiom, it follows that X ⊗ i is a cofibration, which is
acyclic if i is acyclic.

2.2 The projective model structure

Let V be as in §2.1.

Definition 2.6. Let D be a small V-category and C a V-model category.
Recall that a morphism η in the category CD of V-functors from D to C is
just an ordinary natural transformation.

a) The morphism η is a levelwise weak equivalence if evaluated in any
object of D it is a weak equivalence in C.

b) The morphism η is a levelwise fibration if evaluated in any object of
D it is a fibration in C.

c) The category CD is said to admit the projective model structure if
together with the levelwise weak equivalences as weak equivalences
and the levelwise fibrations as fibrations it is a model category.

If V is the category Set and C is a cofibrantly generated model category,
then for any small category D, the category CD admits the projective model
structure by [8, Theorem 11.6.1]. In the proof, denoting by Ob(D) the
subcategory of D which contains only the identity morphisms, the functor
category COb(D) is equipped with a cofibrantly generated model category
structure. Afterwards, this structure is transported to CD via a left adjoint
functor. In a similar way, an existence theorem of the projective model
category structure for categories enriched in a monoidal model category is
proven in [17, Theorem 24.4]. Working enriched over V, we will provide
an existence theorem, where instead of the smallness assumption of [17,
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Theorem 24.4], we assume the functor D(d, d′) ⊗ − : C → C to be a left
Quillen functor for any objects d, d′ of D. In the proof, we will lift the
model category structure of C directly to CD using the generalized transport
Theorem D.20.

Theorem 2.7. Let C be V-model category which is cofibrantly generated.
Let D be a small V-category. Suppose that for any two objects d, d′ of D, the
functor D(d, d′)⊗− : C → C preserves cofibrations and acyclic cofibrations.
Then CD admits the projective model structure. Moreover, CD is cofibrantly
generated and a V-model category.

Proof. Since C is cotensored and cocomplete, so is the category CD (see
B.23). Similarly, CD is tensored and complete. Let I and J be sets of
generating cofibrations and generating acyclic cofibrations of C, respec-
tively. Recall (from B.20) that for any object d of D the evaluation functor
evd : CD → C has a left adjoint F d : C → CD, which sends an object A of C
to the composite

D D(d,−)−→ V −⊗A−→ C.

We apply Theorem D.20 with the set of adjunctions{
F d : C � CD : evd

}
d
.

Set FI :=
⋃
d {D(d,−)⊗ f ; f ∈ I} and FJ :=

⋃
d {D(d,−)⊗ f ; f ∈ J}. We

show that the conditions i)-iv) of Remark D.21 are satisfied. For any ob-
ject d of D, the functor evd preserves colimits, since colimits in CD are
calculated objectwise. Thus conditions iii) and iv) hold. For condition i),
consider a relative FI-cell complex, i.e. the composition X0 → colimβ<λXβ

of a λ-sequence X : λ → CD of pushouts of maps in FI, where λ is some
non-zero ordinal. Let d be an object of D. Since evd preserves colim-
its, the composite evd ◦ X : λ → C is a λ-sequence of pushouts of maps in⋃
d′ {D(d′, d)⊗ f ; f ∈ I}. Since by assumption D(d′, d) ⊗ − preserves cofi-

brations for any object d′ of D, it follows from Lemma D.11 that the com-
position evd(X0) → colimβ<λ(evd(Xβ)) is a cofibration in C. Thus, using
that evd preserves colimits, one deduces that evd takes the relative FI-cell
complex X0 → colimβ<λXβ to a cofibration. Condition ii) is shown simi-
larly. Hence, CD admits the projective model structure and is cofibrantly
generated.

It follows that CD is a V-model category since condition ii) of Proposition
2.3 holds. Indeed, let f : X → Y be a cofibration in V and let p : C → D
be a fibration in CD. For any object d of D the evaluation functor evd takes
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the diagram

[Y,C]
[f,C] //

[Y,p]

��

[X,C]

[X,p]
��

[Y,D]
[f,D]

// [X,D]

to the diagram

[Y,Cd]
[f,Cd] //

[Y,pd]

��

[X,Cd]

[X,pd]

��
[Y,Dd]

[f,Dd]
// [X,Dd]

by the definition of the cotensor functor of CD (see B.19). Condition ii) of
Proposition 2.3 holds in C by assumption. One concludes that it also holds
in CD using that for any object d of D the functor evd preserves limits and
that the (acyclic) fibrations of CD are the levelwise (acyclic) fibrations.

Corollary 2.8. Let C be a V-model category which is cofibrantly generated.
Let D be a small V-category.

a) If V is Set, then CD with the projective model structure is a cofibrantly
generated model category.

b) If V is U and for all objects d, d′ of D the hom-space D(d, d′) is cofibrant
in U , then CD with the projective model structure is a U-model category,
which is cofibrantly generated.

Proof. Part a) holds, since cofibrations and acyclic cofibrations are closed
under coproducts.

Part b) follows from Proposition 2.5.

3 The fixed point model structure

Recall that for any topological group G, the category of G-spaces UG admits
a model category structure, where the weak equivalences and fibrations are
the maps which by each H-fixed point functor (−)H are taken to weak
equivalences and fibrations in U , respectively. In [6], considering a discrete
group G, Guillou replaced the category of compactly generated spaces U by
an arbitrary cofibrantly generated model category C and studied G-objects
in C, i.e. functors from G to C. For any subgroup H of G, he defined a
functor (−)H from the category Fun(G,C) of G-objects in C to the category
C, which again is called H-fixed point functor and which agrees with the
ordinary H-fixed point functor if C is U . Provided that the fixed point
functors are what is called cellular in [6], Guillou showed that the category
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Fun(G,C) admits a model category structure, where the weak equivalences
and fibrations are the maps which by each H-fixed point functor are taken
to weak equivalences and fibrations in C, respectively. If C is U , then each
H-fixed point functor is cellular. Thus for discrete G, the model category
structure of G-spaces is recovered.

Here, we will generalize the approach in [6] such that also topological
model categories and topological groups can be considered. Assuming that
V is either the category U or the category Set, we introduce the notion of
a V-group G and consider a V-model category C. For any closed subgroup
H of G, we introduce a V-functor (−)H : CG → C, called H-fixed point
functor again. Then we will study the fixed point model structure on the
category CG of V-functors from G to C, where the weak equivalences and
fibrations are the maps which by each H-fixed point functor are taken to
weak equivalences and fibrations in C, respectively. It will turn out that
the category CG admits the fixed point model structure provided that C
is cofibranty generated, has cellular fixed point functors and for all closed
subgroups H,K of G, the functor (G/K)H ⊗ − : C → C is a left Quillen
functor. If V is Set, then Guillou’s development is recovered. If V is U and
the V-model category C is U , then one recovers the model category structure
of G-spaces also for a compact Lie group G.

Besides the described fixed point model structure on CG, one might be
interested in model category structures where weak equivalences and fibra-
tions are maps, which not by all but by some of the fixed point functors are
taken to weak equivalences and fibrations, respectively. Correspondingly,
we will in fact study F-fixed point model structures, where F can be any
set of closed subgroups of G containing the trivial subgroup {e}.

Let V be as in §2.1.

Definition 3.1. A V-category G with one object ∗ and where each mor-
phism g of G is an isomorphism, is called a V-group if the map G → G,
g 7→ g−1, sending a group element to its inverse, is continuous.

Example 3.2. If V is Set, then a V-group is the same as a discrete group.
If V is U , then a V-group is the same as a topological group. Note that since
U contains the discrete spaces, every discrete group can also be regarded as
a U-group.

Definition 3.3. Let G be a V-group and let C be a V-category.

a) A G-object in C is a V-functor from G to C, i.e. an object of CG.

b) Let H be a closed subgroup of G. The G-object X in V, where X(∗)
is the set G/H of cosets gH for g ∈ G topologized as a quotient
space of G and where the map X(g) : G/H → G/H in V is defined by
g′H 7→ gg′H for g ∈ G, is called an orbit space and denoted by G/H.
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Definition 3.4. Let G be a V-group and let C be a V-model category. Let
H be a closed subgroup of G. Thus H is again a V-group. The H-fixed point
functor (−)H : CG → C is the composite V-functor

CG −→ CH lim−→ C,

where CG → CH is given by restriction and lim is induced by the limit
functor lim: Fun(H, C)→ C (see B.22).

Example 3.5. Let H be a closed subgroup of a V-group G. Let C be a
V-model category.

a) If H is the trivial subgroup {e} consisting of the neutral element, then
(−)H : CG → C is the functor which evaluates in the object ∗ of G.

b) If C is the V-model category V, then (−)H : VG → V takes aG-objectX
in V to its fixed point set XH = {x ∈ X(∗);X(h)x = x for all h ∈ H},
which is a closed subset of X(∗).

If C is the V-model category V, then the fixed point functors are “V-
representable”.

Lemma 3.6. Let G be a V-group and let H be a closed subgroup of G. Then
there is an isomorphism

VG(G/H,X) ∼= XH

in V, which is natural in the G-object X in V.

Proof. Let f : G/H → X be a map in VG. The morphism f evaluated in
the object ∗ of G takes the coset H to a point f∗(H) in XH . Sending f to
f∗(H) defines the desired isomorphism.

Remark 3.7. Let H be a closed subgroup of a V-group G and let C be a V-
model category. In this context, we can consider two H-fixed point functors
(−)H , one from CG to C and one from VG to V. We won’t distinguish
between them semantically.

To establish the fixed point model structure, we will apply the transport
Theorem D.20 with the fixed point functors as right adjoints. Using the
orbit spaces, one constructs the left adjoints.

Proposition 3.8. Let G be a V-group and let C be a V-model category.
Consider a closed subgroup H of G. For any object A of C denote by G/H⊗A
the composite V-functor

G
G/H−→ V −⊗A−→ C,

where G/H is an orbit space and ⊗ : V ×C → C is the tensor functor. Then
G/H ⊗ − : C → CG defines the V-left adjoint of the H-fixed point functor
(−)H .
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Proof. We have to find an isomorphism

CG(G/H ⊗A,X) ∼= C(A,XH)

in V, which is natural in the object A of C and in the G-object X in C. It
is given by the composite

CG(G/H ⊗A,X) ∼= VG(G/H, C(A,X))
∼= C(A,X)H

∼= C(A,XH),

where the first isomorphism is induced by the isomorphism which expresses
that C is tensored, the second isomorphism is given by Lemma 3.6 and the
third one comes from the fact that C(A,−) preserves limits (see B.21).

Definition 3.9. Let H be a closed subgroup of a V-group G and let C be
a V-model category. The H-fixed point functor (−)H : CG → C is called
cellular if

i) it preserves directed colimits of diagrams where each arrow evaluated
in the object ∗ of G is a cofibration in C,

ii) it preserves pushouts of diagrams, where one leg is given by

G/K ⊗ f : G/K ⊗A→ G/K ⊗B

for some closed subgroup K of G and a cofibration f : A → B in C,
and

iii) for any closed subgroup K of G and any object A of C the induced
map (G/K)H ⊗A→ (G/K ⊗A)H is an isomorphism in C.

Example 3.10. Let V be the category U and C the V-model category U .
Let H be a closed subgroup of a U-group G. Then the H-fixed point functor
(−)H : UG → U is cellular. Indeed, recall that any cofibration in U is also a
closed embedding (see D.26). The cellularity condition i) holds, since (−)H

preserves directed colimits of diagrams where each arrow is injective as a
map in U . Condition ii) holds, since (−)H preserves pushouts of diagrams
where one leg is a closed embedding as a map in U . The map considered in
condition iii) is given by

(G/K)H ×A→ (G/K ×A)H , (gK, x) 7→ (gK, x),

which is an isomorphism in U .
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Definition 3.11. Let C be a V-model category and let G be a V-group. Con-
sider a set F of closed subgroups of G, which contains the trivial subgroup
{e}. The category CG is said to admit the F-fixed point model structure, if
it is a model category with weak equivalences and fibrations the maps which
by each H-fixed point functor with H ∈ F are taken to weak equivalences
and fibrations in C, respectively.

Remark 3.12. In equivariant homotopy theory of spaces, one usually con-
siders families of closed subgroups, which are assumed to be closed under
conjugation and under taking subgroups. Considering F-fixed point model
structures, we don’t make any of these two assumptions on F . Neverthe-
less, note that for any V-group G and V-model category C, an H-fixed point
functor takes a map f of CG to a weak equivalence (resp. fibration) in C if
and only if for any conjugate subgroup H ′ of H, the H ′-fixed point functor
takes f to a weak equivalence (resp. fibration). Indeed, the functors (−)H

and (−)H
′

are naturally isomorphic. If H ′ = gHg−1, then the composite

XH −→ X(∗) X(g)−→ X(∗)

induces an isomorphism XH → XH′ , which is natural in the G-object X in
C.

Theorem 3.13. Let C be a V-model category, which is cofibrantly gener-
ated. Let F be a set of closed subgroups of a V-group G, which contains the
trivial subgroup {e}. Suppose that for any H ∈ F the H-fixed point func-
tor is cellular and that for all H,K ∈ F the functor (G/K)H ⊗ − : C → C
preserves cofibrations and acyclic cofibrations. Then CG admits the F-fixed
point model structure. Moreover, CG is cofibrantly generated and a V-model
category.

Proof. To show that CG with the F-fixed point model structure is a cofi-
brantly generated model category, we apply the transport Theorem D.20
with the set of adjunctions{

G/H ⊗− : C � CG : (−)H
}
H∈F .

Since C is cotensored and cocomplete, so is the category CG (see B.23).
Similarly, CG is tensored and complete. Let I and J be sets of generating
cofibrations and of generating acyclic cofibrations of C, respectively. Set
FI :=

⋃
H∈F {G/H ⊗ f ; f ∈ I} and FJ :=

⋃
H∈F {G/H ⊗ f ; f ∈ J}. We

show that the conditions i)-iv) of Remark D.21 are satisfied.
Considering condition i), let λ be a non-zero ordinal and X : λ → CG

a λ-sequence of pushouts of maps in FI. We have to show that for any
H ∈ F , the fixed point functor (−)H takes the relative FI-cell complex
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X0 → colimβ<λXβ to a cofibration in C. For any successor ordinal β+1 < λ,
there is by construction a pushout square

G/K ⊗A //

G/K⊗f
��

Xβ

��
G/K ⊗B // Xβ+1

in CG for some K ∈ F and some map f : A → B in C. By the cellularity
properties ii) and iii) of (−)H , one obtains a pushout square

(G/K)H ⊗A //

(G/K)H⊗f
��

(Xβ)H

��
(G/K)H ⊗B // (Xβ+1)H

.

Note that the functor (G/K)H ⊗ − : C → C preserves cofibrations by as-
sumption. Thus (Xβ)H → (Xβ+1)H is a cofibration in C. By Lemma D.11,
it’s enough to show that (−)H ◦ X : λ → C is a λ-sequence with colimit
colimβ<λ(Xβ)H . But this holds, since we can apply the cellularity property
i) of (−)H . Indeed, the morphism Xβ → Xβ+1 evaluated in the object ∗ of
G is a cofibration in C, since it is given by (Xβ){e} → (Xβ+1){e} and since
we have already shown that (Xβ)H

′ → (Xβ+1)H
′

is a cofibration for any
H ′ ∈ F . Condition ii) is shown similarly.

Concerning condition iii), note that evaluating a relative FI-cell complex
in the object ∗ of G, i.e. applying the {e}-fixed point functor, yields a cofi-
bration in C as already shown. Thus iii) follows from the cellularity property
i). Condition iv) is shown similarly, using that an acyclic cofibration is in
particular a cofibration.

To show that CG is a V-model category, one checks analogously to the
proof of Theorem 2.7 that condition ii) of Proposition 2.3 holds.

Remark 3.14. Let G be a V-group and H,K closed subgroups of G. Con-
sider a V-model category C.

a) If V is the category Set, then (G/K)H ⊗− : C → C preserves cofibra-
tions and acyclic cofibrations, since it is given by∐

(G/K)H

(−) : C → C.

b) If V is U and G is a compact Lie group, then (G/K)H is cofibrant in
U and thus (G/K)H ⊗ − : C → C preserves cofibrations and acyclic
cofibrations by Proposition 2.5. Indeed, the homogeneous space G/K
has a unique smooth structure such that the projection G → G/K is
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smooth (see e.g. [11, Theorem 3.37]). With this smooth structure,
the action G × G/K → G/K is smooth. Now, since H as a closed
subgroup of G is a compact Lie group, the H-fixed point set (G/K)H

is a smooth manifold (see e.g. [11, Theorem 4.14]). Therefore, (G/K)H

is triangulable (see e.g. [20, p. 124]). In particular, (G/K)H has the
structure of a CW-complex and hence it is cofibrant in U .

c) Suppose V is U and C is U . If G has the discrete topology, then
(G/K)H ⊗ − : U → U preserves cofibrations and acyclic cofibrations,
since a map f in U is mapped to (G/K)H × f which is the coproduct∐

(G/K)H f .

Corollary 3.15. Let V be the category U and C the V-model category U .
Let G be a compact Lie group and F a set of closed subgroups of G, which
contains the trivial subgroup {e}. Then UG with the F-fixed point model
structure is a cofibrantly generated U-model category.

Proof. The assumptions of Theorem 3.13 are satisfied by Example 3.10 and
part b) of the remark above.

4 Elmendorf’s Theorem

Recall that Elmendorf’s Theorem states that for any topological group G,
there is a right Quillen equivalence from the category of G-spaces UG with
the fixed point model structure to the category UO

op
G of continuous con-

travariant functors from the orbit category OG to U with the projective
model structure. In [6], considering a discrete group G and G-objects in a
cofibrantly generated, discrete model category C, Guillou showed that El-
mendorf’s Theorem also holds if U is replaced by C provided that C has
cellular fixed point functors. In particular, Elmendorf’s Theorem for dis-
crete G is recovered by taking C to be the category of compactly generated
spaces U .

Here working enriched over V for V = U or V = Set, we will generalize
Guillou’s result such that also topological model categories and topological
groups can be considered. Elmendorf’s Theorem will be recovered also for
a compact Lie group G.

In fact, as in the previous section §3, we consider F-fixed point model
structures for a set of closed subgroups of a given V-group G, which contains
the trivial subgroup {e}. Accordingly, the notion of the F-orbit category
OF will be introduced before stating and proving the main Theorem 4.2 of
this section.

Let V be as in §2.1.

Definition 4.1. Let G be a V-group and F a set of closed subgroups of G,
which contains the trivial subgroup {e}. The F-orbit category OF is the
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V-category defined by the full subcategory of VG given by the orbit spaces
G/H (see 3.3) for H ∈ F .

Theorem 4.2. Let C be a V-model category, which is cofibrantly generated.
Let F be a set of closed subgroups of a V-group G, which contains the triv-
ial subgroup {e}. Suppose that for any H ∈ F the H-fixed point functor is
cellular and that for all H,K ∈ F the functor (G/K)H ⊗ − : C → C pre-
serves cofibrations and acyclic cofibrations. Then there is a pair of Quillen
equivalences

Θ: CO
op
F � CG : Φ

between CO
op
F with the projective model structure and CG with the F-fixed

point model structure. Moreover, the pair (Θ,Φ) induces a V-adjunction
and Φ is full and faithful.

Proof. The proof is structured as follows. First, we show that the category
CO

op
F of V-functors from the opposite of the F-orbit category to C admits the

projective model structure and that the category CG of G-objects in C admits
the F-fixed point model structure. Secondly, V-functors Φ: CG → CO

op
F

and Θ: CO
op
F → CG will be defined. Thirdly, we show that the underlying

pair (Θ,Φ) is an adjunction by describing the counit ε : ΘΦ → id and the
unit η : id → ΦΘ. Thus the pair of V-functors (Θ,Φ) is a V-adjunction
by Proposition B.11. The counit ε turns out to be a natural isomorphism.
Therefore, the right adjoint Φ will be full and faithful. In the fourth step,
using that for any H ∈ F the H-fixed point functor is cellular, we will show
that the unit η is an isomorphism in cofibrant objects of CO

op
F . From this

we will finally deduce that (Θ,Φ) is a pair of Quillen equivalences.
Central for the mentioned steps of the proof is the following character-

ization of the morphisms in the opposite of the F-orbit category. For any
H ∈ F , there is by Lemma 3.6 an isomorphism

Oop
F (G/K,G/H) ∼= (G/K)H , (4.1)

which is natural in the object G/K of OF . Given a ∈ G such that the coset
aK is in (G/K)H , i.e. such that a−1Ha ⊂ K, we denote by

Ra : G/K → G/H (4.2)

the corresponding morphism of Oop
F .

To show that CO
op
F admits the projective model structure, apply Theo-

rem 2.7. The condition that for any objects G/K,G/H of Oop
F , the functor

Oop
F (G/K,G/H)⊗− : C → C preserves cofibrations and acyclic cofibrations,

is satisfied by the isomorphism (4.1) above and the assumption on the func-
tor (G/K)H ⊗−. We have already shown that CG admits the F-fixed point
model structure in Theorem 3.13.

Let’s define Φ: CG → CO
op
F . Given a G-object X in C, determine the

V-functor X∗ : Oop
F → C as follows. It sends an object G/H of Oop

F to
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XH and the morphism Ra : G/K → G/H of Oop
F (see (4.2)) to the map

X∗(Ra) : XK → XH in C induced by the the composite

XK −→ X(∗) X(a)−→ X(∗).

Let
Φ: CG → CO

op
F

be the V-functor which sends a G-object X in C to X∗ and a morphism f
in CG to the natural transformation Φ(f) given in the object G/H of Oop

F
by Φ(f)G/H = fH .

To define a V-functor
Θ: CO

op
F → CG,

recall that F contains the trivial subgroup {e}. Evaluating an object T of
CO

op
F in G/{e} gives an object T (G/{e}) in C. For any g ∈ G, there is a

morphism Rg : G/{e} → G/{e} in Oop
F (see (4.2)). Define Θ(T ) to be the

G-object in C with Θ(T )(∗) = T (G/{e}) and action Θ(T )(g) = T (Rg). On
morphisms, define Θ by evaluation in G/{e}, i.e. a map f in CO

op
F is sent to

Θ(f) in CG given by Θ(f)∗ = fG/{e} in the object ∗ of G.
We construct a natural isomorphism

ε : ΘΦ→ idCG .

Given a G-object X in C, the G-object ΘΦ(X) evaluated in the object ∗ of
G is X{e} by definition of Φ and Θ. Let εX : ΘΦ(X) → X in the object ∗
of G be defined as the natural map X{e} → X(∗). One checks, that this
defines a natural isomorphism ε.

Let’s define a natural transformation

η : id
CO

op
F
→ ΦΘ.

Let T be an object of CO
op
F . For any object G/H of Oop

F , we have to define a
map (ηT )G/H from T (G/H) to (ΦΘ(T ))(G/H) = Θ(T )H in C, which is natu-
ral in the object G/H of Oop

F . Applying T to the map Re : G/H → G/{e} in
Oop
F , gives a map T (G/H)→ Θ(T )(∗). It induces a map T (G/H)→ Θ(T )H ,

which defines the natural map (ηT )G/H . One checks that (ηT )T is a natural
transformation η.

By construction, one verifies that ε and η satisfy the necessary equations
to determine the adjunction (Θ,Φ) as counit and unit, respectively. Thus,
(Θ,Φ) is a V-adjunction by Proposition B.11 and Φ is full and faithful since
the counit ε is a natural isomorphism.

The next step is to show that in any cofibrant object T of CO
op
F , the unit

ηT : T → ΦΘ(T ) is an isomorphism. Denoting by I the set of generating
cofibrations of C, recall that CO

op
F is cofibrantly generated with generating

cofibrations FI :=
⋃
G/K

{
Oop
F (G/K,−)⊗ f ; f ∈ I

}
. Since any cofibrant
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object of CO
op
F is a retract of a FI-cell complex (see D.17), we can assume

that T is a FI-cell complex. Thus, there is an ordinal λ > 0 and a λ-
sequence S : λ → CO

op
F such that T = colimβ<λ Sβ and such that S0 is the

initial object ∅ and for any β + 1 < λ there is a pushout square

Oop
F (G/K,−)⊗A

Oop
F (G/K,−)⊗f

��

// Sβ

��
Oop
F (G/K,−)⊗B // Sβ+1

(4.3)

for some object G/K in Oop
F and some map f : A → B in I. Set Sλ =

T . We will deduce by transfinite induction that ηSβ is an isomorphism
for β ≤ λ. To do so, we will show that the composite ΦΘ preserves certain
colimits using that as a left adjoint, the functor Θ preserves all colimits, and
using the cellularity properties of the fixed point functors. When applying
the cellularity properties of the H-fixed point functors for H ∈ F later
on, we will silently use the following observation. Note that for any K ∈
F and morphism f of C, the map Θ(Oop

F (G/K,−)⊗ f) is isomorphic to
G/K ⊗ f in the category Mor(CG) of morphisms of CG. This follows, since
the isomorphism in (4.1) for H = {e} induces for any object C of C an
isomorphism

Θ(Oop
F (G/K,−)⊗ C) ∼= G/K ⊗ C

in CG. We are ready for the transfinite induction. For the ordinal 0, the
morphism ηS0 is an isomorphism since Φ preserves the initial object. Con-
sider a successor ordinal β + 1 < λ and assume that ηSα is an isomorphism
for all α < β + 1. Note that for any object C of C, the unit η is an isomor-
phism in the object Oop

F (G/K,−) ⊗ C of CO
op
F by the cellularity property

iii) of the fixed point functors. It follows that ηSβ+1
is an isomorphism since

ΦΘ preserves the pushout square as in (4.3) by the cellularity condition ii)
of the fixed point functors. For the case of a non-zero limit ordinal one
applies the cellularity property i), whose assumption holds by the cellularity
conditions ii) and iii) for H = {e} and since for any K ∈ F , the functor
(G/K){e} ⊗− preserves cofibrations. Thus we have shown that ηT = ηSλ is
an isomorphism.

Now, it’s straightforward to show that (Θ,Φ) is a pair of Quillen equiva-
lences. By construction of Φ and by definition of the model category struc-
tures on CG and CO

op
F , it follows that Φ preserves fibrations and acyclic

fibrations. It’s left to show that for any cofibrant object T of CO
op
F and any

fibrant G-object X in C, a morphism f : Θ(T ) → X is a weak equivalence
in CG if and only if it’s adjoint Φ(f)ηT : T → Φ(X) is a weak equivalence
in CO

op
F . Since T is cofibrant, we know that ηT is an isomorphism. Hence,

noting that f is a weak equivalence if and only if Φ(f) is a weak equivalence,
one concludes the proof.
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Corollary 4.3. Let V be the category U and C the V-model category U . Let
G be a compact Lie group or a discrete group and F a set of closed subgroups
of G, which contains the trivial subgroup {e}. Then there is a pair of Quillen
equivalences

Θ: UO
op
F � UG : Φ

between UO
op
F with the projective model structure and UG with the F-fixed

point model structure.

Proof. The assumptions of Theorem 4.2 are satisfied by Example 3.10 and
Remark 3.14b) and c).

5 Example: Diagrams of spaces

In this section we work enriched over V = U . In Example 3.10, we saw that
the U-model category U has cellular fixed point functors. Here, we consider
the category UD of U-functors from a small U-category D to U . We show
that UD is a cofibrantly generated U-model category with the projective
model structure. Thereafter, we deduce that UD has cellular fixed point
functors. Thus, we will be able to apply Theorem 4.2 to C = UD provided
that the U-group G is a compact Lie group or has the discrete topology.

Theorem 5.1. Consider the U-model category U with the Quillen model
structure. For any small U-category D, the category UD admits the projec-
tive model structure. Moreover, UD is cofibrantly generated and a U-model
category.

Note that we don’t assume the tensor functor D(d, d′) × − : U → U to
preserve cofibrations and acyclic cofibrations for objects d, d′ of D. Thus,
Theorem 2.7 can not be applied. Nevertheless, the proof will be similar to
the one of Theorem 2.7. Again, we will use the transport Theorem D.20.
But to verify the assumptions, we will make use of the properties of Top
described in Lemma D.26 and silently, of the fact that certain colimits in U
can be calculated in Top (see A.7).

Proof of Theorem 5.1. Since U is cotensored, cocomplete, tensored and com-
plete, so is the category UD. Recall that U is cofibrantly generated with
generating cofibrations I the inclusions of spheres into disks and generat-
ing acyclic cofibrations J the inclusions of disks into cylinders. We apply
Theorem D.20 with the adjunctions

{F d : U � UD : evd}d,

described in Proposition B.20. Set FI :=
⋃
d {D(d,−)× f ; f ∈ I} and

FJ :=
⋃
d {D(d,−)× f ; f ∈ J}. We have to verify that conditions i) and

ii) of Theorem D.20 hold. Let’s show ii), i.e. that for any object d of
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D, the evaluation functor evd : UD → U takes relative FJ-cell complexes
to weak equivalences in U . Recall that evd preserves colimits, thus evd
takes any relative FJ-cell complex to a relative evd(FJ)-cell complex, where
evd(FJ) =

⋃
d′ {D(d′, d)× f ; f ∈ J}. Note that for any object d′ of D and

any morphism f of J , the map D(d′, d) × f is both a closed T1 embedding
(see D.26) and an inclusion of a deformation retract. By Lemma D.26b) and
d), any pushout along D(d′, d)×f is a closed T1 embedding and an inclusion
of a deformation retract, thus in particular also a weak equivalence in U .
It follows from Lemma D.26e) that any relative evd(FJ)-cell complex is a
weak equivalence. Hence condition ii) holds.

Considering condition i), we show that FJ permits the small object
argument, i.e. that the domain of any relative FJ-cell complex is small
relative to FJ-cell. Such a domain is of the form D(d,−) ×Dn, where Dn

denotes the n-disk. By an adjointness argument as in the proof of Remark
D.21 and since evd preserves colimits, it’s enough to show that Dn is small
relative to the class of relative FJ-cell complexes evaluated in d. But this
holds by Lemma D.26a), since evd takes a relative FJ-cell complex to a
relative evd(FJ)-cell complex, which is a closed T1 embedding by Lemma
D.26b).

Similarly, one shows that FI permits the small object argument. Thus
UD with the projective model structure is a cofibrantly generated model
category by the transport Theorem D.20.

As in the proof of Theorem 2.7, one checks that condition ii) of Propo-
sition 2.3 holds and concludes that UD is a U-model category.

In order to show that UD has cellular fixed point functors, we first study
its cofibrations.

Lemma 5.2. Let D be a small U-category and f a cofibration in the category
UD with the projective model structure. Then for any object d of D, the
evaluation functor evd : UD → U takes f to a closed embedding fd.

Proof. Let FI be the set of generating cofibrations of the cofibrantly gen-
erated model category CD given in the proof of Theorem 5.1. Since any
cofibration in CD is a retract of a relative FI-cell complex (see D.17) and
closed embeddings are closed under retraction, we can assume that f is a
relative FI-cell complex. Since the evaluation functor evd preserves colimits,
it follows that fd is a closed embedding by Lemma D.26b).

Proposition 5.3. Let D be a small U-category and G a U-group. Denote
the U-model category UD with the projective model structure by C. Then
for any closed subgroup H of G, the fixed point functor (−)H : CG → C is
cellular.

Proof. The proof will reduce to the arguments in Example 3.10, which
showed that (−)H : UG → U is cellular. We first study how the fixed point
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functors and colimits in CG behave with respect to the evaluation functor
evd : C → U for any object d of D. Precomposing with evd defines a functor

(evd)∗ : CG → UG,

which makes the diagram

CG

(evd)∗
��

ev∗ // C
evd

��
UG ev∗

// U

commute, where ∗ in the top and bottom row denotes the object of G. Using
that colimits in CG and UG are calculated in the object ∗ of G and that evd
preserve colimits, one deduces that (evd)∗ preserves colimits.

Since limits in UD are calculated objectwise, it follows that (−)H and
evd commute in the following sense. For any map f : X → Y in CG, the
map fH : XH → Y H evaluated in d is given by

(evd ◦X)H
((evd)∗(f))H−→ (evd ◦ Y )H ,

where (−)H denotes the H-fixed point functor UG → U .
We show that (−)H : CG → C satisfies the cellularity property i). Let P

be a directed set and X : P → CG a functor such that for all α ≤ β in P ,
the map Xα(∗)→ Xβ(∗) is a cofibration in C. To prove that (−)H preserves
the colimit of X, i.e. that the induced map

colimα(Xα)H −→ (colimX)H

is an isomorphism in C = UD, we show that evaluated in any object d of D
it is an isomorphism in U . Evaluated in d, it is given by the induced map

colimα(evd ◦Xα)H −→ (colimα evd ◦Xα)H

since (−)H and evd commute and since the functors (evd)∗ and evd preserve
colimits. From Lemma 5.2 it follows that this map is an isomorphism since
(−)H : UG → U preserves directed colimits of diagrams, where each map is
injective in U .

Similarly, one shows that the cellularity property ii) holds, by reducing
it to the fact that (−)H : UG → U preserves pushouts of diagrams where one
leg is a closed embedding as a map in U .

The cellularity property iii) for (−)H : CG → C follows from the same
property of (−)H : UG → U .

Corollary 5.4. Let D be a small U-category and G a compact Lie group or
a discrete group. Let F be a set of closed subgroups of G, which contains
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the trivial subgroup {e}. Denote the cofibrantly generated U-model category
UD with the projective model structure by C. Then there is a pair of Quillen
equivalences

Θ: CO
op
F � CG : Φ

between CO
op
F with the projective model structure and CG with the F-fixed

point model structure.

Proof. Check that the assumptions in Theorem 4.2 are satisfied. The cellu-
larity property holds by Proposition 5.3. Consider H,K ∈ F . If G is a com-
pact Lie group, then the condition on the functor (G/K)H⊗− : UD → UD is
satisfied by Remark 3.14b). If G is discrete, then for any map f in UD, the
natural transformation (G/K)H⊗f evaluated in an object d of D is given by
(G/K)H × fd which is the coproduct

∐
(G/K)H fd. Since colimits in UD are

calculated objectwise, it follows that (G/K)H ⊗− is the coproduct functor∐
(G/K)H − and thus preserves cofibrations and acyclic cofibrations.

A k-spaces and compactly generated spaces

From a category theoretical viewpoint, the category Top of topological
spaces and continuous maps has some drawbacks. For instance it is not
cartesian closed. Therefore, in algebraic topology one often works in the
category U of compactly generated spaces, which is a full subcategory of
Top and which is better behaved. Compactly generated spaces are defined
as weak Hausdorff k-spaces. They form a full subcategory of another well-
behaved subcategory of Top, the category K of k-spaces. But they have the
advantage of satisfying a seperation axiom, the weak Hausdorff condition,
which is stronger than T1 but weaker then the Hausdorff property T2.

Here, we summarize the for the working knowledge necessary definitions
and facts about these two subcategories. The reader is referred to Appendix
A of [13] for the proofs.

Definition A.1. Let X be a topological space.

a) The space X is called weak Hausdorff if for all maps g : K → X in
Top with K compact Hausdorff, the image g(K) is closed in X.

b) A subset A ⊂ X is called compactly closed if for all maps g : K → X
in Top with K compact Hausdorff, the preimage g−1(A) is closed.

c) The space X is a k-space if every compactly closed subset is closed.
Let K denote the full subcategory of Top consisting of the k-spaces.

d) The space X is called compactly generated if it is both weak Hausdorff
and a k-space. Let U denote the full subcategory of K consisting of
the compactly generated spaces.
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e) The k-space topology on X is the topology, where the closed sets are
precisely the compactly closed sets.

Example A.2. Let C be either the category of k-spaces K or the category
of compactly generated spaces U . Then the category C contains

a) locally compact Hausdorff spaces,

b) metric spaces,

c) closed and open subsets of spaces in C.

Proposition A.3 (Limits, colimits, the functors k and wH). a) The in-
clusion functor K → Top has a right adjoint and left inverse k : Top→
K, which takes a topological space to its underlying set equipped with
the k-space topology.

b) The category K has all small limits and colimits. Colimits are created
by the inclusion functor and limits are obtained by applying k to the
limit in Top.

c) If X and Y are k-spaces and Y is locally compact Hausdorff, then the
product X × Y in Top is a k-space and hence, it is also the product
in K.

d) Let p : X → Y be a quotient map in Top, where X is a k-space.
Then Y is a k-space. It is weak Hausdorff and thus in U if and only
if the preimage (p × p)−1(∆) of the diagonal ∆ ⊂ Y × Y is closed in
the product X × X in K. In particular, X is in U if and only if the
diagonal in the product X ×X in K is closed.

e) The inclusion functor U → K has a left adjoint and left inverse

wH : K → U ,

which takes a k-space X to the quotient X/R, where R ⊂ X × X is
the smallest closed equivalence relation.

f) The category U has all small limits and colimits. Limits are created
by the inclusion functor and colimits are obtained by applying wH to
the colimit in K.

Proposition A.4 (Mapping space). Let X, Y be in K. For any map
h : K → X from a compact Hausdorff space K to X and any open sub-
set U of Y , denote the set of maps f : X → Y in K with f(h(K)) ⊂ U by
N(h, U). Let C(X,Y ) be the set HomK(X,Y ) with the topology generated
by the subbasis {N(h, U)}. Let Y X be the k-space kC(X,Y ).
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a) For all X,Y, Z in K, there is a natural isomorphism

HomK(X × Y,Z)→ HomK(X,ZY ),

which sends a map f to f̃ given by f̃(x)(y) = f(x, y). In particular,
K is cartesian closed.

b) For all X,Y in K, evaluation Y X × X → Y is the counit of the ad-
junction above.

c) If X is in K and Y is in U , then Y X is weak Hausdorff. Hence, for
all X,Y, Z in U , there is a natural isomorphism

HomU (X × Y,Z)→ HomU (X,ZY ),

which sends a map f to f̃ given by f̃(x)(y) = f(x, y). In particular,
U is cartesian closed.

Remark A.5 (Subspace). Let C be either the category of k-spaces K or
the category of compactly generated spaces U . Let Y be a space in C and
A ⊂ Y a subset of Y . We call A equipped with the topology obtained by
applying k to the subspace A ⊂ Y in Top a subspace of Y . Note that if X is
space in C and f : X → Y is a set function with f(X) ⊂ A, then f : X → Y
is in C if and only if f : X → A is in C.

Proposition A.6 (Closed embeddings, quotient maps). Let C be either the
category of k-spaces K or the category of compactly generated spaces U . We
call a map f in C a closed embedding, if it is a closed embedding in Top.
We call f a quotient map, if it is a qoutient map in Top.

a) An arbitrary product of closed embeddings in C is a closed embedding.

b) An arbitrary coprodut of closed embeddings in C is a closed embedding.

c) Let X,X ′, Y, Y ′ be spaces in C and p : X → Y , q : X ′ → Y ′ quotient
maps. Then p× q : X ×X ′ → Y × Y ′ in C is a quotient map.

Proposition A.7 (Colimits in U , which are created in K). The inclusion
functor U → K creates

a) arbitrary coproducts,

b) pushouts of diagrams X ← A → Y , where one leg is a closed embed-
ding, and

c) directed colimits of diagrams where each arrow is injective.
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B Topological categories and discrete categories

We work both with topological categories, that is categories enriched over
the category of compactly generated spaces U (see A.1), and with discrete
categories. Discrete categories are just ordinary categories, but which for a
unified treatment are viewed as categories enriched over the full subcategory
Set of Top given by the discrete spaces. The standard reference for enriched
category theory in general is Kelly’s book [12], an introduction is given by
Borceux in [2, Ch. 6].

Let V be either the category of compactly generated spaces U or the cat-
egory of discrete spaces Set. Recall that V is cartesian closed, complete and
cocomplete and has the one-point space ∗ as terminal object. We develop
the theory of V-categories, that is categories enriched over V.

B.1 Definition and elementary properties of V-categories

Definition B.1. A V-category is a category C, where for all objects A,B of
C, the hom-set HomC(A,B) is topologized as a space in V, called hom-space
and denoted by C(A,B), such that composition ◦ is continuous. That is, for
all objects A,B and C of C, composition ◦ : C(A,B)×C(B,C)→ C(A,C) is
a morphism in V.

Example B.2. The category V itself is a V category, where for objects X,Y
in V the hom-space V(X,Y ) is the mapping space Y X (see A.4) if V = U
and the set HomV(X,Y ) equipped with the discrete topology if V = Set.

Example B.3. If V is the category Set, then any category C becomes a V-
category by equipping the hom-set HomC(A,B) with the discrete topology
for any objects A,B of C.

Remark B.4. Let C be V-category.

a) The opposite category Cop of the category C is a V-category with hom-
space Cop(B,A) = C(A,B) for any objects B and A of Cop.

b) If D is another V-category, then the product category C × D of the
categories C and D is a V-category with hom-space

(C × D)(A×A′, B ×B′) = C(A,B)×D(A′, B′)

for any objects A×A′ and B ×B′ of C × D.

Definition B.5. Let C and D be V-categories.

a) A functor F : C → D between the categories C and D is called a V-
functor, if it is continuous, i.e. if F : C(A,B) → D(F (A), F (B)) is a
morphism in V or all objects A,B of C.
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b) Let F,G : C → D be V-functors. A V-natural transformation from F
to G is an ordinary natural transformation between the functors F
and G. The class of V-natural transformations from F to G is denoted
by V-Nat(F,G).

Example B.6. Let C be a V-category. The functor HomC : Cop × C → Set
induces a V-functor C : Cop × C → V.

Remark B.7. Semantically, we don’t distinguish between a V-category and
its underlying category, where one forgets the topology of the hom-spaces,
and similarly for a V-functor (V-natural transformation) and its underlying
functor (natural transformation). For instance a V-category is said to be
small, if it is small as a category.

Recall that a subspace X (see A.5) of a space Y in U is a subset X of
the set Y equipped with the topology obtained by first taking the subspace
topology in Top and then applying the k-ification functor. By a subspace
X of a discrete space Y in Set, we mean a subset X of the set Y equipped
with the discrete topology.

Definition B.8. Let D, C be V-categories. Suppose that D is small. The
category of V-functors from D to C, denoted by CD, is the V-category with
underlying category the full subcategory of the functor category Fun(D, C)
given by the V-functors, where for any objects F,G of CD the hom-space
CD(F,G) is a subspace of

∏
d∈D C(F (d), G(d)) in V.

Theorem B.9 (V-Yoneda Lemma). Let C be a V-category. Denote by U
the forgetful functor V → Set, which takes a space to its underlying set.

a) For every V-functor F : C → V and every object A of C, there is a
bijection

V-Nat(C(A,−), F ) ∼= UF (A) defined by η 7→ ηA(idA),

which is natural in F and A. Furthermore, if C is small, then this
bijection induces a natural isomorphism

VC(C(A,−), F ) ∼= F (A)

in V.

b) For every V-functor F : Cop → V and every object A of C, there is a
bijection

V-Nat(C(−, A), F ) ∼= UF (A) defined by η 7→ ηA(idA),

which is natural in F and A. Furthermore, if C is small, then this
bijection induces a natural isomorphism

VCop(C(−, A), F ) ∼= F (A)

in V.
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Proof. Concerning the first statement of part a), note that applying U to
any natural transformation : C(A,−) → F gives a natural transformation
HomC(A,−) → UF . Hence by the ordinary Yoneda Lemma, it’s enough
to show that any natural transformation η : HomC(A,−) → UF induces a
natural transformation C(A,−) → F , i.e. ηB : C(A,B) → F (B) is con-
tinuous for every object B of C. Set a = ηA(idA) ∈ F (A) and write
evala : V(F (A), F (B))→ F (B) for the map in V which evaluates in a. Then
ηB is the composite

C(A,B) F−→ V(F (A), F (B)) evala−→ F (B)

and thus is indeed continuous. To show the second statement of part a), use
that for any two spaces X,Y of V, the evaluation map V(X,Y )×X → Y is
continuous.

Part b) is similar.

Definition B.10. Let C and D be V-categories. A V-adjunction from C to
D is a pair (F,U) of V-functors F : C → D and U : D → C together with an
isomorphism

D(F (A), B) ∼= C(A,U(B)) (B.1)

in V, which is natural in the objects A of C and B of D. The V-functor F
and the V-functor U of a V-adjunction (F,U) is said to be V-left adjoint to
U and V-right adjoint to F , respectively.

Working enriched over U or Set, enriched adjunctions between enriched
functors are the same as ordinary adjunctions between the underlying func-
tors.

Proposition B.11. Let C and D be V-categories. Suppose F : C → D and
U : D → C are V-functors. Then F is V-left adjoint to V if and only if the
underlying functor F is left adjoint to the underlying functor U .

Proof. If (F,U) is a V-adjunction, then applying the forgetful functor V →
Set to the isomorphism as in (B.1) shows that (F,U) is an adjunction.
Conversely, if (F,U) is an adjunction, then the isomorphism

HomD(F (A), B) ∼= HomC(A,U(B)),

natural in the objects A of C and B of D, between the hom-sets is continuous
as a map between the corresponding hom-spaces as already shown in the
proof of the V-Yoneda Lemma (see B.9).

B.2 Tensors and cotensors

The enriched notion of limit and colimit is weighted limit and weighted
colimit. The most important examples of these are cotensors and tensors,
respectively.
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Definition B.12. Let C be a V-category, A an object of C and X an object
of V.

a) The cotensor of X and A is an object [X,A] of C together with a
natural isomorphism

C(−, [X,A]) ∼= V(X, C(−, A)).

b) The V-category C is called cotensored, if it admits all cotensors.

c) The tensor of X and A is an object X⊗A of C together with a natural
isomorphism

C(X ⊗A,−) ∼= V(X, C(A,−)).

d) The V-category C is called tensored, if it admits all tensors.

Remark B.13. Let C be a V-category. Note that for any object A of C and
object X of V, the tensor X ⊗ A and the cotensor [X,A] is unique up to
canonical isomorphism by the Yoneda Lemma.

Example B.14. The V-category V (see B.2) is tensored and cotensored
with tensor X⊗A = X×A and cotensor [X,A] = V(X,A) for objects A,X
of V, since V is cartesian closed.

Example B.15. Let V be the category Set and let C be a category. Thus C
is also a V-category by Example B.3. If C is cocomplete, then C is tensored
with tensor X ⊗ A =

∐
X A for an object A of C and an object X of Set.

If C is complete, then C is cotensored with cotensor [X,A] =
∏
X A for an

object A of C and an object X of Set.

We will not use and not define other weighted limits and weighted colim-
its than cotensors and tensors. To illustrate their significant role, we recall
the following result.

Theorem B.16 ([2, Corollary 6.6.16]). Suppose a V-category C is tensored
and cotensored. Then C admits all weighted limits if and only if C is complete
and C admits all weighted colimits if and only if C is cocomplete.

From the proposition below it will follow that in any tensored and coten-
sored V-category, the tensors and cotensors induce V-functors.

Proposition B.17. Let C,D be V-categories and F : Dop × C → V a V-
functor.

a) Given for all objects A of D, an object X(A) of C together with a
natural isomorphism C(X(A),−) → F (A,−), there exists for every
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morphism f : A→ A′ in D a unique morphism X(f) : X(A)→ X(A′)
in C making the diagram

C(X(A), B)
∼= // F (A,B)

C(X(A′), B)

C(X(f),B)

OO

∼= // F (A′, B)

F (f,B)

OO
(B.2)

commute for all objects B of C. Furthermore, the assignment f 7→
X(f) defines a V-functor X : D → C.

b) Given for all objects A of C, an object X(A) of D together with a
natural isomorphism D(−, X(A)) → F (−, A), there exists for every
morphism f : A→ A′ in C a unique morphism X(f) : X(A)→ X(A′)
in D making the diagram

D(B,X(A))

D(B,X(f))
��

∼= // F (B,A)

F (B,f)
��

D(B,X(A′))
∼= // F (B,A′)

(B.3)

commute for all objects B of D. Furthermore, the assignment f 7→
X(f) defines a V-functor X : C → D.

Proof. We prove part a). For every object B in C, denote the composite

C(X(A′), B)→ F (A′, B)
F (f,B)→ F (A,B)→ C(X(A), B)

by ηfB = ηB. Then {ηB}B is a V-natural transformation

C(X(A′),−)→ C(X(A),−).

From part a) of the V-Yoneda Lemma (see B.9), it follows that X(f) :=
ηX(A′)(idX(A′)) is the unique morphism making diagram (B.2) commute for
all objects B of C. Using that C(−, B) and F (−, B) are functorial for all
objects B of C, one deduces the functoriality of X. The functor X : D → C is
a V-functor, since the functor F (−, X(A′)) is continuous and since evaluation
in the point idX(A′) ∈ C(X(A′), X(A′)) is continuous.

Similarly, one shows part b) by using part b) of the V-Yoneda Lemma.

Corollary B.18. Let C be a V-category.

a) If C is tensored, then the tensors X ⊗ A for objects X of V and A of
C induce a V-functor

⊗ : V × C → C
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b) If C is cotensored, then the cotensors [X,A] for objects X of V and A
of C induce a V-functor

[−,−] : Vop × C → C

c) Suppose C is tensored and cotensored. Then there are isomorphisms

C(X ⊗A,B) ∼= V(X, C(A,B)) ∼= C(A, [X,B]),

which are natural in the objects A,B of C and X of V. In particular
the pair (X ⊗−, [X,−]) is a V-adjunction for any object X of V.

Proof. Part a) follows from Proposition B.17a) with F : (V × C)op × C → V
the composite

Vop × Cop × C id×C // Vop × V V // V.
For part b), apply Proposition B.17b) with F : Cop × (Vop × C)→ V the

composite

Cop × Vop × C // Vop × Cop × C id×C // Vop × V V // V.

Part c) follows from the definition of the tensor functor and the cotensor
functor.

Proposition B.19. Let C be a V-category and let D be a small V-category.
Consider the V-category CD of V-functors from D to C (see B.8).

a) If C is cotensored, then so is CD.

b) If C is tensored, then so is CD.

Proof. For part a), suppose that C is cotensored. Thus for every object X
of V, there is a V-functor [X,−] : C → C and an isomorphism

ϕ : C(B, [X,A])
∼=→ V(X, C(B,A)),

which is natural in the objects B and A of C. For any object F of CD and
any object X, denote the composite V-functor

D F→ C [X,−]→ C

by [X,F ]. Using ϕ, one defines an isomorphism

Φ: CD(G, [X,F ])→ V(X, CD(G,F ))

in V, which is natural in the object G of CD. Hence [X,F ] is the cotensor
of X and F .

Part b) is shown similarly. The tensor X ⊗ F of an object X of V and
an object F of CD is given by the composite

D F→ C X⊗−→ C,

where ⊗ : V × C → C is the tensor functor of C.
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Proposition B.20. Let C be a V-category and let D be a small V-category.
Suppose that C is tensored. Then for each object d of D, the V-functor
evd : CD → C given by evaluation in d, has a V-left adjoint F d : C → CD.

Proof. Fix an object d of D. For any object A of C, define the V-functor
F dA : D → C to be the composite

D D(d,−)−→ V −⊗A−→ C.

For any morphism f : A → B, let F df : F dA → F dB be the V-natural transfor-
mation given by

D(d, d′)⊗ f : D(d, d′)⊗A→ D(d, d′)⊗B

in the object d′ of D. Then these definitions induce a V functor F d : C → CD.
To show that it is V-left adjoint to evd, note that there are isomorphisms

CD(F dA, G) ∼= VD(D(d,−), C(A,G−)) ∼= C(A,G(d)),

in V, which are natural in the objects A of C and G of CD. Indeed, the first
isomorphism is induced by the isomorphism

C(X ⊗B,C) ∼= V(X, C(B,C)),

natural in the objects X of V and B,C of C, which expresses that C is
tensored. The second isomorphism is given by the V-Yoneda Lemma.

B.3 Limits and colimits

Recall that for any category C and any object A of C, the hom-functor
HomC(A,−) : C → Set preserves limits. Furthermore, if C is complete, then
so is the functor category Fun(D, C) for any small category D. We will see
that analogous results hold in an enriched setting, provided that C is an
enriched category which is tensored.

Proposition B.21. Let C be a V-category and A an object of C.

a) If C is tensored, then the functor C(A,−) : C → V preserves all small
limits.

b) If C is cotensored, then the functor C(−, A) : Cop → V takes any small
colimit to a limit.

Proof. Let D be a small category and F : D → C a functor.
For part a), assume that F has a limiting cone ν : limF → F . We claim

that the map
C(A, limF )→ lim C(A,F−)
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induced by C(A, ν) : C(A, limF ) → C(A,F−) is an isomorphism in V. In-
deed, for any object X of V, the map

HomV(X, C(A, limF ))→ HomV(X, lim C(A,F−))

equals the composite

HomV(X, C(A, limF )) ∼= HomC(X ⊗A, limF ) ∼= lim HomC(X ⊗A,F )
∼= lim HomV(X, C(A,F−)) ∼= HomV(X, lim C(A,F−)).

Thus the claim follows from the Yoneda Lemma.
Similarly, for part b) one assumes that F has a colimiting cone F →

colimF and shows that the map

C(colimF,A)→ lim C(F−, A)

induced by C(colimF,A)→ C(F−, A) is an isomorphism in V.

Corollary B.22. Let C be a V-category and let D be a small V-category.

a) If C is tensored and complete, then the limit functor Fun(D, C) lim−→ C
induces a V-functor lim: CD → C, i.e. the composite

CD −→ Fun(D, C) lim−→ C

is a continuous functor.

b) If C is cotensored and cocomplete, then the colimit functor Fun(D, C) colim−→
C induces a V-functor colim: CD → C.

Proof. For part a), let two V-functors F,G : D → C be given. We show that
lim: CD(F,G)→ C(limF, limG) is continuous. Since C is tensored, there is
a bijection

HomV(CD(F,G), C(limF, limG)) ∼= HomV(CD(F,G), lim C(limF,G−))

by Proposition B.21a). We define a morphism

g : CD(F,G)→ lim C(limF,G−),

which under the above bijection is mapped to lim: CD(F,G)→ C(limF, limG).
Let v : limF → F denote the limiting cone. For any object d of D, define
the morphism

gd : CD(F,G)→ C(limF,G(d)), η 7→ ηdvd

in V. Then (gd)d induces the desired map g.
Part b) is similar.
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Proposition B.23. Let C be a V-category, let D be a small V-category and
recall that the category of V-functors from D to C is denoted by CD.

a) If C is cotensored and cocomplete, then so is CD.

b) If C is tensored and complete, then so is CD.

Proof. For part a), assume that C is cotensored and cocomplete. Hence CD
is also cotensored by Proposition B.19a). To show that CD is cocomplete,
consider a small category J and a functor F : J → CD. Since C is cocom-
plete, the functor category Fun(D, C) has all small colimits and they can be
calculated objectwise. Thus the composite

J F→ CD → Fun(D, C)

has a colimit X ∈ Fun(D, C), which in the object d of D is given by Xd =
colim(evdF ), where evd denotes the functor which evaluates in d. Write
td : evdF → Xd for the colimiting cone. We show that X is a V-functor, i.e.
that X : D(d, d′) → C(Xd, Xd′) is continuous for all objects d, d′ of D, and
hence that X is the colimit of F . Since C is cotensored, there is a bijection

HomV(D(d, d′), C(Xd, Xd′)) ∼= HomV (D(d, d′), lim C(evdF−, Xd′))

by Proposition B.21b). To show that X is continuous, we define a morphism

g : D(d, d′)→ lim C(evdF−, Xd′)

in V, which under the above bijection is mapped toX : D(d, d′)→ C(Xd, Xd′).
For any object j of J , define the map

gj : D(d, d′)→ C(evdF (j), Xd), f 7→ (td′)j ◦ F (j)(f)

in V. Then the maps (gj)j induce the desired map g.
Part b) is shown similarly.

C Model category theory

Model categories have been introduced by Quillen. Model categories as
treated here correspond to what was called closed model categories in [16],
but we require a stronger completeness axiom. A model category is a cat-
egory C together with three distinguished classes of morphisms of C, called
fibrations, cofibrations and weak equivalences, which satisfies certain ax-
ioms. These axioms ensure that the localization (see C.11) of C with respect
to the weak equivalences, the so-called homotopy category of C, exists and
provide an abstract framework to do homotopy theory, in a similar way as
for topological spaces. A very readable introduction to model category the-
ory is the paper by Dwyer and Spalinski [3]. For further investigation, the

34



books [9] by Hovey and [8] by Hirschhorn are suggested. Another, more
historical point of view to present model categories is chosen by Goerss and
Schemmerhorn in the monograph [5]. They treat model categories in a way
to build resolutions in a non-abelian setting and thus to do homotopical
algebra.

Here, omitting most proofs, we summarize the basics of model category
theory following [3].

C.1 Definition and elementary properties of a model cate-
gory

The following terms will be used in the definition of a model category.

Definition C.1. Let j : A→ B, p : X → Y be morphisms in a category C.
We say that j has the left lifting property (LLP) with respect to p and that p
has the right lifting property (RLP) with respect to j, if in any commutative
diagram of the form

A
s //

j

��

X

p

��
B

t // Y

, (C.1)

there exists a lift h : B → X, i.e. a map h such that hj = s and ph = t.

Definition C.2. A morphism f : X → X ′ in a category C is called a retract
of a morphism g : Y → Y ′ of C, if f is a retract of g as objects in the category
of morphisms Mor(C) of C, i.e. if there exists a commutative diagram

X

idX

$$

i
//

f
��

Y r
//

g

��

X

f
��

X ′

idX′

::
i′ // Y ′

r′ // X ′

. (C.2)

The following two lemmas show that isomorphisms are closed under re-
traction and that the left and right lifting properties of a map are preserved
under retraction.

Lemma C.3. Let g be an isomorphism in a category C and f a retract of
g. Then f is also an isomorphism.

Proof. By definition, there exists a commutative diagram as in (C.2) with
ri = idX and r′i′ = idX′ . By assumption, g has an inverse g−1. One checks
that rg−1i′ is the inverse of f .
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Lemma C.4. Let C be a category and f a retract of a morphism g in C. If
g has the RLP (resp. LLP) with respect to a morphism j (resp. p), then so
does f .

Proof. Consider a commutative diagram as in (C.2), expressing f as a retract
of g. We assume that g has the RLP with respect to a morphism j : A→ B
and want to find a lift in any commutative diagram

A //

j

��

X

f
��

B // X ′

.

By assumption, there exists a lift h : B → Y in

A //

j

��

X
i // Y

g

��
B // X ′

i′ // Y ′

.

The desired lift is rh.
The case, where g has the LLP with respect to a morphism p is dual.

Definition C.5. A model category is a category C together with three
classes of morphisms of C, the class of weak equivalences, of fibrations and
of cofibrations, each of which is closed under composition and contains all
identity morphisms of C, such that the five axioms MC1-MC5 below hold.
A morphism of C is called an acyclic fibration if it is both a weak equiva-
lence and a fibration, it is called an acyclic cofibration if it is both a weak
equivalence and a cofibration.

MC1: (completeness) Every functor from a small category to C has a
limit and a colimit.

MC2: (two-out-of-three) If f and g are morphisms of C such that gf
is defined and if two out of the three morphisms f , g and gf are weak
equivalences, then so is the third.

MC3: (retract) If f is a retract of a morphism g of C and g is a weak
equivalence, a fibration or a cofibration, then so is f .

MC4: (lifting)

i) Every cofibration has the LLP with respect to all acyclic fibrations.

ii) Every fibration has the RLP with respect to all acyclic cofibrations.

MC5: (factorization) Any morphism f of C can be factored as

i) f = pi, where i is a cofibration and p is an acyclic fibration, and as

ii) f = pi, where i is an acyclic cofibration and p is a fibration.

36



In [16], Quillen requires a closed model category to have only all finite
limits and finite colimits. On the other hand, the axioms in Hovey’s book
[9] are slightly stronger. There the factorizations in MC5 are part of the
structure and assumed to be functorial.

Definition C.6. Let C be a category. For any non-negative integer n,
denote by [n] the category given by the ordinal n + 1 = {0, 1, · · · , n} and
let C[n] be the category of functors from [n] to C. Let d1 : [1] → [2] be the
functor given by the injective function which omits 1. Precomposing with
d1 defines a functor (d1)∗ : C[2] → C[1]. A functorial factorization in C is a
functor T : C[1] → C[2] which is right inverse to (d1)∗, i.e. such that (d1)∗ ◦T
is the identity.

Remark C.7. Since any isomorphism in a category is a retract of an identity
morphism, it follows that in a model category, every isomorphism is a weak
equivalence, a fibration and a cofibration.

Non-trivial examples of model categories are given in section D.3. The
following example ensures the existence of model categories.

Example C.8. Any complete and cocomplete category C can be equipped
with three model category structures by determing one of the classes of weak
equivalences, fibrations and cofibrations to be the class of isomorphisms and
the other two classes to consist of all morphisms of C.

Any two of the three classes of maps in a model category structure
determine the third one.

Proposition C.9. Let C be a model category.

i) The cofibrations in C are exactly the morphisms that have the LLP
with respect to all acyclic fibrations.

ii) The fibrations in C are exactly the morphisms that have the RLP with
respect to all acyclic cofibrations.

iii) The acyclic cofibrations in C are exactly the morphisms that have the
LLP with respect to all fibrations.

iv) The acyclic fibrations in C are exactly the morphisms that have the
RLP with respect to all cofibrations.

By axiom MC1, every model category has an initial object ∅ and a
terminal object ∗.
Definition C.10. An object X of a model category C is called fibrant, if
the unique morphism from X to the terminal object is a fibration. It is
called cofibrant, if the unique morphism from the initial object to X is a
cofibration.

The cofibrant and fibrant objects of a model category C will be used in
the next section to construct the homotopy category Ho(C) of C.
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C.2 The homotopy category of a model category

Definition C.11. Let W be a class of maps of a category C. A category
C
[
W−1

]
together with a functor γ : C → C

[
W−1

]
is called the localization

of C with respect to W , if γ maps morphisms of W to isomorphisms and
satisfies the following universal property: Given any functor G from C to a
category D, which maps morphisms of W to isomorphisms, there exists a
unique functor F : C

[
W−1

]
→ D such that Fγ = G.

If the class W of maps of a category C is a set, then the localization of
C with respect to W exists and can be obtained by formally inverting the
maps of W as described in [1, Proposition 5.2.2]. But if W is a proper class,
then in general the construction of C

[
W−1

]
fails to be a category since the

morphisms from an object to another one may form a proper class instead
of a set.

We will see that if C is a model category, then the localization of C
with respect to the class of weak equivalences W exists, and thus define
the homotopy category Ho(C) to be the category C

[
W−1

]
. It will have the

same objects as C and for any cofibrant-fibrant objects X, Y of C, the set
HomHo(C)(X,Y ) will be given by the hom-set HomC(X,Y ) modulo some
equivalence relation.

C.2.1 Homotopy relations on morphisms

Definition C.12. Let C be a model category and X an object of C.

a) A cylinder object for X is a commutative diagram

X
∐
X //

idX+idX

88C(X)
p // X ,

where p is a weak equivalence.

b) A path object for X is a commutative diagram

X
i //

(idX ,idX)

77P (X) // X ×X ,

where i is a weak equivalence.

Definition C.13. Two morphisms f, g : A→ X in a model category C are
called . . .
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a) . . . left homotopic (denoted f
l∼ g), if there exists a cylinder object

C(A) and a commutative diagram

A
∐
A //

f+g

88C(A) H // X .

b) . . . right homotopic (denoted f r∼ g), if there exists a path object P (X)
and a commutative diagram

A
H //

(f,g)

77P (X) // X ×X .

Proposition C.14. Let f, g : A→ X be two morphisms in a model category
C.

a) If A is cofibrant, then l∼ is an equivalence relation on HomC(A,X).

b) If X is fibrant and f
l∼ g, then fh

l∼ gh for any morphism h with
codomain A.

c) If X is fibrant, then r∼ is an equivalence relation on HomC(A,X).

d) If A is cofibrant and f
r∼ g, then hf

r∼ hg for any morphism h with
domain X.

e) If A is cofibrant and X is fibrant, then the equivalence relations l∼ and
r∼ on HomC(A,X) agree.

If A is a cofibrant object and X a fibrant object of a model category C,
then we denote the identical equivalence relations l∼ and r∼ by ∼ and write
π(A,X) for the set of equivalence classes HomC(A,X)/ ∼.

C.2.2 Construction of the homotopy category

Let C be a model category. Using a suitable Axiom of Choice and axiom
MC5i), choose for any object X of C a factorization

∅ // QX
pX // X

of the unique map from the initial object ∅ of C to X, such that QX is
cofibrant and pX is an acyclic fibration. If X is already cofibrant, let QX =
X. Dually, choose for any object X of C an acyclic cofibration iX : X → RX
with RX fibrant such that RX = X if X is fibrant.
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Definition C.15. The homotopy category Ho(C) is the category with the
same objects as C and HomHo(C)(X,Y ) = π(RQX,RQY ) for objects X, Y .

Composition in Ho(C) is well-defined by Proposition C.14.
We construct a functor γ : C → Ho(C), which will turn out to be the

localization of C with respect to the weak equivalences. For any morphism
f : X → Y in C, there exists a lift Qf : QX → QY in the diagram

∅ //

��

QY

pY

��
QX

f◦pX // Y

,

by axiom MC4i). Dually, choose for any morphism f : X → Y a morphism
Rf : RX → RY such that Rf ◦ iX = iY ◦ f .

Proposition C.16. For any morphism f : X → Y in C, the class [R(Qf)]
in π(RQX,RQY ) does not depend on the chosen lifts.

Now, let γ : C → Ho(C) be the functor which is the identity on objects
and sends a morphism f : X → Y in C to the class [R(Qf)] in π(RQX,RQY ).

Theorem C.17. The functor γ : C → Ho(C) is the localization of the model
category C with respect to the weak equivalences.

C.2.3 Derived functors and Quillen pairs

To compare model categories, we will introduce Quillen pairs. These are ad-
joint functors between model categories, which satisfy a condition to ensure
that they induce functors between the corresponding homotopy categories.
The induced functors will be a special case of derived functors.

Definition C.18. Let C be a model category with homotopy category
(γ,Ho(C)) and let F : C → D be a functor to a category D.

a) A left derived functor LF for F is a right Kan extension of F along γ.

b) A right derived functor RF for F is a left Kan extension of F along γ.

Definition C.19. Let F : C → D be a functor between model categories.

a) A total left derived functor LF for F is a left derived functor for the
composite C F→ D → Ho(D).

b) A total left derived functor RF for F is a right derived funtor for the
composite C F→ D → Ho(D).
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c) If F is a left adjoint functor, which preserves cofibrations (i.e. takes
cofibrations to cofibrations) and which preserves acyclic cofibrations,
then F is called a left Quillen functor.

d) If U : D → C is a right adjoint functor, which preserves fibrations and
acyclic fibrations, then U is called a right Quillen functor.

e) If (F,U) is a pair of adjoint functors such that F preserves cofibrations
and U preserves fibrations, then (F,U) is called a Quillen pair.

Remark C.20. Let F : C � D : U be an adjunction between model cate-
gories. Then the following statements are equivalent:

i) The functor F is a left Quillen functor.

ii) The functor U is a right Quillen functor.

iii) The pair (F,U) is a Quillen pair.

Definition C.21. Suppose F : C � D : U is a Quillen pair such that for each
cofibrant object A of C and each fibrant object X of D, a map f : A→ U(X)
is a weak equivalence in C if and only if its adjoint F (A) → X is a weak
equivalence in D. Then (F,U) is called a pair of Quillen equivalences, the
functor F is called a left Quillen equivalence and U is called a right Quillen
equivalence.

Proposition C.22. If F : C � D : U is a Quillen pair, then the total left de-
rived functor LF of F and the total right derived functor RU of U exist and
they form an adjunction LF : Ho(C) � Ho(D) : RU . If furthermore (F,U)
is a pair of Quillen equivalences, then LF and RU are inverse equivalences
of categories.

D Cofibrantly generated model categories

Roughly speaking, a cofibrantly generated model category (see D.16) is a
model category C such that there exists a set I of cofibrations and a set J
of acyclic cofibrations, which generates the class of all cofibrations and the
class of all acyclic cofibrations, respectively. Furthermore, the sets I and J
are assumed to permit the small object argument (see D.13), a construction
which provides for every morphism of C a factorization into maps with lift-
ing properties. This factorization will be functorial (see C.6). We point out
two more advantages of cofibrantly generated model categories. It’s easier
to prove that an adjunction is a Quillen pair and under certain assump-
tions, one can transport the model category structure along left adjoints. In
practice, most model categories are cofibrantly generated.

Here, we summarize the basics about cofibrantly generated model cate-
gories following mainly Hovey’s exposition [9], where also the omitted proofs

41



can be found. In order to define cofibrantly generated model categories in
§D.2, we introduce the notions of small objects and relative I-cell complexes
and prove the small object argument in §D.1. The main result of §D.2 is the
generalized transport Theorem D.20, which enables one to lift a cofibrantly
generated model category structure from a category C to a category D not
only along one left adjoint functor, but along a set of left adjoints from C
to D. In §D.3, the categories of spaces Top, K and U will be equipped with
the Quillen model structure and provide examples of cofibrantly generated
model categories.

Both, in the statement of the small object argument and in the defini-
tion of a cofibrantly generated model category, the following terminology
concerning lifting properties will be used.

Definition D.1. Let I be a class of maps of a category C

a) A morphism of C is called I-injective, if it has the RLP with respect
to every map in I. The class of I-injective maps is denoted by I-inj.

b) A morphism of C is called I-projective, if it has the LLP with respect
to every map in I. The class of I-projective maps is denoted by I-proj.

c) The class (I-inj)-proj is denoted by I-cof and its elements are called
I-cofibrations.

Remark D.2. Given a class I of maps of a category C, one concludes
directly from the definitions, that I ⊂ I-cof. Furthermore, if J is a class
of maps of C with I ⊂ J , then I-inj ⊃ J-inj and I-proj ⊃ J-proj, hence
I-cof ⊂ J-cof.

D.1 Small objects and relative I-cell complexes

For a set I of maps in a cocomplete category C, where the domains of
the maps of I satisfy some smallness condition, the small object argument
will provide a functorial factorization of any map in C into a relative I-cell
complex (see D.10) followed by a map in I-inj. Roughly speaking, a relative
I-cell complex is an object which is obtained by attaching maps in I. Thus,
it will follow that any relative I-cell complex is a I-cofibration.

In order to state the rather technical definition of small objects, we first
recall some terms from set theory. For further background, the reader is
referred to [10]. A set T is transitive, if every element of T is a subset of
T . A linear ordering of a set P is a well-ordering if every nonempty subset
of P has a least element. Now, an ordinal is a set which is transitive and
well-ordered by the binary relation ∈. On the class of all ordinals, the binary
relation ∈ is a well-ordering, which we denote by <. Every ordinal β has a
successor ordinal β + 1 and if an ordinal α is not a successor ordinal β + 1,
then α is called a limit ordinal. In particular, an ordinal λ is a poset and thus
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a category with objects the elements β ∈ λ and with exactly one morphism
from β to β′ if β ≤ β′ and with Homλ(β, β′) = ∅ if β > β′.

Definition D.3. Let C be a cocomplete category, let D be a class of mor-
phisms in C and let λ be an ordinal.

a) A λ-sequence in C is a functor X : λ→ C, i.e. a diagram

X0 → X1 → · · · → Xβ → · · · (β < λ),

such that for each non-zero limit ordinal γ ∈ λ, the induced map
colimβ<γ Xβ → Xγ is an isomorphism.

b) If λ > 0 andX is a λ-sequence, then the natural mapX0 → colimβ<λXβ

is called the composition of X.

c) A λ-sequence of maps in D is a λ-sequence X such that for every
β + 1 < λ, the map Xβ → Xβ+1 is in D.

d) A map f in C is called a transfinite composition of maps in D, if f is
the composition of a λ′-sequence of maps in D for some ordinal λ′ > 0.

Remark D.4. Let C be a cocomplete category and let λ be an ordinal. If
X is a λ-sequence in C, then X preserves all small, non-empty colimits.

Recall that the cardinality |T | of a set T is the least ordinal such that
there exists a bijection |T | → T . A cardinal is an ordinal κ with κ = |κ|.

Definition D.5. Let κ be a cardinal. A limit ordinal α is said to be κ-
filtered, if supT < α for all subsets T ⊂ α with |T | ≤ κ.

Remark D.6. Let κ be a cardinal. If κ is finite, then every non-zero limit
ordinal α is κ-filtered. If κ is infinite, then the least cardinal greater than κ
is κ-filtered.

Definition D.7. Let C be a cocomplete category, let D be a class of mor-
phisms of C and let κ be a cardinal.

a) An object A of C is called κ-small relative to D, if for all κ-filtered
ordinals λ and all λ-sequences X of maps in D, the induced map

colimβ<λ HomC(A,Xβ)→ HomC(A, colimβ<λXβ) (D.1)

is a bijection.

b) An object A of C is called small relative to D, if A is κ′-small relative
to D for some cardinal κ′.

c) An object A of C is called finite relative to D, if A is κ′-small relative
to D for some finite cardinal κ′.
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Example D.8. If C is the category of sets andD is the class of all morphisms
of C. Then any set A is |A|-small relative to D. Furthermore, the object A
of C is finite relative to D if and only if it is a finite set.

The following remark motivates the consideration of not just one or
all big enough limit ordinals, but of all κ-filtered ordinals in the previous
definition.

Remark D.9. Let C be a cocomplete category and let D be a class of
morphisms of C.

a) If κ, κ′ are cardinals with κ < κ′, then every κ′-filtered ordinal is also
κ-filtered and hence every object A which is κ-small relative to D is
also κ′-small relative to D.

b) Suppose {Aι}ι is a set of small objects relative to D, say Aι is κι-small
relative to D. Then there exists a cardinal κ such that each object Aι
is κ-small relative to D. Indeed, set κ =

⋃
ι κι and use a).

c) Suppose that D contains all identity morphisms. If κ is a cardinal and
A an object of C such that for every limit ordinal λ > κ and every
λ-sequence X of maps in D the induced map as in (D.1) is a bijection,
then for the least infinite ordinal ω and every ω-sequence Y of maps
in D, the induced map

colimβ<ω HomC(A, Yβ)→ HomC(A, colimβ<ω Yβ)

is a bijection. Indeed, conversely if Y is a ω-sequence of maps in
D, where the induced map as above is not a bijection, then consider
λ = κ + ω and set Xβ = Y0 for β ≤ κ and Xβ = Yi for β = κ + i
to obtain a λ-sequence X of maps in D, where the induced map as in
(D.1) is not a bijection.

Definition D.10. Let I be a set of maps in a cocomplete category C.

a) A relative I-cell complex is a transfinite composition of pushouts of
maps in I. That is, a map f : A → B is a relative I-cell complex, if
there exists an ordinal λ > 0 and a λ-sequence X in C such that f is
the composition of X and such that for every β + 1 < λ, there exists
a pushout square

Cβ //

gβ

��

Xβ

��
Dβ // Xβ+1

with gβ ∈ I. The class of relative I-cell complexes is denoted by I-cell.
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b) An object A of C is called an I-cell complex if the map ∅ → A is in
I-cell.

Lemma D.11. Let I be a set of maps in a cocomplete category C. Then

a) I-cell ⊂ I-cof,

b) I-cell is closed under transfinite composition and

c) any pushout of coproducts of maps of I is in I-cell.

Definition D.12. Let C be a cocomplete category. A set I of maps of C is
said to permit the small object argument, if the domain of any element of I
is small relative to I-cell (see D.7 and D.10).

Theorem D.13 (The small object argument). Let C be a cocomplete cat-
egory and I a set of maps of C, which permits the small object argument.
Then there exists a functorial factorization of any map in C into a relative
I-cell complex followed by an I-injective map.

We will prove the small object argument, since the actual construction
of the factorization may be even more important than the existence result
itself. Furthermore, the role of the smallness assumption and of relative
I-cell complexes will be clarified.

Proof of Theorem D.13. Using the smallness assumption on I and Remark
D.9b), choose a cardinal κ, such that the domain of any map of I is κ-small
relative to I-cell. Fix a κ-filtered ordinal λ.

To define a functorial factorization T : C[1] → C[2] on objects, i.e. in
a morphism f : X → Y of C, we will construct a λ-sequence Z in C with
Z0 = X and a natural map pβ : Zβ → Y factoring f as Z0 → Zβ

pβ→ Y , β < λ.
For every β+ 1 < λ, the map Zβ → Zβ+1 will be a pushout of coproducts of
maps of I and hence in I-cell by Lemma D.11c). Therefore, the composition
i : Z0 → colimZ will also be a relative I-cell complex by Lemma D.11b).
From the construction of the λ-sequence Z and the smallness assumption
on I it will follow that the induced map p := colimβ<λ pβ is in I-inj. Thus,
the composite p ◦ i will be the desired factorization of f .

Let’s define Z and {pβ}β<λ by transfinite induction. Set Z0 := X and
p0 := f . In a limit ordinal α > 0, set Zα := colimβ<α Zβ and pα :=
colimβ<α pβ. Considering a successor ordinal β + 1 < λ, let S(β + 1) be the
set of all commutative squares

A //

g

��

Zβ

pβ

��
B // Y
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with g ∈ I. For any square s ∈ S(β + 1), let gs : As → Bs denote the map
on its the left-hand side. Now, define Zβ+1 by the pushout square∐

sAs
//

∐
s gs

��

Zβ

��∐
sBs

// Zβ+1

and let pβ+1 : Zβ+1 → Y be the map induced by pβ. This concludes the
construction of Z and the natural map pβ, β < λ. To show that the induced
map p : colimZ → Y is I-injective, consider a lifting problem

A //

g

��

colimZ

p

��
B // Y

with g ∈ I. By the choice of κ, the domain A of g is κ-small relative to
I-cell. Thus, the map A → colimZ factors as A → Zβ → colimZ for some
β < λ. We obtain a commutative diagram

A //

g

��

Zβ //

pβ

��

Zβ+1 //

pβ+1

��

colimZ

p

��
B // Y

= // Y
= // Y

.

In particular, the square on the left-hand side is in S(β + 1). One checks
that the composite B →

∐
sBs → Zβ+1 → colimZ gives the desired lift.

To define the functor T : C[1] → C[2] on morphisms, one has to associate
to a given commutative square

X
f //

u

��

Y

v

��
X ′

f ′ // Y ′

a map w : colimZ → colimZ ′ making the diagram

X
i //

u

��

colimZ

w

��

p // Y

v

��
X ′

i′ // colimZ ′
p′ // Y ′

commute. One defines by transfinite induction a natural map wβ : Zβ → Z ′β
with p′βwβ = vpβ for β < λ and with w0 = u, such that setting w :=
colimβ<λwβ makes T into a functor.
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Corollary D.14. Let C be a cocomplete category and I a set of maps of
C, which permits the small object argument. Then for any I-cofibration
f : A→ B, there exists a relative I-cell complex g : A→ C such that f is a
retract of g by a retraction of the form

A

idA

##

idA
//

f

��

A
idA

//

g

��

A

f

��
B

idB

;;
i // C

r // A

.

Proposition D.15. Let C be a cocomplete category and I a set of maps of
C, which permits the small object argument. Then any object which is small
relative to I-cell is also small relative to I-cof.

D.2 Definition and properties of a cofibrantly generated model
category

Definition D.16. A model category C is said to be cofibrantly generated
if there exist sets I and J of maps of C, which permit the small object
argument, and such that

i) the class of acyclic fibrations is I-inj and

ii) the class of fibrations is J-inj.

Such sets I and J are called a set of generating cofibrations and a set of
generating acyclic cofibrations, respectively.

Proposition D.17. Let C be a cofibrantly generated model category with
generating cofibrations I and generating acyclic cofibrations J .

a) The class of cofibrations is I-cof.

b) Every cofibration is a retract of a relative I-cell complex.

c) The cofibrant objects are the retracts of I-cell complexes.

d) The domain of any map of I is small relative to the cofibrations.

e) The class of acyclic cofibrations is J-cof.

f) Every acyclic cofibration is a retract of a relative J-cell complex.

g) The domain of any map of J is small relative to the acyclic cofibra-
tions.
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For cofibrantly generated model categories it’s easier to show that a pair
of adjoint functors is a Quillen pair.

Lemma D.18. Let C be a cofibrantly generated model category and let D be
a model category. A left adjoint functor F : C → D is a left Quillen functor
if and only if F takes generating cofibrations to cofibrations and generating
acyclic cofibrations to acyclic cofibrations.

The following recognition theorem can be used to equip a category with
a cofibrantly generated model category structure.

Theorem D.19. Let C be a complete, cocomplete category and let I and J
be sets of maps of C. Let W be a class of maps of C, which is closed under
composition and contains all identity morphisms. There exists a cofibrantly
generated model category structure on C with generating cofibrations I, gen-
erating acyclic cofibrations J and weak equivalences W if and only if the
following conditions hold:

i) W has the two-out-of-three property and is closed under retraction,

ii) I and J permit the small object argument,

iii) J-cell ⊂W ∩ I-cof,

iv) I-inj ⊂W ∩ J-inj,

v) either W ∩ I-cof ⊂ J-cof or W ∩ J-inj ⊂ I-inj.

The transport theorem below describes how to lift a cofibrantly generated
model category structure from a category to another one along left adjoints.

Theorem D.20. Let C be a cofibrantly generated model category with gen-
erating cofibrations I and generating acyclic cofibrations J . Let D be a com-
plete, cocomplete category. Given a set of adjunctions {Fι : C � D : Uι}ι,
write FI :=

⋃
ι {Fι(f); f ∈ I} and FJ :=

⋃
ι {Fι(f); f ∈ J}. Suppose that

i) the sets FI and FJ permit the small object argument (see D.12) and

ii) for all ι, the functor Uι takes relative FJ-cell complexes (see D.10) to
weak equivalences.

Then there exists a cofibrantly generated model category structure on D with
generating cofibrations FI, generating acyclic cofibrations FJ and with weak
equivalences and fibrations the maps of D which by every Uι are taken to weak
equivalences and fibrations in C, respectively.

This theorem in the case, where one considers only one adjunction C � D
is attributed to D. M. Kan in [8, Theorem 11.3.2], but the author has not
found the general statement in the literature.
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Proof of Theorem D.20. Let W denote the class of maps of D, which by
every Uι are taken to weak equivalences in C. We apply Theorem D.19. The
class W contains all identity morphisms, is closed under composition, has
the two-out-of-three property and is closed under retraction by functoriality
and the corresponding properties of the class of weak equivalences in C.

The sets FI and FJ permit the small object argument by assumption.
To check that the conditions iii)-v) of Theorem D.19 are satisfied, note

that for any ι, any map i in C and any map p in D, the lifting problems

Fι(A)

Fι(i)

��

// X

p

��
Fι(B) // Y

and A

i

��

// Uι(X)

Uι(p)

��
B // Uι(Y )

are equivalent by adjointness. One deduces that a map p of D is in FI-inj
(resp. FJ-inj) if and only if for all ι the map Uι(p) is in I-inj (resp. J-inj).
Thus from I-inj ⊂ J-inj follows that FI-inj ⊂ FJ-inj and therefore that
FJ-cof ⊂ FI-cof.

Now, iii) FJ-cell ⊂W ∩ FI-cof holds by assumption ii) and since every
relative FJ-cell complex is in FJ-cof by Lemma D.11a). For iv) FI-inj ⊂
W ∩ FJ-inj, we are left to show that every FI-injective map is in W . If a
map p is in FI-inj, then for all ι the map Uι(p) is in I-inj and thus is an
acyclic fibration and in particular a weak equivalence in C. Hence p is in W .
We conclude the proof by showing v) W ∩ FJ-inj ⊂ FI-inj. If p is a map
in W ∩ FJ-inj, then for all ι the map Uι(p) is in W and in J-inj. Thus the
map Uι(p) is an acyclic fibration, i.e. Uι(p) ⊂ I-inj. It follows that p is in
FI-inj.

Remark D.21. Given a set of adjunctions {Fι : C � D : Uι}ι between a
cofibrantly generated model category C and a complete, cocomplete category
D, use the notations FI and FJ as in Theorem D.20. Suppose that for each
ι, the functor Uι

i) takes relative FI-cell complexes to cofibrations,

ii) takes relative FJ-cell complexes to acyclic cofibrations,

iii) preserves the colimit of any λ-sequence of maps in FI-cell and

iv) preserves the colimit of any λ-sequence of maps in FJ-cell,

then the conditions i) and ii) of Theorem D.20 are satisfied.

Proof. Condition ii) of Theorem D.20 holds, since acyclic cofibrations are in
particular weak equivalences.

Concerning condition i), we show that FI permits the small object ar-
gument. Let A be the domain of a map in I. We have to prove that for
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any ι, the object Fι(A) is small relative to FI-cell. By Proposition D.15,
there is a cardinal κ such that A is κ-small relative to I-cof. Let λ be a
κ-filtered ordinal and X : λ→ D a λ-sequence of maps in FI-cell. Note that
by adjointness, there is a commutative diagram

colimβ<λ HomD(Fι(A), Xβ)

∼=
��

// HomD(Fι(A), colimX)

∼=
��

colimβ<λ HomC(A,Uι(Xβ)) // HomC(A,Uι(colimX))

.

Thus it’s enough to show that the map in the bottom is an isomorphism.
But this holds by the choice of κ, since Uι(colimX) = colimβ<λ Uι(Xβ) by
assumption iii) and since Uι ◦X : λ→ C is a λ-sequence of maps in I-cof by
the assumptions iii) and i).

Similarly, one shows that FJ permits the small object argument.

D.3 Examples: Subcategories of Top

Note that each of the categories Top of topological spaces, K of k-spaces and
U of compactly generated spaces contains the unit interval I = [0, 1], the
n-disk Dn and its boundary Sn−1, n ≥ 0. By abuse of notation we denote
the set of inclusions

{
Sn−1 → Dn

}
n≥0

again by I. We write J for the set
of inclusions {Dn × {0} → Dn × I}n≥0. We will see that each category of
Top, K and U is a cofibrantly generated model category with generating
cofibrations I and generating acyclic cofibrations J . To describe the weak
equivalences and fibrations, we recall the following two definitions.

Definition D.22. A map f in Top is called a Serre fibration if it is in J-Inj.

Remark D.23. Using that for any n ≥ 0, the pairs (Dn × I,Dn × {0})
and (Dn × I,Dn × {0} ∪ Sn−1 × I) are homeomorphic, one deduces that a
map f is a Serre fibration if and only if it has the RLP with respect to any
inclusion X × {0} ∪A× I → X × I, where (X,A) is a CW-pair.

Definition D.24. A map f : X → Y in Top is called a weak homotopy
equivalence if either both X and Y are empty or if both are non-empty and
for every point x ∈ X and every n ≥ 0, the morphism πn(f) : πn(X,x) →
πn(Y, f(x)) between homotopy groups is an isomorphism.

Theorem D.25. The category Top admits a cofibrantly generated model
category structure (called Quillen model structure of Top) with generating
cofibrations I, generating acyclic cofibrations J , weak equivalences the weak
homotopy equivalences and fibrations the Serre fibrations. Every object in
Top is fibrant and the cofibrant objects are the retracts of I-cell complexes.

Theorem D.25 is proved in [9] using the recognition Theorem D.19. One
step of the proof is to show the following properties of Top.
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Lemma D.26. Call a closed embedding f : X → Y in Top a closed T1

embedding, if every point in Y \f(X) is closed as a point in Y .

a) Every topological space is small relative to the embeddings.

b) Closed T1 embeddings are closed under pushouts and tranfinite compo-
sition.

c) Any I-cofibration in Top is a closed T1 embedding.

d) Inclusions of deformation retracts are closed under pushouts.

e) Let λ be a non-zero ordinal and X : λ → Top a λ-sequence of closed
T1 embeddings that are also weak equivalences, then the composition
X0 → colimβ<λXβ is a weak equivalence.

We only provide a relatively short, geometric proof of the hardest step
in showing Theorem D.25, which is the following lemma.

Lemma D.27. A map p : X → Y in Top, which is both a Serre fibration
and a weak homotopy equivalence, is in I-Inj.

Proof. Consider a lifting problem

Sn

��

f // X

p

��
Dn+1

g // Y

.

If n = −1, then the disk D0 is mapped to a point y ∈ Y . We have to
find a point in X which is mapped to y by p. Since p is a weak homotopy
equivalence, there exists a point x ∈ X such that p(x) lies in the same path
component of Y as y. Let H be a path from p(x) to y. Since p is a Serre
fibration, there exists a lift H̃ in

D0 //

��

X

p

��
D0 × I H // Y

.

The endpoint of the path H̃ is mapped to y by p and thus provides the
solution of our lifting problem.

If n ≥ 0, factor the inclusion of the sphere in the disk over the cylinder
and the cone as Sn → Sn×I → CSn ∼= Dn+1 and consider the commutative
diagram

Sn
f //

��

X

p

��
Sn × I // Dn+1

g // Y

. (D.2)
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By Remark D.23 applied to the CW-pair (Sn, ∅) it has a lift h, since p is
a Serre fibration. But since h is not necessarily constant on the top of the
cylinder, it does not directly induce a solution of our lifting problem. We
will deform it to a lift in (D.2) which is constant on Sn × {1}. Under the
composite Sn×I → Dn+1 g→ Y , the top Sn×{1} is mapped to a point y ∈ Y .
Hence the image of the restricted map h | : Sn × {1} → X lies in the fiber
F := p−1{y}. Denote by x ∈ F the point to which h | maps the basepoint of
the sphere. Since p is a weak homotopy equivalence, it follows by the long
exact sequence in homotopy of a Serre fibration, that πn(F, x) is trivial.
Therefore, there exists a homotopy H : Sn × {1} × I → F from h | to the

constant map cx. This map H and the composites Sn×{0}× I → Sn
f→ X,

Sn × I × {0} → Sn × I h→ X and (Sn × I) × I → Sn × I → Dn+1 g→ Y
provide a commutative square

(Sn × {1} ∪ Sn × {0})× I ∪ Sn × I × {0}

��

// X

p

��
Sn × I × I // Y

.

In this diagram, there exists a lift H̃ by Remark D.23 applied to the CW-
pair (Sn×I, Sn×{1}∪Sn×{0}). The restricted map H̃ |Sn×I×{1} is another
lift in (D.2), but which satisfies H̃ |Sn×{1}×{1} = cx. It therefore induces the
solution Dn+1 → X of the original lifting problem.

Using that the inclusion functor K → Top preserves colimits, the recog-
nition Theorem D.19 is applied in [9] to equip the category of k-spaces with
the following model category structure.

Theorem D.28. The category K of k-spaces admits a cofibrantly generated
model category structure (called Quillen model structure of K) with gener-
ating cofibrations I and generating acyclic cofibrations J . A map in K is a
cofibration (fibration, weak equivalence) if and only if it is so in Top. The
inclusion functor K → Top is a left Quillen equivalence.

Since the inclusion functor U → K preserves certain pushouts and certain
directed colimits, the model category structure ofK can be transported along
the left adjoint functor wH : K → U to the category of compactly generated
spaces by applying Theorem D.20.

Theorem D.29. The category U admits a cofibrantly generated model cate-
gory structure (called Quillen model structure of U) with generating cofibra-
tions I and generating acyclic cofibrations J . A map in U is a cofibration
(fibration, weak equivalence) if and only if it is so in K. The inclusion
functor U → K is a right Quillen equivalence.
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