X is a finite complex

X satisfies Poincaré duality.

$x \in \mathbb{R}^n$ \quad x \in \mathbb{C} \mathbb{R}^n$

Regular M^{n+1}

Dual of X : $D(x) = \frac{1}{N}$

If X is a space, then $x = (x \times x)$, $x \times x \to x$.

$\Rightarrow x = D(x)$

$\Rightarrow \sum x = \frac{1}{N}$

(for n big enough)

($d = n - k$)

$S^n \to \frac{1}{N}$

$U \to x \times \mathbb{R}^d \to \mathbb{R}^d$

U can assume this.

Map is smooth

$X \times p \to \mathbb{P}$ regular value

Manifold

$[M] \to [X]$ in H_k
\[S^i \times D^{2-i} \subset M^2 \]

Subject:

\[M = (S^i \times D^{2-i}) \cup (D^{i+1} \times S^{2-i}) \]

want to use this process to change \(M \) to get a homotopy equivalence to \(X \).

\[M \xrightarrow{\sim} \text{cobordism} \]

Attaching a Handle:

\[M \times I \cup \left(S^i \times D^{2-i} \right) \cup \left(D^{i+1} \times D \right) \]

In homotopy view point: We are just attaching a cell: \(M \times I \cong M \), \(S^i \times D^{2-i} \cong S^i \).

so that we change \(M \) by a cobordism.

(Every cobordism is a sequence of surgeries — via Morse theory)

\[M \longrightarrow X \]

Construction to hom equiv is \(\mathbb{H}_*(X,M) \).

If \(i \leq \frac{d-1}{2} \), can assume \(S^i \subset M \) embedding.
\[V^m \to X \times \mathbb{R}^n \quad \text{BDL map} \]
\[M \to X \]
Gives a trivialization of normal BDL of \(S^i \subset M \)

\[\to S^i \times D^{2-i} \subset M \]

(We are using immersion theorem. Immersions are determined by bundle information)

If \(S^i \times D^{2-i} \to M \) is covered by a good BDL map, we can change the map to an immersion.

Ex.

![Diagram](image)

Obvious surgery

There is an obstruction in dim 2:

\[V^m \to V^2 \]

BDL data gives the immersion of \(S^i \)

\[\to \text{might not be able to do surgeries} \]

Would need to "retrace the pb" - change the BDL - to be able to do surgery
\[\text{Invariance of } \pi_1 \]
\[\downarrow \]
\[J^M \rightarrow J^N \]
\[M^k \rightarrow N^k \]

Exact Map Covered by a BDL Map is Homotopic to an Imbedding.

\[M^k \rightarrow X^k \]

Suppose

\[\frac{\pi_0}{\mathbb{Z}} \text{ connected} \]

By PD if \& if even \exists one non-trivial relative \(\pi_0 \)-GP (on universal cover).

If \(k \) is odd \& \(2 \) non-trivial left.

\[\Rightarrow \text{ surgery obstruction} \]

(Attaching Cells Rather Than Handles Makes Us Stay in Manifolds)

\[\text{Men's \(\pi_1 \) Theorem: } (M, \partial M) \rightarrow (X, \partial X) \]

AND

PD pair

If \(\partial X \cong \pi X \) then can always do surgery:

\[\text{cobordant to } (M, \partial M) \]

\[(\text{note, } \partial X \neq \emptyset) \]
For loop space, Timm's thesis discusses the dual of spacelike. Can use the TIT theorem for self-dual spaces.

(TIT)-Theorem: Can get rid of self-interpenetrations in middle dimension, might have some double points. We want to get rid of.

Example of surgery with boundaries:

Need dim > 5 because need to embed a 2-disc.

Ideal world:

\[\mathbb{S}^1 \text{ loop space} \quad \mathbb{Y} \text{ finite CP}^X \quad \mathbb{X}, \mathbb{X} \cong \mathbb{Y} \]

\[\mathbb{S}^1 \to \mathbb{X} \]

\[\downarrow \]

\[\mathbb{Y} \]

\[G_2 = E(2) \to \mathbb{S}^1 \text{-fiberation is } \mathbb{S}^1 \text{-bundle.} \]
\[S^1 \rightarrow D^2 \]
\[L \]
\[\chi \leq E \]
\[\therefore \]
\[\pi_1(X) \cong \pi_1(E) \]

\[\rightarrow \text{APPLY } (\pi_1, \pi_1) \rightarrow \text{THM} \]
\[\text{TO } (E, X) \]

Thom's Thesis: \(Q \) is

- **Set-up:** A surgery problem on \(Q : M \to Q \)
- **Pull it back to** \((E, X) \)

\[W \to B\mathcal{R} Y \]
\[W \to X \times \mathbb{R}^n \]
\[M' \simeq X \]

\[\rightarrow \text{NORMAL BOL SPLIT PARAMELIZABLE} \]

Reality: Don't know \(Q \) is finite, but know is \(\text{finitely dominated} \).

Use a generalization of \((\pi_1, \pi_1)\) **- Theorem**

Surgery below the middle dimension

\[V_M \to Z \]
\[\to X \]

\[M \to X \]

Make this into an inclusion by replacing \(X \) by the mapping cylinder.
\[m \times i \]

RING OF

\[x^{(0)} \text{ NOT IN M} \]

\[\text{So can miss MUX}^{(0)} \]

\[M \rightarrow \text{MUX}^{(0)} \rightarrow \text{MUX}^{(1)} \rightarrow \text{MUX}^{(2)} \rightarrow \]

\[N^{(0)} \rightarrow N^{(1)} \]

\[M \enspace \sim \enspace M' \enspace \sim \enspace M'' \]

\[N \sim M' \cup \text{CEUS ABOVE MID-DIMENSION} \]

\[\text{IS} \]

\[\text{MUX}^{(2)} \rightarrow X \]

\[X = M' \cup \text{CEUS ABOVE MID-DIMENSION} \]

\[\rightarrow M' \rightarrow X \text{ HIGHLY CONNECTED} \]