STRUCTURE AND DERIVED LENGTH OF FINITE p-GROUPS
POSSESSING AN AUTOMORPHISM OF p-POWER ORDER
HAVING EXACTLY p FIXED POINTS.

IAN KIMING

1. INTRODUCTION.

Everywhere in this paper p denotes a prime number.

In [1] Alperin showed that the derived length of a finite p-group possessing an
automorphism of order p and having exactly p^n fixed points is bounded above by
a function of the parameters p and n.

The purpose of this paper is to prove the same type of theorem for the derived
length of a finite p-group possessing an automorphism of order p^n having exactly p
fixed points. However, we will restrict ourselves to the case where p is odd.

A strong motivation for the consideration of this class of finite p-groups is induced
by the fact that the theory of these groups is strongly similar to certain aspects of
the theory of finite p-groups of maximal class. For the theory of finite p-groups of
maximal class the reader may consult [2] or [4], pp. 361–377.

In section 3 we derive a more useful description of the groups in question and
we show that the theory of these objects is similar to the theory of finite p-groups
of maximal class. We illustrate the ideas in abelian p-groups.

In section 4 we study p-power and commutator structure.

Based on the results of section 4 we prove the main theorems in section 5. The
method leading to the proof of our main theorems does not resemble Alperin’s
method. Our method may be described as a detailed analysis of commutator- and
p-power-structure of the groups in question. The central method is a development
of a method used by Leedham-Green and McKay in [5], and is of ‘combinatorial’
nature.

2. NOTATION

The letter e always denotes the neutral element of a given group.

If x and y are elements of a group we write
\[x^y = y^{-1}xy \quad \text{and} \quad [x, y] = x^{-1}y^{-1}xy. \]

Then we have the formulas
\[[x, yz] = [x, z][x, y][x, y, z] \quad \text{and} \quad [xy, z] = [x, z][x, z, y][y, z] \]
(where $[x_1, ..., x_{n+1}] = [[x_1, ..., x_n], x_{n+1}]$).

If α is an automorphism of a group G we write x^α for the image of x under α.

If α is an automorphism of a group G, and if N is an α-invariant, normal sub-
group of G, then we also write α for the automorphism induced by α on G/N.

For a given group G, the terms of the lower central series of G are written $\gamma_i(G)$ for $i \in \mathbb{N}$.

If G is a finite p-group, then $\omega(G) = k$ means that $G/G^p = p^k$.

3.

We now define a certain class of finite p-groups which turns out to be precisely the objects in which we are interested, that is the finite p-groups possessing an automorphism of p-power order having exactly p fixed points.

Definition 1. Suppose that G is a finite p-group. We say that G is concatenated if and only if G has:

(i) a strongly central series

\[G = G_1 \geq G_2 \geq \ldots \geq G_n = \{e\} \]

(putting $G_k = \{e\}$ for $k \geq n$, ‘strongly central’ means that $[G_i, G_j] \leq G_{i+j}$; for all i, j),

(ii) elements $g_i \in G_i$, $i = 1, \ldots, n$, and

(iii) an automorphism α such that

(1) $|G_i/G_{i+1}| = p$, for $i = 1, \ldots, n - 1$,

(2) G_i/G_{i+1} is generated by $g_i G_{i+1}$, for $i = 1, \ldots, n$,

(3) $[g_i, \alpha] := g_i^{-1} g_i^\alpha = g_i^{1+1} \mod G_{i+2}$, for $i = 1, \ldots, n - 1$.

In the situation of definition 1 we shall also say that G is α-concatenated. It is easy to see that α has p-power order whenever α is an automorphism of the finite p-group G such that G is α-concatenated.

If G is a finite p-group, then the statement ‘G is α-concatenated’ means that G possesses an automorphism α such that G is α-concatenated.

Whenever G is given as an α-concatenated p-group, we shall assume that a strongly central series $G = G_1 \geq G_2 \geq \ldots$ and elements $g_i \in G_i$ have been chosen so that conditions (1), (2) and (3) in definition 1 above are fulfilled; the symbols G_i and g_i then always refer to this choice.

Proposition 1. Suppose G is an α-concatenated p-group. Then for all $i \in \mathbb{N}$, G_{i+1} is the image of G_i under the mapping

\[x \mapsto x^{-1} x^\alpha = [x, \alpha], \]

and if G_{i+1} is generated by $x G_{i+1}$, then the group G_{i+1}/G_{i+2} is generated by $[x, \alpha] G_{i+2}$.

Proof. Suppose that G has order p^{n-1}. Then $[g_{n-1}, \alpha] = e$ and so $[g_n^a, \alpha] = e$ for all a. This shows the assertions for all $i \geq n - 1$. Assume then that the enunciations have been proved for $i \geq k + 1$, where $1 \leq k < n - 1$. If then $x \in G_k - G_{k+1}$, we write $x = g_k^a y$, where $a \in \{1, \ldots, p - 1\}$ and $y \in G_{k+1}$. Then,

\[[x, \alpha] = [g_k^a, \alpha] [g_k^a, \alpha, y] [y, \alpha] \]

whence

\[[x, \alpha] \equiv [g_k, \alpha]^a \mod G_{k+2}, \]
since it is easy to see that $[g_k^r, \alpha] \equiv [g_k, \alpha]^r \mod G_{k+2}$ for all r. Thus we deduce

$$[x, \alpha] \equiv g_k^{a_{k+1}} \mod G_{k+2}.$$

As a consequence we have demonstrated the last enunciation for $i = k$ and that the image of G_k under the mapping $x \mapsto [x, \alpha]$ is contained in G_{k+1}. It also follows that the group of fixed points of α in G is G_{n-1}.

Then for $x, y \in G_k$,

$$[x, \alpha] = [y, \alpha] \iff yx^{-1} = (yx^{-1})^\alpha \iff yx^{-1} \in G_{n-1},$$

and since $G_{n-1} \leq G_k$, we see that the image of the mapping $x \mapsto [x, \alpha]$ restricted to G_k has order

$$|G_k : G_{n-1}| = \frac{1}{p}|G_k| = |G_{k+1}|.$$

Thus this image must be all of G_{k+1}. \square

Proposition 2. Let G be a finite p-group and let α be an automorphism of p-power order of G. Then the following statements are equivalent:

1. G is α-concatenated.
2. α has exactly p fixed points in G.

Proof. (1) implies (2): If G has order p^{n-1} then Proposition 1 implies that α’s group of fixed points in G is G_{n-1}; but $|G_{n-1}| = p$.

(2) implies (1): We show by induction on $|G|$ that G is α-concatenated. Of course we may assume that $|G| > p$.

If N is an α-invariant, normal subgroup of G, it is well-known that α has at the most p fixed points in G/N (xN is a fixed point if and only if $x^{-1}x^\alpha \in N$; $x^{-1}x^\alpha = y^{-1}y^\alpha$ if and only if yx^{-1} is a fixed point of α in G). Since the order of α is a power of p, α must then have exactly p fixed points in G/N.

Let F be the group of fixed points of α in G. Since α has p-power order, and since $|F| = p$, F is contained in the center of G. From the inductive hypothesis we deduce that G/F is α-concatenated. Therefore there exists a strongly central series

$$G/F = G_1/F \geq \ldots \geq G_n/F = \{e\}$$

and elements $g_i \in G_i$ such that

$$G_i/G_{i+1} \text{ has order } p,$$

$$G_i/G_{i+1} \text{ is generated by } g_iG_{i+1} \text{ for } i = 1, \ldots, n-1,$$

and

$$[g_iF, \alpha] \equiv g_i^{F+i} \mod G_{i+2}/F \text{ for } i = 1, \ldots, n-2.$$

Then

$$[g_i, \alpha] \equiv g_i^{F+1} \mod G_{i+2} \text{ for } i = 1, \ldots, n-2,$$

and $e \neq [g_{n-1}, \alpha] \in F$. Putting $g_n := [g_{n-1}, \alpha]$, we then have that g_n generates F.

Put $G_{n+i} = \{e\}$ for $i \in \mathbb{N}$. Then we only have to show that the series

$$G = G_1 \geq G_2 \geq \ldots \geq G_n = F \geq G_{n+1} = \{e\}$$

is strongly central. Consider the semidirect product $H = G < \alpha >$. Since the terms of the series are all α-invariant we get $\gamma_i(H) \leq G_i$ for $i \geq 2$.

Since $[G_1, \alpha, \ldots, \alpha] \in G_i - G_{i+1}$ if $G_i \neq \{e\}$, we see that $\gamma_i(H) = G_i$ for $i \geq 2$.

Then $[G_i, G_j] \leq [\gamma_i(H), \gamma_j(H)] \leq \gamma_{i+j}(H) = G_{i+j}$

for all $i, j \in \mathbb{N}$.

\textbf{Corollary 1.} If G is a finite, α-concatenated p-group, then the only α-invariant, normal subgroups of G are the G_i for $i \in \mathbb{N}$.

\textbf{Proof.} Suppose that N is an α-invariant, normal subgroup of G. Since α has p-power order, α has exactly p fixed points in N. Thus α's group of fixed points in G is contained in N. By induction on $|G|$ the statement follows immediately.

The next proposition shows that the theory of finite, concatenated p-groups is connected to certain aspects of the theory of finite p-groups of maximal class.

\textbf{Proposition 3.} Let G be a finite p-group.

Then G is α-concatenated for some automorphism α of order p, if and only if G can be embedded as a maximal subgroup of a finite p-group of maximal class.

\textbf{Proof.} Suppose that G is α-concatenated where $O(\alpha) = p$. Then G is embedded as a maximal subgroup of the semidirect product $H = G \triangleleft \alpha$. By Proposition 1 we see that H has class $n - 1$ if G has order p^{n-1}. Thus H is a finite p-group of maximal class.

Suppose conversely that H is a finite p-group of maximal class and order p^n. Let U be a maximal subgroup of H. We have to show that U is α-concatenated for some automorphism α of order p and may assume that $n \geq 4$.

Put $H_i = \gamma_i(H)$ for $i \geq 2$, and $H_1 = C_H(H_2/H_4)$. It is well-known that

$$H_1 = C_H(H_i/H_{i+2}) \quad \text{for } i = 2, \ldots, n - 3 ;$$

this is also true for $i = n - 2$ if $p = 2$ (see [4], p. 362). Since H has $p + 1$ maximal subgroups, we deduce the existence of a maximal subgroup U_1 of H such that U_1 is different from U and from

$$C_H(H_i/H_{i+2}) \quad \text{for } i = 2, \ldots, n - 2 .$$

If $U = < u, H_2 >$ and $U_1 = < u_1, H_2 >$ then H is generated by u and u_1. Suppose that $s \in C_H(u_1) \cap U$ and write $s = u_1^a u^b x$ with $x \in H_2$. Then u_1 commutes with $u^b x$. Since H is not abelian, we must have $b \not\equiv 0 \pmod{p}$. Then $s = u_1^a y$ where $y \in H_2$. Since $s \in U \neq U_1$ we must have $a \equiv 0 \pmod{p}$. Then $s \in H_2$. Since

$$u_1 \not\in C_H(H_i/H_{i+2}) \quad \text{for } i = 2, \ldots, n - 2$$

we deduce $s \in H_{n-1} = Z(H)$. If α denotes the restriction to U of the inner automorphism induced by u_1, then consequently α has exactly p fixed points in U.

Then U is α-concatenated according to Proposition 2. Furthermore,

$$u_1^p \in C_H(U_1) \cap H_2 \leq C_H(U_1) \cap U = Z(H)$$

so α has order p.

Next we determine the structure of finite abelian, concatenated p-groups. The purpose is to provide some simple examples that will display certain phenomena occurring quite generally.
Proposition 4. Let \(U \) be a finite abelian, concatenated \(p \)-group.

Then \(U \) has type

\[
(\mu^d+1, \ldots, \mu^d+1, \mu^s, \ldots, \mu^s) \quad \text{for some } \mu \in \mathbb{N}, \ s \geq 0, \ d > s .
\]

Proof. Suppose that \(U \) is \(\alpha \)-concatenated. Let \(\omega(U) = p^d \). Now, \(U/U^p \) is \(\alpha \)-concatenated so we deduce the existence of elements \(u_1, \ldots, u_d \in U \) and \(u \in U^p \) such that

\[
U = \langle u_1, \ldots, u_d \rangle \quad \text{and} \quad u^\alpha_u = u_{i+1} \quad \text{for } i = 1, \ldots, d - 1, \quad u_d^\alpha = u_{d+1} .
\]

If we put \(p^\mu_i = O(u_i) \) we deduce \(\mu_1 \geq \ldots \mu_d \). Let \(s \geq 0 \) and \(\mu \in \mathbb{N} \) be determined by the conditions \(\mu_1 = \ldots = \mu_s = \mu + 1 \) and \(\mu_s > \mu_{s+1} \); if \(\mu_1 = \ldots = \mu_d \) we put \(s = 0 \) and \(\mu = \mu_1 \).

If \(s > 0 \) then

\[
(u_s^\mu s+1)^\alpha = u_s^\mu s+1 u_s^\mu s+1 = u_s^\mu s+1
\]

and so \(\mu_s - \mu_{s+1} = 1 \), since \(\alpha \) has exactly \(p \) fixed points in \(U \). Then \(\mu_{s+1} = \ldots = \mu_d \), since \(u_1, \ldots, u_d \) are independent generators. \(\Box \)

Proposition 5. For integers \(\mu, s, d \) with \(\mu, s, d \in \mathbb{N} \) and \(d > s \geq 0 \), we consider the finite, abelian \(p \)-group

\[
U = U(p, \mu, s, d) := (\mathbb{Z}/\mathbb{Z}p^\mu)^s \times (\mathbb{Z}/\mathbb{Z}p^\mu)^{d-s}
\]

with canonical basis \((u_1, \ldots, u_d)\) (so that \(O(u_i) = p^{\mu+1} \) for \(i = 1, \ldots, s \), and \(O(u_i) = p^\mu \) for \(i > s \)).

For any integers \(b_1, \ldots, b_d \) with \(b_i \neq 0 (p) \) we define the endomorphism \(\alpha \) of \(U \) by

\[
u_i^\alpha = u_i u_{i+1} \quad \text{for } i = 1, \ldots, d - 1, \quad u_d^\alpha = u_{d+1} ,
\]

where \(u := u_1^{b_1} \ldots u_d^{b_d} \).

Then \(\alpha \) is an automorphism of \(U \) and \(U \) is \(\alpha \)-concatenated.

For all \(i \in \mathbb{N} \) define: \(u_i := [u_1, \alpha, \ldots, \alpha] \) (for \(i \leq d \) this is of course not a definition, but rather a property of \(\alpha \)), and put \(U_i := \langle u_j \mid j \geq i \rangle \).

The order of \(\alpha \) is then determined as follows:

Let \(v \in \mathbb{Z} \), \(v \geq 0 \) be least possible such that \(d \leq p^v(p-1) \).

Case (1). \(d < p^v(p-1) \): If \(d \mu + s \leq p^v \) then \(O(\alpha) = p^\sigma \), where \(\sigma \) is least possible such that \(p^\sigma \geq d \mu + s \).

Otherwise, \(O(\alpha) = p^{v+k} \) where \(k \geq 1 \) is least possible such that

\[
k \geq \frac{d \mu + s - p^v}{d} .
\]

Case (2). \(d = p^v(p-1) \): If \(d \mu + s < p^{v+1} \), put \(r = d \mu + s \). Otherwise, there exists \(r \in \{p^{v+1}, \ldots, d \mu + s \} \) least possible such that

\[
X := u_2^{(p^{v+1})} \ldots u_{p^{v+1}-2}^{(p^{v+1})} u_{p^{v+1}-1}^{(p^{v+1})} u_{p^{v+1}} \in U_{r+1} .
\]
Then $O(\alpha) = p^{v+k+1}$ where $k \geq 0$ is least possible such that
\[k \geq \frac{d\mu + s - r}{d}. \]

Proof. It is easily verified that α is an automorphism of U, that α has exactly p fixed points, and that α has p-power order. So, U is α-concatenated by Proposition 2.

By an easy inductional argument (on the parameter $d\mu + s$) we see that for all i,
\[u_i^p \equiv u_i^a \mod U_{i+d+1} \quad \text{with } a \neq 0 \quad (p). \]

By induction on k we also see that for all i,
\[u_i^{\alpha^k} = u_i^{(k)} \cdots u_i^{(k-1)} \cdot \]

From these facts we may conclude that
\[u_i^{\sigma^v} \equiv u_i^{b} \mod U_{i+p^\sigma+1} \quad \text{for all } i \text{ and all } \sigma \leq v, \]

since $d > p^\sigma(p-1)$ for $\sigma \leq v$.

Case (1). $d < p^\sigma(p-1)$: By an easy induction on $k \geq 0$ we get
\[u_i^{\sigma^{p+k}} \equiv u_i^{b} \mod U_{i+p^\sigma+kd+1} \]
where $b(k) \neq 0 \quad (p)$. Here we have used the inequality
\[(1-k(p-1))d < p^{v+1} - p^v. \]

Case (2). $d = p^t(p-1)$: With the same technique as in Case (1) we see that
\[X \in U_{p^{v+1}+1}. \]

If $r = d\mu + s$ the statement about the order of α is seen to be true, so we assume that $d\mu + s > p^{v+1}$, and also that $U_{r+1} \neq \{e\}$. Then we may write
\[u_i^{p^{v+1}} \equiv u_i^{b} \mod U_{r+2} \]
where $b \neq 0 \quad (p)$. Letting $(a-1)^{i-1}$ operate on this congruence we obtain
\[u_i^{\sigma^{p+1}} \equiv u_i^{b} \mod U_{i+r+1}. \]

Then, by using the inequality $r + kd < p(r + (k-1)d)$ for $k \geq 1$, we get by induction on $k \geq 1$
\[u_i^{\sigma^{p+k}} \equiv u_i^{b} \mod U_{i+r+(k-1)d+1} \]
for all i with some $b(k) \neq 0 \quad (p)$. □

Remark 1. In Case (1) of Proposition 5 we see that the order of U is bounded above by a function of p and $O(\alpha)$. This fact is easily seen to imply the existence of functions, $s(x,y)$ and $t(x,y)$, such that whenever G is an α-concatenated p-group where $O(\alpha) = p^{k}$ then either $G_{s(p,k)}$ has order less than $t(p,k)$ or $\omega(G_{s(p,k)})$ has form $p^{v}(p-1)$.

This more than indicates that the concatenated p-groups G with $\omega(G)$ of form $p^{v}(p-1)$ play an important role in the study of the derived length of finite, concatenated p-groups. In the sequel we shall get another explanation of this fact.
Definition 2. Let G be an α-concatenated p-group. Let $t \in \mathbb{Z}$, $t \geq 0$. We say that G has degree of commutativity t if

$$[G_i, G_j] \leq G_{i+j+t} \quad \text{for all } i, j \in \mathbb{N}.$$

In the proof of our main theorem, we shall show that if G is a finite, concatenated p-group, then for sufficiently large s the group G_s has high degree of commutativity (in comparison with n if $|G_s| = p^n$). In this connection it will be useful to single out a certain class of finite, concatenated p-groups having ‘straight’ p-power structure.

Definition 3. Suppose that G is a finite, α-concatenated p-group with $\omega(G) = d$.

We say that G is straight if the following conditions are fulfilled:

1. $G_i^p = G_{i+d}$ for all $i \in \mathbb{N}$.
2. $x \in G_r$ and $c \in G_s$ implies $x^{-p}(xc)^p \equiv c^p \mod G_{r+s+d}$, for all $r, s \in \mathbb{N}$.
3. For all $i \in \mathbb{N}$ we have: If gG_{i+1} is a generator of G_i/G_{i+1}, then g^pG_{i+d+1} generates G_{i+d}/G_{i+d+1}.

We now give a criterion for straightness.

Proposition 6. Let G be a finite, α-concatenated p-group with $\omega(G) = d$.

If G is regular, or has degree of commutativity $\geq (d+1)/(p-1) - 1$, then G is straight.

Proof. For the theory of finite, regular p-groups the reader is referred to [3], or [4], pp. 321–335.

Let $|G| = p^{n-1}$. We prove the theorem by induction on n. Thus we may assume that G_2 is straight. Put $\omega(G_2) = d_1$. We may also assume that G does not have exponent p.

(a) We claim that if $r \leq s$, and if $x \in G_r$, $c \in G_s$, then:

$$x^{-p}(xc)^p \equiv c^p \mod G_{r+s}^p G_{r+s+d}.$$

For suppose that G is regular. We then obtain

$$x^{-p}(xc)^p \equiv c^p \mod \gamma_2(<x, c>)^p,$$

and in any case we see, using the Hall-Petrescu formula (see [4], pp. 317–318), that

$$x^{-p}(xc)^p \equiv c^p \mod \gamma_2(<x, c>)^p \gamma_p(<x, c>).$$

Now, $\gamma_2(<x, c>) \leq G_{r+s}$, so if G has degree of commutativity $\geq \frac{d_1+1}{p-1} - 1$ then

$$\gamma_p(<x, c>) \leq G_{s+(p-1)r+(p-1)t}.$$

(b) We claim that $d_1 \geq d$. We may assume $G_{d+2} = \{e\}$ and have to prove that $G_2^p = \{e\}$.

Suppose that $y \in G_i$, where $i \geq 2$. According to Proposition 1 there exists $x \in G_{i-1}$ such that $[x, \alpha] = y$.

Now, $G^p = G_{d+1}^p$: For G^p is an α-invariant, normal subgroup of index p^d. So, by Corollary 1 the claim follows (from now on we will use Corollary 1 without explicit reference).

In particular, $x^p \in G_{d+1}$, whence according to (a),

$$e = [x^p, \alpha] = x^{-p}(x^p)^p = x^{-p}[x, \alpha]^p \equiv [x, \alpha]^p = y^p \mod G_{2i-1}^p G_{2i-1+d}.$$
Now, \(G_{2i-1+d} = \{ e \} \), and since certainly \(d_1 \geq d - 1 \), \(G_{2i-1}^p = \{ e \} \). Hence, \(y^p = e \).

(c) We claim that \(G_i^p \leq G_{i+d} \) for all \(i \in \mathbb{N} \): This is clear from (b) and the inductive hypothesis.

(d) If \(r \leq s \), and if \(x \in G_r \), \(c \in G_s \), then:

\[
x^{-p}(xc)^p \equiv c^p \pmod{G_{r+s+d}}.
\]

This is clear from (a) and (c).

(e) We claim that \(d_1 = d \): We may assume \(G_{d+2} > \{ e \} \). Choose \(g \in G \) such that \(g^p \notin G_{d+2} \). Then

\[
[g^p, \alpha] = g^{-p}(g[\alpha])^p \equiv [g, \alpha]^p \pmod{G_{d+3}}
\]

because of (d). Since \([g^p, \alpha] \notin G_{d+3} \), we have \([g, \alpha]^p \notin G_{d+3} \). Since \([g, \alpha] \in G_2 \), this proves \(d_1 \leq d \).

(f) If \(gG_2 \) generates \(G_1/G_2 \), and if \(x \in G \), we have \(x = g^ay \) for some \(y \in G_2 \).

By (a) we then have

\[
g^{-pa}x^p \equiv y^p \equiv e \pmod{G_{d+2}}.
\]

Since \(G^p = G_{d+1} \), we must then have \(g^p \notin G_{d+2} \). Then \(g^pG_{d+2} \) generates \(G_{d+1}/G_{d+2} \).

We shall be needing some information about \(\omega(G) \) in case \(G \) is a concatenated \(p \)-group, and in particular in case \(G \) is a straight concatenated \(p \)-group. First we need some lemmas.

Lemma 1. Let \(i \in \mathbb{N} \). Suppose that \(\sigma \in \{0, \ldots, 2^i - 1\} \). For \(s \in \{0, \ldots, 2^i - 1\} \), we let \(\mu_{\sigma,s} \) be the integer determined by the conditions

\[
\mu_{\sigma,s} + s \equiv \sigma \pmod{2^i} \quad \text{and} \quad \mu_{\sigma,s} \in \{0, \ldots, 2^i - 1\}.
\]

Then the integer

\[
\nu := 2 \left(\frac{2^i - 1}{\sigma} \right) + \sum_{s=1}^{2^i-1} \left(\frac{2^i}{s} \right) \left(\frac{2^i - 1}{\mu_{\sigma,s}} \right)
\]

is divisible by 4.

Proof. Suppose that \(s \in \{0, \ldots, 2^i - 1\} \) and that \(\left(\frac{2^i}{s} \right) \) is not divisible by 4. Now,

\[
\left(\frac{2^i}{s} \right) = \left(\frac{2^i - 1}{s} \right) + \left(\frac{2^i - 1}{s-1} \right) = \left(\frac{2^i - 1}{s-1} \right) \left(1 + \frac{2^i - s}{s-1} \right) = \left(\frac{2^i - 1}{s-1} \right) \frac{2^i}{s},
\]

hence \(2^i \mid s \), and so \(s = 2^i - 1 \). We conclude that \(\nu \) differs from

\[
2 \left(\frac{2^i - 1}{\sigma} \right) + 2 \left(\frac{2^i - 1}{2^i - 1} \right) \left(\frac{2^i - 1}{\mu_{\sigma,2i-1}} \right)
\]

by a multiple of 4.

Now, the integer

\[
\left(\frac{2^i - 1}{\sigma} \right) + \left(\frac{2^i - 1}{2^i - 1} \right) \left(\mu_{\sigma,2^i-1} \right)
\]

is even for the following reasons: We have

\[
\left(\frac{2^i - 1}{\mu_{\sigma,2i-1}} \right) = \begin{cases}
\left(\frac{2^i - 1}{\sigma - 2i - 1} \right) & \text{for } \sigma \geq 2i - 1 \\
\left(\frac{2^i - 1}{\sigma + 2i - 1} \right) & \text{for } \sigma < 2i - 1
\end{cases}
\]
and from well-known facts concerning the 2-powers dividing \(n! \) for \(n \in \mathbb{N} \), we see that
\[
\binom{2^i - 1}{\mu_{\sigma, 2^i - 1}}
\]
is divisible by exactly the same powers of 2 as is \(\binom{2^i - 1}{\sigma} \), and also that
\[
\binom{2^i - 1}{2^i - 1 - 1}
\]
is odd.

\[\Box\]

Lemma 2. Let \(F \) be the free group on free generators \(x \) and \(y \). Let \(p \) be a prime number and let \(n \) be a natural number. Then,
\[
x^{p^n} y^{p^n} = (xy)^{p^n} c_{p^n} ... c_{p^n},
\]
where \(c \in \gamma_2(F)^{p^n} \) and \(c_{p^i} \in \gamma_{p^i}(F)^{p^{n-i}} \) for \(i = 1, \ldots, n \).

Each \(c_{p^i} \) has form
\[
\prod_{j=1}^{p^i-1} v_{p^i}^{b_{p^i}^{p^i-j}} \mod \gamma_{p^i+1}(F)^{p^{n-i}} \gamma_{p^i+2}(F)^{p^{n-i-2}} \gamma_{p^i}(F)^{p^n},
\]
for certain integers \(a_i \) and \(b_{p^i} \), and certain group elements \(v_{p^i} \) which each has form:
\[
v_{p^i} = [y, z_1, \ldots, z_{p^i-1}]
\]
with \(z_k \in \{x, y\} \), and \(z_k = y \) for at least one \(k \) (in each \(v_{p^i} \)).

Furthermore, \(a_i \equiv -1 \) \(\pmod{p} \) for \(i = 1, \ldots, n \).

Proof. Let \(i \in \{1, \ldots, n\} \). If \(u, v \in \gamma_{p^i}(F) \) then the Hall-Petrescu formula ([4], pp. 317–318) implies
\[
(uv)^{p^n-i} \equiv u^{p^n-i} v^{p^n-i} \mod \gamma_{p^i+1}(F)^{p^{n-i}} \gamma_{p^i+2}(F)^{p^{n-i-2}} \gamma_{p^i}(F)^{p^n},
\]
From this, and from standard, elementary facts concerning commutators the result follows immediately from the Hall-Petrescu formula, except for the fact that \(a_i \equiv -1 \) \(\pmod{p} \) for \(i = 1, \ldots, n \).

Consider the abelian \(p \)-group \(U \) of type
\[
\left(p^{n-i+1}, \ldots, p^{n-i+1} \right)
\]
with basis \(u_1, \ldots, u_{p^i} \), and let \(G \) be the semidirect product \(G = U < \alpha > \) where \(\alpha \) is the automorphism of \(U \) given by
\[
u_{p^i}^a = u_{j+1}, \quad j = 1, \ldots, p^i - 1, \quad \text{and} \quad u_{p^i}^a = u_1.
\]
Then \(\alpha \) has order \(p^i \). Put \(u_s = u_r \) if \(r, s \in \mathbb{N}, r \in \{1, \ldots, p^i\} \), and \(s \equiv r \pmod{p} \).
Then for \(r = 1, \ldots, p^i \) we have
\[
[u_r, u_{p^i}, \ldots, u_{p^i}] = u_r^{(-1)^{p^i-1}} u_{r+1}^{(-1)^{p^i-2}(p^i-1)} \cdots u_{r+p^i-1}
\]
and

\[
[u_r, \alpha, \ldots, \alpha] = u_r^{1+(-1)^{p^i}} \cdot u_{r+1}^{(-1)^{p^i-1}(p^i)} \cdots u_{r+p^i-1}^{(-1)(p^i)}.
\]

Thus, \(\gamma_{p^i+1}(G) \leq U^p \). Using the same argument with \(u_r \) replaced by \(u_r^{p^i} \) we deduce

\[
\gamma_{sp^i+1}(G) \leq U^{sp^i} \quad \text{for } s \in \mathbb{N}.
\]

Since \(sp^i + 1 \leq p^{i+s-1} \) for \(s \geq 2 \) except when \(p = 2 \) and \(s = 2 \), we conclude that

\[
(\ast \ast \ast) \quad \gamma_{p^i+s-1}(G)^{p^{n-(i+s-1)}} = \{e\} \quad \text{for } s \geq 2,
\]

except possibly when \(p = 2 \) and \(s = 2 \).

If \(p = 2 \) we use (\ast) and (\ast\ast) to conclude that

\[
[u_r, \alpha, \ldots, \alpha] = \prod_{\sigma=0}^{2^i-1} u_{r+\sigma}^{b(r,\sigma)}
\]

where

\[
b(r, \sigma) = (-1)^{\sigma+1} \left(2^i \binom{2^i-1}{\sigma} + \sum_{s=1}^{2^i-1} \binom{2^i}{s} \binom{2^i-1}{\mu_{\sigma,s}} \right)
\]

with \(\mu_{\sigma,s} \) determined by

\[
\mu_{\sigma,s} \in \{0, \ldots, 2^i-1\} \quad \mu_{\sigma,s} + s = \sigma \cdot (2^i).
\]

Using Lemma 1, we then see that (\ast\ast \ast) is true also in the case \(p = 2 \) and \(s = 2 \).

Now we compute

\[
x := (\alpha u_1)^p n (\alpha u_1^{-1}) \cdots (\alpha u_n^{-1} u_1^{-1}) \cdots (\alpha u_n^{-1} u_1) = (u_1 \cdots u_p)^{p^{n-i}}.
\]

Using the results obtained this far we conclude

\[
e = \alpha^{p^n} u_1^{p^n} = xc_{p^i} = x[u_1, \alpha, \ldots, \alpha]^{a_i} u_1^{p^{n-i}}
\]

\[
= \left((u_1 \cdots u_p)(u_1^{(-1)p^{i-1}} \cdots u_2^{(-1)p^{i-2}(p^i)} \cdots u_1) a_i \right)^{p^{n-i}}
\]

which gives \(a_i \equiv -1 \pmod{p} \). \(\square \)

Theorem 1. Suppose that \(G \) is an \(\alpha \)-concatenated \(p \)-group of order \(p^{n-1} \) where \(O(\alpha) = p^k \).

If \(G \) centralizes \(G_i/G_{i+2} \) for \(i = 1, \ldots, p^k \), and if \(n \geq p^k + 2 \), then \(\omega(G) \leq p^k - 1 \).

Proof. Put \(d := \omega(G) \). The element \(\alpha g_1 \) belonging to the semidirect product \(H = G < \alpha > \) has the property that \(\alpha g_1 \notin C_H(G_i/G_{i+2}) \) for \(i = 2, \ldots, p^k \). Since \((\alpha g_1)^{p^k} \) is an element of \(G_2 \) (confer Lemma 2 for instance) that commutes with \(\alpha g_1 \), we must have

\[
(\alpha g_1)^{p^k} \in G_{p^k+1}.
\]
Now assume that \(d \geq p^k\). Then \(G^p_1 \leq G_{p^{k+1}}\). By Lemma 2 we then deduce (note that \(\gamma_i(H) = G_i\) for \(i \geq 2\))

\[
eq \alpha g^p_k v_1 = (\alpha g_1)^p k \equiv c \mod G_{p^{k+1}},
\]

where \(c\) has form

\[
c \\equiv [g_1, \alpha, \ldots, \alpha]^{-1} \prod_{\mu} v_{\mu} \mod G_{p^{k+1}},
\]

with each \(v_{\mu}\) of the form \([g_1, z_1, \ldots, z_{p^k-1}]\), where \(z_j \in \{\alpha, g_1\}\) and \(z_j = g_1\) for at least one \(j\) (in each \(v_{\mu}\)). Since \(g_1 \in C_H(G_i/G_{i+2})\) for \(i = 2, \ldots, p^k\), we deduce \(v_{\mu} \in G_{p^{k+1}}\) for all \(\mu\). But then

\[
c \equiv [g_1, \alpha, \ldots, \alpha]^{-1} \not\equiv e \mod G_{p^{k+1}},
\]

a contradiction. \(\square\)

Corollary 2. Let \(G\) be an \(\alpha\)-concatenated \(p\)-group where \(O(\alpha) = p^k\). Then \(G_{1+(1+\ldots+p^{k-1})}\) is a straight \(\alpha\)-concatenated \(p\)-group.

Proof. Put \(s = 1 + (1 + \ldots + p^{k-1})\). According to Theorem 1, either \(G_s\) has exponent \(p\) or \(\omega(G_s) \leq p^k - 1\). If \(G_s\) has exponent then \(G_s\) is trivially straight. Assume then that \(\omega(G_s) \leq p^k - 1\). As \(G_s\) has degree of commutativity at least

\[
s - 1 = (1 + \ldots + p^{k-1}) = \frac{p^k - 1}{p - 1} \geq \frac{p^k - p + 1}{p - 1} = \frac{p^k}{p - 1} - 1 \geq \frac{\omega(G_s) + 1}{p - 1} - 1,
\]

the statement now follows from Proposition 6. \(\square\)

Theorem 2. Let \(G\) be an \(\alpha\)-concatenated \(p\)-group of order \(p^{n-1}\), where \(O(\alpha) = p^k\). Suppose further that \(G\) is straight, that \(n \geq p^k + 2\), and that \(G\) centralizes \(G_i/G_{i+2}\) for \(i = 2, \ldots, p^k\).

Then \(\omega(G) = p^v(p - 1)\) for some \(v \in \{0, \ldots, k - 1\}\).

Proof. We wish to perform certain calculations in the semidirect product \(G < \alpha >\).

By the same argument as in the proof of Theorem 1 we see that the element \(\alpha g_1\) satisfies

\[
(\alpha g_1)^p k \in G_{p^{k+1}}.
\]

Put \(d := \omega(G)\). Assume that the minimum \(\min \{p^i + (k - i) \mid i = 0, \ldots, k\}\) is attained for exactly one value of \(i\), say for \(i = i_0 \in \{0, \ldots, k\}\). Put \(s = p^{i_0} + (k - i_0)d\). Consider

\[
\alpha^p g^p_k = (\alpha g_1)^p k c_{p^0} \cdots c_{p^k},
\]

where the \(c_i\)'s have the shapes given in Lemma 2. Notice that \(c_j \in G_{p^j + (k-j)d}\) and that \(c \in G_{2 + kd} \leq G_{s+1}\).

Suppose that \(i_0 = 0\): Then \(s = kd\), and we deduce \(G_{s+1} \not\equiv g^p_{s+1} \equiv e \mod G_{s+1}\), a contradiction.

Suppose then that \(i_0 > 0\): Here we get \(e \equiv g^p_{s+1} \equiv c_{p^{i_0}} \mod G_{s+1}\), and

\[
c_{p^{i_0}} = [g_1, \alpha, \ldots, \alpha]^{-p^{-i_0}} \equiv g^{-p^{-i_0}} \mod G_{s+1},
\]
but we have
\[g_{p^{k-1_0}}^G \notin G_{s+1}, \]
a contradiction.

Consequently the minimum \(\min\{p^i + (k - i) \mid i = 0, \ldots, k\} \) is attained for two different values of \(i \), say for \(i = i_1 \), and for \(i = i_2 > i_1 \). Analyzing the function \(p^x + (k - x)d \) for \(0 \leq x \leq k \) we deduce \(|i_1 - i_2| = 1 \), whence \(d = p^{i_1}(p - 1) \).

Our further investigations will concentrate on the analysis of certain invariants that will now be introduced.

Definition 4. Suppose that \(G \) is an \(\alpha \)-concatenated \(p \)-group and that \(G \) has degree of commutativity \(t \). Then we define the integers \(a_{i,j} \) modulo \(p \) for \(i, j \in \mathbb{N} \) thus: If \(G_{i+j+t} = \{e\} \), we put \(a_{i,j} = 0 \). Otherwise, we let \(a_{i,j} \) be the unique integer modulo \(p \) determined by the condition:
\[[g_i, g_j] \equiv g_{i+j+t}^{a_{i,j}} \mod G_{i+j+t+1}. \]

We refer to the \(a_{i,j} \) as the invariants of \(G \) with respect to degree of commutativity \(t \). The \(a_{i,j} \) depend on the choice of the \(g_i \), but choosing a different system of \(g_i \)'s merely multiplies all the invariants with a certain constant incongruent to 0 modulo \(p \).

Proposition 7. Let \(G \) be a finite, \(\alpha \)-concatenated \(p \)-group of order \(p^n \). Suppose that \(G \) has degree of commutativity \(t \) and let \(a_{i,j} \) be the associated invariants. Then we have the following.

1. \(a_{i,j}a_{k,i+j+t} + a_{j,k}a_{i,j+k+t} + a_{k,i}a_{j,k+i+t} \equiv 0 \mod p \) for \(i + j + k + 2t + 1 \leq n \).
2. \(a_{i,j} \equiv a_{i+1,j} + a_{i,j+1} \mod p \) for \(i + j + t + 2 \leq n \).
3. If \(i_0 \in \mathbb{N} \) then we have for \(i, j \geq i_0 \):
 \[a_{i,j} \equiv \sum_{s=0}^{i-i_0} (-1)^s \binom{i-i_0}{s} a_{i_0,j+s} \mod p \] if \(i + j + t + 1 \leq n \).
4. For \(r \in \mathbb{N} \) we have
 \[a_{i,i+r} \equiv \sum_{s=1}^{\lceil (r+1)/2 \rceil} (-1)^{s-1} \binom{r-s}{s-1} a_{i+s-1,i+s} \mod p \] if \(2i + r + t + 1 \leq n \).

Proof. We shall make use of Witt’s Identity
\[(a, b^{-1}, c)[b, c^{-1}, a]c[a, a^{-1}, b]^a = e \]
for elements \(a, b, \) and \(c \) in a group.

1. Considering \((*) \) modulo \(G_{i+j+k+2t+1} \) with \(a = g_i, b = g_j, \) and \(c = g_k \) gives us the congruence
 \[g_{i+j+k+2t}^{-a_{i,j}a_{i+1,j+k}a_{j+k+i,s}a_{k,i}a_{k+i+t,j}} \equiv e \mod G_{i+j+k+2t+1}. \]
 But if \(i + j + k + 2t + 1 \leq n \) then \(g_{i+j+k+2t} \neq e \), and the claim follows.
2. Considering \((*) \) modulo \(G_{i+j+t+2} \) with \(a = g_i, b = a^{-1}, \) and \(c = g_kj \) gives us the congruence
 \[g_{i+j+t+1}^{-a_{i,j}a_{i+1,j}a_{i,j+1}^2} \equiv e \mod G_{i+j+t+2} . \]
But if \(i + j + t + 2 \leq n \), then \(g_{i+j+t+1} \neq e \), and the claim follows.

(3). Using (2) this follows easily by induction on \(i - i_0 \).

(4). Using (2) this follows easily by induction on \(r \).

The next proposition reveals part of the purpose of the introduction of the idea of straight, concatenated \(p \)-groups.

Proposition 8. Let \(G \) be an \(\alpha \)-concatenated \(p \)-group of order \(p^{n-1} \). Suppose that \(G \) is straight and put \(d = \omega(G) \). Let \(a_{i,j} \) be \(G \)'s invariants with respect to a given degree of commutativity \(t \). Then for all \(i, j \) we have

\[
i + j + d + t + 1 \leq n \Rightarrow (a_{i,j} \equiv a_{i+d,j} \mod (p)) .
\]

Proof. If \(G_{i+d} \neq \{ e \} \), we have

\[
g_i^p \equiv g_{i+d} \mod G_{i+d+1} ,
\]

with \(b_i \neq 0 \) \((p) \).

Suppose that \(i \in \mathbb{N} \) with \(G_{i+1+1} \neq \{ e \} \). Then \(g_i^p+1 = ([g_i, \alpha])p \) for some \(y \in G_{i+2} \). Then (by Lemma 2)

\[
[g_i, \alpha]^{-1} g_i^p \equiv y^p \mod G_{2i+3+d} ,
\]

so

\[
g_i^{b_i+1} \equiv g_i^p \equiv [g_i, \alpha]^p \equiv g_i^{-1}(g_i[\alpha])^p \equiv g_i^{-1} \mod G_{i+d+2} ,
\]

and since \(g_{i+d+1} \neq e \), we deduce \(b_{i+1} = b_i \) \((p) \).

If \(i + j + d + t + 1 \leq n \) we get

\[
g_{i+j+d+t}^{b_i+a_{i+j}} \equiv [g_i, g_j]^p \equiv g_i^{-1}(g_i[\alpha])^p \equiv g_i^{-1} \mod G_{i+j+d+t+1} ,
\]

and so \(a_{i+d,j} \equiv a_{i,j} \) \((p) \).

For straight, concatenated \(p \)-groups we have a stronger version of Proposition 7.

Proposition 9. Let \(G \) be a straight, \(\alpha \)-concatenated \(p \)-group of order \(p^{n-1} \) and with \(\omega(G) = p^r(p-1) \). Suppose that \(G \) has degree of commutativity \(t \) and let \(a_{i,j} \) be the associated invariants. Suppose that \(s \in \mathbb{N} \) is such that \(s + t \equiv 0 \) \((p^n) \) and define \(a_{i,j}^{(r)} \) for \(r = 0, \ldots , v \) and \(i, j \in \mathbb{Z} \) such that \(s + ip^r, s + jp^r \geq 1 \) by

\[
a_{i,j}^{(r)} = a_{s+ip^r,s+jp^r} .
\]

Put \(t(r) = (s + t)p^{-r} \) for \(r = 0, \ldots , v \).

(1) Then for \(r = 0, \ldots , v \) we have the following congruences

\[
a_{i,j}^{(r)} a_{k,i+j+t(r)} + a_{j,k}^{(r)} a_{i,j+k+t(r)} + a_{k,i}^{(r)} a_{j,k+i+t(r)} \equiv 0 \mod (p)
\]

for \(3s + 2t + (i + j + k)p^r + 1 \leq n \).

(2) \(a_{i,j}^{(r)} a_{i,j+p^r(p-1)} \equiv a_{i,j}^{(r)} \mod (2s + t + (i + j)p^r + p^n(p-1) + 1 \leq n .

(3) \(a_{i,j}^{(r)} \equiv a_{i,j+1}^{(r)} + a_{i,j+1}^{(r)} \mod (2s + t + (i + j + 1)p^r + 1 \leq n .

(4) If \(i_0 \in \mathbb{N} \) then for \(i, j \geq i_0 \) and \(2s + t + (i + j)p^r + 1 \leq n \) we have:

\[
a_{i,j}^{(r)} \equiv \sum_{h=0}^{i-i_0} (-1)^h \binom{i-i_0}{h} a_{i_0,j+h}^{(r)} \mod (p)
\].
For \(w \in \mathbb{N} \) and \(2s + (2i + w)p^r + t + 1 \leq n \),
\[
a_{i,i+w}^{(r)} = \sum_{h=1}^{\lceil w+1/2 \rceil} (-1)^{h-1} \binom{w-h}{h-1} a_{i+h-1,i+h}^{(r)} (p) .
\]

Proof. (1). Using Proposition 7 this follows immediately from the definitions.

(2). Using Proposition 8 this follows immediately from the definitions.

(3). Let \(r \in \{0, \ldots, v\} \) and let \(i \in \mathbb{N} \). We first claim that
\[
[g_i, \alpha^{p^r}] \equiv g_{i+p^r} \mod G_{i+p^r+1}.
\]
To see this we write, in accordance with Lemma 2,
\[
\alpha^{p^r} [\alpha^{p^r}, g_i] = (\alpha[\alpha, g_i])^{p^r} = \alpha^{p^r} [\alpha, g_i]^{p^r} c_{p^r} \cdots c_{p^r}
\]
where, with \(U := \langle \alpha, [\alpha, g_i] \rangle \) (a subgroup of the semidirect product \(G < \alpha \)),
\[
c \in \gamma_2(U)^{p^r}, \quad c_{p^r} \in \gamma_2(U)^{p^r-\mu}, \quad \mu = 1, \ldots, r ,
\]
and
\[
c_{p^r} \equiv [g_i, \alpha, \ldots, \alpha]^{-1} \equiv g_{i+p^r}^{-1} \mod G_{i+p^r+1}.
\]
Furthermore, since \(r \leq v \), we have
\[
G_{i+1}^{p^r} \leq G_{i+p^r+1} \quad \text{and} \quad \gamma_{p^r}(U)^{p^r-\mu} \leq G_{i+p^r+(r-\mu)d} \leq G_{i+p^r+1}
\]
for \(\mu = 1, \ldots, r-1 \). The claim follows from this.

Now suppose that \(i, j \in \mathbb{Z} \) such that \(s + ip^r, s + jp^r \geq 1 \) and \(z := 2s + t + (i + j + 1)p^r + 1 \leq n \). Then by considering Witt’s Identity
\[
[a, b^{-1}, c]^{b}[h, c^{-1}, a]^{c}[c, a^{-1}, b]^{a} = e
\]
modulo \(G_z \) with
\[
a = g_{s+ip^r}, \quad b = \alpha^{-p^r}, \quad \text{and} \quad c = g_{s+jp^r},
\]
and noting that \(g_{z-1} \neq e \), the result follows.

(4), (5): Using (3) these statements follow by easy inductions. \(\square \)

5.

We are now ready to prove the main theorems. First a simple lemma.

Lemma 3. Let \(n, t, \) and \(d \) be natural numbers. Suppose that we are given integers \(a_{i,j} \) modulo \(p \), defined for \(i + j + t + 1 \leq n \). Suppose further that these integers satisfy the following relations:
\[
\begin{align*}
a_{i,j} & \equiv -a_{j,i} \pmod{p} \quad \text{for } i + j + t + 1 \leq n , \\
a_{i,i} & \equiv 0 \pmod{p} \quad \text{for } 2i + t + 1 \leq n , \\
a_{i,j} & \equiv a_{i+1,j} + a_{i,j+1} \pmod{p} \quad \text{for } i + j + t + 2 \leq n , \\
a_{i+d,j} & \equiv a_{i,j} \pmod{p} \quad \text{for } i + j + d + t + 1 \leq n .
\end{align*}
\]

Then the existence of a natural number \(s \) such that \(2s + d + t \leq n \) and \(a_{s+h,s+h+1} \equiv 0 \pmod{p} \) for \(h = 0, \ldots, \lceil \frac{d}{2} \rceil - 1 \) implies \(a_{i,j} \equiv 0 \pmod{p} \) for all \(i, j \).
Proof. As in the proof of Proposition 7 we see that

\[a_{r+r} \equiv \sum_{h=1}^{[r+1]/2} (-1)^{r-h-1} \binom{r-h}{h-1} a_{r+h-1} \pmod{p} \quad \text{if } 2i + r + t + 1 \leq n \]

and

\[a_{i,j} \equiv \sum_{h=0}^{i-i_0} (-1)^{i-i_0} \binom{i-i_0}{h} a_{i_0,j+h} \pmod{p} \quad \text{if } i + j + t + 1 \leq n \text{ and } i, j \geq i_0. \]

(a) We have \(a_{s,s+j} \equiv 0 \pmod{p} \) for \(j \geq 0 \) and \(2s + j + t + 1 \leq n \): This is clear from (*).

(b) \(a_{i,j} \equiv 0 \pmod{p} \) for \(i, j \geq s \) and \(i + j + t + 1 \leq n \): This is clear from (**) and (a).

(c) Suppose that \(\sigma \in \mathbb{N} \) and \(a_{i,j} \equiv 0 \pmod{p} \) for \(i + j + t + 1 \leq n \) and \(i, j > \sigma - 1 \). Then

\[a_{s-\sigma,s+1-s-\sigma+1} \equiv -a_{s-\sigma+1,s-\sigma+1} \pmod{p} \]

whence

\[a_{i,j} \equiv 0 \pmod{p} \quad \text{for } i + j + t + 1 \leq n \text{ and } i, j \geq s - 1. \]

We conclude that \(a_{i,j} \equiv 0 \pmod{p} \) for all \(i, j \).

\[\square \]

Theorem 3. Let \(p \) be an odd prime number and let \(G \) be a straight, concatenated \(p \)-group of order \(p^{v-1} \) and with \(\omega(G) = p^v(p-1) \).

1. If \(n \geq 4p^{v+1} - 2p^v + 1 \) then \(G \) has degree of commutativity

\[\left[\frac{1}{2} (n - 4p^{v+1} + 2p^v + 1) \right] \]

2. If \(n \geq 4p^{v+1} - 2p^v + 1 \) then \(c(G) \leq 2p^{v+1} - p^v \).

3. \(c(G) \leq 4p^{v+1} - 2p^v - 2 \).

4. If \(n \leq 12p^{v+1} - 6p^v - 10 \) then \(c(G) \leq 3 \).

Proof. (1): Assume \(n \geq 4p^{v+1} - 2p^v + 1 \). Suppose that \(G \) has degree of commutativity \(t \), where \(t \leq \frac{1}{2} (n - 4p^{v+1} + 2p^v - 1) \). Let \(a_{i,j} \) be the associated invariants. We must show that \(a_{i,j} \equiv 0 \pmod{p} \) for all \(i, j \).

Let \(i_0 \in \{1, \ldots, p^v(p-1)\} \) be determined by the condition \(i_0 + t \equiv 0 \pmod{p^v(p-1)} \).

For \(r = 0, \ldots, v \) and \(i, j \in \mathbb{Z} \) such that \(i_0 + ip^r \), \(i_0 + jp^r \geq 1 \) we let \(a_{i,j}^{(r)} \) be the integers modulo \(p \) introduced in Proposition 9 (with \(i_0 = s \)).

We show by induction on \(v - r \) that if \(r \in \{0, \ldots, v\} \) then \(a_{i,j}^{(r)} \equiv 0 \pmod{p} \) for all \(i, j \).

So we suppose that \(r \in \{0, \ldots, v\} \) is given and that \(a_{i,j}^{(r)} \equiv 0 \pmod{p} \) for all \(i, j \) whenever \(r \in \{0, \ldots, v\} \) and \(r > r \).

By Proposition 9, (1), (2), we have the congruence

\[a_{i,j}^{(r)} a_{k,i+j}^{(r)} + a_{j,k}^{(r)} a_{i,j+k}^{(r)} + a_{k,i}^{(r)} a_{j,k+i}^{(r)} \equiv 0 \pmod{p} \]

when \(3i_0 + 2t + (i + j + k)p^r + 1 \leq n \). So, we may substitute \((i, j, k) = (1, 2, 2s - 1) \) for \(2 \leq s \leq \frac{1}{2} (p-1) \) in (*). If now \(2 \leq s \leq \frac{1}{2} (p-1) \), and if we have proved
Lemma 3 (with \(a \)). Let \(1 \leq s < t \leq n \) and the inductional hypothesis. Then

\[
\begin{align*}
a_{2s-1,3}^{(r)} &\equiv -a_{3,2s-1}^{(r)} \equiv (-1)^s \left(\begin{array}{c} s-2 \\ s-3 \end{array} \right) a_{s,s+1}^{(r)} \quad (p), \\
a_{2s-1,2}^{(r)} &\equiv (-1)^s a_{s,s+1}^{(r)} \quad (p), \\
a_{1,2s+1}^{(r)} &\equiv a_{1,2}^{(r)} + (-1)^s \left(\begin{array}{c} s \\ s-1 \end{array} \right) a_{s,s+1}^{(r)} \quad (p), \\
a_{2s-1,s}^{(r)} &\equiv -a_{2,2s-1}^{(r)} \equiv -a_{1,2}^{(r)} \quad (p), \\
a_{2,2s}^{(r)} &\equiv (-1)^s \left(\begin{array}{c} s-1 \\ s-2 \end{array} \right) a_{s,s+1}^{(r)} \quad (p),
\end{align*}
\]

where \(a_{2s-1,3}^{(r)} \) should be interpreted as 0 if \(s = 2 \). Combining these congruences with \((*)\) for \((i,j,k) = (1,2,2s-1)\) we obtain

\[
s(a_{s,s+1}^{(r)})^2 \equiv 0 \quad (p).
\]

So we may conclude that \(a_{s,s+1}^{(r)} \equiv 0 \quad (p) \) for \(s = 2, \ldots, \frac{1}{2}(p-1) \). As \(2i_0 + t + p^{v+1} + 1 \leq n \), we can then use Proposition 9, (5), to deduce:

\[
(*) \quad a_{0,p}^{(r)} \equiv a_{0,1}^{(r)} + 2a_{1,2}^{(r)} \quad (p).
\]

If now \(r = u \), then \(a_{0,p}^{(r)} = a_{0,1}^{(r)} \quad (p) \) according to Proposition 9, (2). Since \(p \) is odd, \((*)\) then gives \(a_{1,2}^{(r)} \equiv 0 \quad (p) \). So, \(a_{s,s+1}^{(r)} \equiv 0 \quad (p) \) for \(s = 1, \ldots, \frac{1}{2}(p-1) \). Then Lemma 3 (with \(d = p-1 \)) implies \(a_{i,j}^{(r)} \equiv 0 \quad (p) \) for all \(i,j \).

So assume then that \(r < u \). Then \(a_{0,p}^{(r)} \equiv a_{0,1}^{(r+1)} \equiv 0 \quad (p) \) by definition of these numbers and the inductional hypothesis. Then \((*)\) reads:

\[
a_{0,1}^{(r)} + 2a_{1,2}^{(r)} \equiv 0 \quad (p).
\]

On the other hand, considering \((*)\) with \((i,j,k) = (0,1,3)\) gives us:

\[
a_{1,2}^{(r)}(a_{0,1}^{(r)} + a_{1,2}^{(r)}) \equiv 0 \quad (p),
\]

because \(a_{1,3}^{(r)} \equiv a_{1,2}^{(r)} \quad (p), a_{0,3}^{(r)} \equiv a_{0,1}^{(r)} - a_{1,2}^{(r)} \quad (p), \) and \(a_{0,4}^{(r)} \equiv a_{0,1}^{(r)} - 2a_{1,2}^{(r)} \quad (p) \), again by Proposition 9, (5). So, if \(a_{1,2}^{(r)} \neq 0 \quad (p) \) we would deduce \(a_{0,1}^{(r)} \equiv a_{1,2}^{(r)} \equiv 0 \quad (p) \), a contradiction. Hence, \(a_{1,2}^{(r)} \equiv 0 \quad (p) \), and so \(a_{0,1}^{(r)} \equiv 0 \quad (p) \) (again because \(p \) is odd).

Now we substitute \((i,j,k) = (0,1,2s)\) in \((*)\) for \(s = 1, \ldots, \frac{1}{2}p^{v-r}(p-1)-1 \).

If \(2 \leq s \leq \frac{1}{2}p^{v-r}(p-1)-1 \), and if we have already proved \(a_{s,s+1}^{(r)} \equiv 0 \quad (p) \) for \(1 \leq \sigma < s \), we use again Proposition 9, (5), as above to obtain the congruence:

\[
(-1)^{s+1} \left(\frac{2s-1}{s-1} \right)(\frac{2s+1}{s+1})(\frac{2s}{s})a_{s,s+1}^{(r)} \equiv 0 \quad (p).
\]

We conclude that \(a_{s,s+1}^{(r)} \equiv 0 \quad (p) \) for \(s = 1, \ldots, \frac{1}{2}p^{v-r}(p-1)-1 \), and hence for \(s = 0, \ldots, \frac{1}{2}p^{v-r}(p-1)-1 \). Noticing that \(2i_0 + t + p^{v-r}(p-1)+1 \leq n \) we can again use Lemma 3 to deduce that \(a_{i,j}^{(r)} \equiv 0 \quad (p) \) for all \(i,j \). This concludes the induction step.
So, we have \(a_{i,j}^{(0)} \equiv 0 \ (p) \) for all \(i, j \), and hence \(a_{i,j} \equiv 0 \ (p) \) for all \(i, j \), as desired.

(2) Put \(f(v) = 4p^{v+1} - 2p^v - 1 \). Suppose that \(n \geq 4p^{v+1} - 2p^v + 1 \) and that \(n \) is odd. By (1) \(G \) has degree of commutativity \(\frac{1}{2}(n - f(v)) \). Then,

\[
\gamma_k(G) = \{e\} \quad \text{if} \quad k \geq \frac{3n - f(v) - 2}{n - f(v) + 2}
\]

However,

\[
\frac{3n - f(v) - 2}{n - f(v) + 2} \leq 1 + \frac{1}{2}(f(v) + 1) = 1 + (2p^{v+1} - p^v),
\]

when \(n \geq f(u) + 2 \).

If \(n \geq 4p^{v+1} - 2p^v + 2 \) and \(n \) is even, we see in a similar way that \(\gamma_k(G) = \{e\} \) if \(k = 2p^{v+1} - p^v + 1 \).

(3) If \(n \leq 4p^{v+1} - 2p^v \) then \(c(G) \leq 4p^{v+1} - 2p^v - 2 \). Since

\[
4p^{v+1} - 2p^v - 2 \geq 2p^{v+1} - p^v,
\]

the statement then follows from (2).

(4) \(n \geq 4p^{v+1} - 2p^v + 1 \) and

\[
4 \geq \frac{3n - f(v) - 3}{n - f(v) + 1}
\]

where \(f(u) := 4p^{v+1} - 2p^v - 1 \) then we deduce along lines similar to the above reasoning that \(c(G) \leq 3 \). But the second inequality holds for \(n \geq 12p^{v+1} - 6p^v - 10 \), and it is clear that

\[
12p^{v+1} - 6p^v - 10 \geq n \geq 4p^{v+1} - 2p^v + 1.
\]

The desired conclusion follows.

Theorem 4. There exist functions of two variables, \(u(x, y) \) and \(v(x, y) \), such that whenever \(p \) is an odd prime number, \(k \) is a natural number and \(G \) is a finite \(p \)-group possessing an automorphism of order \(p^k \) having exactly \(p \) fixed points, then \(G \) has a normal subgroup of index less than \(u(p, k) \) and of class less than \(v(p, k) \).

Thus there exists a function of two variables, \(f(x, y) \), such that whenever \(p \) is an odd prime number, \(k \) is a natural number and \(G \) is a finite \(p \)-group possessing an automorphism of order \(p^k \) having exactly \(p \) fixed points, then the derived length of \(G \) is less than \(f(p, k) \).

Proof. The first statement follows immediately from Proposition 6, Theorem 1, Theorem 2, and Theorem 3. The second statement follows trivially from the first.

\[
\square
\]

References
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COPENHAGEN, UNIVERSITETSARKEN 5, DK-2100 COPENHAGEN Ø, DENMARK.

E-mail address: kiming@math.ku.dk