STRUCTURE AND DERIVED LENGTH OF FINITE p-GROUPS
POSSESSING AN AUTOMORPHISM OF p-POWER ORDER
HAVING EXACTLY p FIXED POINTS.

IAN KIMING

1. INTRODUCTION.

Everywhere in this paper p denotes a prime number.

In [1] Alperin showed that the derived length of a finite p-group possessing an
automorphism of order p and having exactly p” fixed points is bounded above by
a function of the parameters p and n.

The purpose of this paper is to prove the same type of theorem for the derived
length of a finite p-group possessing an automorphism of order p™ having exactly p
fixed points. However, we will restrict ourselves to the case where p is odd.

A strong motivation for the consideration of this class of finite p-groups is induced
by the fact that the theory of these groups is strongly similar to certain aspects of
the theory of finite p-groups of maximal class. For the theory of finite p-groups of
maximal class the reader may consult [2] or [4], pp. 361-377.

In section 3 we derive a more useful description of the groups in question and
we show that the theory of these objects is similar to the theory of finite p-groups
of maximal class. We illustrate the ideas in abelian p-groups.

In section 4 we study p-power and commutator structure.

Based on the results of section 4 we prove the main theorems in section 5. The
method leading to the proof of our main theorems does not resemble Alperin’s
method. Our method may be described as a detailed analysis of commutator- and
p-power-structure of the groups in question. The central method is a development
of a method used by Leedham-Green and McKay in [5], and is of ‘combinatorial’
nature.

2. NOTATION

The letter e always denotes the neutral element of a given group.
If x and y are elements of a group we write
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Y =y try and [r,y] =z 'y oy .

Then we have the formulas
[z,yz] = [2,2][2,y][z,y,2] and [zy,z] = [z,2][z,2, 9]y, 2]
(where [z1,...,2p4+1] = [[21, ..., Zn]snt1])-
If « is an automorphism of a group G we write x® for the image of x under «.

If « is an automorphism of a group G, and if N is an a-invariant, normal sub-
group of G, then we also write a for the automorphism induced by « on G/N.
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For a given group G, the terms of the lower central series of G are written ~;(G)
for i € N.

If G is a finite p-group, then w(G) = k means that G/GP = pF.

3.

We now define a certain class of finite p-groups which turns out to be precisely
the objects in which we are interested, that is the finite p-groups possessing an
automorphism of p-power order having exactly p fixed points.

Definition 1. Suppose that G is a finite p-group. We say that G is concatenated
if and only if G has:
(i) a strongly central series
G:GlzGQZZGn:{G}

(putting Gy, = {e} for k > n, ‘strongly central’ means that [G;, G;] < Giyj; for all
i?j);
(ii) elements g; € G;, i=1,...n, and
(i4i) an automorphism «

such that
(1) |Gi/Giz1| =p, fori=1,...,n—1,
(2) Gi/Giy1 is genemted by g;Giy1, fori=1,...,n,
(8) lgi, @) := g; *g% = gix1 mod Gyya, fori=1,....,n—1.

In the situation of definition 1 we shall also say that G is a-concatenated. It is

easy to see that o has p-power order whenever « is an automorphism of the finite
p-group G such that G is a-concatenated.

If G is a finite p-group, then the statement ‘G is a-concatenated’ means that G
possesses an automorphism « such that G is a-concatenated.

Whenever G is given as an a-concatenated p-group, we shall assume that a
strongly central series G = G; > G5 > ... and elements g; € G; have been chosen
so that conditions (1), (2) and (3) in definition 1 above are fulfilled; the symbols
G; and g; then always refer to this choice.

Proposition 1. Suppose G is an a-concatenated p-group. Then for alli € N, G;41
is the image of G; under the mapping

Tz 2% =[z,qa],
and if G;/Giy1 is generated by xGiy1, then the group Gii1/Giya is generated by
[z,0]Gita.
Proof. Suppose that G has order p"~!. Then [g,_1,a] = e and so [g2_;,a] = e for
all a. This shows the assertions for all # > n—1. Assume then that the enunciations

have been proved for ¢ > k + 1, where 1 < k < n — 1. If then z € G, — Gg41, we
write = gy, where a € {1,...,p — 1} and y € Gj41. Then,

[z, a] = g}, algk @, Y]y, o]
whence
[CL’, CM} = [gkv a]a mod Gk+2 )
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since it is easy to see that [g}., @] = [gx, @] mod G2 for all r. Thus we deduce
[z,0] = gi,1 mod Giys .

As a consequence we have demonstrated the last enunciation for ¢ = k and that
the image of G under the mapping = — [z, @] is contained in Gi1. It also follows
that the group of fixed points of o in G is Gy 1.

Then for x,y € Gy,

1

[z,0] = [y,0] ©yz ' = (yr 1 & yr tinG,_1

and since G,,_1 < Gy, we see that the image of the mapping x — [z, o] restricted
to G}, has order

1
G s Gnoa| = ];\GH = [Grial -
Thus this image must be all of Gy. O

Proposition 2. Let G be a finite p-group and let a be an automorphism of p-power
order of G. Then the following statements are equivalent:

(1) G is a-concatenated.

(2) « has exactly p fized points in G.

Proof. (1) implies (2): If G has order p"~! then Proposition 1 implies that a’s
group of fixed points in G is Gp,_1; but |G,—1]| = p.

(2) implies (1): We show by induction on |G| that G is a-concatenated. Of course
we may assume that |G| > p.

If N is an a-invariant, normal subgroup of G, it is well-known that « has at
the most p fixed points in G/N (zN is a fixed point if and only if z7t2® € N;
r712% = y~1y® if and only if yx~! is a fixed point of o in G). Since the order of
a is a power of p, @ must then have exactly p fixed points in G/N.

Let F be the group of fixed points of o in G. Since « has p-power order, and
since |F| = p, F is contained in the center of G. From the inductional hypothesis
we deduce that G/F is a-concatenated. Therefore there exists a strongly central
series

G/F=G/F >...>G,/F ={e}
and elements g; € G; such that
G;/Gi+1 has order p ,

G;/G;11 s generated by ¢;Giy1 fori=1,...,n—1,
and
[¢:F,a] = git1F mod Giyo/F fori=1,...,n—2.
Then
[gisa] = gix1 mod Gipg fori=1,...,n—2,

and e # [gn—1,a] € F. Putting g, := [gn—1, ], we then have that g, generates F.
Put G4; = {e} for i € N. Then we only have to show that the series

G:GlZGQZ...ZGHZFZGn+1:{€}

is strongly central. Consider the semidirect product H = G' < « >. Since the terms
of the series are all a-invariant we get v;(H) < G; for i > 2.
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Since [G1, @, ...,a] € G; — G411 if G; # {e}, we see that v;(H) = G, for i > 2.
——
i—1
Then
(G, G] < [vi(H), 7 (H)] < i (H) = Gy
for all 7,5 € N. O

Corollary 1. If G is a finite, a-concatenated p-group, then the only a-invariant,
normal subgroups of G are the G; for i € N.

Proof. Suppose that IV is an a-invariant, normal subgroup of G. Since « has p-
power order, « has exactly p fixed points in N. Thus a’s group of fixed points in
G is contained in N. By induction on |G| the statement follows immediately. O

The next proposition shows that the theory of finite, concatenated p-groups is
connected to certain aspects of the theory of finite p-groups of maximal class.

Proposition 3. Let G be a finite p-group.
Then G is a-concatenated for some automorphism « of order p, if and only if G
can be embedded as a maximal subgroup of a finite p-group of maximal class.

Proof. Suppose that G is a-concatenated where O(a) = p. Then G is embedded
as a maximal subgroup of the semidirect product H = G < a >. By Proposition 1
we see that H has class n — 1 if G has order p"~!. Thus H is a finite p-group of
maximal class.

Suppose conversely that H is a finite p-group of maximal class and order p™.
Let U be a maximal subgroup of H. We have to show that U is a-concatenated for

some automorphism « of order p and may assume that n > 4.
Put H; = ~;(H) for ¢ > 2, and H; = Cy(Ha/Hy). Tt is well-known that

H1 :CH(Hi/H¢+2) fori:27...,n—3 ;
this is also true for i = n — 2 if p = 2 (see [4], p. 362). Since H has p + 1 maximal

subgroups, we deduce the existence of a maximal subgroup U; of H such that U
is different from U and from

CH(HZ/HZJFQ) fori=2,...,n—2.

IfU =< u,Hy >and U; = < uy, Hy > then H is generated by u and ;. Suppose
that s € Cy(u;) NU and write s = ufu’z with z € Hy. Then u; commutes with
ubx. Since H is not abelian, we must have b= 0 (p). Then s = ufy where y € Ho.
Since s € U # U; we must have a =0 (p). Then s € Hs. Since

u1 € Cy(H;/Hijy2) fori=2,...,n—2

we deduce s € H,_ 1 = Z(H). If o denotes the restriction to U of the inner
automorphism induced by w1, then consequently « has exactly p fixed points in U.
Then U is a-concatenated according to Proposition 2. Furthermore,

sz c CH(Ul) N Hy < CH(Ul) NU = Z(H)
so « has order p. ([
Next we determine the structure of finite abelian, concatenated p-groups. The

purpose is to provide some simple examples that will display certain phenomena
occurring quite generally.
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Proposition 4. Let U be a finite abelian, concatenated p-group.

Then U has type
(L ptt R pH) for some n €N, s>0, d> s .
—_—— ——

s d—s

Proof. Suppose that U is a-concatenated. Let w(U) = p?. Now, U/UP is a-
concatenated so we deduce the existence of elements ui,...uq € U and u € UP
such that U = < uq,...uq > and

uy = uuipq fori=1,...,d—1, uj=uqu.

If we put p* = O(u;) we deduce puy > ... pg. Let s > 0 and p € N be determined

by the conditions py = ... = pus = p+ 1 and pg > psi1; if 1 = ... = pg we put
s=0and p = p.
If s > 0 then
Bst1 Bst1  phs+l Hst1
(g ) =ul " uly =l
and so ps—ps+1 = 1, since o has exactly p fixed points in U. Then psy1 = ... = pq,
since u1,...,uq are independent generators. O

Proposition 5. For integers u, s, d with p,d € N and d > s > 0, we consider the
finite, abelian p-group

U =Ul(p,p,s,d) == (Z/Zp"*)* x (Z/Zp")*~*
with canonical basis (uy,, ...,uq) (so that O(u;) = p** fori=1,...,s, and O(u;) =
pH fori > s).

For any integers by, ...,bq with by # 0 (p) we define the endomorphism « of U

by

ud =uuipr fori=1,...,d—1, uj=uqu,
where uw := b’ . bt

Then « is an automorphism of U and U is a-concatenated.

For all i € N define: u; := [u1,q,...,a] (for i < d this is of course not a
——
i—1

definition, but rather a property of a), and put U; :== < uj| j > i >.

The order of o is then determined as follows:

Let v € Z, v > 0 be least possible such that d < p¥(p — 1).

Case (1). d < p’(p—1): If du+s < p' then O(a) = p°, where o is least possible
such that p® > du + s.

Otherwise, O(a)) = p*™* where k > 1 is least possible such that

k> duts—p .

- d

Case (2). d = p’(p—1): If du+ s < p*™1, put r = du + s. Otherwise, there
exists 1 € {p**1 ... du + s} least possible such that

pv+1) ( pvtl ) ( pvF1
L ( 1 v+l _o v+l _q
X :=uy -upfj+171 upf;rl Upotipg € Upyy
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Then O(a) = p*T**1 where k > 0 is least possible such that

dpu+s—r

g

Proof. Tt is easily verified that « is an automorphisms of U, that a has exactly p

fixed points, and that o has p-power order. So, U is a-concatenated by Proposition
2.

k>

By an easy inductional argument (on the parameter dy+ s) we see that for all 7,
u? =uf ; mod Uipgp1 witha#0 (p).
By induction on k we also see that for all ¢,
P k k
ut = w2l
From these facts we may conclude that

ap

U,

& =Uiliype mod Ujppoqq foralliandall o <w,

since d > p?(p — 1) for o < w.

Case (1). d < p”(p —1): By an easy induction on k > 0 we get

o T b(k)
7

u = uiui+pv+kd mod U’i-‘rp"’—‘,—kd—i—l

where b(k) # 0 (p). Here we have used the inequality
(1—k(p—1)d <p"*' —p".

Case (2). d =p"(p —1): With the same technique as in Case (1) we see that
X e Up1/+1+1 .

If r = du+ s the statement about the order of « is seen to be true, so we assume
that du + s > p**!, and also that U,,1 # {e}.Then we may write

ar’ b
ug =uiu,,; mod Upqa

where b # 0 (p). Letting (o — 1)*~! operate on this congruence we obtain
uo‘pv+1 = uyul mod U;
i = Yillyqr i+r+l -

Then, by using the inequality r + kd < p(r + (k — 1)d) for k > 1, we get by
induction on k > 1

apv+k _ b(k
(5 = uiuigrr)Jr(kfl)d mod U’L+r+(k—1)d+1
for all ¢ with some b(k) Z 0 (p). O

Remark 1. In Case (1) of Proposition 5 we see that the order of U is bounded
above by a function of p and O(«). This fact is easily seen to imply the existence of
functions, s(x,y) and t(x,y), such that whenever G is an a-concatenated p-group
where O(a) = p* then either Gy(p,k) has order less than t(p, k) or w(Gpry) has
form p”(p —1).

This more than indicates that the concatenated p-groups G with w(G) of form
p¥(p — 1) play an important role in the study of the derived length of finite, con-
catenated p-groups. In the sequel we shall get another explanation of this fact.
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4.

Definition 2. Let G be an a-concatenated p-group. Let t € Z, t > 0. We say that
G has degree of commutativity t if

[Gi, GJ] < Gi+j+t fO?” all 1,] € N .

In the proof of our main theorem, we shall show that if G is a finite, concatenated
p-group, then for sufficiently large s the group G, has high degree of commutativity
(in comparison with n if |G| = p™). In this connection it will be useful to single out
a certain class of finite, concatenated p-groups having ‘straight’ p-power structure.

Definition 3. Suppose that G is a finite, a-concatenated p-group with w(G) = d.
We say that G is straight if the following conditions are fulfilled:

(1) G? = Gitq for alli € N.

(2) x € G, and ¢ € G4 implies x7P(zc)? = P mod Gyisqq, for all r,s € N.

(8) For all i € N we have: If gG;11 is a generator of G;/Git+1, then ¢°Giiq1

generates Gitq/Gitd+1-

We now give a criterion for straightness.

Proposition 6. Let G be a finite, a-concatenated p-group with w(G) = d.
If G is regular, or has degree of commutativity > (d+1)/(p — 1) — 1, then G is
straight.

Proof. For the theory of finite, regular p-groups the reader is referred to [3], or [4],
pp. 321-335.

Let |G| = p"~1. We prove the theorem by induction on n. Thus we may assume
that Go is straight. Put w(G2) = d;. We may also assume that G does not have
exponent p.

(a) We claim that if r < s, and if z € G,, ¢ € G, then:
z7P(zc)’ = mod GV, Grista -
For suppose that G is regular. We then obtain
7 P(zc)’P = mod ya(< z,e >)P
and in any case we see, using the Hall-Petrescu formula (see [4], pp. 317-318), that
z P(ze)P = mod ya(< x, ¢ >)Py(< e >) .
Now, y2(< z,¢ >) < G415, s0 if G has degree of commutativity ¢ > % —1 then

Yp(< @, ¢>) < Gt (pt)rt(p—1)t -

(b) We claim that d; > d: We may assume Gg442 = {e} and have to prove that
GY = {e}.

Suppose that y € G;, where i > 2. According to Proposition 1 there exists
x € G;—1 such that [z,a] = y.

Now, GP = G441: For GP is an a-invariant, normal subgroup of index p?. So, by
Corollary 1 the claim follows (from now on we will use Corollary 1 without explicit
reference).

In particular, 2 € G441, whence according to (a),

e=[2P,a] =27 P(2%)? =27 P(z[z,a])? = [z,a]’ =y mod G, ;Gai_144 -
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Now, Gai—1+4 = {e}, and since certainly d; > d — 1, G5, ; = {e}. Hence, y* = ¢

(c) We claim that G¥ < G4 for all i € N: This is clear from (b) and the
inductional hypothesis.

(d) If r < s, and if x € G,, ¢ € G, then:
z P(xze)f = mod Grysid -
This is clear from (a) and (c).

(e) We claim that d; = d: We may assume G412 > {e}. Choose g € G such
that g € Gg44+2. Then

(9", a] = g7 "(glg, o))’ = [g,a]’ mod Gays

because of (d). Since [¢P, a] & Ga43, we have [g,a]P & G413. Since [g,a] € Ga,
this proves d; < d.

(f) If gGo generates G1/Go, and if x € G, we have x = g%y for some y € Ga.
By (a) we then have
g PP =yP=e¢ mod Ggyis -

Since GP = G441, we must then have g ¢ Ggio. Then gPGyyo generates
Gat1/Gayo. O

We shall be needing some information about w(G) in case G is a concatenated
p-group, and in particular in case G is a straight concatenated p-group. First we
need some lemmas.

Lemma 1. Let i € N. Suppose that o € {0,...2° —1}. For s € {0,...2° — 1}, we
let py,s be the integer determined by the conditions

fos+s=o (2') and p,s€{0,...2° =1} .

Then the integer
. 2i_1 . .
2t —1 2Y\ (20 —1
=2
) <U>+S_Zl<3)<:uo,8)
Proof. Suppose that s € {0,...2° — 1} and that (23) is not divisible by 4. Now,

() (2 (-G () - ()

hence 271 | s, and so s = 2¢~1. We conclude that v differs from
)
o 2071 — 1) \ g i1
20 —1 20—1\ /2 -1
() ()G
is even for the following reasons: We have

(21' - 1) ) foroz2it
Ho,2i—1 (Ui;fl) for o < 2071

is divisible by 4.

by a multiple of 4.
Now, the integer
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and from well-known facts concerning the 2-powers dividing n! for n € N, we see

that 4
(2Z -1 )
Mo 2i-1

is divisible by exactly the same powers of 2 as is (2i;1), and also that

28— 1
2i-1 _ 1
is odd. O

Lemma 2. Let F' be the free group on free generators x and y. Let p be a prime
number and let n be a natural number. Then,

pn p'n/ _ pn
P yP = (xy)? cep...cpn

where ¢ € 1 (F)P" and cpi € Yy (B fori=1,...,n.
Each cpi has form

n—i—1 n

pi = (YT, ,x|ur H vﬁ“pnﬂ mod 'ypi_,rl(F)pnﬂ'yle (F)? Yor ()P,
pi—1

for certain integers a; and b, and certain group elements v, which each has form:

V=Y, 215, Zpii]
with z, € {x,y}, and 2, =y for at least one k (in each v,).
Furthermore, a; = —1 (p) fori=1,...,n.
Proof. Let i € {1,...,n}. If u,v € 7, (F) then the Hall-Petrescu formula ([4], pp.
317-318) implies

n—
n—i n—i . n—i

(w)?"  =uP WP mod o (< u, v >)p"7i H Ypi (< uyv >)P
j=1

n—i—j

From this, and from standard, elementary facts concerning commutators the result
follows immediately from the Hall-Petrescu formula, except for the fact that a; =
-1 (p) fori=1,...,n.

Consider the abelian p-group U of type

(pnfiJrl pnfiJrl)
p'i
with basis u1,...,up:, and let G be the semidirect product G = U < a > where «
is the automorphism of U given by
uf =uji1, j=1,...,p' =1, and ugi =uy .

Then « has order p'. Put us = u, if r,s € N, r € {1,...,p'}, and s =7 (p).
Then for r =1,...,p" we have

a] _ u(_l)p171 (71)pi_2(pi1_1)

(%) [ur, a. .. Uy yy e Upgpio1

pi—1
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a] _ u1+(,1)piu(_1)pi,1(pli) - (_1)(1){’;)

(%) [Up, ..., N pi1

p'i

Thus, vpi+1(G) < UP. Using the same argument with u, replaced by u];’Sf1 we
deduce
Yepi11(G) S UP" forseN.

Since sp’ + 1 < p*ts—1 for s > 2 except when p = 2 and s = 2, we conclude that

(% %) st (G

except possibly when p = 2 and s = 2.
If p =2 we use (x) and (**) to conclude that

n—(its—1)
={e} fors>2,

2i—1
b(r,o)
Up, Oy ] = Uy
[, | Uf_[g g
2i+1_1 -
where
I O I N ey |
b = (=1)° 2
o= (o7 2 () ()

with i, s determined by
,I.Lg7s€{0,...,2i—l} Hois +s=0 (2" .

Using Lemma 1, we then see that () is true also in the case p = 2 and s = 2.

Now we compute
n—1i

. (aul)pn (Oz’UJlail) . (apnulafpn)apn _ (Ul A upi)P

Using the results obtained this far we conclude

t i

e = ap"ull’ = ZCpi :x[ul,a,...,a]“ipw
————
pi—1
_pypir (mpr (e A
= (T )
which gives a; = —1 (p). O

Theorem 1. Suppose that G is an a-concatenated p-group of order p"~' where
O(a) = pk.
If G centralizes G;/Giyo fori=1,...pF, and if n > pF +2, then w(G) < pF —1.

Proof. Put d := w(G). The element ag; belonging to the semidirect product H =
G < a > has the property that ag; & Cy(G;/Giyo) fori=2,... p*. Since (agl)pk
is an element of Gy (confer Lemma 2 for instance) that commutes with ag;, we
must have

k
(ag1)? € Gpryq -
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Now assume that d > p*. Then GY < Gpr41. By Lemma 2 we then deduce (note
that v;(H) = G; for i > 2)

pk pk pk
e=al g =(ag1)! c=c mod Gpryq,

where ¢ has form
_ -1 b
c=lg1,q...,q] Hvu“ mod Gpiyq ,
—
pk—1 a

with each v, of the form [g1, 21,..., 2,x_1], where z; € {a, g1} and z; = g1 for at
least one j (in each v,). Since g1 € Cy(G;/Gis2) for i = 2,...,p", we deduce
vy € Gorgq for all p. But then
c=[g1,q,...,a] " £e mod Gy ,
——
pk—1
a contradiction. |

Corollary 2. Let G be an a-concatenated p-group where O(a) = p*.

Then G4 (14...4p+—1) 18 a straight a-concatenated p-group.

Proof. Put s = 14+(1+...+p*"1). According to Theorem 1, either G, has exponent
por w(Gy) < p¥ —1. If G, has exponent then G, is trivially straight. Assume then
that w(Gs) < p* — 1. As G, has degree of commutativity at least

k k k
-1 — 1 Gs)+1
s—l:(1+...—|—pk_1):p zp ptl_p _12u_17
p—1 p—1 p—1 p—1
the statement now follows from Proposition 6. (]

Theorem 2. Let G be an a-concatenated p-group of order p"~!, where O(a) = p*.
Suppose further that G is straight, that n > p* +2, and that G centralizes G; /G yo
fori=2,...,p".

Then w(G) =p(p — 1) for some v € {0,...,k —1}.

Proof. We wish to perform certain calculations in the semidirect product G < a >.
By the same argument as in the proof of Theorem 1 we see that the element agy
satisfies
k
(ag1)? € Gpryq -

Put d := w(G). Assume that the minimum min{p’ + (k —4) | i =0,...,k} is
attained for exactly one value of ¢, say for i = ig € {0,...,k}. Put s = p"+(k—ip)d.
Consider

k k k
o gt = (ag)? cep- - cpr
where the ¢’s have the shapes given in Lemma 2. Notice that ¢; € Gy (x—j)d,and
that ¢ € G2+kd S G5+1.

k
Suppose that i = 0: Then s = kd, and we deduce G511 # g7 =e mod Ggi1,
a contradiction.

k
Suppose then that ig > 0: Here we get e = gf = c,i, mod Gyp1, and

i

k—iq _ k=10
— P
= 9,0 mod Ggy1

Cpio = [91, 0, ..., 0] 7P
———

pio—1
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but we have

7,

—pk—io
gpig ¢ GS+1 )
a contradiction.
Consequently the minimum min{p’ + (k —i) | i =0,...,k} is attained for two
different values of ¢, say for i = iy, and for i = i3 > i;. Analyzing the function
p* + (k — x)d for 0 < 2 < k we deduce |i; —iz| = 1, whence d = p" (p — 1). O

Our further investigations will concentrate on the analysis of certain invariants
that will now be introduced.

Definition 4. Suppose that G is an a-concatenated p-group and that G has degree
of commutativity t. Then we define the integers a; ; modulo p for i,j € N thus: If
Giyjyt = {e}, we put a;j = 0. Otherwise, we let a; ; be the unique integer modulo
p determined by the condition:

9i,9;] = gf+jj+t mod Giyjyit1 -

We refer to the a; ; as the invariants of G with respect to degree of commutativity
t. The a;; depend on the choice of the g;, but choosing a different system of g;’s
merely multiplies all the invariants with a certain constant incongruent to 0 modulo

.
Proposition 7. Let G be a finite, a-concatenated p-group of order p"~'. Suppose
that G has degree of commutativity t and let a; ; be the associated invariants. Then
we have the following.

(1) @ijanitjtt + QjkGig4ktt + akiiktive =0 (p) fori+j+k+2t+1<n.
(2) aij =aiy15 +aijp1 (p) fori+j+t+2<n.

(3) If ip € N then we have for i,j > ig:

i—io

L (i—io L
amEZ(—I)( ) )aio,m (p) ifi+j+rt+l<n.

s=0

(4) Forr € N we have

[(r+1)/2] .
iitr = —1)*t its—1,its if 2i t+1<n.
Qi i+ Z:‘; (-1) (51>a+ Livs (p) 2Frtrl<n

Proof. We shall make use of Witt’s Identity

(%) [a, b7, c]°[b, ¢, a)[c,a™t, D] = e

for elements a, b, and ¢ in a group.

(1). Considering (%) modulo Giyjtk+2:+1 With a = g;, b = g;, and ¢ = gi gives us

the congruence

Q4,5 Qi 44t kA5 kAj4k4t,i T Ak, i Ak 4it+t,5 __ L
gi+j+k+2t =e¢ mod Gz+j+k+2t+1 .

But if ¢ +j + k4 2t +1 < n then gi1 k42t 7 €, and the claim follows.
(2). Considering (*) modulo G jtt+2 With a = g;, b= a™!, and ¢ = g;j gives us
the congruence

—Qijtait1,j a1 o
Jitj+t+1 =e mod Giyjiiqo -
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But if i + j +t + 2 < n, then g;1j+++1 # e, and the claim follows.
(3). Using (2) this follows easily by induction on i — g.
(4). Using (2) this follows easily by induction on r. O

The next proposition reveals part of the purpose of the introduction of the idea
of straight, concatenated p-groups.

Proposition 8. Let G be an a-concatenated p-group of order p"~1. Suppose that
G is straight and put d = w(G). Let a;; be G’s invariants with respect to a given
degree of commutativity t. Then for all i,j we have

i+j+d+t+1<n=(a;; =airqa; (p)) -
Proof. It Gi1q # {e}, we have

90 = giva mod Giyayr ,
with b; Z0 (p).
Suppose that i € N with Gi1111 # {e}. Then g7, = ([g;, a]y)? for some
y € Git2. Then (by Lemma 2)
[9i,a] Pgiy =y mod Goiyaia
$0

L+1

Gitvd+1 = gz+1 = [gi, " = g; "(gilgi, o)) = 97, 0] = 9itar1 mod Gitayo ,
and since g;+q+1 # e, we deduce b1 = b; (p).
Thenifi+j+d+t+1<n we get

biitd,; _ - = | Y
Givitate =190 950 = 9; " (9ilgi 9D = lgir 95)F = 9z++/ﬁitj mod Gitjrd+t+l
and 80 a4, = @i (D). H

For straight, concatenated p-groups we have a stronger version of Proposition 7.

Proposition 9. Let G be a straight, a-concatenated p-group of order p"~! and
with w(G) = p¥(p — 1). Suppose that G has degree of commutativity t and let a; ;
be the associated invariants. Suppose that s € N is such that s+t =0 (p¥) and

define a forr =0,...,v and i,j € Z such that s+ ip", s+ jp" > 1, by
(r)

Q; 5 = Qs+ip™,s+jp”
Put t(r)=(s+t)p~" forr=0,...,v
(1) Then forr=0,...,v we have the following congruences
(T) C) () (r) (r) () -
k Ji+g+t(r) + aj kaz JJ+k+t(r) + ak 17, k+i+t(r) =0 (p)
f0r3s+2t+(z+]+k)p +1<n.

_ )
(@) @ prper) = 1

a;

(p) for2s +t+ (i+7)p" +p"(p—1)+1<n.

(3) ar):aw)lj—i—a(’j)le (p) for2s+t+(i+j+1)p"+1<n.
(4) If ig € N then fori,j >ig and 2s+t+ (i + j)p" + 1 < n we have:

i—io .
r [t — r
o) =3 0" )l -

h=0
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(5) Forw e N and 2s + (2t + w)p” +t+1 < n,

o o B o
iy = Z (-t (h _ 1>aiih1,i+h (p) -
h=1

Proof. (1). Using Proposition 7 this follows immediately from the definitions.
(2). Using Proposition 8 this follows immediately from the definitions.

(3). Let r € {0,...,v} and let i € N. We first claim that

r

[gi, aP ] = Gitpr mod Gi+p7'+1 .
To see this we write, in accordance with Lemma 2,
o [, gi] = (alo, )" = ¥ [, gl epr - cpe
where, with U :=< «, [a, g;] > (a subgroup of the semidirect product G < « >),
CGVQ(U)IJT ) Cp” E’YP"L(U)pT7M ’ ,Lt:l,...,’f',

and

— -1 _ -1
Cpr = [g“ Ay ...y a] = gi-i—pr mod Gi+pr+1 .

pr
Furthermore, since r < v, we have
” _—
Gip1 S Gigprar and pu(U) 7 < Gippuy r—pyd < Gigpri
for y=1,...,7 — 1. The claim follows from this.

Now suppose that i, j € Z such that s +ip", s+ jp" > 1 and z:=2s+t + (i +
j+1)p" +1 < n. Then by considering Witt’s Identity

[a,0Y, c’b, et a][e,a L b = e
modulo G, with
a=gstipr, b=a P, and c=geijpr
and noting that g, 1 # e, the result follows.
(4), (5): Using (3) these statements follow by easy inductions.

5.

We are now ready to prove the main theorems. First a simple lemma.

Lemma 3. Let n, t, and d be natural numbers. Suppose that we are given integers
a;; modulo p, defined for i +j +t+1 < n. Suppose further that these integers

satisfy the following relations:

a; j = —a;; (p) for i+j+t+1<n,

Qg = 0 (p) for 2i+t+1<n,

aij = @it taigp (p) for itj+t+2<n,
aivd; = aij; (p) for i+j+d+t+1<n.

Then the ezistence of a natural number s such that 2s+d+t < n and asn sth+1 =

0 (p) for h=0,...,[%] — 1 implies a; ; =0 (p) for all i,j.
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Proof. As in the proof of Proposition 7 we see that

[(r+1)/2] _—
(*) Giir = Z (_1)h—1 (h 1)ai+hli+h (p) if 204+7r+t+1<n
h=1
and

— i—i

(%) a;; = Z(l)h( ) °>aio,j+h (p) if i+j+t+1<n and i,j>ig.
h=0

(a) We have as s+ =0 (p) for j > 0 and 2s+j+¢+1 < n: This is clear from (x).

(b) a;,;; =0 (p) for é,j > s and i + j +t+ 1 < n: This is clear from (s*) and (a).

) Suppose that 0 € Nand a; ; =0 (p) fori+j+t+1<nandi,j>s—o. Then
s

(c
2(s—0o)+d+t+2<mn,and so

As—g,s—oc+1 = —Qs—g+1,s—0o+d (p)
whence
a;,; =0 (p) for i+j+t+1<n and i,j>s—o.
We conclude that a; ; =0 (p) for all ¢, 5. O

Theorem 3. Let p be an odd prime number and let G be a straight, concatenated
p-group of order p"~! and with w(G) = p*(p — 1).

(1) If n > 4p*Tt — 2p¥ + 1 then G has degree of commutativity

[%(n —4p*Tt 1 2pY 1)) .

(2) If n > 4p*tt — 2p¥ + 1 then ¢(G) < 2p*Tt —pv.

(3) ¢(G) < 4p**t —2pv — 2.

(4) If n < 12p¥+! — 6p¥ — 10 then ¢(GQ) < 3.

Proof. (1): Assume n > 4pvtt — 2p¥ + 1. Suppose that G has degree of commuta-

tivity ¢, where t < (n — 4p"*t1 4+ 2p¥ — 1). Let a;; be the associated invariants.
We must show that a; ; =0 (p) for all ¢, j.

Let ig € {1,...,p"(p—1)} be determined by the condition ig+¢t =0 (p”(p—1)).
For 7 = 0,...,v and 4,j € Z such that io + ip”, io + jp" > 1 we let a”) be the
integers modulo p introduced in Proposition 9 (with ig = s).

We show by induction on v — r that if » € {0,...,v} then a( D=0 (p) for all
)

i,7. So we suppose that r € {0,...,v} is given and that a p) = O (p) for all 4,7

whenever p € {0,...,v} and p > 7.
By Proposition 9, (1), (2), we have the congruence

(+) Aty e+ 0l =0 ()

when 3ig+2t+ (i +j+ k)p” + 1 < n. So, we may substitute (4,5, k) = (1,2,2s — 1)
for 2 < s < i(p—1)in (x). If now 2 < s < 1(p — 1), and if we have proved
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agzﬂrl =0 (p) for 2 < o < s, then Proposition 9, (5), shows that:

(r)

Ays—1,3 = _a3,%s—1 =(-1)° (Z : :23) a§2+1 (),
afl, = (-1, 0,

Wl = b 07 ()l 0,
aég)fl,s = —aéf%sfl = —a(f% (p) ,
A M U

where ag;)fmshould be interpreted as 0 if s = 2. Combining these congruences

with (x) for (i,4,k) = (1,2,2s — 1) we obtain

s(a),)?=0 (p).

So we may conclude that agfs)ﬂ =0 (p) fors=2,....,4(p—1). As 2ip+t+

p’T1 + 1 < n, we can then use Proposition 9, (5), to deduce:
() af) = afl + 24} ().

If now r = u, then aéz)’ = al
odd, (xx) then gives agg =0 (p). So, aiTgH =0 (p)for s=1,...,2(p—1). Then
Lemma 3 (with d = p — 1) implies aE? =0 (p) for all 4, 5.

% (p) according to Proposition 9, (2). Since p is

T
s

So assume then that 7 < u. Then a(()fz): = a(()’:fr Y =0 (p) by definition of these
numbers and the inductional hypothesis. Then (kx) reads:

a((ﬁ + 2a§2 =0 (p).
On the other hand, considering (x) with (4,7, k) = (0,1,3) gives us:
ai’3(af) +ain) =0 (),

because a7} = af} (9), ) = aif) — af} (o), and af) = af) 24 (3, - again

by Proposition 9, (5). So, if agg # 0 (p) we would deduce a&% = agg =0 (p), a
contradiction. Hence, agg =0 (p), and so a((fi =0 (p) (again because p is odd).
Now we substitute (i, j,k) = (0,1,2s) in (x) for s =1,...,4p" "(p— 1) — 1.
If2<s< %p“_’"(p — 1) — 1, and if we have already proved CL((:,?TH =0 (p) for
1 <o < s, we use again Proposition 9, (5), as above to obtain the congruence:

Co (BT ) e (BT T =0 ).

s—1 s
We conclude that agzﬂ =0 (p) fors=1,..., %p”fr(p — 1) — 1, and hence for
s=0,..., %pv’r(p — 1) — 1. Noticing that 2ig+t+p"(p*"(p—1)—1)+1 < n we

can again use Lemma 3 to deduce that aETJ) =0 (p) for all 4,j. This concludes the
induction step.
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So, we have al(?j) =0 (p) for all 4, j, and hence a; ; =0 (p) for all 4, j, as desired.
(2) Put f(v) = 4p*T! — 2p¥ — 1. Suppose that n > 4p'+! — 2p¥ + 1 and that n is
odd. By (1) G has degree of commutativity 5(n — f(v)). Then,

. 3n—f(v)—2
G) = f k>—-’ =
w@)=fe} it bz 2SS
However,
3n— f(v)—2 _1+1
n— f(v)+2 2
when n > f(u) + 2.

If n > 4p¥t1 — 2p¥ + 2 and n is even, we see in a similar way that v;(G) = {e}
if bk =2pvt! —pv 4 1.

(3) If n < 4p¥t1 — 2p¥ then ¢(G) < 4p*T! — 2p¥ — 2. Since

4pPtt —2pY —2 > 2pvTt — p? |

(flo)+1) =14 (2p"T" —p"),

the statement then follows from (2).

(4) n > 4p*Tt — 2p¥ + 1 and

4> 3n— f(v)—3
“n—f(v)+1
where f(u) := 4p**! — 2p¥ — 1 then we deduce along lines similar to the above

reasoning that ¢(G) < 3. But the second inequality holds for n > 12p**1 —6p¥ — 10,
and it is clear that

12p°F —6p¥ — 10 >n > 4p*Tt —2p¥ +1 .
The desired conclusion follows. O

Theorem 4. There exist functions of two variables, u(x,y) and v(z,y), such that
whenever p is an odd prime number, k is a natural number and G is a finite p-group
possessing an automorphism of order p* having exactly p fized points, then G has
a normal subgroup of index less than u(p, k) and of class less than v(p, k).

Thus there exists a function of two variables, f(x,y), such that whenever p is an
odd prime number, k is a natural number and G is a finite p-group possessing an
automorphism of order pF having exactly p fized points, then the derived length of
G is less than f(p, k).

Proof. The first statement follows immediately from Proposition 6, Theorem 1,
Theorem 2, and Theorem 3. The second statement follows trivially from the first.
O
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