A NOTE ON A THEOREM OF A. GRANVILLE AND K. ONO.

TAN KIMING

ABSTRACT. It was recently proved by A. Granville and K. Ono, confer [2],[3],
that if ¢ € N, ¢ > 4 then every natural number has a t-core partition. The
essence of the proof consists in showing this assertion for ¢ prime, t > 11. We
give an alternative, short proof for these cases.

Suppose that n € N and that A = (A1, \g,...) is a partition of n, i.e. A1, Ao, ...
is a sequence of non-negative integers of which only finitely many are # 0, and such
that:

A > Ao > and n:ZAi.
=1

Then the partition X = (A}, \},...) associated with X is defined by
A = #{7 e N|); > i},
and \ is also a partition of n. If (i, j) € N? such that A;X; > 0 we have the (i, j)'th
hook number of A:
h@j(/\) =\ + /\; —t1—7+1
If t € N and if none of the hook numbers of A is divisible by ¢, one says that A is a
t-core partition of n.

The ‘t-core partition conjecture’ asserts that if t € N, ¢t > 4, then every n € N
has a t-core partition. This conjecture is proved by A. Granville and K. Ono in the
papers [2], [3]. The conjecture had attracted some interest since it has implications
in the representation theory of symmetric and alternating groups: It implies that
if p is a prime number > 5 then for every n € N both the symmetric group 5,, and
the alternating group A, has a p-block of defect zero. Together with previously
known results this further implies that if p is prime > 5 then every finite simple
group has a p-block of defect zero. We refer to [2] for a survey of these results.

Now let n € N. Then n has a t-core partition if and only if the equations:

t—1 t—1
t
(0) n = E (ixf—i—zxz) and E x; =0,
i=0 i=0

have a (simultaneous) integral solution; in fact, it was proved in [1] that the number
of integral solutions to (0) equals the number of ¢-core partitions of n.

As explained in [3], the t-core partition conjecture is proved if it is shown that
(0) has for all n € N an integral solution in each of the cases: ¢t = 4,5,6,7,9 and
(t prime, t > 11). The cases t = 4,6,9 were handled in [3] by special arguments.
The cases t = 5,7,11,13 can be handled by using modular forms: K. Ono informed
me that the cases t = 5,7 and t = 11 respectively were done in unpublished notes
by A. O. L. Atkin and himself respectively. Finally, in [2] a special argument using
modular forms for the case t = 13, and a general argument for ¢ > 17 were given.
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We shall give an alternative, simple proof of the fact that (0) has an integral so-
lution for all n € N if ¢ is prime, ¢ > 11; in particular, our proof avoids computation
with modular forms. As in [2], the proof has two parts: One for ‘large’ n and one
for ‘small’ n. We pay for the simplicity of our argument for ‘large’ n by having to
prove the following lemma, which requires a little amount of computation (which
however is not more than the amount of computation which was needed for the
case t = 13 in [2]).

Lemma. Suppose that t is prime, t > 11 and n < t(t? —1)/4+ (t — 1).

Then (0) has an integral solution (xg,...,Ti—1).

Proof. Put ng = t(t> —1)/4 + (t — 1). Suppose that s € {1,...,(t —1)/2}, put:
t+1
ms = —— =5, co(n) :=n,

define the integers y;(n), ¢;(n) for i = 1,..., s successively:

i) = [(~14 VI T dte1(n)) /20], esln) = cia(n) — (ta(n)? + i),
so that ¢;(n) > 0 for all ¢, and define the integers z,,, (n), ..., Tt—m,(n) :

Timot2i—2(n) = —y;(n), Zm.12i-1(n) = y;(n) for i=1,...,s.
Then we have:
t—mg t—mg

We conclude that the proof is finished if for some s € {1,...,(¢ — 1)/2} the
equations:

ms—1 t—1 ms—1 t—1
(1) r:<z+ Z >(;xf+ml) and <Z+ Z )331‘:0
i=0  i=t—my+1 i=0  i=t—me+1

have an integral solution for r = ¢s(n), for all n < ny.

Now let us notice that the proof of lemma 1 in [2] actually shows that if r <
mg(ms — 1) then (1) has an integral solution (with z; € {0, £1} for all ).
So, the proof is finished if for some s € {1,...,(t —1)/2} we have:

(2) cs(n) < (% — s)(u —s) for all n < ny.

2

Now, y;(n) € Z is largest possible such that ty;(n)? + yi(n) < ¢;—1(n), and so

ci(n) = ci_1(n) — (tyi(n)? +yi(n)) < 2tyi(n) +t+1 <t + /1 +4tc;_1(n) ;
consequently, if s € {1,...,(t—1)/2}, j € {0,...,s—1} and f;(z) is a polynomial,
then the condition

(4t)2j_1cs—j(n) < f;(t) for all n < ng
is implied by:
(4t)2j+1_105—j71(n) < fir1(t) for all n < no,

where

®) fima(2) = (fj(m) - (4x)2j_1)2 _ (437)2”1—27
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provided that

(4) g;(t) = fi(t) = t- (4)* ' > 0.

Hence, if we define fo(z) := (x+1)/2-4)((x —1)/2 —4), go(z) := fo(z) — z, and
fi(x), gi(z) for i = 1,2,3,4 in accordance with (3) and (4), we have that (2) holds
for the case s =4, if

(5) 90(t),91(t), 92(t), 95() 20 and  ( (4t)"°co(n) < fa(t)  forall n<ng).
But since we have co(n) =n < t(t? —1)/4 + (t — 1), we see that (5) holds if

(6) go(t),....g3(t), f(t) =0,
where
F(@) = fal@) — (40) P (2(@? — 1) /A + 2 — 1),
Now, go(z),...,g3(x), f(x) are certain polynomials with rational coefficients which
can easily be computed by using (for example) MAPLE. For example, one finds:
f(z) =273%(23% — 32023 + 484962%° — 46390402° +...) .

Again, using MAPLE we can compute approximations to the real roots of these
polynomials and thus verify that (6) holds for ¢ > 43, i.e. (2) holds for s = 4 if
t > 43.
On the other hand, when ¢ € {37,41}, (2) holds in the case s = 4 since a direct
computation shows that for all n < ng we have:
(ca(n) <206 if ¢=41), (ca(n) <186 if ¢ =37);
hence we may assume ¢ < 31.

In the remaining cases t = 11,13,17,19,23,29, 31 we finish the proof by stating
the following facts which can be checked in a few minutes on a machine.
If t € {11,13} and n < ng, (0) has a solution with

(7) T1,%2,T3,%4,Te € {Oa :l:l} and Tt—a,Tt—3,Tt—2,Tt—1 € {Oa :tlv :l:2}

and

(8) x5 =0 and zj=0 for 7<j<t-5.
For ¢t = 17,19,23,29,31 we have ¢;(n) < ¢ := 290,362,530, 842,962 respec-
tively, and (1) has for s = 1 and all r < ¢; a solution with (7) and (8). O

We can now give our alternative proof of the following theorem due to A.
Granville and K. Ono, cf. [2],[3]. In their proof of existence of integral solutions
to (0) when ¢ > 17, they exploited the theorem of Lagrange on the representation
of natural numbers as sums of 4 squares. In our proof of existence for ¢ > 11 (¢
prime) we use Gauss’ three square theorem.

Theorem. Suppose that t is prime, t > 11.
Then for all n € N, (0) has an integral solution.

Proof. Write n = tm/ + ' with 0 <1’ <t — 1. Because of the lemma we may and
will assume n > t(t? —1)/4+ (t — 1), hence m’ > (¢?> — 1) /4. Define the integers m
and r as follows:

(m/,r") itm' =1(2), v #Z0 (4)
(m,7) : (m'+2,7"—=2t) ifm' =1(2), P =0(4)
T (m' F1,0" £t) ifm =0 (2), r =+t (4)
(m'+ 1,7 —t) ifm' =r"=0(2).
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Then n = tm + r and either
T m=r=1(2) and 4m >1r?
or

(IT) m

1(2), r=2(4) and 16m > 2.

If case (I) prevails, we have that 4m —r? is odd and # —1 (8). Hence, by Gauss’
three square theorem we have

dm —r? =a> + b + 2

for certain integers a, b, ¢ which must all be odd (since 4m — r? = 3 (4)). We may
then assume that » + a + b + ¢ is divisible by 4, and we define the integers:

a=(r+a+b+c)/4, 8=(r—a—b+c)/4, y=(r—a+b—c)/4, 6 = (r+a—b—c)/4,

ro=—q, T1 =, Tg=—f, 23 =0, T4 = —, Ty =7, Teg = —0, T7 =9,
and z; = 0 for 4 > 8. Then g + ...+ x4—1 = 0 and:
ot 1
Z(imf—kixi):t~Z(r2+a2+b2+62)+r:tm+r:n.
i=0

In case (II), use the same arguments and definitions of «, 3,~, d with r replaced
by r/2. Then put
g =—a, 11 =—0, ;2 =, 13 =0, 14 =—7, T5 =0, 16 =", Ty =,
and x; = 0 for 7 > 8. O
Remark. The above lemma could of course be checked for all odd t in the range

9 <t < 41. This would prove the lemma and the above theorem for odd t with
t>9.
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