
A NOTE ON A THEOREM OF A. GRANVILLE AND K. ONO.

IAN KIMING

Abstract. It was recently proved by A. Granville and K. Ono, confer [2],[3],

that if t ∈ N, t ≥ 4 then every natural number has a t-core partition. The
essence of the proof consists in showing this assertion for t prime, t ≥ 11. We

give an alternative, short proof for these cases.

Suppose that n ∈ N and that λ = (λ1, λ2, . . .) is a partition of n, i.e. λ1, λ2, . . .
is a sequence of non-negative integers of which only finitely many are 6= 0, and such
that:

λ1 ≥ λ2 ≥ . . . and n =
∞∑

i=1

λi .

Then the partition λ′ = (λ′1, λ
′
2, . . .) associated with λ is defined by

λ′i = #{j ∈ N|λj ≥ i},

and λ′ is also a partition of n. If (i, j) ∈ N2 such that λiλ
′
j > 0 we have the (i, j)’th

hook number of λ:
hi,j(λ) := λi + λ′j − i− j + 1.

If t ∈ N and if none of the hook numbers of λ is divisible by t, one says that λ is a
t-core partition of n.

The ‘t-core partition conjecture’ asserts that if t ∈ N, t ≥ 4, then every n ∈ N
has a t-core partition. This conjecture is proved by A. Granville and K. Ono in the
papers [2], [3]. The conjecture had attracted some interest since it has implications
in the representation theory of symmetric and alternating groups: It implies that
if p is a prime number ≥ 5 then for every n ∈ N both the symmetric group Sn and
the alternating group An has a p-block of defect zero. Together with previously
known results this further implies that if p is prime ≥ 5 then every finite simple
group has a p-block of defect zero. We refer to [2] for a survey of these results.

Now let n ∈ N. Then n has a t-core partition if and only if the equations:

(0) n =
t−1∑
i=0

(
t

2
· x2

i + ixi) and
t−1∑
i=0

xi = 0 ,

have a (simultaneous) integral solution; in fact, it was proved in [1] that the number
of integral solutions to (0) equals the number of t-core partitions of n.

As explained in [3], the t-core partition conjecture is proved if it is shown that
(0) has for all n ∈ N an integral solution in each of the cases: t = 4, 5, 6, 7, 9 and
(t prime, t ≥ 11). The cases t = 4, 6, 9 were handled in [3] by special arguments.
The cases t = 5, 7, 11, 13 can be handled by using modular forms: K. Ono informed
me that the cases t = 5, 7 and t = 11 respectively were done in unpublished notes
by A. O. L. Atkin and himself respectively. Finally, in [2] a special argument using
modular forms for the case t = 13, and a general argument for t ≥ 17 were given.
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We shall give an alternative, simple proof of the fact that (0) has an integral so-
lution for all n ∈ N if t is prime, t ≥ 11; in particular, our proof avoids computation
with modular forms. As in [2], the proof has two parts: One for ‘large’ n and one
for ‘small’ n. We pay for the simplicity of our argument for ‘large’ n by having to
prove the following lemma, which requires a little amount of computation (which
however is not more than the amount of computation which was needed for the
case t = 13 in [2]).

Lemma. Suppose that t is prime, t ≥ 11 and n ≤ t(t2 − 1)/4 + (t− 1).
Then (0) has an integral solution (x0, . . . , xt−1).

Proof. Put n0 = t(t2 − 1)/4 + (t− 1). Suppose that s ∈ {1, . . . , (t− 1)/2}, put:

ms :=
t+ 1

2
− s , c0(n) := n,

define the integers yi(n), ci(n) for i = 1, . . . , s successively:

yi(n) := [
(
−1 +

√
1 + 4tci−1(n)

)
/2t], ci(n) := ci−1(n)− (tyi(n)2 + yi(n)),

so that ci(n) ≥ 0 for all i, and define the integers xms(n), . . . , xt−ms(n) :

xms+2i−2(n) := −yi(n), xms+2i−1(n) := yi(n) for i = 1, . . . , s.

Then we have:

cs(n) = n−
t−ms∑
i=ms

(
t

2
· xi(n)2 + ixi(n)) and

t−ms∑
i=ms

xi(n) = 0.

We conclude that the proof is finished if for some s ∈ {1, . . . , (t − 1)/2} the
equations:

(1) r =

(
ms−1∑
i=0

+
t−1∑

i=t−ms+1

)
(
t

2
· x2

i + ixi) and

(
ms−1∑
i=0

+
t−1∑

i=t−ms+1

)
xi = 0

have an integral solution for r = cs(n), for all n ≤ n0.
Now let us notice that the proof of lemma 1 in [2] actually shows that if r ≤

ms(ms − 1) then (1) has an integral solution (with xi ∈ {0,±1} for all i).
So, the proof is finished if for some s ∈ {1, . . . , (t− 1)/2} we have:

(2) cs(n) ≤ (
t+ 1

2
− s)( t− 1

2
− s) for all n ≤ n0.

Now, yi(n) ∈ Z is largest possible such that tyi(n)2 + yi(n) ≤ ci−1(n), and so

ci(n) = ci−1(n)− (tyi(n)2 + yi(n)) ≤ 2tyi(n) + t+ 1 ≤ t+
√

1 + 4tci−1(n) ;

consequently, if s ∈ {1, . . . , (t− 1)/2}, j ∈ {0, . . . , s− 1} and fj(x) is a polynomial,
then the condition

(4t)2
j−1cs−j(n) ≤ fj(t) for all n ≤ n0

is implied by:

(4t)2
j+1−1cs−j−1(n) ≤ fj+1(t) for all n ≤ n0,

where

(3) fj+1(x) :=
(
fj(x)− x · (4x)2

j−1
)2

− (4x)2
j+1−2,
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provided that

(4) gj(t) := fj(t)− t · (4t)2
j−1 ≥ 0.

Hence, if we define f0(x) := ((x+ 1)/2− 4)((x− 1)/2− 4), g0(x) := f0(x)− x, and
fi(x), gi(x) for i = 1, 2, 3, 4 in accordance with (3) and (4), we have that (2) holds
for the case s = 4, if

(5) g0(t), g1(t), g2(t), g3(t) ≥ 0 and ( (4t)15c0(n) ≤ f4(t) for all n ≤ n0 ).

But since we have c0(n) = n ≤ t(t2 − 1)/4 + (t− 1), we see that (5) holds if

(6) g0(t), . . . , g3(t), f(t) ≥ 0,

where
f(x) := f4(x)− (4x)15(x(x2 − 1)/4 + x− 1).

Now, g0(x), . . . , g3(x), f(x) are certain polynomials with rational coefficients which
can easily be computed by using (for example) MAPLE. For example, one finds:

f(x) = 2−32(x32 − 320x31 + 48496x30 − 4639040x29 + . . .) .

Again, using MAPLE we can compute approximations to the real roots of these
polynomials and thus verify that (6) holds for t ≥ 43, i.e. (2) holds for s = 4 if
t ≥ 43.

On the other hand, when t ∈ {37, 41}, (2) holds in the case s = 4 since a direct
computation shows that for all n ≤ n0 we have:

(c4(n) ≤ 206 if t = 41), (c4(n) ≤ 186 if t = 37);

hence we may assume t ≤ 31.
In the remaining cases t = 11, 13, 17, 19, 23, 29, 31 we finish the proof by stating

the following facts which can be checked in a few minutes on a machine.
If t ∈ {11, 13} and n ≤ n0, (0) has a solution with

(7) x1, x2, x3, x4, x6 ∈ {0,±1} and xt−4, xt−3, xt−2, xt−1 ∈ {0,±1,±2}
and

(8) x5 = 0 and xj = 0 for 7 ≤ j ≤ t− 5.

For t = 17, 19, 23, 29, 31 we have c1(n) ≤ c1 := 290, 362, 530, 842, 962 respec-
tively, and (1) has for s = 1 and all r ≤ c1 a solution with (7) and (8). �

We can now give our alternative proof of the following theorem due to A.
Granville and K. Ono, cf. [2],[3]. In their proof of existence of integral solutions
to (0) when t ≥ 17, they exploited the theorem of Lagrange on the representation
of natural numbers as sums of 4 squares. In our proof of existence for t ≥ 11 (t
prime) we use Gauss’ three square theorem.

Theorem. Suppose that t is prime, t ≥ 11.
Then for all n ∈ N, (0) has an integral solution.

Proof. Write n = tm′ + r′ with 0 ≤ r′ ≤ t− 1. Because of the lemma we may and
will assume n ≥ t(t2 − 1)/4 + (t− 1), hence m′ ≥ (t2 − 1)/4. Define the integers m
and r as follows:

(m, r) :=


(m′, r′) if m′ ≡ 1 (2), r′ 6≡ 0 (4)
(m′ + 2, r′ − 2t) if m′ ≡ 1 (2), r′ ≡ 0 (4)
(m′ ∓ 1, r′ ± t) if m′ ≡ 0 (2), r′ ≡ ±t (4)
(m′ + 1, r′ − t) if m′ ≡ r′ ≡ 0 (2).
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Then n = tm+ r and either

(I) m ≡ r ≡ 1 (2) and 4m ≥ r2,
or

(II) m ≡ 1 (2), r ≡ 2 (4) and 16m ≥ r2.

If case (I) prevails, we have that 4m− r2 is odd and 6≡ −1 (8). Hence, by Gauss’
three square theorem we have

4m− r2 = a2 + b2 + c2

for certain integers a, b, c which must all be odd (since 4m− r2 ≡ 3 (4)). We may
then assume that r + a+ b+ c is divisible by 4, and we define the integers:

α = (r+a+b+c)/4, β = (r−a−b+c)/4, γ = (r−a+b−c)/4, δ = (r+a−b−c)/4,
x0 = −α, x1 = α, x2 = −β, x3 = β, x4 = −γ, x5 = γ, x6 = −δ, x7 = δ,

and xi = 0 for i ≥ 8. Then x0 + . . .+ xt−1 = 0 and:
t−1∑
i=0

(
t

2
· x2

i + ixi) = t · 1
4

(r2 + a2 + b2 + c2) + r = tm+ r = n.

In case (II), use the same arguments and definitions of α, β, γ, δ with r replaced
by r/2. Then put

x0 = −α, x1 = −β, x2 = α, x3 = β, x4 = −γ, x5 = −δ, x6 = γ, x7 = δ,

and xi = 0 for i ≥ 8. �

Remark. The above lemma could of course be checked for all odd t in the range
9 ≤ t ≤ 41. This would prove the lemma and the above theorem for odd t with
t ≥ 9.
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