
THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY.

IAN KIMING

1. Introduction.

The title is clearly far too ambitious: Modern Public Key cryptography is a large
area with many ramifications of both theoretical and technical nature.

I will limit myself to a discussion of a basic example of a Public Key cryptosys-
tem as well as 1 of the mathematical issues that arises in connection with a security
analysis of the system. This issue is the question about possible effective meth-
ods of computing the prime factorization of integers, — a topic of independent
mathematical interest.

Let us agree that a cryptosystem consists of an injective map f of Z/Zn — the
set (ring) of residues modulo n — into itself (here, n is a ‘large’ natural number):
The elements of Z/Zn represent possible messages that the system will transmit
in encrypted form (to get from ‘real-world messages’, consisting for instance of
long strings written in some alphabet, to the set Z/Zn one can use so-called ‘hash
functions’, but this is another story that we will not go into); now, if B(ob) wants
to send a message a ∈ Z/Zn to A(lice) then he computes f(a) and transmits this
to A; using a certain piece of knowledge — that depends on the specific system f
— A is able to compute a = f−1(f(a)) from f(a).

The security of the system now obviously depends on the impossibility, or at
least impossibility from a practical point of view, of computing a from f(a) without
A’s ‘certain piece of knowledge’: For otherwise an eavesdropper E(ve) could listen
to the transmission, discover f(a), and thus do what A can do. (We are here
discussing classical electromagnetic transmission and not more recent transmission
systems that rely on quantum mechanical principles and where it is not possible to
discover f(a) without destroying the message).

Take a very simple example (that, however, has played a large role historically):
The map f could be a simple cyclic permutation f(x) := x + b for some fixed
b ∈ Z/Zn. The ‘certain piece of knowledge’ that A has is here simply the knowledge
of f : For if f is known, that is, if b is known, we can immediately determine
f−1(x) = x− b. So in this case, security certainly depends on f being kept secret.

This causes a major inconvenience: For B clearly has to know f , and so does A
(at least A must know f−1 but that is essentially the same as knowing f in this
case). So if A has chosen the system f then how does she communicate this choice
to B? A little reflection reveals that there really is no alternative to informing B
about the choice of f via some kind of physical exchange (A and B have to meet
physically, or use a courier). This is not acceptable in an era of fast, large-scale
electronic communication.

1

2 IAN KIMING

Public Key cryptosystems are systems where f , the system itself, can safely be
publicly known and yet it is still (believed to be) impossible from a practical point
of view to determine a from f(a). If such systems can be easily constructed in large
numbers then every user A can have her own system fA that is publicly known.
The system fA is essentially A’s ‘public key’. Anybody who wants to send A an
encrypted message simply looks up fA in some central database connected to the
internet and the uses fA to send an encrypted message fA(a) to A.

Let us now look at one of the 2 most basic examples of such ‘Public Key cryp-
tosystems’, namely the RSA system.

2. The RSA system.

The RSA system is named after its inventors: Rivest, Shamir, Adleman who
introduced the system in 1978, cf. [7]. The system and its use is very easy to
describe:

User A wants to construct her own system. She chooses 2 (large) distinct prime
numbers p and q, and computes:

nA := pq .

By the Chinese Remainder Theorem we then have:

(∗) Z/ZnA
∼= Z/Zp× Z/Zq ;

this is an isomorphism of rings so one sees that the number of multiplicatively
invertible elements of Z/ZnA is:

(∗∗) φ(nA) = (p− 1) · (q − 1) .

Here, φ is Euler’s φ-function, — φ(m) denotes the number of multiplicatively
invertible elements of the ring Z/Zm; this is precisely the number of integers c
in the interval [1,m[that are relatively prime to m, i.e., for which gcd(c,m) —
the greatest common divisor with m — is 1. For nA as above this means exactly
that the 2 ‘components’ of c under the Chinese remainder isomorphism are both
non-zero.

Having computed φ(nA) user A now additionally chooses a natural number eA

(< nA) relatively prime to φ(nA). Thus, eA is multiplicatively invertible modulo
φ(nA); that is, there exists an integer dA such that:

(∗ ∗ ∗) eAdA ≡ 1 (φ(nA)) ,

in fact, dA is easily determined by the Euclidean algorithm.
The pair (nA, eA) is A’s ‘Public Key’ and is made publicly available. The number

dA is called A’s ‘Private Key’ and is kept secret.
If now B wants to send a message a ∈ Z/ZnA to A, he computes and sends

aeA mod nA .

Now, since A knows the private key dA she can compute:

(aeA mod nA)dA = (aeAdA mod nA) = (a mod nA) ,

where the last equality follows thus: By (∗∗) and (∗ ∗ ∗) we have

eAdA = 1 + k · (p− 1)(q − 1)

THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. 3

for some k ∈ Z. Using the ring isomorphism (∗) it is thus enough to prove:

a1+k·(p−1)(q−1) = a

for any a in either Z/Zp or Z/Zq. But this follows immediately from Fermat’s little
theorem that if ` is prime then a`−1 is 0 or 1 in Z/Z` according to whether a is 0
or not in Z/Z`.

An inspection of the scheme reveals that security of the system certainly requires
A to keep the numbers p and q secret. For once these primes are known anybody
can compute φ(nA) = (p − 1)(q − 1), and then — since eA is publicly known —
A’s private key dA.

In other words, the security of the system definitely depends on the computa-
tional intractability of factoring a large number nA = pq. This question is the
question of independent mathematical interest coming from the RSA system (in
fact, historically it was the other way around: RSA was constructed precisely be-
cause of the supposed difficulty of factoring large numbers).

Before we get into a sketch of what can be done with the problem of factoring we
will need to go briefly into the precise meaning of notions such as ‘computationally
intractable problem’.

3. Computational complexity.

The theory of computational complexity seeks to estimate the work required to
perform one type of computational task or the other. A good measure of this work
would be the number of processor cycles required, or, what amounts to essentially
the same, the number of really basic operations such as adding 2 bits required for
the task.

The ‘tasks’ that we are talking about could be any problem that is known to
be computationally solvable in at least 1 way. We are then asking questions about
the most efficient way of solving the problem, in other words, about the least time-
consuming algorithm that solves the problem.

Now, this question is not particularly interesting unless we are talking about
some kind of a natural, infinite family of problems. For instance, we could be
talking about the computational problem of adding 2 natural numbers m and n.
Obviously, the time required to computem+n depends on the size of these numbers.
The natural question to ask is about the asymptotic behavior of the minimal time
requirement (using any algorithm) in dependence of the size of the input (m,n).
Usually, it is too hard a problem to ask for the actual minimal time: It may sim-
ply be hopeless to obtain certainty that we know every imaginable algorithm that
solves the problem. Hence, the normal situation is that one just has an asymptotic
upper bound on the time requirement. An upper bound can be found by consid-
ering 1 particular algorithm that solves the problem and analyzing that particular
algorithm in detail.

We still have to say how we measure the ‘size’ of an input. A natural measure
of the size of a natural number n is the time needed to read it, or, equivalently,
the number of digits when the number is written in (say) binary. But that number
is [log2 n] + 1 which is (roughly) proportional to log n. So we simply define log n
as the size of a natural number n (being a mathematician rather than a computer
scientist, I tend to like the natural logarithm log better than the logarithm to base

4 IAN KIMING

2; I will not even consider the possibility of bringing the logarithm to base 10 into
the game ...).

Thus, the asymptotics that we talked about above should take the form of an
upper bound of the time required to solve the problem, and expressed as a function
of the logarithms of the natural numbers that are taken as input.

For instance, it is easy to see that an addition of numbers m and n can be
performed in time

O(log n)

if we assume that n ≥ m (write the numbers in binary and use the normal school
algorithm for addition; remember that we have to count the number of times that
we have to add 2 bits).

We used Big-O notation here, and the reason is that we really do not care
much about constants in these asymptotic estimates. A much bigger picture is the
primary concern:

We say that an algorithm performing some computation on an input (n1, . . . , nk)
of natural numbers is a polynomial time algorithm if it executes in time bounded
by a polynomial in log n1, . . . , log nk.

A (family of) problem(s) for which we have a polynomial time algorithm is
considered computationally ‘easy’. On the other hand, if all we have is an algorithm
that requires exponential time, i.e., time proportional to a fixed power of the largest
input number, then the problem is considered computationally intractable.

All the basic arithmetic operations such as addition, multiplication, division with
remainder, the Euclidean algorithm, modular arithmetic, can be performed with
polynomial time algorithms. Computing something like (am mod n) can also be
done in polynomial time: Write m in binary:

m = m0 +m1 · 2 + . . .+mk · 2k

where mi ∈ {0, 1}. One computes (a2i

mod n), i = 1, . . . , k by repeated squarings:

(a2 mod n) = (a mod n)2 , (a22
mod n) = (a2 mod n)2 , . . . ;

then (am mod n) is computed as the product of certain of these powers (a2i

mod n) (those for which mi = 1). Since k = O(logm) this is all done in poly-
nomial time.

We can now review the RSA scheme with questions about complexity in mind:
We see first that every computation that A and B do can actually be done in
polynomial time; that’s a good thing, — otherwise we would hardly consider the
scheme practical ...

But a more serious question arises right at the beginning where A has to ‘choose’
2 large prime numbers p and q. How does one do that? Keeping in mind that for
practical applications the primes have to be larger than 1050 this is not a completely
trivial question ...

Clearly we need a primality test: An algorithm that takes a natural number n
as input and decides whether n is prime or not. We all know a simple algorithm
that does the job, namely trial division: Perform division with remainder dividing
n by 2, 3, 5, If we find a factor ≤

√
n then n is not prime, otherwise it is.

This works great with small numbers, but for large numbers the obvious problem

THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. 5

is that potentially we have to go all the way to
√
n which is exponential in the size

of n.
After the appearance of a brilliant new idea in 2002 by Agrawal, Kayal, Saxena,

cf. [1], we now know that there exists a primality test that executes in polynomial
time. Before that, one had various probabilistic polynomial time primality tests,
notably the so-called Miller–Rabin test; I will go briefly into the notion of a prob-
abilistic algorithm in the next section; suffice it here to say that a probabilistic
primality test is an algorithm that depends on a certain random input in addition
to the number n that we want to test. When the algorithm has executed it will
either have found with certainty that n is not prime, or else it declares n prime;
if the latter happens, the algorithm may however be in error; the point is then to
repeat the process because one can show — in a sense that can be made precise
— that the probability of error decreases exponentially with the number of times
the algorithm is run (with different random inputs of course). Thus, a probabilistic
primality test gives efficient production of what some people have called ‘indus-
trial grade primes’, — numbers that are ‘almost certainly primes’. Whatever this
means, it is the method that is actually used in practice. (By the way, it is inter-
esting to notice that the Miller–Rabin test can actually be turned into a genuine
polynomial time primality test, — though only upon assumption of the so-called
generalized Riemann hypothesis; but the Riemann hypothesis is 1 of the 7 ‘Millen-
nium Problems’ that each has 1 million dollars allocated to it as prize money for a
solution; cf. [6]).

Concerning the security of the RSA system we already remarked that it obviously
must be prevented that nA = pq is factored and thus the primes p and q are revealed.
So, how hard is it to factor integers? Does there exist a polynomial time algorithm
for factoring?

The truth is that nobody knows the answer to these questions. It seems difficult
to imagine a world where factoring numbers is so to speak computationally not a
significantly greater problem that multiplying integers. However, if we transcend
the above ‘classical’ understanding of what the word ‘algorithm’ should stand for,
and allow in algorithms such things as making measurements on physical systems,
it seems that we do in fact live in such a world:

In 1997, a great surprise resulted when P. Shor showed in [8] that a quantum
computer can in fact (probabilistically) factor integers in polynomial time; a quan-
tum algorithm is not an algorithm in classical sense but involves an experiment
with a certain quantum mechanical system; the notion can be formalized though,
so one can introduce natural notions of ‘polynomial time quantum algorithms’, and
so on.

But Shor’s result does not have any obvious implications for the question about
classical complexity of factoring. Let us turn to this question in the next section.

4. Factoring.

Suppose that we are given an integer n > 1 which is known to be (odd and)
composite; for example, we may know that n is composite because we have run a
fast primality test on n. Our task is now to find a non-trivial factor of n (if one
wants the complete prime factorization of n, one can repeat the process on the
numbers d and n/d where d is a non-trivial factor of n).

6 IAN KIMING

We all know a simple algorithm that will solve this problem: Use trial division
with numbers (or just primes) ≤

√
n. Since n > 1 is composite this procedure will

certainly reveal a non-trivial factor of n. The problem with this simple algorithm
is of course that we potentially have to go all the way to ∼

√
n, and

√
n grows

exponentially with the size of n as n→∞ ...

All modern efficient factoring algorithms are probabilistic: They depend on a
certain random input; with this input the algorithm runs for some time and then
terminates with either no answer or with a non-trivial factor of n. If we get ‘no
answer’ we repeat the process with a new random input, and continue until we
actually get a non-trivial factor of n. We can speak of the expected time before the
algorithm comes out with an answer, i.e., the expected number of elementary bit
operations that a machine will perform before an answer is found. ‘Expected’ is of
course to be taken in the sense of probability theory.

The expected time will depend on 2 things: The ‘main loop’ of the algorithm that
executes once the random input is given will be deterministic and require a certain
time to execute; we then have to think about the expected number of iterations
(with different random inputs) of this main loop before an answer is found. The
expected time of the algorithm will then be this expected number of iterations times
the time requirement for the main loop.

Let us now consider the main principle behind most modern factorization al-
gorithms: It is a simple idea due to P. Fermat (1601–1665): We a given an odd,
composite number n. Suppose that we can find 2 integers b and c such that:

(]) b2 ≡ c2 (mod n) .

The greatest common divisor d := gcd(n, b+c) of n and b+c is of course a factor
of n. We may hope that it is actually a non-trivial factor of n. When is it trivial,
i.e., when is it 1 or n? That d = 1 means that b+ c is relatively prime to n; on the
other hand, by (]) we have that n divides b2 − c2 = (b+ c)(b− c); so d = 1 implies
that n divides b− c, i.e., that b ≡ c (mod n). Similarly one sees that d = n implies
b ≡ −c (mod n). In other words, if b 6≡ ±c (mod n) then d must be a non-trivial
factor of n.

The point is now, as can easily be checked via the Chinese Remainder Theorem,
that if n is odd and composite then for random pairs (b, c) with (]) the probability
that we have b ≡ ±c (mod n) is ≤ 1

2 . Thus, if we have a number of such pairs at
our disposal, and try to find a non-trivial factor of n by computing gcd(n, b+c), the
probability that we are not successful decreases exponentially with the number of
pairs that we try (it is in order to draw this conclusion that we made the harmless
assumption that n be odd).

Most modern factorization algorithms rely on this simple principle and differ
only in the methods for producing pairs (b, c) with (]). Let me sketch one such
algorithm, namely the so-called ‘factor base algorithm’. This is one of the (very)
few factorization algorithms for which a mathematically rigorous result about the
expected execution time can be proved. The first to prove such a result was J. D.
Dixon, see [4]; as a result the algorithm is also referred to as Dixon’s algorithm.

Let us consider a simple example illustrating the principle of Dixon’s algorithm:
Suppose that we want to factor the number 4307. Suppose further that a random
number generator gives us the numbers 93 and 107. Given these numbers we can

THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. 7

then compute:

932 ≡ 35 = 5 · 7 (mod 4307) and 1072 ≡ 2835 = 34 · 5 · 7 (mod 4307) ,

so that
(93 · 107)2 ≡ (32 · 5 · 7)2 (mod 4307) .

Using the fast Euclidean algorithm we then compute

gcd(4307, 93 · 107 + 32 · 5 · 7) = gcd(4307, 10266) = 59 ,

and then 4307 = 59 · 73.
The reader may now think that we were incredibly lucky to get the numbers

93 and 107 from the random number generator. Or, equivalently, wonder about
how much time I had to spend in order to construct this simple example. But
understanding precisely how much luck we actually need is in fact precisely one
of the subtle points in the analysis of Dixon’s algorithm: Given a general odd,
composite number n how many numbers do we need from the random number
generator before a ‘lucky’ coincidence such as the one above occurs?

Before we go into that, let us give a description of the general algorithm: We
are given n > 1 which is odd and composite.

We first fix a real number y with 2 ≤ y < n. Later on, y will be chosen in
dependence on n. Put:

N := π(y) ,
where π is the prime number function, i.e., N = π(y) is the number of primes ≤ y.
By the prime number theorem we have

π(y) ≈ y

log y
where the implied error term can be made explicit.

Let the primes ≤ y, i.e., the first N primes, be p1, . . . , pN . The set {p1, . . . , pN}
will serve as our ‘factor basis’.

From now on, when we talk about residue classes mod n we will actually mean
the unique representative of the class in the interval [1, n].

Step 1. We choose a number b randomly in the interval 1 < b < n. We compute
gcd(b, n); if this is > 1 we are quite happy since this number is then a non-trivial
factor of n. So we now assume that b is relatively prime to n.

Denote by Q(b) the number

Q(b) := b2 mod n ;

thus, by the above convention, Q(b) is the unique representative of (b2 mod n) in
the interval [1, n].

We determine whether Q(b) has all its prime factors ≤ y. If not, we choose a
new b and test again Q(b).

We continue until we have N + 1 numbers bi, i = 1, . . . N + 1, such that every
Q(bi) has all its prime factors ≤ y. For each i we compute the factorization:

Q(bi) =
N∏

j=1

p
βij

j ,

and put:
εij := (βij mod 2) .

8 IAN KIMING

Step 2. For each i = 1, . . . , N + 1 we can consider the vector:

εi := (εi1, . . . , εiN)

as a vector in the N -dimensional vector space (Z/Z2)N over the finite field with 2
elements Z/Z2.

Since we have N + 1 vectors in an N -dimensional vector space, the εi must be
linearly dependent. Since we are working over Z/Z2 with the only elements 0 and
1, the linear dependence of the εi means that there is a non-empty subset

I ⊆ {1, . . . , N + 1}
such that: ∑

i∈I

εi = 0 .

Since εij := (βij mod 2) we see that this means that:∑
i∈I

βij ≡ 0 (2) for j = 1, . . . , N ,

so that we can write: ∑
i∈I

βij = 2 · γj for j = 1, . . . , N ,

with integers γj .

Step 3. Now we put:

b := (
∏
i∈I

bi mod n) and c := (
N∏

j=1

p
γj

j mod n) ,

and obtain:

b2 ≡
∏
i∈I

b2i ≡
∏
i∈I

Q(bi) =
∏
i∈I

N∏
j=1

p
βij

j =
N∏

j=1

p
P

i∈I βij

j =
N∏

j=1

p
2γj

j ≡ c2 mod n .

If then b ≡ ±c (n) we go back to step 1. Otherwise, we compute gcd(b + c, n)
which is then a non-trivial factor of n.

For the analysis of the algorithm, let us first remark that it may seem paradoxical
that we are describing a factoring algorithm but then in step 1 talk about computing
the factorization of the Q(bi). However, we are only talking about whether a given
Q(b) can be completely factored as product of the primes p1, . . . , pN , and if so we
must actually find the factorization. This can simply be done via trial division
with these primes; the point is that if y and hence also N = π(y) ≈ y

log y is only
moderately large compared to n then the work involved in this is not too large.

But this also brings us to the essential points in the analysis of the algorithm:
A detailed analysis will reveal that there are 2 dominating contributions to the
expected running time:

First, in step 2 we must find a non-trivial linear relation between the vectors
εi. We do this by viewing the εi as rows in an (N + 1) × N matrix with entries
in Z/Z2 and then use Gauss elimination on this matrix. Sooner or later during
the elimination a row consisting entirely of zeros will appear; if we have kept track

THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. 9

of our row operations we will then at that point have found a non-trivial linear
relation between the εi. The time requirement for the Gauss elimination is:

O(N3) = O(π(y)3) .

Secondly, looking at step 1 it is intuitively clear that question about the optimal
choice of y can not be entirely trivial: If we choose y large then N is large and
so we have a lot of trial divisions with the primes p1, . . . , pN . On the other hand,
if we choose y smaller then clearly we reduce the probability that a Q(b) can be
completely factored with p1, . . . , pN , i.e., with the primes ≤ y. In other words, if y
is small we have to test a lot of random b’s to get just one ‘good’ Q(b).

It is clear that a rigorous analysis thus requires us to quantify the above proba-
bility. And this is actually the most complicated point in the analysis.

We are talking about the probability that a random number in [1, n] has all its
prime divisors among p1, . . . , pN , i.e., among the primes ≤ y. This probability is:

ψ(n, y)
n

where ψ is a function well-known from analytic number theory, namely the function
ψ(n, y) defined as the number of integers a ∈ [1, n] that have all prime factors ≤ y.

The expected number of times we have to test random b’s in order to find just
1 ‘good’ Q(b) is then: (

ψ(n, y)
n

)−1

.

Since we need N + 1 good Q(b)’s we expect to be required to test

(N + 1) ·
(
ψ(n, y)
n

)−1

random b’s. For each b we have some trial divisions with the p1, . . . , pN to do; an
upper bound for the time requirement of that can be found to be:

O(N · log3 n)

so that (an upper bound on) the total, expected time requirement for this part of
the algorithm is:

O

(
N(N + 1) · log3 n ·

(
ψ(n, y)
n

)−1
)

= O

(
N2 · log3 n ·

(
ψ(n, y)
n

)−1
)

which turns out to be the second dominating contribution to the expected execution
time of the algorithm.

It is now clear that in order to proceed any further, and in particular answer the
question about the optimal choice of the parameter y, we need some lower bound
on the ψ-function. It has been known for many years that we have (in a sense that
can be made precise):

ψ(n, y) ≈ u−u where u :=
log n
log y

but this is far from being enough information for our purposes.
It is possible to use various types of elementary arguments to obtain fairly good

lower bounds for ψ(n, y). These ‘elementary lower bounds’ come remarkably close
to giving the right, final answer which however is only obtained by using a tough
theorem in analytic number theory, namely a theorem by Canfield, Erdös and

10 IAN KIMING

Pomerance from 1983, cf. [3]. We will not quote the theorem but merely state that
its use leads to the following conclusion: With the following choice of y:

y = e
1
2

√
log n log log n

in Dixon’s algorithm the expected time requirement to find a non-trivial factor of
n is bounded by:

O
(
e(2+ε)

√
log n log log n

)
for any ε > 0.

This bound is certainly not a polynomial dependence on n but it is also clearly
asymptotically far better than a pure exponential dependence. In mathematical
jargon, we speak of a ‘subexponential (probabilistic) algorithm’.

The interested reader who wishes to see more of the details in the above com-
plexity analysis can be referred to some lecture notes that I have written, cf. [5].

As we remarked earlier, most modern factorization algorithms rely on Fermat’s
old idea of using pairs of integers (b, c) with b2 ≡ c2 (mod n), and differ only in
the method used to produce such pairs. Thus, Dixon’s algorithm uses a relatively
straightforward, ‘brute force’ method. A much more sophisticated way of producing
these pairs relies on algebraic number theory and is used in the so-called number
field sieve, — also a probabilistic algorithm. With certain heuristic assumptions,
i.e., certain unproven but ‘reasonable’ hypotheses the number field sieve has an
expected execution time bounded by:

O

(
e((

64
9)

1
3 +ε)(log n)

1
3 (log log n)

2
3

)
,

for any ε > 0, cf. [2]. This (upper bound on the) expected execution time is — if
true — asymptotically the best among all known factorization methods.

The conclusion is that — quite surprisingly — there does in fact exist (clas-
sical, probabilistic) factorization algorithms with expected execution times asymp-
totically much better than a raw exponential dependence on n. But that also, on
the other hand, this is still not enough in practice to be a real threat to the RSA
cryptosystem. For that, we will probably have to wait for the physical realization
of quantum computers!

References

[1] M. Agrawal, N. Kayal, N. Saxena: ‘Primes is in P’, Preprint 2002.
http://www.cse.iitk.ac.in/news/primality_v3.pdf

[2] J. P. Buhler, H. W. Lenstra, C. Pomerance: ‘Factoring integers with the number field sieve’,

Lecture Notes in Mathematics 1554 (1993), 50–94.
[3] E. R. Canfield, P. Erdös, C. Pomerance: ‘On a problem of Oppenheim concerning ”Factorisatio

Numerorum”’, J. Number Theory 17 (1983), 1–28.

[4] J. D. Dixon: ‘Asymptotically fast factorization of integers’, Math. Comp. 36 (1981), 255–260.
[5] I. Kiming: ‘The ψ-function and the complexity of Dixon’s factoring algorithm’, lecture notes

2004,
http://www.math.ku.dk/~kiming/courses/2004/krypto/psi.pdf

[6] The Millennium Prize Problems from the Clay Mathematics Institute:

http://www.claymath.org/millennium/

[7] R. L. Rivest, A. Shamir, L. Adleman: ‘A method for obtaining digital signatures and public-key

cryptosystems’, Comm. ACM 21 (1978), 120–126.

http://www.cse.iitk.ac.in/news/primality_v3.pdf
http://www.math.ku.dk/~kiming/courses/2004/krypto/psi.pdf
http://www.claymath.org/millennium/

THE MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY. 11

[8] P. W. Shor: ‘Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer’, SIAM J. Comput. 26 (1997), 1484–1509.

Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-

2100 Copenhagen Ø, Denmark.
E-mail address: kiming@math.ku.dk

mailto:kiming@math.ku.dk

	1. Introduction.
	2. The RSA system.
	3. Computational complexity.
	4. Factoring.
	References

