
CONSTRUCTION OF THE REAL NUMBERS

IAN KIMING

1. Motivation.

It will not come as a big surprise to anyone when I say that we need the real
numbers in mathematics. We need to be able to talk precisely about real numbers
and their properties, and to rigorously prove theorems whose statements and/or
proofs involve the system of real numbers. We must be able to do this on an
axiomatic basis.

One solution to this is to simply introduce a set of axioms for the real number
system. Whether you are aware of this or not, this is what you have already been
subjected to in previous courses.

There are two reasons why this is not acceptable in the long run. The first reason
is that it is a question of aesthetics: if we can introduce the real numbers without
accepting any further axioms than the axioms of set theory then that seems like a
more satisfactory situation.

The second reason is far more important though. On a deeper level it is in fact
connected with the first reason but goes in the direction of answering the following
question: “How do we know that the axiomatic basis of mathematics does not
allow us to prove contradictory statements?” I.e., how can we know that it is not
possible to prove both a theorem and the negation of that theorem on the basis of
our accepted axiomatic system?

The point is that it is usually extremely hard to answer such questions. For
instance, one can prove that it is not possible for the system of axioms of set theory
– i.e., the modern basis of all mathematics – to prove its own “consistency”, that
is, that there are no hidden contradictions, – unless, of course, the system does in
fact contain such contradictions (for in that case one would be able to prove any
statement on the basis of the axioms). (Do not worry too much about this though;
in the unlikely event that a contradiction should turn up you can be sure that
bridges will not suddenly start to collapse, or that space ships will begin to miss
their destinations because of that. If a contradiction turned up we would simply
have to reconsider the situation and construct a new axiomatic system that does
for us what we want of it).

However, we can take a few precautions: We can be as conservative as we can
when it comes to introducing new axioms in mathematics. Thus, by constructing
the real numbers on the basis of the axioms that we already have we can be certain
that there will not result any new contradictions for some deep or hidden reason.

So, how do we construct the real numbers?
The fundamental idea about the real numbers is that – whatever they are – they

should be objects that can be approximated by rational numbers. For instance, if
we think of real numbers as having – possibly infinite – decimal expansions then
this is just one way of thinking about real numbers as “limits” of rational numbers:

1



2 IAN KIMING

For a(n) (infinite) decimal expansion is nothing but a sequence of finite decimal
expansions where we add more and more digits in the expansion. And a finite
decimal expansion is a rational number (Exercise 1).

But there is nothing special about decimal expansions: We can consider any
sequences of rational numbers. The important question then is: Which sequences
of rational numbers should be thought of as “approximating real numbers”? Notice
that, from a formal point of view, the question is meaningless: For since we have
not yet constructed the real numbers we can not attach any precise meaning to the
phrase “approximating real numbers” ...

But that the question is formally meaningless does not mean that it is mathe-
matically pointless or trivial. Rather, the point is that we are searching for a good
definition, i.e., a definition that will ultimately lead to a satisfactory theory.

To make a long story short, it turns out that the notion of a “Cauchy sequence
of rational numbers” – see the precise definition in the next section – not only
captures much of the intuition we may have about “approximating sequences of
rational numbers”, but also leads to a satisfactory theory. How people came up
with this definition in the first place is a question in the history of mathematics
that we will not go further into here.

When we have defined what Cauchy sequences of rational numbers are, the great
idea is then this: we want to think about the Cauchy sequences as sequences of
approximations to real numbers but we still do not have the real numbers. How do
we get them? Answer: we simply identify them with these sequences ...

This causes a small problem to consider: our intuition tells us that there are
many different sequences approximating a real number. For instance, it seems
reasonable to think of the sequences
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1
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, . . .)

as both being sequences approximating 1. But when should we generally con-
sider two sequences (a1, a2, . . .) and (b1, b2, . . .) as approximations of the “same
real number”? Intuition tells us that this should be so precisely if the sequence
(a1 − b1, a2 − b2, . . .) approximates the rational number 0; and if this is the case,
we should consider the sequences (a1, a2, . . .) and (b1, b2, . . .) as being – or rather
representing – the same real number.

The mathematically exact way of doing this is to introduce a certain equivalence
relation between Cauchy sequences of rational numbers. The real numbers are then
defined as the corresponding equivalence classes.

2. Definition of the real numbers.

On the basis of the motivational remarks above we now proceed to actually
construct the system of real numbers.

2.1. Fundamental definitions and basic properties.

Definition 1. Let α = (a1, a2, . . . , an, . . .) be a sequence of rational numbers, i.e.,
an ∈ Q, for all n ∈ N.

We say that α is a Cauchy sequence of rational numbers if for every positive
rational number ε there is (depending on ε) an N ∈ N such that:

|am − an| < ε whenever m,n ≥ N.
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I.e., α is called a Cauchy sequence if

∀ε ∈ Q+∃N ∈ N∀m,n ∈ N : m,n ≥ N ⇒ |am − an| < ε.

We denote the set of Cauchy sequences of rational numbers by C:

C := {α sequence of rational numbers | α is a Cauchy sequence}.
If α = (a1, a2, . . . , an, . . .) is a sequence of rational numbers and a ∈ Q we say

that α converges to a if for every positive rational number ε there is (depending
on ε) an N ∈ N such that:

|a− an| < ε whenever n ≥ N.
I.e., we say that α converges to a ∈ Q if

∀ε ∈ Q+∃N ∈ N∀n ∈ N : n ≥ N ⇒ |a− an| < ε.

If α converges to a we also write α → a, or an → a for n→∞, or we say that
a is the limit of α.

We call the sequence α convergent in Q if it converges to some a ∈ Q.
The sequence α is called a null-sequence if it converges to the rational number

0. We denote the set of null-sequences by N :

N := {α sequence of rational numbers | α is a null-sequence}.

Proposition 1. Let α = (a1, a2, . . . , an, . . .) be a sequence of rational numbers.
If α is convergent in Q then α is a Cauchy sequence.
In particular, every null-sequence is a Cauchy sequence:

N ⊆ C.

Proof. Suppose that α is convergent in Q. To show that α is a Cauchy sequence,
let the positive rational number ε be given.

Since α converges in Q there is some a ∈ Q such that α converges to a. Since
ε/2 is a positive rational number there is an N ∈ N such that:

|a− an| < ε/2 whenever n ≥ N.
Let m,n ∈ N be such that m,n ≥ N . We then find:

|am − an| = |(am − a) + (a− an)| ≤ |(am − a)|+ |(a− an)| < ε/2 + ε/2 = ε.

Since ε was arbitrary we have shown that α is a Cauchy sequence. �

Definition 2. Let a ∈ Q. The sequence (a, a, . . . , a, . . .) is called the constant se-
quence with term a. It is clear from the definition that any such constant sequence
is a Cauchy sequence which in fact converges in Q to a ∈ Q.

It is a little harder to show the existence of Cauchy sequences that are not
convergent in Q. We will construct an example in exercise 3.

Next we proceed to show that Cauchy sequences can be added and multiplied in
a natural way. We first need a little lemma.

Lemma 1. Suppose that α = (a1, a2, . . . , an, . . .) is a Cauchy sequence of rational
numbers.

Then there is (depending on α) a positive rational number c such that:

|an| ≤ c for all n ∈ N.
(One says that the sequence α is bounded).
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If α is not a null-sequence there is (depending on α) a positive rational number
d and an M ∈ N such that:

|an| ≥ d whenever n ≥M.

Proof. Since α is a Cauchy sequence there is an N ∈ N such that |am − an| < 1
whenever m,n ≥ N . Let c0 be the maximum of the finitely many rational numbers
|a1|, . . . , |aN |, and put c := c0 + 1. Then c is a positive rational number.

Let n ∈ N. If n ≤ N we have |an| ≤ c0 < c. And if n ≥ N we find:

|an| = |(an − aN ) + aN | ≤ |an − aN |+ |aN | ≤ 1 + c0 = c.

Suppose then that α is a Cauchy sequence which is not a null-sequence. This
means that α does not converge to 0. By definition, this means that:

∃ε ∈ Q+∀N ∈ N∃n ∈ N : n ≥ N and |0− an| ≥ ε,

i.e., there is a positive rational number ε so that whenever N ∈ N we can always
find an n ≥ N such that |an| ≥ ε. Fix one such positive rational number ε.

Now, since α is a Cauchy sequence, and since ε/2 is a positive rational number
there is an N ∈ N such that

|am − an| < ε/2 whenever m,n ≥ N.

By the above there is an n0 ≥ N such that |an0
| ≥ ε. But then we have for any

n ≥ N that:

|an| = |an0
− (an0

− an)| ≥ |an0
| − |an0

− an| ≥ ε− ε/2 = ε/2.

So we can take d = ε/2 and M = N . �

Proposition 2. Suppose that α = (a1, a2, . . . , an, . . .) and β = (b1, b2, . . . , bn, . . .)
are Cauchy sequences of rational numbers. Define the sequences α + β and α · β
(also often simply written as αβ) of rational numbers as follows:

α+ β := (a1 + b1, a2 + b2, . . . , an + bn, . . .),

and

α · β := (a1b1, a2b2, . . . , anbn, . . .).

Then α+ β and α · β are both Cauchy sequences of rational numbers.

Proof. Let a positive rational number ε be given.
Since α and β are Cauchy sequences there exist according to Lemma 1 positive

rational numbers c1 and c2 such that |an| ≤ c1 and |bn| ≤ c2 for all n ∈ N. Let c
be the largest of the 3 numbers 1, c1, and c2. Then we certainly have |an| ≤ c and
|bn| ≤ c for all n ∈ N.

The number ε
2c is a positive rational number. Again since α and β are Cauchy

sequences there exist by definitionN1, N2 ∈ N such that |am−an| < ε
2c ifm,n ≥ N1,

and such that |bm − bn| < ε
2c if m,n ≥ N2.

Now let N be the largest of the two numbers N1 and N2. Then, whenever
m,n ≥ N we deduce:

|(am + bm)− (an + bn)| = |(am − an) + (bm − bn)|

≤ |am − an|+ |bm − bn| <
ε

2c
+

ε

2c
=
ε

c
≤ ε,
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since c ≥ 1, and furthermore:

|ambm − anbn| = |am(bm − bn) + bn(am − an)| ≤ |am||bm − bn|+ |bn||am − an|

< c · ε
2c

+ c · ε
2c

= ε.

�

If α = (a1, a2, . . . , an, . . .) ∈ C and q ∈ Q we can define:

q · α := (qa1, qa2, . . . , qan, . . .)

which we may also simply denote by qα. But one notices that qα is in fact nothing
but the product of the constant sequence with term q with the sequence α. Thus,
by Proposition 2 we have qα ∈ C.

Also, if α = (a1, a2, . . . , an, . . .) and β = (b1, b2, . . . , bn, . . .) are elements of C we
can define their difference α− β:

α− β := (a1 − b1, a2 − b2, . . . , an − bn, . . .),

but we notice that this is just the sequence α + (−1) · β. Again by Proposition 2
we deduce that α− β ∈ C.

The following proposition is completely straightforward to prove.

Proposition 3. Let α, β, γ ∈ C. Then:

α+ β = β + α, αβ = βα,

α± (β ± γ) = (α± β)± γ, α(βγ) = (αβ)γ,

and

α(β ± γ) = αβ ± αγ.
In particular, if q ∈ Q we have:

q(αβ) = (qα)β = α(qβ), q(α+ β) = qα+ qβ.

Proposition 4. Suppose that α = (a1, a2, . . . , an, . . .) and β = (b1, b2, . . . , bn, . . .)
are sequences of rational numbers that converge in Q to a and b, respectively. Let
q be an arbitrary rational number.

Then the sequences α + β, qα, and α · β are also convergent in Q, with limits
a+ b, qa, and a · b, respectively.

Corollary 1. Suppose that α = (a1, a2, . . . , an, . . .) and β = (b1, b2, . . . , bn, . . .) are
null-sequences of rational numbers. Suppose also that q is a rational number.

Then the sequences α+ β, qα, and α · β are also null-sequences.

Proof. This follows immediately from the definition of “null-sequence” and Propo-
sition 4. �

The fact that qα is a null-sequence if α is can be generalized a bit:

Proposition 5. Suppose that α = (a1, a2, . . . , an, . . .) and β = (b1, b2, . . . , bn, . . .)
are Cauchy sequences of rational numbers and that β is a null-sequence.

Then αβ is also a null-sequence.
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Proof. Let ε be any positive rational number.
Since α is a Cauchy sequence there is according to Lemma 1 a positive rational

number c such that |an| ≤ c for all n ∈ N.
Then ε/c is also a positive rational number. Since β is a null-sequence there is

N ∈ N such that |bn| < ε/c whenever n ≥ N . But then:

|anbn| = |an||bn| < c · ε/c = ε

for all n ≥ N .
We conclude that αβ is a null-sequence. �

2.2. Definition of the set of real numbers.

Definition 3. Define a relation ∼ between elements of C, i.e., between Cauchy
sequences of rational numbers, as follows: if α, β ∈ C we write α ∼ β if the Cauchy
sequence α− β is a null-sequence. In other words:

α ∼ β def⇔ α− β ∈ N .

Proposition 6. The relation ∼ is an equivalence relation in C.

Proof. Proof that ∼ is reflexive: Let α = (a1, a2, . . . , an, . . .) ∈ C. Then:

α− α = (0, 0, . . .)

is the constant sequence with term 0. This is obviously a null-sequence, so we have
α− α ∈ N , i.e., α ∼ α by definition.
Proof that ∼ is symmetric: Suppose that α, β ∈ C and that α ∼ β. Then α − β is
a null-sequence. Then by Proposition 3 we have

β − α = (−1) · (α− β)

and so by Corollary 1, β − α is again a null-sequence. That is, β ∼ α.
Proof that ∼ is transitive: Let α, β, γ ∈ C, and suppose that α ∼ β and β ∼ γ. That
is, the sequences α− β and β − γ are both null-sequences. Now, by Proposition 3
we have:

α− γ = (α− β) + (β − γ),

and so by Corollary 1 the sequence α−γ is again a null-sequence. That is, we have
α ∼ γ. �

Definition 4. The set of real numbers R is defined as the set of equivalence classes
of elements of C with respect to the equivalence relation ∼:

R := C/ ∼ .

If α is a Cauchy sequence of rational numbers we will write ᾱ for the equivalence
class containing α in C/ ∼. Thus, for α ∈ C we have an element ᾱ ∈ R.

We would now like to define sums and products of elements in R. Since we have
already defined sums and products of elements in C it seems rather clear how to
proceed: if x, y ∈ R there are elements α, β ∈ C such that x = ᾱ and y = β̄; it
seems reasonable to define:

x+ y := α+ β,

that is, we are proposing to define + on equivalence classes in C/ ∼ thus:

ᾱ+ β̄ := α+ β.
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Be sure that you understand fully that this is not a statement but a proposed
definition.

Before we can formally make this definition we must be certain that it makes
sense. What is the problem? The problem is that the above “definition” relied on
a choice: We chose the representatives α and β of the classes x and y in R = C/ ∼.
We must convince ourselves that the definition of x + y does not depend on these
choices; that is, we must show that the class α+ β does not depend on the choices
of representatives α and β for the classes x and y. In mathematical jargon we must
show that our proposed + on real numbers is “well-defined” (i.e., does not depend
on any choices made). This is the purpose of the next proposition.

Proposition 7. Let x, y ∈ R. Suppose that α1, α2 ∈ C are both representatives of
the class x, and that β1, β2 ∈ C are both representatives of the class y. Then:

α1 + β1 = α2 + β2

and

α1β1 = α2β2.

Proof. The statement α1 + β1 = α2 + β2 means that the two Cauchy sequences
α1 + β1 and α2 + β2 are in the same class with respect to ∼, that is, that

α1 + β1 ∼ α2 + β2.

By definition, this is the statement that the Cauchy sequence (α1+β1)−(α2+β2)
is a null-sequence. Now:

(α1 + β1)− (α2 + β2) = (α1 − α2) + (β1 − β2)

by proposition 3.
But α1 − α2 is a null-sequence since α1 and α2 are both representatives for the

class x. Similarly, the sequence is β1 − β2 is a null-sequence. Now Corollary 1
implies that (α1 + β1)− (α2 + β2) is a null-sequence, as required.

We also have:

α1β1 − α2β2 = α1(β1 − β2) + β2(α1 − α2).

Combining Proposition 5 with Corollary 1 we conclude that α1β1 − α2β2 is a
null-sequence. That is:

α1β1 = α2β2.

�

We can now formally introduce sums and products of elements in R:

Definition 5. Let x and y be real numbers. We define the sum x + y and the
product xy as follows:

Let α and β be Cauchy sequences of rational numbers such that:

x = ᾱ, y = β̄.

Then we define:

x+ y := α+ β and xy := α · β.
By Proposition 7 this is well-defined, i.e., these definitions do not depend on the

choices of representatives α and β of x and y, respectively.
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Proposition 8. Consider the map φ : Q→ R given by:

φ(a) := (a, a, . . . , a . . .),

i.e., by mapping a rational number a to the class in R = C/ ∼ containing the
constant sequence with term a.

The map φ is injective and has the properties:

φ(a+ b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).

Proof. Suppose that a and b are rational numbers such that φ(a) = φ(b). By
definition of φ this means that:

(a, a, . . . , a . . .) = (b, b, . . . , b . . .)

i.e., that (a, a, . . . , a . . .) ∼ (b, b, . . . , b . . .). By definition, this means that the se-
quence

(a, a, . . . , a . . .)− (b, b, . . . , b . . .) = (a− b, a− b, . . . , a− b . . .)

is a null-sequence. So, the rational number |a − b| is smaller than any positive
rational number (why?). Since |a − b| ≥ 0 this can only happen if |a − b| = 0. So
we must have a− b = 0, i.e., a = b. We have proved that φ is injective.

The proof that φ has the other stated properties is left to the exercises. �

Notice in the Proposition that we have two different “plusses” in the game: In
the equality φ(a + b) = φ(a) + φ(b) the + in a + b means addition of the rational
numbers a and b whereas the + in φ(a) + φ(b) is the addition of real numbers that
was defined in Definition 5. Similarly, in the equality φ(ab) = φ(a)φ(b) there are
two different (and implicit) multiplication signs ·.

Proposition 8 means that we can view R as containing a copy of the rational
numbers, – namely the set φ(Q). Abusing notation and denoting this subset φ(Q)
again by the symbol Q we can then say that Q is a subset of R. So, if a is a rational
number we will view it as an element a ∈ R. That is, we write a but actually mean
φ(a).

Does this not introduce a potential ambiguity? Namely, if a and b are rational
numbers the expression a + b can be interpreted in two different ways: Either we
can say that a+ b is the “original” sum of a and b as rational numbers. Or, we can
say that a+ b is the sum of a and b viewed as elements of R. But the proposition
states that if we view the sum as an element of R then it is the same whether we
view it in the one or the other way. Thus, the ambiguity is harmless. Similarly,
there is in principle an ambiguity in the expression ab, but again by the proposition
it does not matter much.

Using notation in a slightly ambiguous way like in the above occurs frequently
in mathematics. The reason is not that mathematicians love ambiguity but rather
that they like notation as convenient and transparent as possible. Thus, in the
above we would like to be able to write a ∈ R though we really should be writing
φ(a) ∈ R.

Ambiguities such as the ones we have just discussed are perfectly all right to use
as long as one is aware of them, and is able – at any time – to explain the situation
without any ambiguities at all.

Now we can prove the first theorem on the properties of the set of real numbers
R.
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Theorem 1. The set R of real numbers equipped with the two binary operations +
and · defined in Definition 5 is a field.

Proof. There is a lot of small things to verify, and then a larger one, namely that
elements 6= 0 are invertible w.r.t. multiplication.

But let us first notice the following: In the field axioms there occur certain
elements 0 and 1 of R. We must clarify what we mean by these symbols. But this
is easy: We let them mean exactly what they seem to mean, namely the rational
numbers 0 and 1, – interpreted, however, as elements of R as in the discussion
following Proposition 8. In other words, the element 0 ∈ R is actually the class:

0 := (0, 0, . . . , 0, . . .)

containing the constant sequence with term 0. Similarly, 1 as an element of R is
the element:

1 := (1, 1, . . . , 1, . . .).

We prove now the least trivial of the properties which is the existence of multi-
plicative inverses to non-zero elements of R. That is, we must prove that if x ∈ R
with x 6= 0 then there exists y ∈ R such that:

xy = 1.

So let x ∈ R be arbitrary but with x 6= 0. Let α = (a1, a2, . . . , an, . . .) be a
Cauchy sequence representing x, i.e., such that x = ᾱ. Since x 6= 0 we have:

(a1, a2, . . . , an, . . .) = ᾱ 6= 0 = (0, 0, . . . , 0, . . .);

by definition, this means that the sequence

(a1, a2, . . . , an, . . .)− (0, 0, . . . , 0, . . .) = (a1, a2, . . . , an, . . .)

is not a null-sequence. By Lemma 1 there is then a positive rational number d and
an M ∈ N such that:

|an| ≥ d whenever n ≥M.

Since d is positive we must then have an 6= 0 for n ≥ M . Since an is a rational
number we can meaningfully speak of the rational number 1

an
whenever an 6= 0, –

and hence in particular for n ≥M . We have:

(∗) 1

|an|
≤ 1

d
whenever n ≥M.

Now let us consider the following sequence β of rational numbers:

β := (0, . . . , 0︸ ︷︷ ︸
M

,
1

aM+1
,

1

aM+2
, . . .).

We first claim that β is a Cauchy sequence. To see this let ε be an arbitrary
positive rational number. Then d2ε is also a positive rational number. Since
(a1, a2, . . . , an, . . .) is a Cauchy sequence there is N ∈ N such that:

(∗∗) |am − an| < d2ε whenever m,n ≥ N.
Let now L be the largest of the two numbers M and N . If m,n ≥ L we then

find: ∣∣∣∣ 1

am
− 1

an

∣∣∣∣ =

∣∣∣∣am − anaman

∣∣∣∣ =
|am − an|
|am||an|

< d2ε · 1

d2
= ε,

because of (∗) and (∗∗). Hence β is a Cauchy sequence.
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So we can consider the class y := β̄ in R = C/ ∼. We claim that xy = 1. To

prove this, we have to show that ᾱβ̄ = 1 := (1, 1, . . . , 1, . . .) in R, i.e., that

αβ ∼ (1, 1, . . . , 1, . . .).

We compute:

αβ = (a1, a2, . . . , an, . . .) · (0, . . . , 0︸ ︷︷ ︸
M

,
1

aM+1
,

1

aM+2
, . . .)

= (0, . . . , 0︸ ︷︷ ︸
M

, 1, 1, . . .),

so that

αβ − (1, 1, . . . , 1, . . .) = (0, . . . , 0︸ ︷︷ ︸
M

, 1, 1, . . .)− (1, 1, . . . , 1, . . .)

= (−1, . . . ,−1︸ ︷︷ ︸
M

, 0, 0, . . .);

since this is clearly a null-sequence, the claim follows. �

3. The order in R and further properties.

3.1. Order and absolute value. We wish to be able to measure sizes of real
numbers. The key to doing that is to introduce an order relation. The key to
define an order relation < is to define a subset R+ with the following properties:

• For any x ∈ R, exactly one of the following holds: x ∈ R+ or x = 0 or
−x ∈ R+,
• for x, y ∈ R+ we have x+ y, xy ∈ R+.

If we can define such a subset R+ ⊆ R, the order relation < is then defined:

x < y if and only if y − x ∈ R+,

and one also defines, as usual, the relation x ≤ y to mean that either x = y or
x < y.

Definition 6. Let x ∈ R and let α = (a1, a2, . . . , an, . . .) be a Cauchy sequence of
rational numbers that represents x in R.

We say that x is positive if there exists a positive rational number d and an
N ∈ N such that:

an ≥ d whenever n ≥ N.
The set of positive real numbers is denoted by R+.

Once again, we have a potential problem with the definition: We must show
that the definition does not depend on the choice of the representative α. That is,
we must show that a given x could not simultaneously be shown to be positive by
choosing one representative, and be shown to be not positive by choosing another
representative. The following lemma rules out exactly this hypothetical situation
and thus makes the definition that we have just made possible.

Lemma 2. Let α = (a1, a2, . . . , an, . . .) and β = (b1, b2, . . . , bn, . . .) be Cauchy
sequences of rational numbers that both represent a given x ∈ R. Suppose that there
exists a positive rational number d and an N ∈ N such that:

an ≥ d whenever n ≥ N.
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Then there exists a positive rational number d′, and a natural number N ′ such
that:

bn ≥ d′ whenever n ≥ N ′.

Proof. Since α and β represent the same real number x, we have that α − β is a
null-sequence. Now, the number d/2 is a positive rational number. Since α − β is
a null-sequence there exists an M ∈ N such that:

|an − bn| < d/2 whenever n ≥M.

In particular, we have an − bn < d/2 and so bn > an − d/2 for n ≥ M . If also
n ≥ N we deduce bn > d− d/2 = d/2.

So we can take d′ := d/2 and let N ′ be the largest of the two numbers M and
N . �

Theorem 2. Suppose that x, y ∈ R+. Then x+ y, xy ∈ R+.
If x is any real number then exactly one of the following holds: (i) x ∈ R+, (ii)

x = 0, (iii) −x ∈ R+.

Proof. Let us prove the second statement. So let x ∈ R be arbitrary. Let α =
(a1, a2, . . . , an, . . .) be a Cauchy sequence of rational numbers that represents x in
R.

Suppose that x 6= 0. This means that α is not a null-sequence. By Lemma 1
there is then a positive rational number d and an M ∈ N such that:

|an| ≥ d whenever n ≥M,

i.e., for any n ≥M we have either an ≥ d or an ≤ −d.
Now, since the number d is a positive rational number and since α is a Cauchy

sequence there is N ∈ N such that

(‡) |am − an| < d whenever m,n ≥ N.
Let K be the largest of the two numbers M and N . Then we have either aK ≥ d

or aK ≤ −d.
Suppose that aK ≥ d and let m ≥ K. Then either am ≥ d or am ≤ −d; but

if am ≤ −d we would obtain am − aK ≤ −2d and thus |am − aK | ≥ 2d which
contradicts (‡). So, we conclude that am ≥ d for all m ≥ K. By definition this
means that x ∈ R+.

If on the other hand we have aK ≤ −d then we have −aK ≥ d. Now, the
sequence −α = (−a1,−a2, . . . ,−an, . . .) is a representative for −x in R; repeating
the previous argument with −x instead of x we can then conclude that −x ∈ R+.

So we have now shown that at least 1 of the 3 possibilities (i), (ii), (iii) ma-
terializes for any x ∈ R. We must still show that the 3 possibilities are mutually
exclusive. So for instance we must show that the real number 0 is not positive.

The verifications are easy. �

As described in the beginning of this section we can now introduce the order ≤ in
R: If x, y ∈ R we write x < y if y−x ∈ R+. We also write x ≤ y if y−x ∈ R+∪{0}.
And as usual we write x ≥ y if y ≤ x, and correspondingly with >.

We then easily prove the following proposition:

Proposition 9. The relation < is what is called a total order on the set R of real
numbers. This means that whenever x, y ∈ R, exactly one of the following holds:
x < y or x = y or y < x.
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We can also introduce the absolute value |x| of a real number x:

Definition 7. |x| is defined to be x if x ∈ R+ ∪ {0}, that is, if x ≥ 0. Otherwise,
|x| is defined to be −x.

One easily proves that this absolute value has the properties that we are used
to.

But we have to face a potential ambiguity with our definition of ≤ for real
numbers: suppose that a and b are rational numbers. Suppose that a ≤ b as
rational numbers. Is it then still true that a ≤ b if we now view a and b as real
numbers via the map φ of Proposition 8? The answer is yes and this is stated
formally in the next proposition.

Proposition 10. Consider the injective map φ : Q→ R of Proposition 8.
For a, b ∈ Q we have:

a ≤ b⇒ φ(a) ≤ φ(b),

and
|φ(a)| = φ(|a|).

We will now prove a theorem which says intuitively that the set Q of rational
numbers is “dense” in R, or, alternatively, that any real number can be approxi-
mated arbitrarily close by rational numbers.

Theorem 3. (1). (The Archimedean property of R). Let ε be a positive real number
and let x be any real number. Then there is a natural number k such that:

k · ε > x.

(2). Let ε be any positive real number. Then there is a positive rational number q
such that:

q < ε.

(3). Let x be a real number, and let ε be any positive real number.
Then there is a rational number q such that:

|x− q| < ε.

Proof. Proof of (1): Let (e1, e2, . . . , en, . . .) and (a1, a2, . . . , an, . . .) be Cauchy se-
quences of rational numbers representing ε and x in R, respectively. By Lemma 1
there is a rational number c such that |an| ≤ c for all n ∈ N. Thus in particular,
an ≤ c for all n ∈ N.

Since ε is positive we know by definition that there exists a positive rational
number d and an N ∈ N such that:

en ≥ d whenever n ≥ N.
Consider the rational number c+1

d . There is a natural number k such that k >
c+1
d . With such a k we have:

k · en >
c+ 1

d
· d = c+ 1 ≥ an + 1

for all n ≥ N . This shows that the terms of the Cauchy sequence

(k · e1 − a1, k · e2 − a2, . . . , k · en − an, . . .)
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are ≥ 1 for n ≥ N . By definition this means that the sequence represents a positive
real number. But it clearly represents the real number k · ε − x. So, k · ε − x is a
positive real number, i.e., we have x < k · ε.
Proof of (2): The number 1 ∈ R is positive. The number ε is positive and hence in
particular not 0. So we can consider its inverse ε−1.

By (1) we know that there is k ∈ N such that k · 1 > ε−1. But then 1/k < ε and
1/k is a positive rational number.

Proof of (3): If x = 0 we can choose q = 0.
Also, suppose that we have proved the statement for x positive. If then x is such

that −x is positive, and if q is a rational number such that | − x− q| < ε then we
have |x− (−q)| < ε.

So, by Theorem 2 it is sufficient to prove the theorem for positive x.
Assume then that x is positive. If x < ε we can take q = 0, so we may, and will,

further assume that x ≥ ε. According to (2) there is a positive rational number d
such that d < ε. According to (1) there is k ∈ N such that k · d > x. Let k ∈ N
be smallest with this property. Since d < ε ≤ x we must have k ≥ 2. Since k was
chosen smallest possible we must then have (k − 1) · d ≤ x. But then:

0 ≤ x− (k − 1) · d < k · d− (k − 1) · d = d < ε.

So, we can take q = (k − 1) · d. �

3.2. Sequences in R and completeness. Now we are ready to study sequences
of real numbers. We introduce the notions of Cauchy sequences of real numbers, of
convergent sequences, and of limits of sequences in complete analogy with Definition
1:

Definition 8. Let (x1, x2, . . . , xn, . . .) be a sequence of real numbers, i.e., xn ∈ R,
for all n ∈ N.

We say that the sequence is a Cauchy sequence if for every positive real number
ε there is (depending on ε) an N ∈ N such that:

|xm − xn| < ε whenever m,n ≥ N.
The sequence (x1, x2, . . . , xn, . . .) is said to converge to an a ∈ R if for every

positive real number ε there is (depending on ε) an N ∈ N such that:

|a− xn| < ε whenever n ≥ N.
If the sequence converges to a we also write xn → a for n→∞, or we say that

a is the limit of the sequence (x1, x2, . . . , xn, . . .)
We call the sequence convergent if it converges to some a ∈ R.

The following small lemma is useful. The proof is very easy.

Lemma 3. Let (x1, x2, . . . , xn, . . .) be a sequence of real numbers.
The sequence is a Cauchy sequence if and only if for every positive rational

number ε there is (depending on ε) an N ∈ N such that:

|xm − xn| < ε whenever m,n ≥ N.
The sequence converges to the real number a if and only if for every positive

rational number ε there is (depending on ε) an N ∈ N such that:

|a− xn| < ε whenever n ≥ N.
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Now we can say that the real numbers is the set of limits of Cauchy sequences
of rational numbers:

Theorem 4. Every real number is the limit of a Cauchy sequence of rational num-
bers.

More precisely, if the real number x is represented by the Cauchy sequence α =
(a1, a2, . . . , an, . . .) of rational numbers then α converges to x in R.

Proof. Let ε be any positive rational number. Then ε/2 is also a positive rational
number. Since α is a Cauchy sequence there is an N ∈ N such that

|am − an| < ε/2 whenever m,n ≥ N.
That is,

−ε/2 ≤ am − an ≤ ε/2 whenever m,n ≥ N,
that we can also write as:

(]) ε/2 ≤ am − an + ε and ε/2 ≤ −am + an + ε, whenever m,n ≥ N.
Now let n be any natural number with n ≥ N and consider the sequence

(a1−an+ε, a2−an+ε, . . . , ε, an+1−an+ε, . . .) = α− (an−ε, an−ε, . . . , an−ε, . . .)
which is a Cauchy sequence of rational numbers. Hence it represents a real number.
By (]) and Definition 6 it represents a positive real number. On the other hand,
we see that it represents the real number x− (an − ε). So this number is positive,
that is, x − an + ε > 0. We proved this solely under the assumption that n ≥ N .
So we can conclude that

−ε < x− an for all n ≥ N.
Arguing similarly with the inequality ε/2 ≤ −am + an + ε which holds for all

m,n ≥ N we deduce that

x− an < ε for all n ≥ N.
Combining the two inequalities we have that

(]]) |x− an| < ε for all n ≥ N.
We have shown: Given any positive rational number ε there is N ∈ N such

that (]]) holds. By Lemma 3 we conclude that the sequence (a1, a2, . . . , an, . . .)
converges in R to the real number x. �

The relation between Cauchy sequences and convergent sequences is much sim-
pler in R than in Q:

Theorem 5. A sequence (x1, x2, . . . , xn, . . .) of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof. That the sequence is Cauchy if it is convergent is proved in exactly the same
manner as in the case of sequences of rational numbers that converge in Q.

Suppose that (x1, x2, . . . , xn, . . .) is a Cauchy sequence. We must show that it
converges to some number y ∈ R.

Let n be any natural number. Then 1/n is a positive real number. So, according
to Theorem 3, (3), there exists a rational number q such that |xn − q| < 1/n. We
choose for each n ∈ N such a rational number qn. I.e., we choose qn such that:

([) |xn − qn| < 1/n for every n ∈ N.
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Consider now the sequence (q1, q2, . . . , qn, . . .) of rational numbers.
Suppose that ε is any positive real number. Then ε/2 is also a positive real

number. Since (x1, x2, . . . , xn, . . .) is a Cauchy sequence there exists an N1 ∈ N
such that:

|xm − xn| < ε/2 whenever m,n ≥ N1.

Since 1 ∈ R is positive there is according to Theorem 3, (1), an N2 ∈ N such
that N2 = N2 · 1 > 4 · ε−1. Then, if we denote by N the largest of the two numbers
N1 and N2 we obtain for m,n ≥ N :

|qm − qn| = |qm − xm + xm − xn + xn − qn|
≤ |xm − qm|+ |xm − xn|+ |xn − qn|

≤ 1

m
+
ε

2
+

1

n
≤ 2

N
+
ε

2
<
ε

2
+
ε

2
= ε.

In particular, we now know that (q1, q2, . . . , qn, . . .) is a Cauchy sequence of
rational numbers. Let y denote the class of this sequence in R, i.e.:

y := (q1, q2, . . . , qn, . . .).

We claim that the sequence (x1, x2, . . . , xn, . . .) converges to y in R.
For let ε be an arbitrary positive real number.
We know by Theorem 4 that the sequence (q1, q2, . . . , qn, . . .) converges in R to

the number y. Consequently, there is M ∈ N such that:

([[) |y − qn| ≤ ε/2 whenever n ≥M.

Again by Theorem 3, (1), there is K ∈ N such that K = K · 1 > 2ε−1, i.e.,

([[[)
1

K
< ε/2.

Now, if n ∈ N is larger than each of the two numbers M and K, we obtain by
combining ([), ([[), and ([[[) that:

|xn − y| = |xn − qn + qn − y| ≤ |xn − qn|+ |qn − y| ≤
1

n
+ ε/2 ≤ 1

K
+ ε/2 < ε,

and the claim follows. �

3.3. The least upper bound property. We will now prove that the set of real
numbers has the “least upper bound property”. In elementary texts on analysis,
this property is often simply introduced as part of the axioms for the real numbers.
But for us, now that we have constructed the system of real numbers, this is not
an axiom but actually a theorem.

But let us first consider the precise definitions.

Definition 9. Let A ⊆ R be a non-empty subset of the real numbers.
We say that A is bounded from above if there exist y ∈ R such that x ≤ y

for all x ∈ A.
Any y with this property is called an upper bound of A.
If A ⊆ R is non-empty and bounded from above we say that a number y ∈ R is

a least upper bound of A if the following conditions hold:

• y is an upper bound of A,
• If z is any upper bound of A then z ≥ y.
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If A is a non-empty subset of R which has a least upper bound y then y is the
only least upper bound of A. In other words, the least upper bound is uniquely
determined if it exists. This is easy to see and is left as an exercise.

In this case, we also call y the supremum of A and write y = SupA.
The “least upper bound property” of the system of real numbers is the content

of the following theorem.

Theorem 6. Every non-empty subset of R which is bounded from above has a least
upper bound.

Before the proof we prove a useful lemma, the so-called “squeeze lemma”:

Lemma 4. (The squeeze lemma). Suppose that we have sequences of real numbers
α = (x1, x2, . . . , xn, . . .) and β = (y1, y2, . . . , yn, . . .) such that:

x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . ,
and

y1 ≥ y2 ≥ . . . ≥ yn ≥ . . . ,
and such that the sequence (y1 − x1, y2 − x2, . . . , yn − xn, . . .) converges to 0.

Then the sequences α and β both converge and have the same limit.

Proof. We first claim that

xm ≤ yn for all m,n ∈ N.
For suppose not. Then there would exist a pair of natural numbers k, l such that

yl < xk. But then we would find yn ≤ yl < xk ≤ xn whenever n was larger then
both of k and l. We would thus have

xn − yn ≥ xk − yn ≥ xk − yl
for all such n; since xk− yl was a positive number this contradicts the fact that the
sequence (y1 − x1, y2 − x2, . . . , yn − xn, . . .) converges to 0.

Let now ε be an arbitrary positive real number. Since the sequence:

(y1 − x1, y2 − x2, . . . , yn − xn, . . .)
converges to 0 there is an N ∈ N such that |yn−xn| < ε for all n ≥ N . In particular,
we have yn − xn < ε for n ≥ N .

Suppose now that m,n ∈ N with m,n ≥ N . Using what we showed above
we then get that 0 ≤ xm − xn ≤ yn − xn < ε if m ≥ n; and if n ≥ m we get
0 ≤ xn − xm ≤ ym − xm < ε. I.e., we have:

|xm − xn| < ε whenever m,n ≥ N.
We have proved that α is a Cauchy sequence of real numbers. By Theorem 5 we

have then that this sequence converges in R. Call its limit a.
In an analogous manner we deduce that the sequence β is convergent in R. Call

its limit b.
Since (y1 − x1, y2 − x2, . . . , yn − xn, . . .) converges to 0 and since

α+ (y1 − x1, y2 − x2, . . . , yn − xn, . . .) = β

in the sense of Exercise 4, the result of that exercise shows that we have:

a = a+ 0 = b.

�
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Proof of Theorem 6. Let A ⊆ R be a non-empty subset that is bounded from above.
Since A is not empty there is some number x ∈ A. Since A is bounded from

above there is some real number y such that z ≤ y for all z ∈ A.
In particular, we have x ≤ y. Put:

η := y − x.

We will define by recursion two sequences of real numbers

α = (x1, x2, . . . , xn, . . .) and β = (y1, y2, . . . , yn, . . .).

We start by defining x0 = x1 := x and y0 = y1 := y. If we have defined xn, yn
we proceed by defining xn+1, yn+1 as follows:

(xn+1, yn+1) :=

{
(z, yn) if there is some z ∈ A with xn+yn

2 < z ≤ yn
(xn,

xn+yn
2 ) if there is no z ∈ A with xn+yn

2 < z ≤ yn.

We claim that the sequences have the following properties:

• xn ∈ A and xn−1 ≤ xn,
• yn is an upper bound of A and yn ≤ yn−1,
• 0 ≤ yn − xn ≤ 1

2n−1 · η.

This is proved by induction on n ∈ N. For n = 1 the claim is readily checked.
We do then the induction step: assume the properties for a certain n ∈ N. We
must show that there are valid for the value n+ 1 ∈ N.

Suppose first that (xn+1, yn+1) = (z, yn) where z ∈ A is such that

xn + yn
2

< z ≤ yn.

Then clearly xn+1 = z ∈ A. Also, (xn + yn)/2 ≥ xn since yn ≥ xn by the
induction hypothesis. Hence, xn+1 = z ≥ xn.

We also have yn+1 = yn, so certainly yn+1 ≤ yn and yn+1 is an upper bound of
A since yn is. We have yn+1 − xn+1 = yn − z ≥ 0, and

yn+1 − xn+1 = yn − z ≤ yn −
xn + yn

2
=
yn − xn

2
;

since yn − xn ≤ 1
2n−1 · η by the induction hypothesis we can also conclude that

yn+1 − xn+1 ≤
1

2n
· η.

The other possibility is that (xn+1, yn+1) = (xn,
xn+yn

2 ) and there is no z ∈ A
with xn+yn

2 < z ≤ yn. Then clearly xn+1 ≥ xn and xn+1 ∈ A.
Suppose that yn+1 were not an upper bound of A; then there would exist ξ ∈ A

such that ξ > yn+1; on the other hand, by the induction hypothesis, yn is an upper
bound of A; so we would certainly have yn ≥ ξ; thus, there would be an element ξ
of A with xn+yn

2 = yn+1 < ξ ≤ yn; we would then have a contradiction, and can
conclude that yn+1 is in fact an upper bound of A.

We have yn+1 = xn+yn
2 ≤ yn since xn ≤ yn by the induction hypothesis and

furthermore,

yn+1 − xn+1 =
yn − xn

2
≤ 1

2n
· η,

again by using the induction hypothesis.
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We have now sequences α = (x1, x2, . . . , xn, . . .) and β = (y1, y2, . . . , yn, . . .) with
the above properties. In particular, they satisfy:

x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . ,
and

y1 ≥ y2 ≥ . . . ≥ yn ≥ . . . ,
and we have |yn − xn| ≤ 1

2n−1 · η for all n ∈ N. This last property implies that the
sequence:

(y1 − x1, y2 − x2, . . . , yn − xn, . . .)
converges to 0: For let ε > 0 be arbitrary; by Theorem 3, (1), there is an N ∈ N
such that N · ε > η. Then n · ε > η for all n ≥ N . Since one easily proves by
induction on k that 2k > k for all k ∈ N we can conclude that 2n · ε > η for all
n ≥ N . But then |yn − xn| < ε for all n ≥ N + 1.

Now we can apply Lemma 4 to conclude that the sequences α and β are both
convergent with the same limit. Call this common limit a.

We claim that a is the least upper bound of A. So we must show that a is an
upper bound of A, and that it is smallest among all upper bounds of A.

Let z ∈ A be any element. Suppose that we had z > a. Then ε := z−a would be
a positive real number. As the sequence β converges to a there would then certainly
be some n ∈ N such that |a− yn| < ε. But then we would have yn − a < ε = z − a
and hence yn < z; since this contradicts the fact that yn is an upper bound of A
we can conclude that z ≤ a.

Hence, a is an upper bound of A.
Let now b be any upper bound of A. We must prove that b ≥ a. Suppose to

the contrary that we had b < a. Then ε := a− b would be a positive real number.
As the sequence α converges to a there would then certainly be some n ∈ N such
that |a − xn| < ε. But then we would have a − xn < ε = a − b and hence b < xn;
since xn ∈ A this would contradict the fact that b is an upper bound of A. We can
conclude that a ≤ b.

Hence, a is the least upper bound of A. �

4. Final remarks.

In the previous sections we constructed a set R with certain properties: R is a
field with a total order ≤ for which the following holds: If x, y, z ∈ R then:

x ≤ y ⇒ x+ z ≤ y + z

and

(0 ≤ x ∧ 0 ≤ y)⇒ 0 ≤ xy.
A field with a total order satisfying these conditions is called an ordered field.

Notice that the statement of Theorem 6 makes sense for any ordered field; if the
Theorem is true for a given ordered field one then naturally says that that ordered
field has the least upper bound property.

So we can say that the set R that we constructed is an ordered field with the
least upper bound property.

One can prove the following uniqueness theorem: If L is an ordered field with
the least upper bound property then L is isomorphic to R. This means that there
is a bijective map R→ L which respects in the natural way the field operations as
well as the order relations.
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The uniqueness theorem means that we can speak of the set of real numbers
without ambiguity: we may have other constructions of this set (such as the con-
struction via “Dedekind cuts”), but the theorems we can prove about the system
of real numbers are independent of which construction we choose.

So what is the advantage of choosing the construction of the previous sections
via Cauchy sequences of rational numbers?

The answer is that this construction is one that generalizes to other interesting
situations. Thus, in analysis you will later learn about so–called “metric spaces”
which are sets equipped with a measure of distance between points. For metric
spaces one has a construction called “completion” and this construction is a direct
generalization of the above process going from Q to R.

The construction is also important in number theory: Looking at the field Q of
rational numbers we could define the distance between two numbers a and b as the
rational number |a−b|. This notion of distance is the so–called archimedean metric
(it is thus called because the distance between 0 and a natural number n goes to
∞ with n, – cf. Theorem 3). You can see that this notion of distance is occurring
in the definitions of Cauchy sequences, convergence, null–sequences, etc.

But there are other measures of distance between rational numbers than the
archimedean metric: in fact, there is a metric called the p-adic metric attached to
any prime number p. It is defined as follows: Given a, b ∈ Q we can write:

a− b = ps · m
n

where s ∈ Z and m,n ∈ Z are both not divisible by p. One then defines:

|a− b|p := p−s.

Thus, in the p-adic metric the numbers close to 0 are those that are divisible by
high powers of p.

Now, if one goes through with the construction via Cauchy sequences, null–
sequences, etc., replacing everywhere | · | by | · |p one obtains from Q not the real
numbers but another field Qp called the field of p-adic numbers. It is not an ordered
field and so one can not speak about the least upper bound property and so on. But
apart from that the field Qp has some of properties of R; for instance, sequences
in Qp converge if and only if they are Cauchy sequences. The fields Qp also have
some other, more complicated structures.

The point of these new fields Qp is that they can be used to build important
theories in number theory and arithmetic geometry that can be used to study
such diverse topics as solutions to polynomial equations, for instance Fermat’s last
theorem, algebraic numbers, etc. etc..

So if you want to study any of those topics you have made a good investment of
your time learning the material of the previous sections.

5. Additional exercises

Exercise 1. Prove that any finite decimal number (i.e., for instance 2.1415) is a
rational number.

Exercise 2. Give several examples of sequences of rational numbers that are not
Cauchy sequences. You should prove rigorously that your examples are not Cauchy
sequences.
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Exercise 3. Construct via the following steps a Cauchy sequence of rational num-
bers that is not convergent in Q:

(1). For any n ∈ N the integer 22n+5 − 2n+4 is positive. Let kn be the smallest
integer ≥ 0 such that

k2n ≥ 22n+5 − 2n+4.

Thus, we have in fact kn ≥ 1. Show that we must have kn ≤ 2n+3. (Hint: use
the minimality of kn).

Use this to prove that k2n ≤ 22n+5. (Hint: otherwise, we could show that (kn −
1)2 > 22n+5 − 2n+4 and obtain a contradiction).

(2). For n ∈ N let an denote the rational number kn/2
n+2:

an :=
kn

2n+2
.

Show that:

(†) 2− 1

2n
≤ a2n ≤ 2 for all n ∈ N.

(3). Show that α := (a1, a2, . . . , an, . . .) is a Cauchy sequence of rational numbers:
First use (†) to conclude that an ≥ 1 for all n ∈ N. Then use (†) to show:

− 1

2m
≤ a2m − a2n ≤

1

2n

for all m,n ∈ N. Write a2m − a2n = (am + an)(am − an) and conclude that:

− 1

2m+1
≤ am − an ≤

1

2n+1

for all m,n ∈ N. Use this to prove the desired.

(4). Show that α is not convergent in Q. (Hint: Show that if α converged to a
rational number q then we would be able to prove q2 = 2. However, it is known that
there exists no rational number with this property).

(5). Consider the real number x := ᾱ. Show that x2 = 2 in R. Thus, we have
proved the existence of a square root of 2 in R.

Exercise 4. Let α = (x1, x2, . . . , xn, . . .) and β = (y1, y2, . . . , yn, . . .) be sequences
of real numbers and define in a natural way the sequences α+ β and αβ:

α+ β := (x1 + y1, x2 + y2, . . . , xn + yn, . . .),

αβ := (x1y1, x2y2, . . . , xnyn, . . .).

Suppose that the sequences α and β are both convergent with limits a and b,
respectively.

Show that the sequences α+ β and αβ are then also convergent with limits a+ b
and ab, respectively.
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