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Abstract

Let A be a noetherian Fp-algebra that is finitely generated as a module over the
subring Ap of pth powers. We give an explicit formula for the de Rham-Witt complex
of the power series ring A[[t]] in terms of that of the ring A. We use this formula
to show that, for every complete regular local Fp-algebra whose residue field is a
finite extension of the subfield of pth powers, the canonical map from the algebraic
K-theory with Z/pv-coefficients to the topological K-theory with Z/pv-coefficients
is an isomorphism.
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Introduction

Let (R,m, k) be a complete regular local Fp-algebra and assume that the
residue field k is a finite extension of the subfield kp of pth powers. We show
that the canonical map

Kq(R,Z/pv)→ Ktop
q (R,Z/pv)

from the algebraicK-theory with Z/pv-coefficients to the topologicalK-theory
with Z/pv-coefficients is an isomorphism. The proof gives an inductive proce-
dure for evaluating the common group in terms of the de Rham-Witt groups of
k. This extends previous results of Dundas [2] and the authors [4, Prop. 5.3.1],
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where the case of a one-dimensional complete regular local Fp-algebra with per-
fect residue field was considered. The topological K-groups, which take the
m-adic topology on R into account, are defined to be the homotopy groups
with Z/pv-coefficients of the homotopy limit spectrum

Ktop(R) = holim
n

K(R/mn).

Hence there is natural exact sequence

0→ R1 lim
s
Kq+1(R/m

s,Z/pv)→ Ktop
q (R,Z/pv)→ lim

s
Kq(R/m

s,Z/pv)→ 0

compare Wagoner [19]. By the structure theorem for complete regular local
Fp-algebras, the ring R is non-canonically isomorphic to the power series ring
k[[t1, . . . , td]], where d is the Krull dimension of R. We shall allow for a slightly
more general ring of coefficients:

Theorem A Let A be a regular local Fp-algebra and assume that A is finitely
generated as a module over the subring Ap. Let R = A[[t1, . . . , td]] and let I ⊂ R
be the ideal generated by t1, . . . , td. Then the canonical map

Kq(R,Z/pv)→ Ktop
q (R,Z/pv)

is an isomorphism, for all integers q and v > 1.

We note that the Gabber-Suslin rigidity theorem [17,3] implies that for m
prime to p and for all s > 1, the natural projection induces an isomorphism

Kq(R,Z/m)
∼−→ Kq(R/I

s,Z/m).

Hence, in this case, the limit system is constant. On the other hand, continuity
fails rationally, and hence integrally.

We briefly discuss the method of proof. The K-theory spectra of the rings R
and R/Is naturally decompose as wedge sums

K(A) ∨K(R, I)
∼−→ K(R)

K(A) ∨K(R/Is, I)
∼−→ K(R/Is)

and the natural projection induces the identity map of the first summand on
the left. Thus we may as well show that the induced map of relative theories

K(R, I)→ holim
s

K(R/Is, I)

induces an isomorphism of homotopy groups with Z/pv-coefficients. To this
end, we compare the K-theory spectra to the corresponding topological cyclic
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homology spectra via the cyclotomic trace in the following diagram.

K(R, I) tr //

��

TC(R, I; p)

��

holimsK(R/Is, I) tr // holims TC(R/Is, I; p).

By a theorem of McCarthy [15], the lower horizontal map induces an isomor-
phism of homotopy groups with Z/pv-coefficients. A theorem of Popescu states
that every regular Fp-algebra is a filtered colimit of smooth Fp-algebras [16].
(See also [18].) This implies that the results of [5] and [6], which were proved
originally for smooth Fp-algebras, are valid, more generally, for regular Fp-
algebras. Hence, there is a natural long-exact sequence

· · · → TCq(R, I; p)→ WΩq
(R,I)

1−F−−→ WΩq
(R,I) → TCq−1(R, I; p)→ · · ·

where WΩq
(R,I) is the de Rham-Witt complex of [12]. Moreover, the composite

Kq(R, I; Zp)→ TCq(R, I; p)→ WΩq
R

maps the relative K-group with Zp-coefficients isomorphically onto the ker-
nel of 1 − F . We prove the following result which is also interesting in its
own right. The proof uses the corresponding result, proved in [11], for polyno-
mial algebras, and the extension to power series rings was inspired by Kato’s
paper [13].

Theorem B Let A be a noetherian Fp-algebra and suppose that A is finitely
generated as an Ap-module. Then every element ω(n) ∈ WnΩq

A[[t]] can be written
uniquely as an infinite series

ω(n) =
∑
i∈N0

a
(n)
0,i [t]in +

∑
i∈N

b
(n)
0,i [t]i−1

n d[t]n

+
∑
s∈N

∑
j∈Ip

(
V s(a

(n−s)
s,j [t]jn−s) + dV s(b

(n−s)
s,j [t]jn−s)

)

with the components a
(m)
s,i ∈ WmΩq

A and b
(m)
s,i ∈ WmΩq−1

A . Here Ip is the set
of positive integers that are not divisible by p and [t]n is the multiplicative
representative of t in Wn(A[[t]]).

Using this result we prove, by induction on the number of variables, that the
map 1− F in the sequence above is surjective. It follows that the cyclotomic
trace induces an isomorphism

Kq(R, I; Zp)
∼−→ TCq(R, I; p).

Finally, we show that the canonical map

TC(R, I; p)→ holim
s

TC(R/Is, I; p)
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is a weak equivalence. This completes the outline of the proof of Thm. A.

We mention that Thm. B gives a canonical isomorphism

WΩq
A,log ⊕WΩq−1

A
∼−→ WΩq

A[[t]],log

where the second summand on the left is the big de Rham-Witt group consid-
ered in [9]. Previously, the graded pieces of a complete and separated filtration
of the left-hand side were known [13].

In this paper, A will always denote an Fp-algebra, R the power series algebra
A[[t1, . . . , td]], and I ⊂ R the ideal generated by t1, . . . , td. A pro-object of
a category C is a functor to C from the set of positive integers viewed as a
category with one morphism from m to n, if m > n. A strict map from a
pro-object X to a pro-object Y is a natural transformation and a general map
from X to Y is an element of the set

Hompro−C(X, Y ) = lim
n

colim
m

HomC(Xm, Yn).

1 Continuity and topological cyclic homology

Let A be a regular Fp-algebra, finitely generated as a module over the subring
Ap, and let R and I ⊂ R be as in the introduction. In this paragraph, we show
that the canonical map

TC(R; p)→ holim
s

TC(R/Is; p)

is a weak equivalence. We briefly recall the definition of TC(R; p), refering the
reader to [10, Sect. 1] for a fuller discussion.

For any ring S, the spectrum TC(S; p) is defined as the homotopy fixed points
of an operator called Frobenius on another spectrum TR(S; p). Hence, there
is a natural cofibration sequence

TC(S; p)→ TR(S; p)
1−F−−→ TR(S; p)

∂−→ Σ TC(S; p).

The spectrum TR(S; p), in turn, is the homotopy limit of a pro-spectrum
TR·(S; p) and there are strict maps of pro-spectra

F : TRn(S; p)→ TRn−1(S; p)

V : TRn−1(S; p)→ TRn(S; p).

The spectrum TR1(S; p) is the topological Hochschild spectrum TH(S). It
has an action by the circle group T and the higher levels in the pro-system by
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definition are the fixed sets of the cyclic subgroups of T of p-power order

TRn(S; p) = TH(S)Cpn−1 .

The map F is the obvious inclusion and V is the accompanying transfer. The
structure map R in the pro-system is harder to define and uses the so-called
cyclotomic structure of TH(S). There is a natural cofibration sequence

H ·(Cpn−1 ,TH(S))
N−→ TRn(S; p)

R−→ TRn−1(S; p)
∂−→ ΣH ·(Cpn−1 ,TH(S))

which gives the “layers” in the tower TR·(S; p). Here the left-hand term is the
group homology spectrum (or borel spectrum) of the group Cpn−1 acting on
TH(S). Its homotopy groups are given by a strongly convergent first quadrant
homology type spectral sequence

E2
s,t = Hs(Cpv ,THt(S))⇒ Hs+t(Cpv ,TH(S)).

We first show that, quite generally, continuity for topological Hochschild ho-
mology implies continuity for topological cyclic homology.

Lemma 1.1 Let G be a finite group and let Xn, n > 1, be a limit system of
G-spectra. Suppose that there exists m ∈ Z such that πtXn vanishes for all
n > 1 if t < m. Then the canonical map

H ·(G, holim
n

Xn)→ holim
n

H ·(G,Xn)

is a weak equivalence.

Proof. Let EG be a free contractible G-CW complex. Then by definition

H ·(G,X) = (X ∧ EG+)G.

The filtration of EG by the skeleta defines an exact couple

Ds,t = πs+t

(
(X ∧ EsG+)G

)
Es,t = πs+t

(
(X ∧ (EsG/Es−1G))G

)
and this in turn gives rise to the spectral sequence

E2
s,t = Hs(G, πtX)⇒ Hs+t(G,X).

In particular, if πtX vanishes for t < m, then the map induced from the
canonical inclusion

πn

(
(X ∧ EsG+)G

)
→ πn

(
(X ∧ EG+)G

)
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is an isomorphism for n 6 s+m. Now consider the following diagram

(
(holimnXn) ∧ EsG+

)G
//

��

(
(holimnXn) ∧ EG+

)G

��

holimn

(
(Xn ∧ EsG+)G

)
// holimn

(
(Xn ∧ EG+)G

)
.

Since G is finite, we can choose EG such that EsG is a finite CW complex,
for all s > 0. This implies that the left-hand vertical map is a weak equiv-
alence. Indeed, EsG+ has a dual. Moreover, the horizontal maps induce iso-
morphism of homotopy groups in degrees less than m. (The assumption that
πtXn vanishes for for all n > 1 if t < m implies that πt holimnXn vanishes for
t < m− 1.) Hence the right-hand vertical map will induce an isomorphism of
homotopy groups in degrees less than s+m. But this is true for all s > 0, so
the right-hand vertical map is a weak equivalence. 2

Proposition 1.2 Let S be a ring and let J ⊂ S be an ideal. If the canonical
map TH(S)→ holims TH(S/Js) is a weak equivalence, then so is

TC(S; p)→ holim
s

TC(S/Js; p).

Proof. We show inductively that the canonical map

TRn(S; p)→ holim
s

TRn(S/Js; p)

is a weak equivalence. The case n = 1 is the assumption. In the induction
step, we must show that the canonical map

H ·(Cpv ,TH(S))→ holim
s

H ·(Cpv ,TH(S/Js))

is a weak equivalence. This map is equal to the composite map

H ·(Cpv ,TH(S))→ H ·(Cpv , holim
s

TH(S/Js))→ holim
s

H ·(Cpv ,TH(S/Js)).

The right-hand map is an equivalence by Lemma 1.1, and the left-hand map
is an equivalence since forming the group homology spectrum preserves weak
equivalences. Finally, the result for topological cyclic homology follows since
homotopy limits commute. 2

We will show in Prop. 1.7 below that if A is a regular Fp-algebra which is
finitely generated as an Ap-module, then the canonical map

TH(R)→ holim
s

TH(R/Is)

is a weak equivalence. The proof is based on a series of lemmas.
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Lemma 1.3 Let S be a ring and J ⊂ S an ideal. Then the canonical map

S/J · ⊗S Ωq
S → Ωq

S/J ·

is an isomorphism of pro-abelian groups.

Proof. Let Ω∗(S,J) ⊂ Ω∗S be the differential graded ideal generated by J . Then
the projection induces an isomorphism Ω∗S/Ω

∗
(S,J ·)

∼−→ Ω∗S/J , and by the Leibniz
rule, Ω∗(S,J2s) ⊂ Js ⊗S Ω∗(S,Js). It follows that in the diagram

S/J2s ⊗S Ωq
(S,J2s)

//

0
��

S/J2s ⊗S Ωq
S

//

��

Ωq
S/J2s

//

��

0

S/Js ⊗S Ωq
(S,Js)

//S/Js ⊗S Ωq
S

// Ωq
S/Js

// 0

the left-hand vertical map is zero, and this, in turn, shows that the the map
of the statement is an isomorphism of pro-abelian groups. 2

Lemma 1.4 Let A be a ring, let S = A[t1, . . . , td], and let J ⊂ S be the ideal
generated by t1, . . . , td. Then the canonical map

S/J · ⊗S THq(S)→ THq(S/J
·)

is an isomorphism of pro-abelian groups.

Proof. Let Js ⊂ S be the ideal generated by ts1, . . . , t
s
d. We note that

Js ⊂ Js ⊂ J[s/d]

where [m] is the largest integer less than or equal to m. This shows that in
the diagram

S/J· ⊗S THq(S) //

��

THq(S/J·)

��

S/J · ⊗S THq(S) // THq(S/J
·)

the vertical maps are isomorphisms of pro-abelian groups. Hence, we may
instead show that the lower horizontal map is an isomorphism of pro-abelian
groups. The rings S and S/Js both are pointed monoid algebras in the sense
of [8, Sect. 7] and their topological Hochschild homology groups therefore are
given by loc. cit. Thm. 7.1. We use this to show that in the diagram

S/J· ⊗S TH∗(S) // TH∗(S/J·)

S/J· ⊗S Ω∗S ⊗Ω∗A
TH∗(A) //

OO

Ω∗S/J·
⊗Ω∗A

TH∗(A)

OO
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the left-hand vertical map is an isomorphism, and the right-hand vertical map
an isomorphism of pro-abelian groups. Since Lemma 1.3 implies that also the
lower horizontal map is an isomorphism of pro-abelian groups, the lemma will
follow.

For the ring S in question, we get a weak equivalence

TH(A) ∧N cy(Π∧d
∞ )→ TH(S)

where the second factor on the left is the cyclic bar-construction of the d-fold
smash product of the pointed monoid Π∞ = {0, 1, t, t2, . . . }. Moreover, the
cyclic bar-construction decomposes as wedge sum∨

i1,...,id∈N0

(N cy(Π∞, i1) ∧ · · · ∧N cy(Π∞; id))
∼−→ N cy(Π∧d

∞ ).

It is proved in [6, Lemma 3.1.6] that N cy(Π∞, 0) = S0 and that for i > 0,
there is a T-equivariant deformation retract

T/Ci+
∼−→ N cy(Π∞; i)

where T and Ci denote the circle group and the cyclic subgroup of order i. On
homotopy groups in degree q, this shows that for i > 0,

πq(TH(A) ∧N cy(Π∞, i)) = THq(A) · ti ⊕ THq−1(A) · ti−1dt,

and hence the canonical map

Ω∗S ⊗Ω∗A
TH∗(A)→ TH∗(S)

is an isomorphism.

The description of the topological Hochschild homology of the ring S/Js is
completely parallel. There is a natural equivalence∨

i1,...,id∈N0

TH(A) ∧ (N cy(Πs, i1) ∧ · · · ∧N cy(Πs; id))
∼−→ TH(S/Js)

where Πs is the pointed monoid {0, 1, t, . . . , ts−1} with base-point 0 and with
ts = 0. The T-equivariant homotopy type of the spaces N cy(Πs, i) was deter-
mined in [7, Thm. B]. In particular, the natural projection

N cy(Π∞, i)→ N cy(Πs, i)

is a homeomorphism, for i < s, and for i = s, there is a cofibration sequence

N cy(Π∞, 1)→ N cy(Π∞, s)→ N cy(Πs, s)→ ΣN cy(Π∞, 1).
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On homotopy groups in degree q, the latter gives rise to a short exact sequence

0→ (THq−1(A)/s) · ts−1dt→ πq(TH(A) ∧N cy(Πs, s))→ THq−2(A)[s] · t→ 0.

It follows that the map

Ω∗S/Js
⊗Ω∗A

TH∗(A)→ TH∗(S/Js)

is injective and that the cokernel C∗s only involves the summands (i1, . . . , id)
where ij > s for some j = 1, . . . , d. Finally, since N cy(Πs, i) is [(i − 1)/s]-
connected, the canonical inclusion∨

06i1,...,id<qs+1

TH(A) ∧ (N cy(Πs, i1) ∧ · · · ∧N cy(Πs; id))→ TH(S/Js)

induces an isomorphism on homotopy groups in degrees 6 q. It follows that
in degree q, the map of cokernels Cq

qs+1 → Cq
s is zero. 2

Remark 1.5 It would be interesting to determine if, generally, given a ring
S and an ideal J ⊂ S, the canonical map

S/J · ⊗S THq(S))→ THq(S/J
·)

is an isomorphism of pro-abelian groups. As far as we know the analogous
question for ordinary Hochschild homology also has not been settled.

Lemma 1.6 Let A be a regular Fp-algebra. Then the canonical map

Ω∗R/I· ⊗ TH∗(Fp)→ TH∗(R/I
·)

is an isomorphism of pro-abelian groups.

Proof. Let S be the polynomial algebra A[t1, . . . , td] and let J be the ideal
generated by t1, . . . , td. Then, since S/Js ∼−→ R/Is, the map of the statement
may be identified with the lower horizontal map in the diagram

S/J · ⊗S Ω∗S ⊗ TH∗(Fp) //

��

S/J · ⊗S TH∗(S)

��

Ω∗S/J · ⊗ TH∗(Fp) // TH∗(S/J
·).

In this diagram, the left-hand vertical map is an isomorphism of pro-abelian
groups by Lemma 1.3 and the right-hand vertical map is an isomorphism of
pro-abelian groups by Lemma 1.4. Finally, the upper horizontal map is an
isomorphism by [6, Thm. B]. 2
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Proposition 1.7 Suppose that A is regular and finitely generated as a module
over the subring Ap. Then the canonical map

THq(R)→ lim
s

THq(R/I
s)

is an isomorphism and the derived limit R1 lims THq(R/I
s) vanishes.

Proof. We consider the following diagram

Ω∗R ⊗ TH∗(Fp) //

��

TH∗(R)

��

lims Ω∗R/Is ⊗ TH∗(Fp) // lims TH∗(R/I
s)

where the upper and lower horizontal maps are isomorphisms by [6, Thm. B]
and Lemma 1.6. We recall that THq(Fp) is isomorphic to Fp, if q is a non-
negative even integer, and is zero, otherwise. We show that the canonical map

Ωq
R → lim

s
Ωq

R/Is

is an isomorphism and that the derived limit R1 lims Ωq
R/Is vanishes. The

canonical map is equal to the composite map

Ωq
R → lim

s
(R/Is ⊗R Ωq

R)→ lim
s

Ωq
R/Is .

It follows from Lemma 1.3 that the right-hand map and the corresponding
map of derived limits are isomorphisms. Hence, it suffices to show that the
R-module Ωq

R is I-adically complete. We recall from [14, Thm. 8.7] that since
R is noetherian and I-adically complete, every finitely generated R-module,
too, is I-adically complete. So it will suffice to prove that the R-module Ωq

R

is finitely generated. But if xs
r, r = 1, . . . ,m, 0 6 s < p, generate A as an

Ap-module, then dx1, . . . , dxm, dt1, . . . , dtd generates Ω1
R as an R-module. 2

2 De Rham-Witt complexes

In this section, we show that if the Fp-algebra A is finitely generated as a
module over the subring Ap, then the map

1− F : WΩq
(R,I) → WΩq

(R,I)

is surjective. We begin with some lemmas on Witt vectors and completion.
We note that the definition of the ring Wn(J) of Witt vectors associated with
a ring J does not require the ring to be unital.
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Lemma 2.1 Let S be a ring and J ⊂ S an ideal. Then Wn(J) ⊂ Wn(S) is
an ideal and the canonical projection induces an isomorphism

Wn(S)/Wn(J)
∼−→ Wn(S/J).

Proof. It is clear that Wn(J) ⊂ Wn(S) is an ideal and that the natural
projection factors as stated. Indeed, as a set Wn(A) is the n-fold product of
copies of A. We show inductively that the sequence

0→ Wn(J)→ Wn(S)→ Wn(S/J)→ 0

is exact. The case n = 1 is trivial. It is also clear that the left-hand map is
injective, that the right-hand map is surjective, and that the composite of the
two maps is zero. The proof of the induction step now follows from the natural
exact sequence

0→ A
V n−1

−−−→ Wn(A)
R−−→ Wn−1(A)→ 0

by a diagram chase. 2

Lemma 2.2 Let S be a ring and let x1, . . . , xd ∈ S. Then

([x1]
pn−1ds
n , . . . , [xd]

pn−1ds
n ) ⊂ Wn((x1, . . . , xd)

pn−1ds) ⊂ ([x1]
s
n, . . . , [xd]

s
n),

where [x]n ∈ Wn(S) is the Teichmüller representative.

Proof. The inclusion on the left is trivial. To prove the right-hand inclusion,
we first note that since

(x1, . . . , xd)
pn−1ds ⊂ (xpn−1s

1 , . . . , xpn−1s
d ),

it will suffice to prove that for all y1, . . . , yd ∈ S,

Wn((ypn−1

1 , . . . , ypn−1

d )) ⊂ ([y1]n, . . . , [yd]n).

To this end, we show by descending induction on 0 6 s 6 n that

V sWn((ypn−1

1 , . . . , ypn−1

d )) ⊂ ([y1]n, . . . , [yd]n).

The case s = n is trivial. We write J = (ypn−1

1 , . . . , ypn−1

d ) and assume the
statement is true for s+ 1. The elements V s([x]n−s) with x ∈ J form a set of
coset representatives of V s+1Wn(J) as a subgroup of V sWn(J). Now if

x = a1y
pn−1

1 + . . . ady
pn−1

d

11



then, modulo VWn−s(J),

[x]n−s ≡ [a1]n−s[y1]
pn−1

n−s + · · ·+ [ad]n−s[yd]
pn−1

n−s

which shows that, modulo V s+1Wn(J),

V s([x]n−s) ≡ V s([a1]n−s)[y1]
pn−1−s

n + · · ·+ V s([ad]n−s)[yd]
pn−1−s

n .

This proves the induction step. 2

Corollary 2.3 Let S be a ring and J ⊂ S a finitely generated ideal. Then for
all s > 1, there exists r > s such that

Wn(Jr) ⊂ Wn(J)s ⊂ Wn(Js).

Proof. Indeed, if x1, . . . , xd generates J , then by Lemma 2.2,

Wn(Jpn−1ds) ⊂ ([x1]
s
n, . . . , [xd]

s
n) ⊂ Wn(J)s,

which proves the left-hand inclusion of the statement with r = pn−1ds. The
right-hand inclusion follows from the more general fact that if I, J ⊂ S are
two ideals, then Wn(I)Wn(J) ⊂ Wn(IJ). 2

The de Rham-Witt complex W·Ω
∗
S is defined, for any ring S, to be the initial

example of an algebraic structure called a Witt complex over S [12,11]. By
definition a Witt complex over S consists of the following data (i)–(iii).

(i) A pro-differential graded ring E∗· and a strict map of pro-rings

λ : W·(S)→ E0
· .

(ii) A strict map of pro-graded rings

F : E∗n → E∗n−1

such that Fλ = λF and such that

Fdλ([a]n) = λ([a]n−1)
p−1dλ([a]n−1), for all a ∈ S.

(iii) A strict map of pro-graded modules over the pro-graded ring E∗· ,

V : F∗E
∗
n−1 → E∗n,

such that V λ = λV and such that FV = p and FdV = d.
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A map of Witt functors is a strict map of pro-differential graded rings that
commutes with the maps λ, F and V . The structure map in the de Rham-Witt
complex W·Ω

∗
S is called the restriction and written R.

Lemma 2.4 Let S be a ring, let J ⊂ S be an ideal, and let WnΩ∗(S,J) be
the differential graded ideal in WnΩ∗S generated by Wn(J). Then the canonical
projection induces an isomorphism

WnΩq
S/WnΩq

(S,J)
∼−→ WnΩq

S/J .

Proof. We claim that W·Ω
∗
S/W·Ω

∗
(S,J) is a Witt complex over S/J . Indeed,

by definition and by Lemma 2.1, it is a pro-differential graded ring with un-
derlying pro-ring W·(S/J). Hence, we need only show that the operators F , R
and V on W·Ω

∗
S descend to operators on W·Ω

∗
S/W·Ω

∗
(S,J), or equivalently, that

RWnΩq
(S,J) ⊂ Wn−1Ω

q
(S,J)

FWnΩq
(S,J) ⊂ Wn−1Ω

q
(S,J)

VWnΩq
(S,J) ⊂ Wn+1Ω

q
(S,J).

The elements of WnΩq
(S,J) are sums of elements of the form ω = a0da1 . . . daq

with ai ∈ Wn(S), for all i, and ai ∈ Wn(J), for some i. We find that

V (ω) = V (a0 FdV (a1) . . . FdV (aq)) = V (a0)dV (a1) . . . dV (aq),

which is therefore in Wn+1Ω
q
(S,J). Since the Frobenius is multiplicative,

F (ω) = Fa0 · Fda1 · . . . · Fdaq.

If a0 ∈ Wn(J) then F (a0) ∈ Wn−1(J), and hence, F (ω) ∈ Wn−1Ω
q
(S,J). Suppose

that ai ∈ Wn(J), for some 1 6 i 6 q. We write out ai in Witt coordinates

ai = [ai,0]n + V [ai,1]n−1 + · · ·+ V n−1[ai,n−1]1

and find that

Fdai = [ai,0]
p−1
n−1d[ai,0]n−1 + d[ai,1]n−1 + dV [ai,2]n−2 + · · ·+ dV n−2[ai,n−1]1.

This shows that Fdai ∈ Wn−1Ω
1
(S,J) and hence F (ω) ∈ Wn−1Ω

q
(S,J). Finally,

the statement for R is clear.

It remains to show that the quotient W·Ω
∗
S/W·Ω

∗
(S,J) is the universal Witt

complex over S/J . Let E∗· be a Witt complex over S/J . By regarding E∗· as a
Witt complex over S, we have the unique map W·Ω

∗
S → E∗· of Witt complexes

of S. But this factors through the canonical projection to give a map

W·Ω
∗
S/W·Ω

∗
(S,J) → E∗·

13



of Witt complexes over S/J . Finally, this map is unique because the canonical
projection is surjective. This completes the proof. 2

Proposition 2.5 Let S be a ring and let J ⊂ S be a finitely generated ideal.
Then for all n > 1 and q > 0, the natural map

Wn(S/J ·)⊗Wn(S) WnΩq
S → WnΩq

S/J ·

is an isomorphism of pro-abelian groups.

Proof. It follows from Lemma 2.4 that we have a natural exact sequence of
limit systems

Wn(S/J ·)⊗Wn(S) WnΩq
(S,J ·) → Wn(S/J ·)⊗Wn(S) WnΩq

S → WnΩq
S/J · → 0.

Hence, it suffices to show that the limit system on the left-hand side is zero
as a pro-abelian group. This means that given s > 1, we must find r > s such
that the map

Wn(S/Jr)⊗Wn(S) WnΩq
(S,Jr) → Wn(S/Js)⊗Wn(S) WnΩq

(S,Js)

is zero, or equivalently, such that

WnΩ∗(S,Jr) ⊂ Wn(Js)⊗Wn(S) WnΩ∗S.

To this end, we choose r > s such that Wn(Jr) ⊂ Wn(Js)2. This is possible by
Cor. 2.3 since the ideal J and hence also Js is finitely generated. The desired
inclusion follows from the Leibniz rule. 2

Lemma 2.6 Let A be a noetherian Fp-algebra and suppose that A is finitely
generated as a module over Ap. Then Wn(A) is a noetherian Z/pn-algebra.

Proof. It is enough to show that every prime ideal of Wn(A) is finitely gen-
erated [14, Thm. 3.4]. We prove this by induction on n. The case n = 1 is
by assumption. In the induction step, we use that V n−1(A) ⊂ Wn(A) is a
nilpotent ideal and that the restriction map induces an isomorphism

R : Wn(A)/V n−1(A)
∼−→ Wn−1(A).

It follows that every prime ideal p ⊂ Wn(A) is of the form p = R−1(p̄) for
some prime ideal p̄ ⊂ Wn−1(A). Hence, we have a short-exact sequence of
Wn(A)-modules

0→ V n−1(A)→ p→ R∗p̄→ 0

and it will suffice to show that the right and left-hand modules are finitely
generated. By the induction hypothesis, Wn−1(A) is noetherian, and hence

14



p̄ is a finitely generated over Wn−1(A). This implies, since the restriction is
surjective, that R∗p̄ is a finitely generated Wn(A)-module. Finally, the iterated
Verschiebung gives an isomorphism of Wn(A)-modules

V n−1 : F n−1
∗ A

∼−→ V n−1(A),

and the iterated Frobenius factors as the composite map

F n−1 : Wn(A)
Rn−1

−−−→ A
ϕn−1

−−−→ A

where ϕ is the Frobenius endomorphism of A. The left-hand map is always
finite, and the right-hand map is finite by assumption. Hence V n−1(A) is a
finitely generated Wn(A)-module. 2

Lemma 2.7 Suppose that A is finitely generated as an module over the sub-
ring Ap. Then WnΩq

R is a finitely generated Wn(R)-module.

Proof. The proof is by induction on n. The case n = 1 was treated in the
proof of Prop. 1.7. In the induction step we use the following exact sequence
of Wn(R)-module from [10, Prop. 3.2.6]

hWnΩq
R

N−→ WnΩq
R

R−→ Wn−1Ω
q
R → 0.

The left-hand term, as an abelian group, is the quotient of Ωq−1
R ⊕ Ωq

R by the
subgroup consisting of the elements (pn−1ω,−dω) with ω ∈ Ωq−1

R . We recall
from op. cit., Lemma 3.2.5, that it has a natural Wn(R)-module structure such
that there is an exact sequence of Wn(R)-modules

F n−1
∗ Ωq

R → hWnΩq
R → F n−1

∗ (Ωq−1
R /pn−1Ωq−1

R )→ 0.

Since A/Ap is finitely generated, Ωq
R is a finitely generated R-module, and

F n−1
∗ R is a finitely generated Wn(R)-module. This completes the proof of the

induction step. 2

Proof of Thm. B Let R = A[[t]], let S = A[t], and let I ⊂ R and J ⊂ S be
the ideals generated by t. Then in the diagram

lims(Wn(S/Js)⊗Wn(S) WnΩq
S) //

��

lims(Wn(R/Is)⊗Wn(R) WnΩq
R)

��

limsWnΩq
S/Js

// limsWnΩq
R/Is

the vertical maps are isomorphisms by Prop. 2.5 and the lower horizontal map
is an isomorphism since S/Js ∼−→ R/Is. Hence the top horizontal map is an

15



isomorphism. Moreover, we claim that the map

WnΩq
R → lim

s
(Wn(R/Is)⊗Wn(R) WnΩq

R)

is an isomorphism. According to Cor. 2.3 this is equivalent to the statement
that the Wn(R)-module WnΩq

R is Wn(I)-adically complete. We know from
Lemma 2.7 that WnΩq

R is a finitely generated Wn(R)-module, from Lemma 2.6
that Wn(R) is a noetherian ring, and from Cor. 2.3 that the ring Wn(R) is
Wn(I)-adically complete. The claim then follows from [14, Thm. 8.7]. Con-
cluding, we have isomorphisms

WnΩq
R

∼−→ lim
s

(Wn(R/Is)⊗Wn(R) WnΩq
R)

∼←− lim
s

(Wn(S/Js)⊗Wn(S) WnΩq
S)

and the right-hand term is equal to the completion of the Wn(S)-module
WnΩq

S with respect to the topology given by the ideals Wn(Js), s > 0. We
recall from [11, Thm. B] that every element ω(n) ∈ WnΩq

S can be written
uniquely

ω(n) =
∑
i∈N0

a
(n)
0,i [t]in +

∑
i∈N

b
(n)
0,i [t]i−1

n d[t]n

+
∑
s∈N

∑
j∈Ip

(
V s(a

(n−s)
s,j [t]jn−s) + dV s(b

(n−s)
s,j [t]jn−s)

)

where a
(m)
s,i ∈ WmΩq

A, b
(m)
s,i ∈ WmΩq−1

A , and where only finitely many a
(r)
s,i

and b
(r)
s,i are non-zero. The effect of the completion is to remove the latter

requirement. Indeed, according to Cor. 2.3, the ideals Wn(Js) and ([t]sn), where
s > 0, define the same topology on WnΩq

S. 2

Proposition 2.8 Let A be a noetherian Fp-algebra and suppose that A is a
finitely generated Ap-module. Then the map

1− F : WΩq
(R,I) → WΩq

(R,I)

is surjective.

Proof. We first reduce to the one variable case. Let R = A[[t1, . . . , td]] and
let I and J be the ideals generated by t1, . . . , td and by td, respectively. Then
Lemma 2.4 and the snake lemma give rise to an exact sequence

0→ WΩq
(R,J) → WΩq

(R,I) → WΩq
(R/J,I/J) → 0,

and by induction, the endomorphisms 1− F of the right and left-hand terms
are surjective. Here, for the left-hand term, we have used that if A is a finitely
generated Ap-module, then R is a finitely generated Rp-module.
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So suppose that R = A[[t]] and I = (t). Then WnΩq
(R,I) is given by Thm. B,

and the value of the Frobenius endomorphism is given by

F (w(n)) =
∑
i∈N

(
Fa

(n)
0,i [t]pi

n−1 + Fb
(n)
0,i [t]pi−1

n−1 d[t]n−1

)
+

∑
s∈N

∑
j∈Ip

(
V s−1(pa

(n−s)
s,j [t]jn−s) + dV s−1(b

(n−s)
s,j [t]jn−s)

)
.

To see that 1− F is onto, let ω = (ω(n))n∈N be an element of

WΩq
(R,I) = lim

R
WnΩq

(R,I)

and write

ω(n) =
∑
i∈N

(
a

(n)
0,i [t]in + b

(n)
0,i [t]i−1

n d[t]n
)

+
∑
s∈N

∑
j∈Ip

(
V s(a

(n−s)
s,j [t]jn−s) + dV s(b

(n−s)
s,j [t]jn−s)

)

with a
(m)
s,i ∈ WmΩd

A and b
(m)
s,i ∈ WmΩq−1

A . We consider the case where b
(n)
s,j = 0,

for all n, s ∈ N and j ∈ Ip, and the case where a
(n)
0,i = b

(n)
0,i = 0, for all n, i ∈ N,

and a
(n)
s,j = 0, for all s, n ∈ N and j ∈ Ip, separately. In the first case, the

geometric series
ψ(n) =

∑
m>0

Fmω(m+n) ∈ WnΩq
(R,I)

converges and defines an element ψ = (ψ(n))n∈N with (1 − F )ψ = ω. In the
second case, we define

ϕ(n) = −
∑
m∈N

∑
s∈N

∑
j∈Ip

dV m+s(b
(n−m−s)
s,j [t]jn−m−s).

This makes sense since, for each n ∈ N, the sum over m ∈ N is finite. The
resulting element ϕ = (ϕ(n))n∈N satisfies (1−F )ϕ = ω. We note that, formally,
we may write ϕ =

∑
s>1 F

−sω. This completes the proof. 2

Remark 2.9 It is interesting to use Thm. B to evaluate the kernel of 1− F .
Let ω = (ω(n))n∈N be an element of WΩq

(A[[t]],(t)). Then

F (w(n)) =
∑
i∈N

(
Fa

(n)
0,i [t]pi

n−1 + Fb
(n)
0,i [t]pi−1

n−1 d[t]n−1

)
+

∑
s∈N

∑
j∈Ip

(
V s−1(pa

(n−s)
s,j [t]jn−s) + dV s−1(b

(n−s)
s,j [t]jn−s)

)
,

which we compare to

ω(n−1) =
∑
i∈N

(
a

(n−1)
0,i [t]in−1 + b

(n−1)
0,i [t]i−1

n−1d[t]n−1

)
+

∑
s∈N

∑
j∈Ip

(
V s(a

(n−1−s)
s,j [t]jn−1−s) + dV s(b

(n−1−s)
s,j [t]jn−1−s)

)
.
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We find that for all n, i ∈ N, s ∈ N0 and j ∈ Ip, the coefficients a
(m)
s,j and b

(m)
s,j

must satisfy the equations

a
(n−1)
0,pi = Fa

(n)
0,i , a

(n−s)
s−1,j = pa

(n−s)
s,j ,

b
(n−1)
0,pi = Fb

(n)
0,i , b

(n−s)
s−1,j = b

(n−s)
s,j .

It follows that for all j ∈ Ip, there exist unique elements

aj = (a
(n)
j ) ∈ lim

R
Hom(Z[1

p
],WnΩq

A),

bj = (b
(n)
j ) ∈ WΩq−1

A = lim
R
WnΩq−1

A ,

such that for all s ∈ N0 and all i ∈ N,

a
(n)
s,j = a

(n)
j (p−s), a

(n)
0,i = F va

(n+v)
j (1),

b
(n)
s,j = bnj , b

(n)
0,i = F vb

(n+v)
j ,

where we write i = pvd with j ∈ Ip. But WnΩq
A is pn-torsion, and hence,

the coefficients aj must all be zero. It follows that the kernel of 1 − F is
isomorphic to a product indexed by Ip of copies of WΩq−1

A . This group is
canonically isomorphic to the big de Rham Witt group WΩq−1

A introduced
in [9]. Hence, we can write our findings as a short exact sequence

0→WΩq−1
A → WΩq

(A[[t]],(t))
1−F−−→ WΩq

(A[[t]],(t)) → 0

which is valid whenever A is a noetherian Fp-algebra that is finitely generated
as a module over Ap. This also implies a canonical isomorphism

Kq(A[[t]], (t),Zp)
∼−→WΩq−1

A

with the relative p-adic K-group on the left.

3 Proof of Theorem A

Let A be a regular Fp-algebra. It follows from [6, Thm. B] and [16] that the
canonical map

W·Ω
∗
A → TR·

∗(A; p)

is an isomorphism of pro-abelian groups, and hence, there is a natural long-
exact sequence

· · · → TCq(A; p)→ WΩq
A

1−F−−→ WΩq
A → TCq−1(A; p)→ · · ·

The cyclotomic trace induces a map

Kq(A; Zp)→ TCq(A; p)
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that is defined to be the composite

πq(K(A),Zp)→ πq(TC(A; p),Zp)
∼←− πq(TC(A; p)).

The right-hand map is an isomorphism since the topological cyclic homology
spectrum of an Fp-algebra is p-complete. We recall the following result from [5]
and [4].

Theorem 3.1 Let A be a regular local Fp-algebra. Then the composite map

Kq(A,Zp)→ TCq(A; p)→ WΩq
A

is an isomorphism onto the kernel of 1− F .

Proof. Suppose first that A is an essentially smooth local Fp-algebra. Then it
was proved in [5] that Kq(A) is p-torsion free and that Kq(A)/pn is generated
by symbols. It follows that the composite

Kq(A)→ TCn
q (A; p)→ TRn

q (A; p)

factors through the canonical map from WnΩq
A to TRn

q (A; p). Indeed, in the
following diagram, the upper horizontal map is an isomorphism.

(WnΩ1
A)⊗q //

��

TRn
1 (A; p)⊗q

��

WnΩq
A

// TRn
q (A; p)

It follows further from [5], [1], and [4] that the induced map

Kq(A)/pn → WnΩq
A

is injective. Moreover, according to [12, I.5.7.4], its image WnΩq
A,log is related

to the kernel Kq
n of

R− F : WnΩq
A → Wn−1Ω

q−1
A

by

WnΩq
A,log ⊂ Kq

n ⊂ WnΩq
A,log + Filn−1WnΩq

A.

The above statements are all stable under filtered colimits, and hence they
remain valid for any regular local Fp-algebra. Indeed, by [16] a regular local
Fp-algebra is a filtered colimit of essentially smooth local Fp-algebras. The
result follows by forming the limit over n. 2
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Proof of Thm. A Let A be a regular local Fp-algebra which is finitely gen-
erated as a module over Ap. We consider the square from the introduction

K(R, I) //

��

TC(R, I; p)

��

holimsK(R/Is, I) // holims TC(R/Is, I; p).

Since R is regular, the topological cyclic group in the upper right-hand corner
is given by the long exact sequence

· · · → TCq(R, I; p)→ WΩq
(R,I)

1−F−−→ WΩq
(R,I)

∂−→ TCq−1(R, I; p)→ . . .

and we proved in Prop. 2.8 above that the map 1 − F is surjective. Hence
Thm. 3.1 shows that the top horizontal map in the diagram above becomes a
weak equivalence after p-completion. Moreover, Props. 1.2 and 1.7 show that
the right-hand vertical map is weak equivalence. Finally, the lower horizontal
map becomes a weak equivalence after p-completion by the main theorem
of [15]. Hence the left-hand vertical map becomes a weak equivalence after
p-completion. This is the statement of Thm. A. 2
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