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Abstract

Let A be a noetherian Fp-algebra that is finitely generated as a module over the
subring AP of pth powers. We give an explicit formula for the de Rham-Witt complex
of the power series ring A[t] in terms of that of the ring A. We use this formula
to show that, for every complete regular local [Fj-algebra whose residue field is a
finite extension of the subfield of pth powers, the canonical map from the algebraic
K-theory with Z/p"-coefficients to the topological K-theory with Z/p"-coefficients
is an isomorphism.
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Introduction

Let (R,m,k) be a complete regular local F,-algebra and assume that the
residue field k is a finite extension of the subfield kP of pth powers. We show
that the canonical map

Ky(R,Z/p") — K;°°(R,Z/p")

from the algebraic K-theory with Z/p*-coefficients to the topological K-theory
with Z/p"-coefficients is an isomorphism. The proof gives an inductive proce-
dure for evaluating the common group in terms of the de Rham-Witt groups of
k. This extends previous results of Dundas [2] and the authors [4, Prop. 5.3.1],
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where the case of a one-dimensional complete regular local IF-algebra with per-
fect residue field was considered. The topological K-groups, which take the
m-adic topology on R into account, are defined to be the homotopy groups
with Z/p¥-coefficients of the homotopy limit spectrum

K"P(R) = holim K(R/m").
Hence there is natural exact sequence
0— R lim Ky (R/m*, Z/p") — K (R, Z/p") — lim Ky(R/m*, Z/p") — 0

compare Wagoner [19]. By the structure theorem for complete regular local
[F,-algebras, the ring R is non-canonically isomorphic to the power series ring
k[t1,...,tq], where d is the Krull dimension of R. We shall allow for a slightly
more general ring of coefficients:

Theorem A Let A be a reqular local Fy-algebra and assume that A is finitely
generated as a module over the subring AP. Let R = A[tq,...,tq] andletI C R
be the ideal generated by tq,...,ty. Then the canonical map

Kq(R,Z/p") — K, (R, Z/p")
s an isomorphism, for all integers q and v > 1.

We note that the Gabber-Suslin rigidity theorem [17,3] implies that for m
prime to p and for all s > 1, the natural projection induces an isomorphism

K, (R,Z/m) = K, (R/I*,Z/m).

Hence, in this case, the limit system is constant. On the other hand, continuity
fails rationally, and hence integrally.

We briefly discuss the method of proof. The K-theory spectra of the rings R
and R/I° naturally decompose as wedge sums

K(A)V K(R,I) = K(R)
K(A) Vv K(R/I*, 1) = K(R/T%)

and the natural projection induces the identity map of the first summand on
the left. Thus we may as well show that the induced map of relative theories

K(R, I) — holim K (R/I*, I)

induces an isomorphism of homotopy groups with Z/p"-coefficients. To this
end, we compare the K-theory spectra to the corresponding topological cyclic



homology spectra via the cyclotomic trace in the following diagram.

K(R,I) = TC(R, L;p)

holim, K (R/I%,I)—*—holim, TC(R/I*, I;p).

By a theorem of McCarthy [15], the lower horizontal map induces an isomor-
phism of homotopy groups with Z/p*-coefficients. A theorem of Popescu states
that every regular [F,-algebra is a filtered colimit of smooth F,-algebras [16].
(See also [18].) This implies that the results of [5] and [6], which were proved
originally for smooth IF,-algebras, are valid, more generally, for regular [F,-
algebras. Hence, there is a natural long-exact sequence

- = TCy(R, I;p) = Wy ;) — WQl, ) — TCy1(R, I;p) —
where WQ( .1y 18 the de Rham-Witt complex of [12]. Moreover, the composite
K, R,I;Z,) — TCy(R, I;p) — WQ}

maps the relative K-group with Z,-coefficients isomorphically onto the ker-
nel of 1 — F. We prove the following result which is also interesting in its
own right. The proof uses the corresponding result, proved in [11], for polyno-
mial algebras, and the extension to power series rings was inspired by Kato’s
paper [13].

Theorem B Let A be a noetherian Fy-algebra and suppose that A is finitely
generated as an AP-module. Then every element w™ € W, Q4 Ay con be written
uniquely as an infinite series

:Zaéz +Zb(n) lld

i€Np lGN
+ 303 (VA(al th-s) + dVe [t
seNjel,

with the components a e W,,Q% and bm) e W,,Q% ' Here I, is the set
of positive integers that are not divisible by p and |t []n 15 the multzphcatwe
representative of t in W, (A[t]).

Using this result we prove, by induction on the number of variables, that the
map 1 — F' in the sequence above is surjective. It follows that the cyclotomic
trace induces an isomorphism

Ky(R, I;Z,) = TCy(R, I; p).
Finally, we show that the canonical map

TC(R,I;p) — holim TC(R/I°,I;p)



is a weak equivalence. This completes the outline of the proof of Thm. A.
We mention that Thm. B gives a canonical isomorphism
1 ~
I/VQqA,log D WQ% - WQ?LX[[t}],Iog

where the second summand on the left is the big de Rham-Witt group consid-
ered in [9]. Previously, the graded pieces of a complete and separated filtration
of the left-hand side were known [13].

In this paper, A will always denote an F,-algebra, R the power series algebra
Afty,...,tq], and I C R the ideal generated by ti,...,ts. A pro-object of
a category C is a functor to C from the set of positive integers viewed as a
category with one morphism from m to n, if m > n. A strict map from a
pro-object X to a pro-object Y is a natural transformation and a general map
from X to Y is an element of the set

Homyo (X, Y) = lirrln corlgm Home (X, Y2).

1 Continuity and topological cyclic homology

Let A be a regular Fp-algebra, finitely generated as a module over the subring
AP and let R and I C R be as in the introduction. In this paragraph, we show
that the canonical map

TC(R; p) — holim TC(R/I*; p)

is a weak equivalence. We briefly recall the definition of TC(R;p), refering the
reader to [10, Sect. 1] for a fuller discussion.

For any ring S, the spectrum TC(S; p) is defined as the homotopy fixed points
of an operator called Frobenius on another spectrum TR(S;p). Hence, there
is a natural cofibration sequence

TC(S;p) — TR(S; p) =5 TR(S;p) & STC(S;p).

The spectrum TR(S;p), in turn, is the homotopy limit of a pro-spectrum
TR'(S;p) and there are strict maps of pro-spectra

F: TR"(S;p) — TR"'(S;p)
V: TR"(S;p) — TR™(S;p).

The spectrum TR'(S;p) is the topological Hochschild spectrum TH(S). It
has an action by the circle group T and the higher levels in the pro-system by



definition are the fixed sets of the cyclic subgroups of T of p-power order
TR"(S;p) = TH(S) 1.

The map F' is the obvious inclusion and V' is the accompanying transfer. The
structure map R in the pro-system is harder to define and uses the so-called
cyclotomic structure of TH(S). There is a natural cofibration sequence

H.(C,n-1, TH(S)) & TR™(S;p) & TR (S;p) & SH.(Cpnr, TH(S))

which gives the “layers” in the tower TR'(S;p). Here the left-hand term is the
group homology spectrum (or borel spectrum) of the group Cpn-1 acting on
TH(S). Its homotopy groups are given by a strongly convergent first quadrant
homology type spectral sequence

Eit - Hs(vaa THt<S)) = Hs+t(cpv, TH(S))
We first show that, quite generally, continuity for topological Hochschild ho-
mology implies continuity for topological cyclic homology.

Lemma 1.1 Let G be a finite group and let X,,, n > 1, be a limit system of
G-spectra. Suppose that there exists m € Z such that X, vanishes for all
n > 1ift <m. Then the canonical map

H.(G, holim X;,) — holim H.(G, X.,)

18 a weak equivalence.

Proof. Let EG be a free contractible G-CW complex. Then by definition
H.(G,X) = (X AN EG})°.
The filtration of EG by the skeleta defines an exact couple

Doy = oyt (X A EGL))
Eyi = mori (X A (B,G/E,1G)))

and this in turn gives rise to the spectral sequence
ESQ,t = HS(G7 ﬂ-tX> = Hs+t(G7 X)

In particular, if 7, X vanishes for ¢ < m, then the map induced from the
canonical inclusion

(X A EGL)O) = m (X A EGL)C)



is an isomorphism for n < s + m. Now consider the following diagram

((holim,, X,,) A E,G4) —— ((holim,, X,)) A G, )"

J |

holim,, (X, A E.G4)¢) ——holim, (X, A EG)%).

Since G is finite, we can choose EG such that E,G is a finite CW complex,
for all s > 0. This implies that the left-hand vertical map is a weak equiv-
alence. Indeed, E;G, has a dual. Moreover, the horizontal maps induce iso-
morphism of homotopy groups in degrees less than m. (The assumption that
m; X, vanishes for for all n > 1 if ¢ < m implies that m; holim,, X,, vanishes for
t < m — 1.) Hence the right-hand vertical map will induce an isomorphism of
homotopy groups in degrees less than s + m. But this is true for all s > 0, so
the right-hand vertical map is a weak equivalence. O

Proposition 1.2 Let S be a ring and let J C S be an ideal. If the canonical
map TH(S) — holims TH(S/J®) is a weak equivalence, then so is

TC(S;p) — holim TC(S/J?% p).

Proof. We show inductively that the canonical map
TR"(S;p) — holim TR"(5/.J%; p)

is a weak equivalence. The case n = 1 is the assumption. In the induction
step, we must show that the canonical map

H.(va, TH(S)) — h0£1m H.(va, TH(S/JS))
is a weak equivalence. This map is equal to the composite map
H.(Cpv, TH(S)) — H.(Cpe, holim TH(S/J*)) — holim H.(Cpe, TH(S/J%)).

The right-hand map is an equivalence by Lemma 1.1, and the left-hand map
is an equivalence since forming the group homology spectrum preserves weak
equivalences. Finally, the result for topological cyclic homology follows since
homotopy limits commute. a

We will show in Prop. 1.7 below that if A is a regular IF,-algebra which is
finitely generated as an AP-module, then the canonical map

TH(R) — holim TH(R/I*)

is a weak equivalence. The proof is based on a series of lemmas.



Lemma 1.3 Let S be a ring and J C S an ideal. Then the canonical map
S| ®s QL — Qg/J.

s an isomorphism of pro-abelian groups.

Proof. Let (g ;) C Qf be the differential graded ideal generated by J. Then
the projection induces an isomorphism €%/ Qs = QF /7> and by the Leibniz
rule, Qg 20 C J* @5 Qg ;o). It follows that in the diagram

S/JQS ®S Q((JS7J23)4>S/J25 ®S Qg*)Q%’/JQS *)O

L | |

S/ J* @5 Qg oy —— S/ J* @5 Q4 —— Q% ;. ——0

the left-hand vertical map is zero, and this, in turn, shows that the the map
of the statement is an isomorphism of pro-abelian groups. a

Lemma 1.4 Let A be a ring, let S = Alty, ..., tq], and let J C S be the ideal
generated by ty,...,ty. Then the canonical map

S/J @5 THy(S) — TH,(S/.J")

1s an isomorphism of pro-abelian groups.

Proof. Let J; C S be the ideal generated by t7,...,t;. We note that
Js C J® C J[s/d}

where [m] is the largest integer less than or equal to m. This shows that in

the diagram
S/J. ®s TH,(S)——TH,(S/J.)

S/J ®g TH,(S)——TH,(S/J")
the vertical maps are isomorphisms of pro-abelian groups. Hence, we may
instead show that the lower horizontal map is an isomorphism of pro-abelian
groups. The rings S and S/Jg both are pointed monoid algebras in the sense
of [8, Sect. 7] and their topological Hochschild homology groups therefore are
given by loc. cit. Thm. 7.1. We use this to show that in the diagram

S/J. ®s TH,(S) ——TH.(S/.J.)

T T

S/J. ®s Qs ®oy, THL(A) —— Q%) ®a;, TH,(A)



the left-hand vertical map is an isomorphism, and the right-hand vertical map
an isomorphism of pro-abelian groups. Since Lemma 1.3 implies that also the
lower horizontal map is an isomorphism of pro-abelian groups, the lemma will
follow.

For the ring S in question, we get a weak equivalence
TH(A) A N¥(I124) — TH(S)

where the second factor on the left is the cyclic bar-construction of the d-fold
smash product of the pointed monoid II,, = {0,1,¢,t2 ... }. Moreover, the
cyclic bar-construction decomposes as wedge sum

Vo (N¥ (e, in) Ao AN (i dg)) = N (ILY).
It is proved in [6, Lemma 3.1.6] that N%¥(II,,,0) = S° and that for i > 0,
there is a T-equivariant deformation retract
T/Ciy = N¥(Ily; 1)

where T and C; denote the circle group and the cyclic subgroup of order ¢. On
homotopy groups in degree ¢, this shows that for ¢ > 0,

7 (TH(A) A NY (I, 4)) = TH,(A) - ' & TH, 1 (A) - t'~ dt,
and hence the canonical map
Q5 ®q, THL(A) — TH.(9)
is an isomorphism.
The description of the topological Hochschild homology of the ring S/J; is

completely parallel. There is a natural equivalence

i1,...,4¢€Np

where II, is the pointed monoid {0,1,¢,...,t*"'} with base-point 0 and with
t* = 0. The T-equivariant homotopy type of the spaces N (Il,4) was deter-
mined in [7, Thm. B]. In particular, the natural projection

NY (I, 1) — N (I, 4)
is a homeomorphism, for ¢ < s, and for ¢ = s, there is a cofibration sequence

NY (o, 1) = N (I, 5) — N¥(IL, s) — SN (I, 1).



On homotopy groups in degree g, the latter gives rise to a short exact sequence
0 — (TH,_1(A)/s) - t*'dt — 7, (TH(A) A N¥(Il,, s)) — TH, 2(A)[s] -t — 0.
It follows that the map

50, ®a, THL(4) — TH.(S/.,)
is injective and that the cokernel C¥ only involves the summands (iq,. .., i4)

where i; > s for some j = 1,...,d. Finally, since N%¥(Il,,) is [(i — 1)/s]-
connected, the canonical inclusion

\/  TH(A) A (N¥(IL,, i) A - A N (I, g)) — TH(S/.J,)

induces an isomorphism on homotopy groups in degrees < ¢. It follows that
in degree ¢, the map of cokernels Cy,; — C{ is zero. a

Remark 1.5 It would be interesting to determine if, generally, given a ring
S and an ideal J C S, the canonical map

S/J ®s TH,(S)) — TH,(S/J)

is an isomorphism of pro-abelian groups. As far as we know the analogous
question for ordinary Hochschild homology also has not been settled.

Lemma 1.6 Let A be a reqular Fy-algebra. Then the canonical map
}}/I. ® TH,(F,) — TH.(R/I)

s an isomorphism of pro-abelian groups.

Proof. Let S be the polynomial algebra Alty,...,t;] and let J be the ideal

generated by ti,...,t;. Then, since S/J* = R/I®, the map of the statement
may be identified with the lower horizontal map in the diagram

S/J ®s Q5 ® TH,(F,) ——S/J  ®s TH.(S)

| |

;. ® TH,(F,) ——TH,(S/.J°).

In this diagram, the left-hand vertical map is an isomorphism of pro-abelian
groups by Lemma 1.3 and the right-hand vertical map is an isomorphism of
pro-abelian groups by Lemma 1.4. Finally, the upper horizontal map is an
isomorphism by [6, Thm. BJ. O



Proposition 1.7 Suppose that A is reqular and finitely generated as a module
over the subring AP. Then the canonical map

TH,(R) — lim TH,(R/I°)

is an isomorphism and the derived limit R' lims TH,(R/I®) vanishes.

Proof. We consider the following diagram

O, ® TH,(F,) —— TH.(R)

| |

where the upper and lower horizontal maps are isomorphisms by [6, Thm. B|
and Lemma 1.6. We recall that TH,(F,) is isomorphic to F,, if ¢ is a non-
negative even integer, and is zero, otherwise. We show that the canonical map

Q% — lign Q(]]% J1s
is an isomorphism and that the derived limit R'lim, QQR/IS vanishes. The
canonical map is equal to the composite map

0% — Im(R/I° ®r 0%) — lignQ%/Is.

It follows from Lemma 1.3 that the right-hand map and the corresponding
map of derived limits are isomorphisms. Hence, it suffices to show that the
R-module Q% is I-adically complete. We recall from [14, Thm. 8.7] that since
R is noetherian and I-adically complete, every finitely generated R-module,
too, is I-adically complete. So it will suffice to prove that the R-module Q%
is finitely generated. But if =7, r = 1,...,m, 0 < s < p, generate A as an
AP-module, then dzy, ..., dT,,, dt, ..., dtq generates QL as an R-module. O

2 De Rham-Witt complexes

In this section, we show that if the F,-algebra A is finitely generated as a
module over the subring AP, then the map

1—F: WQ‘(]R’I) — WQ‘(]RJ)

is surjective. We begin with some lemmas on Witt vectors and completion.
We note that the definition of the ring W,,(J) of Witt vectors associated with
a ring J does not require the ring to be unital.
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Lemma 2.1 Let S be a ring and J C S an ideal. Then W, (J) C W,(5) is

an ideal and the canonical projection induces an isomorphism

W (S)/Wa(J) = W, (S/J).

Proof. It is clear that W, (J) C W,(S) is an ideal and that the natural
projection factors as stated. Indeed, as a set W,,(A) is the n-fold product of
copies of A. We show inductively that the sequence

0— Wo(J) — W,(S) — W,(S/J) — 0

is exact. The case n = 1 is trivial. It is also clear that the left-hand map is
injective, that the right-hand map is surjective, and that the composite of the
two maps is zero. The proof of the induction step now follows from the natural
exact sequence

0— AV w4 Lo w,_i(4) =0
by a diagram chase. O
Lemma 2.2 Let S be a ring and let x1,...,xq4 € S. Then
(] %) € Wal(@r, e ma)” %) € ([l [zl
where [z, € W,,(S) is the Teichmiiller representative.

Proof. The inclusion on the left is trivial. To prove the right-hand inclusion,
we first note that since

n— nfls nfls
(z1,.. ., xg)” (@02,
it will suffice to prove that for all y,...,ys € 5,
n—1 n—1
Wn((y;f ,---,3/5 )) - ([yl]nu"'a[yd]n)'

To this end, we show by descending induction on 0 < s < n that

n—1 n—1

VWl - wa ) C (Wil - [yaln)-

The case s = n is trivial. We write J = (y’fnil, o ,ygnfl) and assume the

statement is true for s + 1. The elements V*([z],_s) with € J form a set of
coset representatives of VTV, (J) as a subgroup of VW, (.J). Now if

n—1 n—1
_ p D
Tr = a1y +...aqYy
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then, modulo VW, _,(J),

n—1 n—1

[2]n-s = [a1]nslnln-s + -+ [ad]n—s[yaln—s

which shows that, modulo VW, (.J),

n—1l—s n—1l—s

Vo([z]n-s) = Vo([aa]n-o)lwalh 4+ V([aa]n-s)[valy

This proves the induction step. O

Corollary 2.3 Let S be a ring and J C S a finitely generated ideal. Then for
all s > 1, there exists r > s such that

W(J7) C Wo(J)* C Wa(J?).

Proof. Indeed, if x4, ..., x4 generates J, then by Lemma 2.2,
Wa(J77 %) € ([@ilys - fedlh) € WalJ)?,

which proves the left-hand inclusion of the statement with » = p"~'ds. The
right-hand inclusion follows from the more general fact that if I,J C S are
two ideals, then W, (I)W,,(J) C W, (IJ). O

The de Rham-Witt complex W.Q2% is defined, for any ring S, to be the initial
example of an algebraic structure called a Witt complex over S [12,11]. By
definition a Witt complex over S consists of the following data (i)—(iii).

(i) A pro-differential graded ring E* and a strict map of pro-rings

A WA(S) — E°.

(ii) A strict map of pro-graded rings
F:E — B,
such that F'’A = AF" and such that

Fd\(la),) = Ma),_1)?'dA\([a],—1), foralla € S.

(iii) A strict map of pro-graded modules over the pro-graded ring E¥,
V:F.E | — E;,

such that VA = AV and such that F'V = p and FdV = d.

12



A map of Witt functors is a strict map of pro-differential graded rings that
commutes with the maps A, F' and V. The structure map in the de Rham-Witt
complex W.Q% is called the restriction and written R.

Lemma 2.4 Let S be a ring, let J C S be an ideal, and let WnQ?SJ) be
the differential graded ideal in W, Q2% generated by W, (J). Then the canonical
projection induces an isomorphism

WL /W, Qg ) = W0 .

Proof. We claim that W.Q5/W.Q ; is a Witt complex over S/J. Indeed,
by definition and by Lemma 2.1, it is a pro-differential graded ring with un-
derlying pro-ring W.(S/J). Hence, we need only show that the operators F, R
and V' on W.Q% descend to operators on W.Q%/ VV.QE“& J)» or equivalently, that

RW, Qg ) € Woaa Qs )
VIVl ;) © W Qg .

The elements of WHQ?& 5 are sums of elements of the form w = agda, ... da,
with a; € W,,(9), for all 7, and a; € W,,(J), for some i. We find that

V(w) =V(ag FdV(ay) ... FdV(a,)) = V(ap)dV (ay)...dV (a,),
which is therefore in WHHQ‘(’& J)- Since the Frobenius is multiplicative,
F(w) = Fay- Fday - ...- Fda,.

If ag € W, (J) then F(ay) € W,_1(J), and hence, F(w) € Wn_1Qg57J). Suppose
that a; € W, (J), for some 1 < i < g. We write out a; in Witt coordinates

a; = [aio]n + Vaian-1 + -+ V" ainoaly
and find that
Fda; = [ai,o]f;lld[ai,o]n_1 + d[ai,l]n—1 + dV[ai’z]n_2 Lo dynT? [ai,n—l]l-

This shows that Fda; € Wn,lQ%S’ sy and hence F(w) € Wn,lﬁ‘g& 5y Finally,
the statement for R is clear.

It remains to show that the quotient W.Q5/W.Qg ;) is the universal Witt
complex over S/J. Let E* be a Witt complex over S/.J. By regarding E* as a
Witt complex over S, we have the unique map W.Q¢ — E¥ of Witt complexes
of S. But this factors through the canonical projection to give a map

WA /Wy — B

13



of Witt complexes over S/J. Finally, this map is unique because the canonical
projection is surjective. This completes the proof. O

Proposition 2.5 Let S be a ring and let J C S be a finitely generated ideal.
Then for alln > 1 and q > 0, the natural map

Wo(S/J") @w,(s) Wald§ — WnQ%/J.

s an isomorphism of pro-abelian groups.

Proof. It follows from Lemma 2.4 that we have a natural exact sequence of
limit systems

Hence, it suffices to show that the limit system on the left-hand side is zero
as a pro-abelian group. This means that given s > 1, we must find » > s such
that the map

Wl S/T") @w,(s) Waldl yy = WalS/T?) @w,(s) Waldlg )
is zero, or equivalently, such that
W”Q?S,JT) C Wi(J?) @w,(s) Wa .

To this end, we choose r > s such that W, (J") C W, (J*)?. This is possible by
Cor. 2.3 since the ideal J and hence also J* is finitely generated. The desired
inclusion follows from the Leibniz rule. a

Lemma 2.6 Let A be a noetherian Fy,-algebra and suppose that A is finitely
generated as a module over AP. Then W, (A) is a noetherian Z/p"-algebra.

Proof. It is enough to show that every prime ideal of W, (A) is finitely gen-
erated [14, Thm. 3.4]. We prove this by induction on n. The case n = 1 is
by assumption. In the induction step, we use that V" 1(A) C W,(A) is a
nilpotent ideal and that the restriction map induces an isomorphism

R: W, (A)/VPLA) = W1 (A).

It follows that every prime ideal p C W, (A) is of the form p = R™!(p) for
some prime ideal p C W, _;(A). Hence, we have a short-exact sequence of
W, (A)-modules

0—=V" A) —-p—Rp—0
and it will suffice to show that the right and left-hand modules are finitely
generated. By the induction hypothesis, W,,_1(A) is noetherian, and hence

14



p is a finitely generated over W, _1(A). This implies, since the restriction is
surjective, that R.p is a finitely generated W,,(A)-module. Finally, the iterated
Verschiebung gives an isomorphism of W,,(A)-modules

Vil FPTTA S VT (A),
and the iterated Frobenius factors as the composite map
Frto i, (A) B2 4 2 4

where ¢ is the Frobenius endomorphism of A. The left-hand map is always
finite, and the right-hand map is finite by assumption. Hence V"71(A) is a
finitely generated W, (A)-module. O

Lemma 2.7 Suppose that A is finitely generated as an module over the sub-
ring AP. Then W,Q% is a finitely generated W,,(R)-module.

Proof. The proof is by induction on n. The case n = 1 was treated in the
proof of Prop. 1.7. In the induction step we use the following exact sequence
of W, (R)-module from [10, Prop. 3.2.6]

W% X w0t w108 — 0.

The left-hand term, as an abelian group, is the quotient of Q%' @ Q% by the
subgroup consisting of the elements (p" 'w, —dw) with w € Qj{{l. We recall
from op. cit., Lemma 3.2.5, that it has a natural W,,(R)-module structure such
that there is an exact sequence of W,,(R)-modules

FIM — W — FI O o) — 0.

Since A/AP is finitely generated, Q% is a finitely generated R-module, and
F" 'R is a finitely generated W, (R)-module. This completes the proof of the
induction step. O

Proof of Thm. B Let R = A[t], let S = A[t], and let I C R and J C S be
the ideals generated by t. Then in the diagram

limS(Wn(S/Js) Ow,, () WanS) %hms(Wn(R/[S) OW, (R) WnQ(]]%)

| |

lim, W, Q% ne lim, W, Q% e

the vertical maps are isomorphisms by Prop. 2.5 and the lower horizontal map

is an isomorphism since S/J° — R/I°. Hence the top horizontal map is an
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isomorphism. Moreover, we claim that the map

is an isomorphism. According to Cor. 2.3 this is equivalent to the statement
that the W, (R)-module W, Q% is W, (I)-adically complete. We know from
Lemma 2.7 that W, Q% is a finitely generated W,,(R)-module, from Lemma 2.6
that W,(R) is a noetherian ring, and from Cor. 2.3 that the ring W,,(R) is
W, (I)-adically complete. The claim then follows from [14, Thm. 8.7]. Con-
cluding, we have isomorphisms

W, Q% = Tm(Wo(R/I°) @w,(r) WaSdg) <= Hm(Wo(S/ %) @w,,(s) Wa Q%)

and the right-hand term is equal to the completion of the W, (S)-module
W,Q%L with respect to the topology given by the ideals W, (J%), s > 0. We
recall from [11, Thm. B] that every element w™ € W,Q% can be written
uniquely

W = 37 a1 + 300l

i€Np €N
+ 303 (Vo oy + dvely )
seNjel,

where a(?) e W,,Q%, RS W%, and where only finitely many ")

and bg’? are non-zero. The effect of the completion is to remove the latter
requirement. Indeed, according to Cor. 2.3, the ideals W,,(J®) and ([t]), where
s > 0, define the same topology on W,,Q%. O

Proposition 2.8 Let A be a noetherian F,-algebra and suppose that A is a
finitely generated AP-module. Then the map

1—F: WQ‘(IRJ) — WQ‘(]RJ)

18 surjective.

Proof. We first reduce to the one variable case. Let R = A[ty,...,t4] and
let I and J be the ideals generated by t1,...,t; and by t4, respectively. Then
Lemma 2.4 and the snake lemma give rise to an exact sequence

0— WQ((JRJ) - WQ'(JRJ) — WQ((]R/JJ/J) — 0,
and by induction, the endomorphisms 1 — F' of the right and left-hand terms

are surjective. Here, for the left-hand term, we have used that if A is a finitely
generated AP-module, then R is a finitely generated RP-module.
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So suppose that R = A[t] and I = (t). Then W, Q(p ;) is given by Thm. B,
and the value of the Frobenius endomorphism is given by

F(w™) = Y (Faf 00, + Py st di], )

€N

+ 303 (Ve paly V) + dVe 0 ).

seNjel,
To see that 1 — F is onto, let w = (w™),en be an element of

and write

o™ = > (aél ], + bOz (1] ld[t]")

ieN

+ 3 (Vi) + ave el )

seNjel,

with ag’?) € W,,Q% and b, m) € W, Q% . We consider the case where b =0,
for all n,s € Nand j € I, and the case where a(()z = b(()"Z =0, for all n, z €N,
and aglj) =0, for all s,n E N and j € I,, separately. In the first case, the
geometric series

= > Pt e W01

m2=0
converges and defines an element ¢ = (1)), with (1 — F)¢ = w. In the
second case, we define

= AV b ).

meN seN jel),

This makes sense since, for each n € N, the sum over m € N is finite. The
resulting element o = (p™),,cy satisfies (1—F)p = w. We note that, formally,
we may write ¢ = > 51 F'"*w. This completes the proof. a

Remark 2.9 It is interesting to use Thm. B to evaluate the kernel of 1 — F'.
Let w = (w™),cn be an element of W 41, Then

F(w®) =3 (Fal[0p, + oy 2t

€N

+ 33 (Vi paly ) + Ve L)),

seNjel,

which we compare to

WD =3 (af V4 0 Ut )

ieN

+ 305 (Ve T ) AVl ).

seNjel,
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We find that for all n,i € N, s € Ny and j € I, the coefficients ag?) and bgf?)
must satisfy the equations

n—1 n n—s n—s
a[(),pi ) = Faé,i)7 agfl,j) = pa.(s,j )7

n—1 n n—s n—s
oo = Fby) b = b

0,p? s—1,j

It follows that for all j € I, there exist unique elements

a; = (o) € lim Hom(Z[}], W, $%),

b= (") e Wy = lim T, ",
such that for all s € Ny and all ©+ € N,
o =a(p*), al) = Fralmt(1),
(n) _ n (n) _ pwp(nto)
bs,j - bj? bO,i - F bj )

where we write i = pd with j € I,. But W, Q% is p"-torsion, and hence,
the coefficients a; must all be zero. It follows that the kernel of 1 — F is
isomorphic to a product indexed by I, of copies of WQifl. This group is
canonically isomorphic to the big de Rham Witt group WQ?{l introduced
in [9]. Hence, we can write our findings as a short exact sequence

q—1 q 1-F q
0— WU = W Lkwy — W0y — 0

which is valid whenever A is a noetherian F,-algebra that is finitely generated
as a module over AP. This also implies a canonical isomorphism

Ko (A[lt], (1), Z,) = WO

with the relative p-adic K-group on the left.

3 Proof of Theorem A

Let A be a regular F,-algebra. It follows from [6, Thm. B] and [16] that the
canonical map

W.Q% — TR,(A;p)
is an isomorphism of pro-abelian groups, and hence, there is a natural long-
exact sequence

- — TC,(4;p) — WQY 1-F Wy — TCy1(A;p) — -
The cyclotomic trace induces a map

Kq(A§ Zp) - TCq(A§p)

18



that is defined to be the composite
To(K(A), Zp) — 7(TC(A; p), Zp) < my(TC(A;p))-

The right-hand map is an isomorphism since the topological cyclic homology
spectrum of an F-algebra is p-complete. We recall the following result from [5]

and [4].
Theorem 3.1 Let A be a regular local Fp-algebra. Then the composite map
K,(A,Z,) — TC,(A;p) — WQY

s an isomorphism onto the kernel of 1 — F.

Proof. Suppose first that A is an essentially smooth local F,-algebra. Then it
was proved in [5] that K (A) is p-torsion free and that K,(A)/p" is generated
by symbols. It follows that the composite

Ky(A) — TCy(A; p) — TRy (A; p)

factors through the canonical map from W,Q% to TRy (A;p). Indeed, in the
following diagram, the upper horizontal map is an isomorphism.

(W, 0Q4)®1——TRY(A; p)®4

J |

W,04 ———TR(A; p)
It follows further from [5], [1], and [4] that the induced map
Ky(4) [ — W

is injective. Moreover, according to [12, 1.5.7.4], its image WnQiJog is related
to the kernel K¢ of

R—F: W,Q% — W, 104"
by
WSl 1o C K C W00, + Fil" 1 W0
The above statements are all stable under filtered colimits, and hence they
remain valid for any regular local [F,-algebra. Indeed, by [16] a regular local

[F,-algebra is a filtered colimit of essentially smooth local Fp-algebras. The
result follows by forming the limit over n. a
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Proof of Thm. A Let A be a regular local [F,-algebra which is finitely gen-
erated as a module over AP. We consider the square from the introduction

K(R,I) TC(R, I;p)

holimg K (R/1°,I)——holim, TC(R/I°, I;p).

Since R is regular, the topological cyclic group in the upper right-hand corner
is given by the long exact sequence

+ = TCy(R, I;p) — Wy =5 Wl ) 5 TCo 1 (R, I;p) — ...
and we proved in Prop. 2.8 above that the map 1 — F' is surjective. Hence
Thm. 3.1 shows that the top horizontal map in the diagram above becomes a
weak equivalence after p-completion. Moreover, Props. 1.2 and 1.7 show that
the right-hand vertical map is weak equivalence. Finally, the lower horizontal
map becomes a weak equivalence after p-completion by the main theorem
of [15]. Hence the left-hand vertical map becomes a weak equivalence after
p-completion. This is the statement of Thm. A. a
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