
1. Sheaves

Let X be a topological space. We define the category O(X) of opens in X to
have objects the open subsets U ⊂ X and to have the set of morphisms from U ⊂ X
to V ⊂ X either consists of the canonical inclusion map i : U → V or be empty
according as U ⊂ V or not. Recall that a presheaf on X is defined to be a functor

O(X)op F // Set

from the opposite category of O(X) to the category of sets. The presheaf F is
defined to be a sheaf if for every object U in O(X) and every family of morphisms
(Ui → U)i∈I in O(X) with the property that

⋃
i∈I Ui = U , the diagram

F (U)
ι //

∏
i∈I F (Ui)

α //

β
//
∏

(j,k)∈I×I F (Uj ∩ Uk)

is an equalizer in Set. Here ι is the unique map such that for all i ∈ I,

pri ◦ ι = F (Ui → U);

and α and β are the unique maps such that for all (j, k) ∈ I × I,

pr(j,k) ◦α = F (Uj ∩ Uk → Uj) ◦ prj ,

pr(j,k) ◦β = F (Uj ∩ Uk → Uk) ◦ prk,

respectively. We notice that, in the category O(X), the diagram

Uj ∩ Uk //

��

Uj

��

Uk // U

is a cartesian square. Therefore, we may write Uj ×U Uk instead of Uj ∩Uk above.
Grothendieck realized that the implicit assumption in the definition of a topology
that the morphisms U → V be inclusions is unnecessary and counterproductive.
This realization led to the notion of a Grothendieck topology.

Definition 1.1. Let C be a category which admits fiber products. A pretopology
on C is a function K that to each object X of C assigns a set

K(X) = {(fi : Xi → X)i∈I}

of families of morphisms in C, subject to the following axioms.

(PT1) For every object X of C, every family (fi : Xi → X)i∈I in K(X), and every
morphism g : Y → X in C, the family (f ′i : Xi ×X Y → Y )i∈I is in K(Y ).

(PT2) For every object X of C, every family (fi : Xi → X)i∈I in K(X), and every
collection of families (gji : Xji → Xi)j∈Ji in K(Xi), the family

(fi ◦ gji : Xji → X)(i,j)∈
∐
i∈I Ji

is in K(X).
(PT3) For every object X of C, the family (idX : X → X)∅∈{∅} is in K(X).

The elements of K(X) are said to be the covering families of X.
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With this definition in hand, the definition of sheaves can be repeated mutatis
mutandis. A presheaf on C is defined to be a functor

Cop F // Set,

and this functor is defined to be a sheaf if for every object X of C and every covering
family (fi : Xi → X)i∈I of X, the diagram of sets

F (X)
ι //

∏
i∈I F (Xi)

α //

β
//
∏

(j,k)∈I×I F (Xj ×X Xk)

is an equalizer. Here again ι is the unique map such that for all i ∈ I,

pri ◦ ι = F (Xi
fi−→ X);

and α and β are the unique maps such that for all (j, k) ∈ I × I,

pr(j,k) ◦α = F (Xj ×X Xk
f ′k−→ Xj) ◦ prj ,

pr(j,k) ◦β = F (Xj ×X Xk

f ′j−→ Xk) ◦ prk,

respectively.

The definition of a pretopology is not quite satisfying. It requires fiber products
to exist. And the indexing sets of the covering families is an annoying baggage to
carry around. It is better to think of a pretopology as a basis for a topology, which
we proceed to define.

Let C be a category. A sieve on an object X of C is a full subcategory S of
the slice category C/X with the property that if the morphism f : Y → X is an
object of S and if g : Z → Y is any morphism in C, then the composite morphism
f ◦ g : Z → X also is an object of S. The pullback h∗(S) of a sieve S on X along
the morphism h : X ′ → X of C is the sieve h∗(S) on X ′ with object set

ob(h∗(S)) = {g : Y ′ → X ′ | f ◦ h : Y ′ → X is an object of S}.

The slice category C/X is itself a sieve on X and is maximal among sieves on X.

Example 1.2. A family (fi : Xi → X)i∈I of morphisms determines the sieve S
on X whose objects are all morphisms f : Y → X for which there exists an element
i ∈ I and a morphism g : Y → Xi in C such that f = fi ◦ g.

Definition 1.3. Let C be a category. A topology on C is a function J that to
each object X of C assigns a subset J(X) of the set of sieves on X, subject to the
following axioms.

(T1) If f : Y → X is a morphism of C and if S is an element of J(X), then the
pullback sieve f∗(S) is an element of J(Y ).

(T2) If X is an object of C, if S and T are sieves on X, if S is an element of J(X),
and if for every morphism f : Y → X in S, the pullback sieve f∗(T ) is an
element of J(Y ), then T is a covering sieve on X.

(T3) If X is an object of C, then the maximal sieve C/X on X is an element of
J(X).

The elements of J(X) are called the covering sieves of X. A site is a pair (C, J) of
a category C and a topology J on C.
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Example 1.4. Let C be a category. We obtain a topology J on C called the
discrete topology by declaring all sieves to be covering sieves. Similarly, we obtain
a topology J ′ on C called the chaotic topology by declaring only the maximal sieves
to be covering sieves.

Lemma 1.5. Let J be a topology on the category C and let X be an object of C.

(1) If S ∈ J(X) and if T is a sieve on X with the property that ob(S) ⊂ ob(T ),
then T ∈ J(X).

(2) If S ∈ J(X) and if, for every f : Y → X in ob(S), Tf ∈ J(Y ), then the
unique sieve T on X with ob(T ) = {f ◦ g | g ∈ Tf} is in J(X).

Proof. To prove (1), it suffices by (T2) to show for every f : Y → X in
ob(S), f∗(T ) ∈ J(Y ). Since S ⊂ T , also f∗(S) ⊂ f∗(T ). But idY ∈ f∗(S), so
f∗(S) = C/Y is the maximal sieve. Therefore, also f∗(T ) = C/Y is the maximal
sieve, and hence, f∗(T ) ∈ J(Y ) as desired.

To prove (2), we again show that for every f : Y → X in ob(S), f∗(T ) ∈ J(Y ).
We have ob(Tf ) ⊂ ob(f∗(T )). Indeed, if g : Z → Y is in ob(Tf ), then, by the
definition of T , we have f ◦ g : Z → X, so g ∈ f∗(T ) as desired. Therefore, we
conclude from (1) that f∗(T ) ∈ J(Y ) as desired. �

We pause to discuss limits and colimits. There are two ways to construct new
sets out of olds ones: As solution sets to systems of equations; and by gluing sets
together. These two procedures are encoded in the notions of limits and colimits,
respectively.

Definition 1.6. Let X : I → C be a diagram. A limit of X is a pair

(lim
I
X, ( limI X

pri // X(i) )i∈ob(I))

of an object of C and a family of of morphisms in C with the property that for every
morphism α : i→ j in I, the diagram

limI X

X(i)

X(j)

pri
77

prj ''

X(α)

��

commutes and such that if also (Y, (fi : Y → X(i))i∈ob(I)) is such a pair, then there
exists a unique morphism

Y
f
// limI X

such that for all i ∈ ob(I), fi = pri ◦f .

Dually, a colimit of a diagram X : I → C is a pair

(colim
I

X, (Xi
ini // colimI X )i∈ob(I))
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of an object of C and a family of morphisms in C such that for every morphism
α : i→ j in I, the diagram

colimI X

X(i)

X(j)

ini

''

inj

77
X(α)

��

commutes and such that if also (Y, (fi : X(i)→ Y )i∈ob(I)) is such a pair, then there
exists a unique morphism

colimI X
f
// Y

such that for all i ∈ ob(I), fi = f ◦ ini.

We will write (fi) : Y → limI X for the unique morphism determined by the pair
(Y, (fi : Y → X(i))i∈ob(I)); and we will write

∑
fi : colimI X → Y for the unique

morphism determined by the pair (Y, (fi : X(i)→ Y )i∈ob(I)).

Remark 1.7. The pair (limI X, (pri : limI X → X(i))i∈ob(I)) determines the
unique morphism (pri) : limI X → limI X such that for all j ∈ ob(I),

prj = prj ◦ (pri).

But clearly the identity map of limI X has this property. Hence, by the uniqueness,
we conclude that (pri) = id: limI X → limI X. More generally, if both the pairs
(limI X, (pri : limI X → X(i))i∈ob(I)) and (lim′I X, (pr′i : lim′I X → X(i))i∈ob(I))
are limits of the diagram X : I → C, then the unique morphisms

limI X
(pri) //

lim′I X
(pr′i)

oo

are each other’s inverses. Hence, the limit of a diagram is well-defined, up to unique
isomorphism. Similar statements hold for colimits.

Example 1.8. Let X : I → C be a diagram. An object 0 of I is initial if, for
every object i of I, there exists a unique morphism fi : 0→ i. In this situation, the
pair (X(1), (X(fi) : X(0) → X(i))i∈ob(I)) is a limit of X. Dually, an object 1 of I
is final if, for every object i of I, there exists a unique morphism fi : i→ 1. In this
situation, the pair (X(1), (X(fi) : X(i)→ X(1))i∈ob(I)) is a colimit of X.

If I is a small category, then the limit and colimit of a diagram X : I → Set are
given, up to unique isomorphism, as follows. The set limI X is the subset

limI X ⊂
∏
i∈ob(I)X(i)

of the product consisting of the tuples (xi)i∈ob(I) such that for every morphism
α : i → j in I, X(α)(xi) = xj ; and the map pri : limI X → X(i) takes the tuple
(xj)j∈ob(I) to the ith component xi. Dually, the set colimI X is the quotient

colimI X = (
∐
i∈ob(I)X(i))/ ≈

of the disjoint union by the equivalence relation ≈ generated by the relation that
identifies xi ∈ X(i) and xj ∈ X(j) if there exists a morphism α : i → j in I such
that X(α)(xi) = xj ; and the map ini : X(i)→ colimI X takes xi ∈ X(i) to the class
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of (i, xi). In general, the equivalence relation ≈ is extremely difficult to understand.
However, it is much more well-behaved, if the category I is filtered.

Definition 1.9. A category I is filtered if

(i) it is not the empty category;
(ii) for every pair of objects (i, j), there exists a pair of morphisms

i

j

k

α
))

β

55

to a common target; and
(iii) for every pair of parallel morphisms

i
α //

β
// j,

there exists a morphism γ : j → k such that γ ◦ α = γ ◦ β.

Example 1.10. Let J be a topology on a category C. For every object X of
C, we define a partial order 6 on the set J(X) by declaring that S 6 S′ if and
only if ob(S) ⊂ ob(S′). We further define J(X)1 to be the category with the set
J(X) as its set of objects, with the inclusion functor j : S → S′ as the unique
morphism from S to S′ if S 6 S′, and with no morphisms from S to S′ otherwise.
We claim that the opposite category J(X)op

1 is filtered. Indeed, the requirement (i)
that J(X)op

1 6= ∅ holds, since idX : X → X is a covering sieve; the requirement (ii)
holds, since if both S and T are covering sieves, then the sieve S ∩ T with object
set ob(S ∩ T ) = ob(S) ∩ ob(T ) also is a covering sieve; and the requirement (iii) is
trivially satisfied, since parallel morphisms in J(X)op

1 necessarily are equal. To see
that the intersection S ∩T of two covering sieves S and T on X again is a covering
sieve on X, it suffices, by axiom (T2), to show that for every object f : Y → X of
S, the sieve f∗(S ∩ T ) is a covering sieve on Y . But f∗(S ∩ T ) = f∗(T ), which is a
covering sieve on Y by axiom (T1).

Lemma 1.11. Suppose that X : I → Set is a diagram of sets indexed by a small
filtered category I.

(1) Up to unique bijection, the set colimI X is the quotient

colimI X = (
∐
i∈ob(I)X(i))/ ∼

by the equivalence relation ∼ that identifies xi ∈ X(i) and xj ∈ X(j) if there
exists morphisms α : i→ k and β : j → k in I such that

X(α)(xi) = X(β)(xj) ∈ X(k).

(2) Any two elements xi ∈ X(i) and xj ∈ X(j) are equivalent under ∼ to two
elements of the same X(k).

(3) Two elements xi, x
′
i ∈ X(i) are equivalent under ∼ if and only if there exists

a morphism α : i→ j in I such that

X(α)(xi) = X(α)(x′i) ∈ X(j).
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Proof. The statement (1) is clear once we show that ∼ is an equivalence
relation. Only transitivity is at issue, and this follows by choosing morphisms

i j k.

l m

n

99 ee 99 ee

99 ee

The statement (2) is immediate from I being filtered. Finally, to prove (3), suppose
xi ∼ x′i ∈ X(i). By the definition of the relation ∼, there exists α, β : i → j such
that X(α)(xi) = X(β)(x′i). Hence, choosing γ : j → k with γ◦α = γ◦β = δ : i→ k,
we have X(δ)(xi) = X(δ)(x′i) ∈ X(k) as desired. �

Let I and J be two small categories, and let X : I×J → C be a diagram indexed
by the product category. By the universal property of limit and colimit we obtain
a canonical morphism

colimI limJ X(i, j) // limJ colimI X(i, j).

In general, however, this morphism is not an isomorphism. To wit, if I and J are
both the empty category, then the left-hand side is an initial object of C while the
right-hand side is a terminal object of C. We say that a category J is finite if the
sets ob(J) and mor(J) both are finite sets. The following result is extremely useful.

Proposition 1.12. Let I be a small filtered category, let J be a finite category,
and let X : I × J → Set be a diagram of sets. In this situation, the canonical map

colimI limJ X(i, j) // limJ colimI X(i, j).

is a bijection.

Proof. We leave the case J = ∅ as an exercise. Non-empty finite limits can
be obtained by iterated fiber products. For non-empty finite products are clearly
obtained in this way and the equalizer of f, g : X → Y is the fiber product

X ×(X×Y ) X
pr1 //

pr2

��

X

(idX ,f)

��

X
(idX ,g)

// X × Y.
So it suffices to show that the canonical map

colimI(X(i)×S(i) Y (i)) // (colimI X(i))×(colimI S(i)) (colimI Y (i))

which to the class of (xi, yi) assigns (class of xi, class of yi) is a bijection. To con-
struct the inverse map, we let (x̄, ȳ) be an element of the right-hand side. If
xi ∈ X(i) represents x̄ and yj ∈ Y (j) represents ȳ, then

fi(xi) ∈ Si ∼ gj(yj) ∈ Sj .
We choose α : i → k and β : j → k; then xk = X(α)(xi) ∈ Xk represents x̄ and
yk = Y (β)(yj) ∈ Yk represents ȳ, and fk(xk) ∼ gk(yk) ∈ S(k). Finally, we choose a
morphism γ : k → m such that S(γ)(fk(xk)) = S(γ)(gk(yk)) ∈ S(m). The elements
xm = X(γ)(xk) ∈ X(m) and ym = Y (γ)(yk) ∈ Y (m) again represent x̄ and ȳ,
respectively. But we now have (xm, ym) ∈ X(m) ×S(m) Y (m), and moreover, the
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class of (xm, ym) in the domain of the canonial map depends only on the given
element (x̄, ȳ) of the target. Hence, we have a well-defined map

(colimI X(i))×(colimI S(i)) (colimI Y (i)) // colimI(X(i)×S(i) Y (i))

that to the element (x̄, ȳ) assigns the class of (xm, ym), and by construction, this
map is inverse to the canonical map. �

The following result is a typical application of Proposition 1.12.

Corollary 1.13. The underlying set of a colimit of a filtered diagram of rings
is a colimit of the underlying filtered diagram of sets.

Proof. A ring is a sextuple (A,+, 0,−, ∗ , 1) of a set A and five maps

A2 +, ∗
// A1, A0 0,1

// A1, A1 −
// A1

between finite products of copies of the set A. In general, if we are given a diagram
of sets A : I → Set and a natural transformation fi : A(i)m → A(i)n between the
diagrams given by the termwise m-fold and n-fold products, then, by the universal
property of colimits, the natural transformation induces a map

colimI(A
m) colimI(A

n).
colimI(f)

//

If I is filtered, then the canonical maps depicted vertically in the following diagram

colimI(A
m) colimI(A

n)

(colimI A)m (colimI A)n

colimI(f)
//

“f”
//

�� ��

are bijections, and therefore, there exists a unique map “f” making the diagram
commute. In particular, if (A,+, 0,−, ∗ 1) is a diagram of rings indexed by a filtered
category I, then the natural transformations +, 0, −, ∗, and 1 give rise to a ring
structure on the set colimI A. Indeed, the ring axioms are identities between various
natural transformations, and therefore, the corresponding identities hold for the
induced maps. Moreover, the maps in the family

(A(i)
ini // colimI A )i∈I

are ring homomorphisms with respect to this ring structure. Therefore, this family
is the colimit in the category of rings. �

Example 1.14. Let us point out that the conclusion of Corollary 1.13 generally
does not hold if I is not filtered. For example, if I = ∅, then the colimit in the
category of sets is the initial set ∅, while the colimit in the category of rings is the
initial ring Z.

We are now ready to give the definition of sheaves on a category C with respect
to a topology J . If F is a presheaf on C, then for every object X of C and every
sieve S on X, we have a functor

Sop
FX,S

// Set
7



that to the object f : Y → X of S assigns the set FX,S(f) = F (Y ) and that to
the morphism g : Z → Y from f ◦ g : Z → X to f : Y → X in S assigns the map
FX,S(g) = F (g) : FX,S(f)→ FX,S(f ◦ g).

Definition 1.15. Let (C, J) be a site. A presheaf F on C is a sheaf with respect
to J if for every object X of C and every sieve S in J(X), the pair

(F (X), (F (X)
F (f)

// FX,S(f) )f∈ob(S))

is a limit of the diagram FX,S : Sop → Set.

Example 1.16. Let C be a category. Every presheaf F on C is a sheaf for the
chaotic topology. Indeed, for every object X of C, only the maximal sieve C/X
is a covering sieve, and the object idX : X → X is terminal in C/X, hence initial
in (C/X)op. A presheaf F on C is a sheaf for the trivial topology if and only for
every object X of C, the set F (X) is a singleton. Indeed, since the empty sieve is
a covering sieve, the set F (X) is a limit of the empty diagram.
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2. Sheafification

We first discuss the functoriality of limits and colimits. Given categories I and C,
we write [I,C] for the category whose objects are the functors F : I → C and whose
morphisms are the natural transformations α : F ⇒ F ′ between such functors. The
diagonal functor ∆I : C → [I,C] takes an object X of C to the constant functor
∆I(X) : I → C with value X and takes a morphism f : Y → X to the constant
natural transformation ∆I(f) : ∆I(F )⇒ ∆I(F

′) with value f : X → X ′. Choosing
a limit of every diagram F : I → C, we obtain a functor

[I,C]
limI // C

defined as follows. Given a natural transformation α : F ⇒ F ′ and choices of limits
(limI F, (pri : limI F → F (i))i∈ob(I)) and (limI F, (pri : limI F → F (i))i∈ob(I)), we
define limI α : limI F → limI F

′ be the morphism in C determined by the pair

(lim
I
F, ( limI F

pri // F (i)
αi // F ′(i). )i∈ob(I))

The functor identities limI(α ◦ β) = limI α ◦ limI β and limI idF = idlimI F hold by
the uniqueness of morphisms to limits, proving the claim for limits. Moreover, the
pairs (limI F, (pri : limI F → F (i))i∈ob(I)) and (X, (idX : X → X)i∈ob(I)) define
natural transformations ε : ∆I ◦ limI ⇒ id[I,C] and η : idC ⇒ limI ◦∆I , respectively,
making the following quadruple an adjunction from C to [I,C],

(∆I , limI , ε, η).

Finally, we let G : I → I ′ be a functor and fix choices of limits limI and limI′ as
above. If F ′ : I ′ → C is a functor, then we have a natural restriction morphism

limI′ F
′ limI(F

′ ◦G)
resG,F ′

//

defined by the pair (limI′ F
′, (pr′G(i) : limI′ F

′ → (F ′ ◦G′)(i))i∈ob(I)). Moreover, by

the uniqueness of maps to limits, we have the following identities

redidI ,F = idlimI F , resH◦G,F ′′ = resG,F ′′◦H ◦ resH,F ′′

among these natural transformations.

Similarly, choosing a colimit of every diagram F : I → C, we get a functor

[I,C] C
colimI //

which is part of an adjunction of functors from [I,C] to C,

(colim
I

,∆I , ε, η).

Moreover, if G : I → I ′ is a functor, then we have a natural morphism

colimI(F
′ ◦G) colimI′ F

′
indG,F ′

//

defined by the pair (colimI′ F
′, (inG(i) : (F ′ ◦G)(i)→ colimI′ F

′)i∈ob(I)), and

indidI ,F = idcolimI F , indF ′′,H◦G = indF ′′◦H,G ◦ indF ′′,H .

This concludes the preliminaries on the functoriality of limits and colimits.
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Let C be a category, and let J be a topology on C. We write

Cˆ = [Cop,Set]

for the category of presheaves on C and (C, J)˜ or simply C˜ for the full subcategory
of sheaves on C with respect to the topology J . Finally, we write

C˜
i // Cˆ

for the canonical inclusion functor.

Theorem 2.1. Let (C, J) be a site. The functor i : C˜ → Cˆ admits a left adjoint
functor a : Cˆ → C˜. Moreover, the functor a preserves finite limits.

Proof. We first define an auxiliary functor

Cˆ
L // Cˆ

as follows. Let F be a presheaf on C and let X be an object of C. There is a functor

J(X)op
1

FX // Set

that to a covering sieve S on X assigns the limit set FX(S) = limSop FX,S and that
to the canonical inclusion functor j : S → S′ between covering sieves assigns the
map FX(j) : FX(S′)→ FX(S) given by the composition

limS′op FX,S′ limSop(FX,S′ ◦ jop) limSop FX,S ,
resj,F

X,S′
//

limSop αS,S′
//

where αS,S′ : FX,S′ ◦ jop ⇒ FX,S is the natural transformation whose value at the
object f : Y → X of S is the identity map idF (Y ) : (FX,S′ ◦ jop)(f) → FX,S(f).
Given a morphism h : X ′ → X in C, we have the functor h∗ : J(X)1 → J(X ′)1

given by pullback of sieves and define a natural transformation

FX
ϕ(h) +3 FX′ ◦ h∗op

as follows. There is a functor hS : h∗(S) → S that to the object k : Y ′ → X ′

assigns the object h ◦ k : Y ′ → X and that to the morphism g : Z ′ → Y ′ from
k ◦ g : Z ′ → X ′ to k : Y ′ → X ′ assigns the same morphism g : Z ′ → Y ′ from
h◦k◦g : Z ′ → X to h◦k : Y ′ → X, and moreover, there is a natural transformation
βS : FX,S ◦ hop

S ⇒ FX′,h∗(S) whose value at the object k : Y ′ → X ′ is the identity
map idF (Y ′). The value of ϕ(h) at S is now defined to be the composite map

limSop FX,S limh∗(S)op(FX,S ◦ hop
S ) limh∗(S)op FX′,h∗(S).

reshop
S
,FX,S

//
limh∗(S)op βS

//

We now define L(F ) to be the presheaf that to an object X assigns the colimit set

L(F )(X) = colimJ(X)op1
FX

and that to a morphism h : X ′ → X assigns the map

L(F )(X) L(F )(X ′)
L(F )(h)

//

given by the composition

colimJ(X)op1
FX colimJ(X)op1

(FX′ ◦ h∗op) colimJ(X′)op1
FX′ .

colimJ(X)
op
1
ϕ(h)
//

indh∗op,F
X′ //
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We leave it as an exercise in the definitions to verify that L(F )(idX) = idL(F )(X) and
L(F )(g ◦ h) = L(F )(h) ◦ L(F )(h), showing that L(F ) is a presheaf; that a natural
transformation f : F ⇒ F ′ induces a natural transformation L(f) : L(F )⇒ L(F ′);
and that this defines a functor L : Cˆ → Cˆ as promised.

In the colimit which defines L(F )(X), the domain of the map

FX(C/X)
inC/X

// colimJ(X)op1
FX

is uniquely bijective to F (X). Indeed, the set in question is the limit set of the
diagram FX,C/X : (C/X)op → Set, the index category of which has idX : X → X as
an initial object, and FX,C/X(idX) = F (X). This defines a map

F (X)
`F,X

// L(F )(X).

The family of maps (`F,X : F (X) → L(F )(X))X∈ob(C) is a map of presheaves
`F : F → L(F ); and the family of maps (`F : F → L(F ))F∈ob(Cˆ), in turn, is a
natural transformation ` : idCˆ ⇒ L.

We now recall that, by definition, a presheaf F on C is a sheaf on C, if for every
object X of C and every covering sieve S ∈ J(X), the map

F (X)
ιF,S
// FX(S)

defined by the inclusion j : S → C/X is a bijection. If the map ιF,S is injective for
all X ∈ ob(C) and S ∈ J(X), then F is said to be separated. We will show:

(i) If F is any presheaf, then L(F ) is a separated presheaf.
(ii) If F is a separated presheaf, then L(F ) is a sheaf.

We first prove (i). Let X be an object of C, let x, y ∈ L(F )(X), and suppose
that there exists S ∈ J(X) such that ιL(F ),S(x) = ιL(F ),S(y) in L(F )X(S). We
must show that x = y. Since L(F )(X) is the filtered colimit of the FX(T ) with
T ∈ J(X), we can find T ∈ J(X) and u, v ∈ FX(T ) with inT (u) = x and inT (v) = y.
Moreover, for every f : Y → X in ob(S), the diagram

FX(T ) FY (f∗(T ))

L(F )(X) L(F )(Y )

ϕ(f)T
//

inT

��

inf∗(T )

��L(F )(f)
//

commutes, and we have

L(F )(f)(x) = prf (ιL(F ),S(x)) = prf (ιL(F ),S(y)) = L(F )(f)(y)

in L(F )(Y ). Since L(F )(Y ) is filtered colimit, we can find j : Uf → f∗(T ) in J(Y )1

such that images of ϕf,T (u) and ϕf,T (v) by FY (j) : FY (f∗(T ))→ FY (Uf ) are equal.
We now consider the sieve T ′ on X with

ob(T ′) = {f ◦ g | f ∈ ob(S), g ∈ ob(Uf )},

which is a covering sieve on X by Lemma 1.5 (2). Moreover, by construction, we
have a morphism i : T ′ → T in J(X)1 and the images of u and v by the induced

11



map FX(i) : FX(T ) → FX(T ′) are equal. Hence, so are the images x and y of u
and v by the composite map

FX(T )
FX(i)

// FX(T ′)
inT ′ // L(F )(X).

This completes the proof of (i).

We next prove (ii). Let F be separated presheaf on C, let X be an object of C,
and let S be a covering sieve on X. We must show that the map

L(F )(X) L(F )X(S)
ιL(F ),S

//

is surjective. So we let (xf )f∈ob(S) be an element of the target and define an element
y of the domain such that maps to it. For every f ∈ ob(S), we choose a family

(xf,g)g∈ob(Tf ) ∈ FY (Tf )

with Tf ∈ J(Y ) that represents xf ∈ L(F )(Y ). Since for every morphism h : Z → Y
in C, the map L(F )(h) : L(F )(Y )→ L(F )(Z) takes xf to xf◦h, the chosen family

(xf◦h,g)g∈ob(Tf◦h) ∈ FZ(Tf◦h)

and the induced family

(xf,h◦g′)g∈h∗(Tf ) ∈ FZ(h∗(Tf ))

both represent xf◦h. Hence, there is a sieve Uf,h ⊂ Tf◦h∩h∗(Tf ) in J(Z) such that

xf◦h,g′′ = xf,h◦g′′ ,

for all g′′ ∈ ob(Uf,h). Moreover, since S and all Tf with f ∈ ob(S) are covering
sieves, we conclude from Lemma 1.5 (2) that the sieve T on X with

ob(T ) = {f ◦ g | f ∈ S, g ∈ Tf}
is in J(X). We now define y ∈ L(F )(X) to be the class represented by the family

(yh)h∈ob(T ) ∈ FX(T )

with yf◦g = xf,g. To see that this is well-defined, we must show that, given

Z

Y

Y ′

X

g 44 f

**

g′ ** f ′

44

with f, f ′ ∈ ob(S) such that the two composite morphisms are equal, we have

xf,g = xf ′,g′ ∈ F (Z).

Now, for every k ∈ ob(Uf,g ∩ Uf ′,g′), we have

F (k)(xf,g) = xf,g◦k = xf◦g,k = xf ′◦g′,k = xf ′,g′◦k = F (k)(xf ′,g′),

and hence, the map

F (Z) FZ(Uf,g ∩ Uf ′,g′)
ιF,Uf,g∩Uf′,g′

//

takes xf,g and xf ′,g′ to the same element. In addition, since Uf,g ∩ Uf ′,g′ is a
covering sieve on Z and since F is separated, this map is injective, so we conclude
that xf,g = xf ′,g′ ∈ F (Z) as desired. It remains only to prove that

L(F )(X) L(F )X(S)
ιL(F ),S

//

12



indeed takes y to (xf )f∈ob(S), or equivalently, that for every f ∈ ob(S), the two
families (xf,g)g∈ob(Tf ) ∈ FY (Tf ) and (yf◦h)h∈ob(f∗(T )) ∈ FY (f∗(T )) represent the
same class in L(F )(Y ). But Tf ⊂ f∗(T ) and, for every g ∈ ob(Tf ), xf,g = yf◦g.
This completes the proof of (ii).

Finally, we prove the theorem. Let F and F ′ be a presheaf and a sheaf on C,
respectively, and let f : F → i(F ′) be a map of presheaves on C. In the diagram

F L(F ) L(L(F ))

i(F ′) L(i(F ′)) L(L(i(F ′))),

`F //

f

��

`L(F )
//

L(f)

��

L(L(f))

��`i(F ′)
//

`L(i(F ′))
//

the lower horizontal maps are isomorphisms, since F ′ is a sheaf, and L(L(F )) is a
sheaf by (i)–(ii) above. Hence, we conclude that the unique functor a : Cˆ → C˜
such that i ◦ a = L ◦ L is left adjoint to i with ηF = `L(F ) ◦ `F as the unit of the
adjunction. The functor a preserves finite limits, since limits preserve all limits and
filtered colimits preserve finite limits. �

Remark 2.2. A category C is defined to be a sextuple

C = (ob(C),mor(C), s, t, ◦, id)

consisting of a set of objects ob(C); a set of morphisms mor(C); source and target
maps s, t : mor(C)→ ob(C); a composition map ◦ : mor(C)×ob(C)mor(C)→ mor(C)
from a choice a pullback

mor(C)×ob(C) mor(C)
pr1 //

pr2

��

mor(C)

s

��

mor(C)
t // ob(C)

to mor(C); and an identity map id: ob(C) → mor(C); and this data is subject
to the category axioms, which we leave it to the reader to formulate. However,
with this definition, there is no category of sets Set, since there is no set of all
sets to serve as the set ob(Set) of objects, nor is there a set mor(Set) of all maps
between sets. There are several ways to deal with this problem. One way is to
treat Set as a metamathematical object in the underlying language of zfc set
theory. Another way is to limit the meaning of “all” and let ob(Set) consist only of
sets that are elements of a large fixed set U called the universe. We will implicitly
take this second route and will assume U to be a Grothendieck universe such that
its elements constitute a model of zfc set theory. The existence of such a universe
cannot be proved within zfc set theory, so we will work in zfcu theory, which is
zfc set theory together with the axiom of universe that for every set x, there exists
a Grothendieck universe U such that x ∈ U .

13



3. The functoriality of categories of sheaves

In general, pretty much every functor between categories of sheaves is defined by
means of two constructions: sheafification and Kan extensions. Both are examples
of adjunctions, which we first discuss.

An adjunction from a category C to a category C′ is a quadruple (F,G, ε, η) of two
functors F : C→ C′ and G : C′ → C and two natural transformations ε : F ◦G⇒ idC′

and η : idC ⇒ G ◦ F such that the composite natural transformations

F
F◦η +3 F ◦G ◦ F ε◦F +3 F and G

η◦G +3 G ◦ F ◦G G◦ε +3 G

are equal to the respective identity natural transformations. We call ε and η the
counit and the unit of the adjunction, respectively, and refer to the identities above
as the triangle identities. A functor G : C′ → C is said to admit a left adjoint, if
there exits an adjunction (F,G, ε, η) with G as its second component. Moreover, if
also (F ′, G, ε′, η′) is such an adjunction, then the composite

F
F◦η′ +3 F ◦G ◦ F ′ ε◦F ′ +3 F ′

is the unique natural transformation σ : F ⇒ F ′ such that the diagrams

F ◦G ε +3

σ◦G
��

idC′ idC
η +3 G ◦ F

G◦σ
��

F ′ ◦G ε′ +3 idC′ idC
η′ +3 G ◦ F ′

commutes and is an isomorphism; see [3, Theorem IV.7.2] for a proof. In this sense,
a left adjoint functor of G, if it exists, is unique, up to unique isomorphism. This
uniqueness result is extremely usual. The analogous uniqueness result holds for
right adjoints.

Remark 3.1. We have already used the fact that if a functor F : C→ C′ has a
right adjoint, then it preserves colimits in the sense that if the pair

(colimI X, ( colimI X
pri // X(i) )i∈ob(I))

is a colimit of a diagram X : I → C, then the pair

(F (colimI X), (F (colimI X)
pri // F (X(i)) )i∈ob(I))

is a colimit of a diagram F ◦ X : I → C′. Similarly, if a functor G : C′ → C has a
left adjoint, then it preserves limits.

Now let C be a category. A functor u : I → J gives rise to a functor

[J,C]
u∗ // [I,C]

defined on objects and morphisms, respectively, by u(F ) = F ◦ u and u(f) = f ◦ u.
We call the functor u∗ the restriction along u.

Definition 3.2. Let C be a category and let u : I → J be a functor. A left
adjoint functor of u∗ is called a left Kan extension along u and denoted u!; and a
right adjoint functor of u∗ is called a right Kan extension along u and denoted u∗.

14



Let u : I → J be a functor and let j be an object of J . The slice category u/j
is defined as follows. An object in u/j is a pair (i, f : u(i)→ j) of an object i in I
and a morphism f : u(i)→ j in J , and a morphism in u/j from (i, f) to (i′, f ′) is a
morphism g : i→ i′ in I such that f = f ′ ◦ u(g). A morphism h : j → j′ in J gives
rise to a functor u/h : u/j → u/j′ that takes the object (i, f) to the object (i, h◦ f)
and the morphism g : (i, f) → (i′, f ′) to the morphism g : (i, h ◦ f) → (i′, h ◦ f ′).
Moreover, there is a forgetful functor p : u/j → I that takes the object (i, f) to the
object i and takes the morphism g : (i, f)→ (i′, f ′) to the morphism g : i→ i′. We
leave it to the reader to define the slice category j/u, the functor h/u : j′/u→ j/u
associated with a morphism h : j → j′, and the forgetful functor p : j/u→ I.

Proposition 3.3. Let C be a category and let u : I → J be a functor.

(i) The left Kan extension of F : I → C along u is given by

u!(F )(j) = colimu/j(F ◦ p),

provided that the indicate colimit exists, for all j ∈ ob(J).
(ii) The right Kan extension of F : I → C along any functor u is given by

u∗(F )(j) = limj/u(F ◦ p),

provided that the indicated limit exists, for all j ∈ ob(J).

Proof. To prove (i), we construct an adjunction (u!, u
∗, ε, η) from [J,C] to

[I,C] such that the diagram u!(F ) is given on objects by the stated formula. To
define u!(F ) on morphisms, we note that if h : j → j′ is a morphism in J , then the
forgetful functors p : u/j → J and p′ : u/j′ → J satisfy p = p′ ◦u/h. We then define
u!(F )(h) : u!(F )(j)→ u!(F )(j′) to be the induction morphism

colimu/j(F ◦ p) = colimu/j(F ◦ p′ ◦ u/h) colimu/j′(F ◦ p′).
indu/h,F◦p′

//

This defines the diagram u!(F ). Next, if α : F ⇒ F ′ is a natural transformation,
then we define u!(α) : u!(F ) ⇒ u!(F

′) to be the natural transformation, whose
value at the object j in J is the morphism u!(α)j = colimu/j(α ◦ p). This defines
the functor u! : [I,C] → [J,C]. Indeed, the functor axioms are satisfied by the
uniqueness of morphisms from colimits.

We define ε : u! ◦ u∗ ⇒ id[J,C] to be the natural transformation such that

colimu/j(F ◦ u ◦ p) F (j)
εF,j
//

is the morphism defined by the pair

(F (j), (F (u(i))
F (f)

// F (j) )(i,f : u(i)→j)∈ob(u/j));

and we define η : id[I,C] ⇒ u∗ ◦ u! to the be natural transformation such that

F (i) colimu/u(i)(F ◦ p)
ηF,i
//

is the morphism in(i,idu(i)), which is part of the choice of colimit. We leave it as an

exercise in the definitions to verify that the triangle identities hold. This proves (i),
and (ii) is proved analogously. �
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Now let u : C→ C′ be a functor and let uop : Cop → C′op be the induced functor
between the opposite categories. The restriction along uop,

Cˆ
(uop)∗

// Cˆ,

has both a left adjoint and a right adjoint given by the Kan extensions

Cˆ
(uop)!

// Cˆ and Cˆ
(uop)∗

// Cˆ.

Suppose now that J and J ′ are topologies on C and C′, respectively. We say that
a functor f : Cˆ → C′ˆ preserves sheaves, if there exists a functor f ′, necessarily
unique, making the diagram

(C, J)˜
f ′
//

i

��

(C′, J ′)˜

i′

��

Cˆ
f

// C′ˆ

commute.

Definition 3.4. Let (C, J) and (C′, J ′) be two sites, and let u : C → C′ be
a functor. The functor u is said to be continuous if the restriction along uop,
(uop)∗ : C′ˆ → Cˆ, preserves sheaves. The functor u is said to be cocontinuous if
the right Kan extension along uop, (uop)∗ : Cˆ → C′ˆ, preserves sheaves.

Example 3.5. Let f : X ′ → X be a continuous map between topological spaces,
and let f−1 : O(X)→ O(X ′) be the functor that to an open subset U ⊂ X assigns
its preimage f−1(U) ⊂ X ′. Let J be the topology on O(X) generated by the
pretopology K in which the set K(U) of covering families of U ⊂ X consist of the
familes (fi : Ui → U)i∈I such that

⋃
i∈I Ui = U , and let J ′ be the corresponding

topology on O(X ′). Then f−1 : O(X)→ O(X ′) is a continuous functor.

Proposition 3.6. If (C, J) and (C′, J ′) are sites and if u : C→ C′ is a continuous
functor, then the unique functor us : (C′, J ′)˜ → (C, J)˜ making the diagram

(C′, J ′)˜
us //

i′

��

(C, J)˜

i

��

C′ˆ
(uop)∗

// Cˆ

commute has a left adjoint functor us : (C, J)˜ → (C′, J ′)˜.

Proof. Let (a′, i′, ε′, η′) be the sheafification-inclusion adjunction from C′ˆ to
(C′, J ′) and let ((uop)!, (u

op)∗, α, β) be the left Kan extension-restriction along uop

adjunction from Cˆ to C′ˆ. We define an adjunction (us, us, ε, η) from (C, J)˜ to
(C′, J ′)˜ as follows. The functor us is the composite functor a′ ◦ (uop)! ◦ i and the
counit ε : us ◦ us ⇒ id(C′,J′)˜ is the composite natural transformation

a′ ◦ (uop)! ◦ i ◦ us = a′ ◦ (uop)! ◦ (uop)∗ ◦ i′ a′ ◦ i′ id(C′,J′)˜ .
a′◦α◦i′ +3 ε′ +3

Finally, since the functor i : (C, J)˜ → Cˆ is fully faithful, there is a unique natural
transformation η : id(C,J)˜ ⇒ us◦us such that the composite natural transformation

i (uop)∗ ◦ (uop)! ◦ i (uop)∗ ◦ i′ ◦ a′ ◦ (uop)! ◦ i = i ◦ us ◦ us
β◦i +3 (uop)∗◦η′◦(uop)!◦i +3
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is equal to i◦η. We again leave it as an exercise to verify the triangle identities. �

Remark 3.7. If u is a continuous functor, then the functor us need not preserve
finite limits.

Proposition 3.8. If (C, J) and (C′, J ′) are sites and v : C→ C′ a cocontinuous
functor, then the unique functor v∗ : (C, J)˜ → (C′, J ′)˜ making the diagram

(C, J)˜
v∗ //

i

��

(C′, J ′)˜

i′

��

Cˆ
(vop)∗

// C′ˆ

commute has a left adjoint functor v∗ : (C′, J ′)˜ → (C, J)˜. Moreover, the functor
v∗ preserves finite limits.

Proof. Let (a, i, α, β) be the sheafification-inclusion adjunction from Cˆ to
(C, J)˜ and let ((vop)∗, (vop)∗, γ, δ) the the restriction-right Kan extension along
vop adjunction from C′ˆ to Cˆ. We define an adjunction (v∗, v∗, ε, η) from (C′, J ′)˜
to (C, J)˜ as follows. The functor v∗ is the composite functor a ◦ (vop)∗ ◦ i′ and the
counit ε : v∗ ◦ v∗ ⇒ id(C,J)˜ is the composite natural transformation

a ◦ (vop)∗ ◦ i′ ◦ v∗ = a ◦ (vop)∗ ◦ (vop)∗ ◦ i a ◦ i id(C,J)˜ .
a◦γ◦i +3 α +3

Moreover, since i′ : (C′, J ′)˜ → C′ˆ is fully faithful, there is a unique natural trans-
formation η : id(C,J)˜ ⇒ v∗ ◦ v∗ for which the composite natural transformation

i′ (vop)∗ ◦ (vop)∗ ◦ i′ (vop)∗ ◦ i ◦ a ◦ (uop)∗ ◦ i′ = i′ ◦ v∗ ◦ v∗
δ◦i′ +3 (vop)∗◦β◦(vop)∗◦i′ +3

is equal to i′ ◦ η. Finally, the functor v∗ preserves finite limits, because a does so
and because (vop)∗ and i′ preserve all limits. �
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4. Abelian categories and derived functors

We first introduce the notion of an abelian category, emphasizing that for a
category to be abelian is a property of the category and does not require additional
structure. A category C is a abelian if it has the following properties (i)–(v):

(i) The category C has finite limits and finite colimits.
(ii) The unique map 0→ 1 from a initial object to a final object is an isomorphism.

Hence, every an initial object is automatically final and vice versa; such an
object is said to be a null object of C.

It follows from (ii) that, for every pair (c0, c1) of objects in C, the set of morphisms
C(c0, c1) has a distinguished element defined as the composition

c0 // 1 0
∼oo // c1

of the unique morphisms to a final object 1, the inverse of the unique morphism
from an initial object 0 to 1, and the unique morphism from 0 to c1. The composite
morphism does not depend on the choices of initial object and final object. We write
0 : c0 → c1 for this morphism and call it the zero morphism from c0 to c1.

(iii) For every pair (c1, c2) of objects in C, the morphism

c1 t c2 c1 × c2
(idc1+0,0+idc2 )

//

from a coproduct of c1 and c2 to a product of c1 and c2 is an isomorphism.

We call the morphism in (iii) the canonical isomorphism. We also note that it is
equal to (idc1 , 0) + (0, idc2) and that it is a natural isomorphism of functors from
C × C to C. We use the canonical isomorphism in (iii) to define, for every pair
(c0, c1) of objects in C, a composition law “+” on the set of morphisms C(c0, c1).
Given two morphism f, g : c0 → c1, we define f + g : c0 → c1 to be the composition

c0
∆c0 // c0 × c0

f×g
��

c0 t c0
∼oo

ftg
��

c1 × c1 c1 t c1
∼oo

∇c1 // c1,

where the unmarked arrows are the canonical isomorphisms, and where the square
commutes by the naturality of the canonical isomorphism. The composition law
“+” is an abelian monoid structure with the zero morphism as identity element.

(iv) For every pair (c0, c1) of objects in C, the composition law “+” on C(c0, c1) is
an abelian group structure.

If f : c0 → c1 is a morphism in C, then an equalizer

ker(f)
i // c0

f
//

0
// c1

is called a kernel of f , and a coequalizer

c0
f
//

0
// c1

p
// coker(f)
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is called a cokernel of f . Moreover, a coequalizer

ker(f)
i //

0
// c0

q
// coim(f)

is called a coimage of f , and an equalizer

im(f)
j
// c1

p
//

0
// coker(f)

is called an image of f . There is a unique morphism f̄ : coim(f)→ im(f) such that
the diagram

ker(f)
i // c0

f
//

q

��

c1
p
// coker(f)

coim(f)
f̄
// im(f)

j

OO

commutes.

(v) For every morphism f : c0 → c1 in C, the induced morphism

coim(f)
f̄
// im(f)

is an isomorphism.

This completes the definition of what it means for a category C to be abelian.

Let C be an abelian category, and let h : C → Cˆ be the Yoneda embedding.
For every object A of C, the functor h(A)(−) = C(−, A) from Cop to Set preserves
all limits that exist in C. In particular, it preserves finite limits. An object I of
C is defined to be injective if the functor h(I)(−) preserves finite colimits. The
category C is said to have enough injectives if for every object A in C, there exists a
monomorphism i : A→ I to an injective object. We recall that, in this case, every
object A in C admits an injective resolution

A
η
// I ·,

which, by the fundamental lemma of homological algebra, is unique, up to chain
homotopy equivalence. Let C and C′ be abelian categories such that C has enough
injectives, and let F : C→ C′ be a functor that preserves finite products. The nth
derived functor of F is the functor

C C′,
RnF //

well-defined, up to canonical natural isomorphism, which is given on objects by

(RnF )(A) = Hn(F (I ·)),

where ηA : A→ I · is a choice of injective resolution. In particular, the chosen chain
map ηA induced a map, which, by abuse of notation, we write

F (A)
ηA // (R0F )(A).

To define RnF on morphisms, let f : A → A′ be a morphism in C. We choose
injective resolutions η : A→ I · and η′ : A′ → I ′· and recall that, by the fundamental
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lemma of homological algebra, there exists a chain map f · : I · → I ′·, unique up to
chain homotopy, such that f0 ◦ η = η′ ◦ f . In this situation, we define

(RnF )(f) = Hn(F (f ·)).

Using the fundamental lemma of homological algebra, we conclude that RnF is
indeed a functor.

Proposition 4.1. Let C be an abelian category with enough injectives, let C′ be
an abelian category, and let F : C→ C′ be a functor that preserves finite products.

(i) The maps ηA : F (A)→ (R0F )(A) constitute a natural transformation

F
η +3 R0F,

which is a natural isomorphism, if F preserves finite limits.
(ii) A short exact sequence in C,

0 // A′
f
// A

g
// A′′ // 0,

gives rise to a long exact sequence in C′,

0 (R0F )(A′) (R0F )(A) (R0F )(A′′)

(R1F )(A′) (R1F )(A) (R1F )(A′′)

(R2F )(A′) (R2F )(A) · · ·

//
(R0F )(f)

//
(R0F )(g)

//

∂0
//

(R1F )(f)
//

(R1F )(g)
//

∂1
//

(R2F )(f)
//

(R2F )(g)
//

and this assignment is natural in the short exact sequence.

Proof. The second statement in (i) follows immediately from the definition,
and the second statement in (i) follows from the fundamental lemma of homological
algebra. To prove the first statement in (ii), we choose a commutative diagram of
cochain complexes in C,

0 // A′
f
//

η′

��

A
g
//

η

��

A′′ //

η′′

��

0

0 // I ′·
f ·
// I ·

g·
// I ′′· // 0,

such vertical morphisms are injective resolutions, and such that the sequences

0 // I ′n
fn
// In

gn
// I ′′n // 0

all are split-exact, and choose sections sn of gn and retractions rn of fn in such a
way that sn ◦gn+fn ◦rn = idIn , for every non-negative integer n. This is possible,
since C has enough injectives, but it is not possible, in general, to choose sections sn

and retractions rn such that the families (sn) and (rn) form chain maps. Applying
F term-wise, we obtain an sequence of cochain complexes in C′,

0 // F (I ′·)
F (f ·)

// F (I ·)
F (g·)

// F (I ′′·) // 0,
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and a diagram chase shows that we obtain the long exact sequence in (ii) with

(RnF )(A′′)
∂n // (Rn+1F )(A′)

induced by the unique morphism ∂̃n that makes the diagram

ker(d′′n) ker(d′n)

F (I ′′n) F (In) F (In+1) F (I ′n+1)

∂̃n //

i′′n

��

i′n+1

��
F (sn)

//
F (dn)

//
F (rn+1)

//

commute. We leave it an exercise to prove the naturality statement in (ii). �

Remark 4.2. A word of warning is in order. While the long exact sequence in
Proposition 4.1 is natural, it is by no means unique. For instance, keeping the terms
in the sequence unchanged but replacing the morphisms (RnF )(f), (RnF )(g), and
∂n by the morphisms (−1)n(RnF )(f), (−1)n(RnF )(g), and (−1)n∂n, respectively,
the resulting sequence is again long exact and natural. In homological algebra, the
issue of signs is unavoidable. For example, the reader, who tries to define a natural
isomorphism from Rm(RnF ) to Rm+nF , will realize that sign choices are necessary.
This author’s preferred choices of signs is recorded in [2, Section 2].

Example 4.3. Let C be an abelian category with enough injectives. For every
object A in C, the functor C(A,−) from C to the category Ab of abelian groups
preserves limits. The derived functors are written

ExtnC(A,B) = RnC(A,−)(B)

and called the Ext-groups in C.
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5. Grothendieck’s small object argument

We will present the proof of the theorem in Grothendieck’s Tohoku paper [1]
concerning the existence of injective resolutions in abelian categories. It will be
helpful first properly define some concepts that we have left undefined until now.

We recall that, in zfc set theory, every term x is a set and x ∈ y is the only
relation among sets. A set U is a universe if it satisfies the following (U1)–(U5):

(U1) If y ∈ U and x ∈ y, then x ∈ U .
(U2) If x, y ∈ U , then {x, y} ∈ U .
(U3) If x ∈ U , then the power set P (x) is an element of U .
(U4) If I ∈ U and x : I → U is a map, then

⋃
i∈I x(i) ∈ U .

(U5) The first infinite ordinal ω is an element of U .

We remark that, in (U3), the power set P (x) depends on the particular model of
zfc set theory. We also note that, in (U4), the map x : I → U , which, by definition,
is the subset {I} × Γx × {U} ⊂ {I} × I × U × {U}, is not an element of U . If U is
a universe, then its elements constitute a model of zfc set theory. We will assume
the axiom of universe which states that for every set x, there exists a universe U
such that x ∈ U .

Let U be a universe. A set x is U -small if x ∈ U . We remark that a set bijective
to a U -small set need not be U -small. For instance, the set {∅} is U -small, but the
set {U} is not. A category C is locally U -small if for every pair of objects (c, c′),
the set of morphisms C(c, c′) is U -small; and it is U -small if, in addition, the set of
objects ob(C) is U -small. A category C is U -complete (resp. U -cocomplete) if every
diagram in C indexed by a U -small category admits a limit (resp. a colimit).

The category U -Set of all U -small sets and maps is locally U -small, U -complete,
and U -cocomplete. As the following example, which I learned from Michael Shul-
man shows, this is typically the best situation that one can hope for.

Example 5.1. We claim that if a category C is both U -small and U -complete,
then C is a preorder. To prove this, we must show that if f, g : c → c′ are parallel
morphisms in C, then f = g. So assume that f 6= g. Since C is U -small, the
total set of morphisms mor(C) is U -small, and since C is U -complete, the product
c′′ =

∏
h∈mor(C) c

′ exists. Now, since f 6= g, the cardinality of the set

C(c, c′′) =
∏

h∈mor(C)

C(c, c′)

is at least 2card(mor(C)). But C(c, c′′) is a subset of mor(C), so its cardinality is at
most card(mor(C)), which is a contradiction. Hence, we have f = g as claimed.

An object G of a locally U -small category C is said to be a generator if the
functor C(G,−) : C→ U -Set is faithful.

Theorem 5.2 (Grothendieck). Let U be a universe, let C be a locally U -small and
U -cocomplete abelian category, and assume, in addition, that C admits a generator
and that U -small filtered colimits and finite limits in C commute. In this situation,
the category C has enough injectives.

Proof. Let A be an object of C. The (large) set of subobjects of A is the
quotient of the (large) set of monomorphisms i : A′ → A with target A by the
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equivalence relation that identifies j : A′ → A and j′ : A′′ → A if there exists an
isomorphism, necessarily unique, f : A′′ → A′ such that j′ = j◦f . We claim that, in
the situation at hand, there exists a family (jt : At → A)t∈T of monomorphisms in C
indexed by a U -small set T which contains a representative of every subobject of A.
For, let G be a generator of C. One may show that two monomorphisms j : A′ → A
and j′ : A′′ → A are equivalent if and only if the images of the induced injections
C(G, j) : C(G,A′) → C(G,A) and C(G, j′) : C(G,A′′) → C(G,A) are equal. Hence,
the subset T of the U -small set C(G,A) consisting of these images will do. Note
that we use that the axiom of choice also holds for large sets to choose the family.

We write (jt : Gt → G)t∈T for the family chosen above in the case A = G. One
may show that an object I of C is injective if and only if, for every commutative
diagram in C of the form

Gt I

G 0,

ft //

jt

�� ��
//

there exists a morphism f : G → I such that ft = f ◦ jt. (Here we have put in
the obviously redundant 0 only to stress the analogue with Quillen’s small object
argument.)

We now let A be any object in C and proceed to construct a monomorphism

A
i // I

to an injective object of C. We choose a limit ordinal β ∈ U whose cardinality is
strictly larger than the cardinality γ of the U -small indexing set T . Such an ordinal
is known to be γ-filtered, which means that the supremum of any subset A ⊂ β of
cardinality at most γ is strictly less than β. We define, by transfinite induction, a
(β + 1)-indexed diagram of monomorphisms

A
iα // Iα,

beginning with i0 = idA : A → I0. Here, we recall, the ordinal β, as every ordinal
in U , is the hereditarily transitive set of all smaller ordinals, and we view β as a
category with one arrow from α to α′ if α ∈ α′. If α + 1 = α ∪ {α} is a successor
ordinal, then we let Sα be the set of all diagrams of the form

Gt(s) Iα

G 0,

fs //

jt(s)

�� ��
//

and choose a pushout ∐
s∈Sα Gt(s) Iα

∐
s∈Sα G Iα+1,

∑
s∈Sα fs //

∐
s∈Sα jt(s)

��

I(α∈α+1)

��
//
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where we have neglected writing the redundant morphisms to 0. And if α is a limit
ordinal, then we define Iα to be the filtered colimit

Iα = colim
α′∈α

Iα′

and define I(α′ ∈ α) = inα′ : Iα′ → Iα. We claim that iβ : A → Iβ is the desired
monomorphism i : A→ I to an injective object. Indeed, it is a monomorphism, as
one sees by showing that its kernel is zero. This uses the assumption that filtered
colimits commute with finite limits in C. Finally, to prove that I is injective, we
must show that for every commutative diagram in C of the form

Gt I

G 0,

ft //

jt

�� ��
//

there exists a morphism f : G→ I such that ft = f ◦ jt. To this end, we choose for
every α ∈ β a pullback diagram

Gt,α Iα

Gt I.

ft,α
//

kα

��

I(α∈β)

��ft //

We show that there exists α ∈ β such that kα : Gt,α → Gt is an isomorphism. First,
since filtered colimits and finite limits in C commute, we find that the monomor-
phims kα with α ∈ β exhibit Gt as the colimit of the Gt,α. Second, the subset
A ⊂ β of all α ∈ β such that the structure morphism Gt,α → Gt,α+1 in the limit
system is not an isomorphism is bijective to a subset of T , and hence, has cardinal-
ity at most γ. Hence, the supremum α0 of A is strictly less than β, which shows
that for any α0 ∈ α ∈ β, the morphism kα is an isomorphism. Now, fix such an
α ∈ β. Since β is a limit ordinal, we also have α + 1 ∈ β, and by the construction
of Iα+1, there exists a morphism fα+1 : G→ Iα+1 making the diagram

Gt Iα

G Iα+1

ft,α◦k−1
α //

jt

��

I(α∈α+1)

��fα+1
//

commute. Hence, the composite morphism f = inα+1 ◦fα+1 : G→ I is the desired
morphism satisfying ft = f ◦ jt. This shows that I is injective. �
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6. Cohomology

Let U be a universe, let C be a U -small category, and let U -Set be the locally
U -small category of U -small sets. We claim that the category

Cˆ = [Cop, U -Set]

of U -Set valued presheaves on C is isomorphic to a locally U -small category. Indeed,
if F, F ′ : Cop → U -Set are two functors, then the set of natural transformations from
F to F ′ is defined to be a choice of equalizer

Cˆ(F, F ′)
i //

∏
U -Set(F (c), F ′(c))

a //

b
//
∏
U -Set(C(c′, c), U -Set(F (c), F ′(c′)))

with the products indexed by the sets ob(C) and ob(C)×ob(C) of objects and pairs
of objects in C, respectively. Therefore, the two products and the equalizer of the
maps a and b, which we leave it as an exercise to define, may be chosen to be
U -small as claimed. Choosing Cˆ locally U -small, the full subcategory (C, J)˜ of
Cˆ of sheaves for a topology J again is locally U -small.

Definition 6.1. Let U be a universe. A category X is a U -topos if it is locally
U -small category and equivalent to a category of U -Set valued sheaves on a U -small
site (C, J). A morphism of U -topoi f : X → X ′ is an adjunction (f∗, f∗, ε, η) from
X ′ to X such that f∗ preserves finite limits.

If f : X → X ′ is a morphism of topoi, then the functors f∗ and f∗ are called
the inverse image functor and the direct image functor, respectively. We note that
the direction of the morphism f : X → X ′ is the same as the direction of the direct
image functor f∗ : X → X ′, as the notation suggests. If (C, J) is a U -small site,
then the adjunction (a, i, ε, η) from Cˆ to (C, J)˜ with a the sheafification functor
and i the canonical inclusion functor is a morphism of topoi (C, J)˜ → Cˆ.

Remark 6.2. Let X be a U -topos and suppose that X is equivalent to the
category of U -Set valued sheaves on a U -small site (C, J). We can always find a
morphism of topoi f : (C, J)˜ → X such that (f∗, f∗, ε, η) is an adjoint equivalence
of categories. Indeed, an equivalence of categories can always be replaced by an
adjoint equivalence of categories. Moreover, if (f∗, f∗, ε, η) is an adjoint equivalence
of categories, then so is (f∗, f

∗, η−1, ε−1), which shows that f∗ and f∗ both preserve
all limits and colimits. In this situation, we say that the pair ((C, J), f) is a site of
definition for the topos X.

The category U -Set is itself a U -topos, called the punctual topos. Morphisms of
topoi from the punctual topos are points.

Definition 6.3. Let U be a universe.

(i) A point of a U -topos X is a morphism of topoi x : U -Set→ X.
(ii) A family of points (xi)i∈I of a U -topos X is conservative if it has the property

that a morphism f : F → F ′ in X is an isomorphism if and only if the induced
maps x∗i (f) : x∗i (F )→ x∗i (F

′) are bijections, for all i ∈ I.
(iii) A U -topos X has enough points it has a conservative family of points.

One can show that if a U -topos has a conservative family of points, then it has
a conservative family of points indexed by a U -small set. We often write Fx for the
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set x∗(F ) and call it the stalk of F at x; similarly, we write fx : Fx → F ′x for the
map x∗(f) : x∗(F )→ x∗(F ′) and call it the induced map of stalks at x.

Definition 6.4. Let U be a universe. A ringed U -topos is a pair (X,OX) of a
U -topos X and a unital and associative ring object OX in X. A morphism of ringed
U -topoi u : (X,OX)→ (X ′,OX′) is a pair (f, ϕ) of a morphism of topoi f : X → X ′

and a ring object homomorphism ϕ : f∗(OX′)→ OX .

Given a ringed topos (X,OX), we define ModOX to be category whose objects
are the right OX -module objects in X and whose morphisms are the OX -linear
morphisms between them. Here, we require ring objects to be unital and associative,
and we require module objects to be unital.

Example 6.5. Every topos X has an initial ring object ZX called an integers
object, which, as any initial object, is unique, up to unique isomorphism. Moreover,
the forgetful functor from the category ModZX of right ZX -module objects in X to
the category Ab(X) of abelian group objects in X is an equivalence of categories.

Proposition 6.6. Let U be a universe. For every ringed U -topos (X,OX), the
category ModOX is abelian and has enough injectives.

Proof. We leave it as an exercise to show that ModOX is abelian and apply
Grothendieck’s theorem, Theorem 5.2, to show that it has enough injectives. We
may assume that X is equal to the category (C, J)˜ of U -Set valued sheaves on a U -
small site (C, J). In this situation, the category ModOX is locally U -small (or at least
isomorphic to a locally U -small category) and U -cocomplete, and moreover, U -small
filtered colimits and finite limits in ModOX commute. Finally, given c ∈ ob(C), let c̄
be the image of c in ob(X) by the composition of the Yoneda embedding hC : C→ Cˆ
and the sheafification functor a : Cˆ → C˜. The slice category X/c̄ is again a topos
and there is a morphism of topoi jc : X/c̄ → X for which jc∗ : X/c̄ → X is the
forgetful functor. We view the ring object jc∗ j

∗
c (OX) as a right OX -module via

the unit morphism ηc : OX → jc∗j
∗
c (OX), which is a ring homomorphism. Now,

since i : X → Cˆ is faithful, the right OX -module

GX =
⊕

c∈ob(C) jc∗j
∗
c (OX)

is readily seen to be a generator of ModX . �

Let (X,OX) be a ringed U -topos. If M and N are two right OX -module objects
in X, then we write

ExtnOX (N ,M ) = ExtnModOX
(N ,M )

for the U -small Ext-groups in ModOX . In particular, we may take N to be OX
with the right OX -module structure given by right multiplication.

Definition 6.7. Let U be a universe, let (X,OX) be a ringed U -topos, and let
M be a right OX -module. The U -small abelian group

Hn(X,M ) = ExtnOX (OX ,M )

is called the nth cohomology group of X with coefficients in M .

By definition, the cohomology groups Hn(X,M ) measure the extend to which
the free OX -module OX fails to be projective. (The notation suggests that these
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groups only depend on X and the underlying abelian group object of M , which is
indeed the case.) In other words, the cohomology groups Hn(X,M ) measure the
extend to which the axiom of choice fails to hold in the topos X.

Let (X,OX) be a ringed U -topos and let M and N be a right OX -module
and a left OX -module, respectively. In this situation, we define the tensor product
M ⊗OX N , following Bourbaki. It is a an abelian group object in X; is well-defined
up to unique isomorphism; and has, if OX is commutative, a canonical OX -module
structure. In the latter case, the tensor product is the monoidal product in a closed
symmetric monoidal structure (⊗OX ,OX , α, λ, γ, [−,−], ε, η) on ModOX . As in any
category with a symmetric monoidal structure, we say that an OX -module L is
invertible with respect to the tensor product, if there exists an OX -module L ′ and
an isomorphism between L ⊗OX L ′ and the unit OX for the tensor product. The
full subcategory of ModOX whose objects are the invertible OX -modules is called the
Picard category of (X,OX); its maximal subgroupoid is called the Picard groupoid
of (X,OX); and its set of isomorphism classes of objects is called the Picard group
of (X,OX) and written Pic(X,OX).

We will next discuss cohomology of coherent modules. It will not be the main
focus of this course, but it is useful to have some familiarity with it.

Definition 6.8. Let U be a universe and let (X,OX) be a ringed U -topos.

(i) A right OX -module M is quasi-coherent if it admits a presentation

F1
// F0

//M // 0

with F0 and F1 free right OX -modules generated by U -small sets.
(ii) A right OX -module M is finite if there exists an epimorphism

F //M // 0

with F a free OX -module generated by a finite set.
(iii) A right OX -module M is coherent if it is finite and if for every open immersion

of topoi j : U → X and every morphism f : F → j∗U (M ) from a finite free
j∗U (OX)-module, the kernel is a finite j∗U (OX)-module.

Suppose that (X,OX) is a scheme. We consider the category O(X) of open
subsets in the topological space X with the topology J generated by the pretopology
consisting of the families (Ui → U)i∈I such that

⋃
i∈I Ui = U . We write XZar for

the topos of sheaves on (O(X), J) and call it the Zariski topos of X. The structure
sheaf OX is a commutative ring object in XZar, and hence, the pair (XZar,OX)
is a commutative ringed topos. A morphism of schemes f : (X,OX) → (X ′,OX′)
induces a morphism of ringed topoi f : (XZar,OX)→ (X ′Zar,OX′).

The following flat base-change theorem is EGA III, Corollary 6.9.9. As usual, we
abbreviate and write X for the scheme (X,OX) and f : X → X ′ for the morphism
of schemes f : (X,OX)→ (X ′,OX′).
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Theorem 6.9. Let S be a scheme, let f : X → S and g : S′ → S be morphisms
of schemes with f separated and quasi-compact, and let

X ′
g′
//

f ′

��

X

f

��

S′
g
// S

be a choice of pullback. Then, for every flat quasi-coherent OX-module F and every
non-negative integer n, there is a canonical natural isomorphism

g∗(Rnf∗(F ))⊗g∗(OS) OS′
∼ // Rnf ′∗(g

′∗(F )⊗g′∗(OX) OX′)

of OS′-modules.

We proceed to illustrate the usefulness of such base-change theorems by means
of an example. Let k be a field, let S = Spec(k), let f : X → S be a morphism
of schemes, and let M be an OX -module. The Zariski topos SZar is canonically
isomorphic to the punctual topos, and moreover, under this isomorphism, we may
identify the OS-module Rnf∗(M ) of SZar with the k-vector space Hn(X,M ).

Example 6.10. Let k be a field, let S = Spec(k), and let f : X → S be a smooth
and proper morphism or relative dimension 1. (We say that X is a curve over S.)
Given an invertible OX -module L , its degree is the integer defined by

deg(L ) = χ(L )− χ(OX),

where, for M a coherent OX -module, its Euler characteristic is defined by

χ(M ) = dimkH
0(X,M )− dimkH

1(X,M ).

The k-vector spaces Hn(X,M ) are finite dimensional by Serre duality and vanish
for n > 1. The degree defines a map of abelian groups

Pic(XZar,OX)
deg
// Z

from the Picard group of X.

We now let k′ be any field extension of k, let S′ = Spec(k′), let g : S′ → S be
the morphism induced by the inclusion of k in k′, and consider the pullback

X ′
g′
//

f ′

��

X

f

��

S′
g
// S.

An invertible OX -module L is locally free, and hence, flat. Indeed, being flat is
a local property, since the exactness of a sequence of OX -modules can be checked
stalkwise, the Zariski topos XZar having enough points. Therefore, it follows from
Theorem 6.9 that there is a canonical isomorphism of OS′ -modules

g∗(Rnf∗(L ))⊗g∗(OS) OS′
∼ // Rnf ′∗(g

′∗(L )⊗g′∗(OX) OX′),

and taking global sections, we obtain a canonical isomorphism of k′-vector spaces

Hn(X,L )⊗k k′
∼ // Hn(X ′, g′∗(L )⊗g′∗(OX) OX′).
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It follows that for all non-negative integers n,

dimk′(H
n(X ′, g′∗(L )⊗g′∗(OX) OX′)) = dimk(Hn(X,L )).

In particular, we conclude that

deg(g′∗(L )⊗g′∗(OX) OX′) = deg(L ),

showing that the degree of invertible OX -modules is preserved under base-change
corresponding to an extension of the base-field.
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7. The étale topology

We recall the notion of an étale morphism of schemes. Informally, a morphism
of schemes is étale if it satisfies the hypothesis of the inverse function theorem, and
the purpose of the étale topology is to make this theorem valid.

A morphism of schemes j : (U,OU ) → (X,OX) is an open immersion if the
continuous map j : U → X is a homeomorphism onto an open subset of X and
if the ring homomorphism j# : j∗(OX) → OU is an isomorphism. A morphism
of schemes i : (Z,OZ) → (X,OX) is a closed immersion if the map i : Z → X
is a homeomorphism onto a closed subset of X and if the ring homomorphism
i# : OX → i∗(OZ) is surjective and has kernel a quasi-coherent ideal of OX . The
quasi-coherent ideal I ⊂ OX determines i : (Z,OZ)→ (X,OX), up to isomorphism
over (X,OX), and is called the ideal of definition of i : (Z,OZ) → (X,OX). A
closed immersion i : (Z,OZ) → (X,OX) is nilpotent is an infinitesimal thickening
if its ideal of definition I ⊂ OX is nilpotent. In this case, the continuous map
i : Z → X is a homeomorphism. We will now abbreviate and write X instead of
(X,OX). A morphism of schemes f : Y → X is defined to be formally étale if for
every commutative diagram of schemes

Z
g
//

i

��

Y

f

��

Z̃
h // X,

in which i is an infinitesimal thickening, there exists a unique morphism k : Z̃ → Y
such that g = k ◦ i and h = f ◦ k. A morphism of schemes f : Y → X is locally
presentable if for every point y ∈ Y , there exists a commutative diagram

Spec(B)
j
//

f ′

��

Y

f

��

Spec(A)
j′
// X

such that j and j′ are open immersions, such that y is contained in the image of
j, and such that f ′ = Spec(g) with g : A→ B a ring homomorphism that makes B
a finitely presented A-algebra. A morphism of schemes f : Y → X is étale if it is
formally étale and locally finitely presented.

One can show that f : Y → X is étale if and only if, for every y ∈ Y , one can
find a diagram as above such that g : A→ B induces an isomorphism

A[x1, . . . , xn]/(f1, . . . , fn)
g̃
// B

and such that the image of the Jacobian (∂fi/∂xj) by g̃ is a unit in B. We note
that étale morphisms need not be surjective. To wit, an open immersion is étale.

Example 7.1. Let k be a field and let (ki)i∈I be a family of finite separable field
extension gi : k → ki. In this situation, the morphism of schemes∐

i∈I Spec(ki) Spec(k)

∑
in∈I Spec(gi)

//
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is étale, and conversely, every étale morphism f : Y → Spec(k) is, up to isomorphism
over Spec(k), of this form. The indexing set I can be arbitrarily large, since the
requirement that f be locally finitely presented is local on Y . The domain of the
étale map above is affine if and only if the canonical map∐

i∈I Spec(ki) Spec(
∏
i∈I ki)//

is an isomorphism, which, in turn, happens if and only if I is finite. In general, the
map of spaces underlying this map is a Stone-Čech compactification.

Finally, we recall that étale morphisms are étale and that if f : Y → X is an
étale morphism, then a morphism g : Z → Y is étale if and only if the composite
morphism f ◦ g : Z → X is étale.

Remark 7.2. A morphism f : X → S is defined to be separated if the diagonal
morphism ∆X/S : X → X×SX is a closed immersion. Any morphism between affine
schemes is separated. For the standard example of a non-separated morphism, let
k be a ring and let A1

k = Spec(k[x]) be the affine line. The pushout

A1
k r {0}

j
//

j

��

A1
k

j1

��

A1
k

j2 // X

exists, since j is an open immersion. The scheme X is called the affine line with
a double-point and the morphism f = idA1

k
+ idA1

k
: X → A1

k is an example of a

non-separated morphism. But this morphism is obviously étale, showing that étale
morphisms need not be separated.

If U is a universe, then we say that a scheme (X,OX) is a U -scheme if the
topological space X is an element of U and if the sheaf OX takes values in U -Set.
We write U -Sch for the category of U -schemes and the morphisms between them.
We recall from Problem Set 1 the topology JK generated by a pretopology K.

Definition 7.3. If U is a universe, then the étale topology on U -Sch is the
topology generated by the pretopology for which a family of morphisms

(Xi
fi // X )i∈I

is a covering family if the set I is U -small; if fi is an étale morphism, for every
i ∈ I; and if the morphism

∑
i∈I fi :

∐
i∈I Xi → X is surjective.

We remark that the latter requirement is equivalent to the requirement that the
requirement that the map of sets underlying the morphisms fi : Xi → X cover the
underlying set of X. We also recall that every base-change of a surjective morphism
again is surjective.

Before we proceed, we need some general results about sites. Let U be a universe,
let C be a locally U -small category, let let Cˆ be the category of U -Set valued
presheaves on C, and let h : C → Cˆ be the Yoneda embedding. We say that a
monomorphism i : S → T in Cˆ is a subfunctor if for every object Y of C, the
map iY : S(Y )→ T (Y ) is the canonical inclusion of a subset. We remark that, for
every object T of Cˆ, the map that to a subfunctor i : S → T assigns the subobject
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containing it is a bijection. In addition, a sieve S on an object X of C determines
and is determined by a subfunctor of h(X) which, by abuse of notation, we write
iS : S → h(X) of simply S ⊂ X. Using this language, a topology on C is a functor
J that to every object X of C assigns a set J(X) of sieves on X such that the
following axioms (T1)–(T3) hold:

(T1) If f : Y → X is a morphism of C and if S ⊂ X is a sieve in J(X), then the
pullback sieve S ×X Y ⊂ Y is in J(Y ).

(T2) If X is an object of C, if S ⊂ X is a sieve in J(X), and if T ⊂ X is a sieve
such that for every morphism f : Y → X in C that factors through S ⊂ X,
the pullback sieve T ×X Y ⊂ Y is in J(Y ), then T ⊂ X is in J(X).

(T3) If X is an object of C, then the maximal sieve X ⊂ X is in J(X).

Moreover, the presheaf F on C is a sheaf for the topology J precisely if for every
object X of C and every sieve S ⊂ X in J(X), the map

Cˆ(X,F )
i∗S // Cˆ(S, F )

is a bijection. If both J and J ′ are topologies on C, and if J(X) ⊃ J ′(X), for
every object X of C, then we say that J is finer than J ′. Hence, in this situation,
every sheaf for J is also a sheaf for J ′. For example, the étale topology on U -Sch
is finer than the Zariski topology, which we define to be the topology generated by
the pretopology for which a family of morphisms (fi : Xi → X)i∈I is a covering
family if I is a U -small set; if fi is an open immersion, for every i ∈ I; and if the
morphism

∑
i∈I fi :

∐
i∈I Xi → X is surjective.

Lemma 7.4. Let U be a universe, let C be a locally U -small category, and let
(Fi)i∈I be any family of U -Set valued presheaves on C. There exists a unique finest
topology J on C such that, for every i ∈ I, the presheaf Fi is a sheaf for J .

Proof. If X is an object of C, then we define J(X) to be the set of all sieves
S ⊂ X such that, for every i ∈ I and every morphism f : Y → X in C, the map

Cˆ(Y, Fi) Cˆ(S ×X Y, Fi)
(iS×idY )∗

//

is a bijection. It will suffice to show that J is a topology, since it then clearly is
the finest topology with the stated property. Axioms (T1) and (T3) hold for trivial
reasons, so it remains to show that also (T3) holds. So let X be an object of C, let
S ⊂ X be a sieve in J(X), and let T ⊂ X be a sieve such that for every morphism
f : Y → X in C that factors through S ⊂ X, the pullback sieve T ×X Y ⊂ T is in
J(Y ). We must show that T ⊂ X is in J(X). By the definition of J(X), we must
show that for every i ∈ I and every morphism f : Y → X in C, the top horizontal
map in the commutative diagram

Cˆ(Y, Fi) Cˆ(T ×X Y, Fi)

Cˆ(S ×X Y, Fi) Cˆ(S ×X T ×X Y, Fi)

(iT×idY )∗
//

(idS ×iT×idY )∗
//

(iS×idY )∗

��

(iS×idT × idY )∗

��

is a bijection. Now, the vertical maps are bijections, since S ⊂ X is in J(X), and
the bottom horizontal map is a bijection, by the assumption on T ⊂ X. Hence, the
top horizontal map is a bijection, as desired. �
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In Lemma 7.4, the indexing set I is not required to be U -small. In particular,
we can take I to be the set of objects in C.

Definition 7.5. Let U be a universe, let C be a locally U -small category, and
let h : C→ Cˆ be the Yoneda embedding. The canonical topology on C is the finest
topology such that, for every X ∈ ob(C), the presheaf h(X) is a sheaf.

We say that a topology J is subcanonical if it is coarser than the canonical
topology, or equivalently, if every representable presheaf is a sheaf for J . We will
show that, on the category U -Sch of U -schemes, the étale topology is subcanonical.
To do so, we first introduce the fidèlement plat et quasi-compact topology.

Definition 7.6. Let U be a universe. The fpqc-topology on U -Sch is the topology
generated by the pretopology for which a family of morphisms

(Xi
fi // X )i∈I

is a covering family if I is a U -small set; if fi is flat, for every i ∈ I; if the morphism∑
i∈I fi :

∐
i∈I Xi → X is surjective; and if for every affine open subscheme V ⊂ X,

there exists a family of quasi-compact open subschemes (Vi ⊂ Xi)i∈IV indexed by
a finite subset IV ⊂ I such that

∑
i∈IV fi|Vi :

∐
i∈IV Vi → V is surjective.

We remark that the first two requirement for a family (fi : Xi → X) of morphisms
in U -Sch to be a covering for the fpqc-topology are equivalent to the requirement
that the morphism

∑
i∈I fi :

∐
i∈I Xi → X be flat and surjective, or equivalently,

faithfully flat. Confusingly, however, the last requirement is not equivalent to
this morphism being quasi-compact. Indeed, since I can be any U -small set, this
morphism typically is not quasi-compact.

Lemma 7.7. The fpqc-topology on U -Sch is finer than the étale topology.

Proof. We must show that if (fi : Xi → X)i∈I is a covering family for the
étale topology, then it is also a covering family for the fpqc-topology. We will use
without proof that étale morphisms are flat and open. To verify the last requirement
in Definition 7.6, we let V ⊂ X be an affine open subscheme and write f−1

i (V ) ⊂ Xi

as the union of a family of open affine subschemes (Vi,j ⊂ Xi)j∈Ji . Now, since the
morphisms fi are open, the family (fi(Vi,j) ⊂ X)(i,j)∈

∐
i∈I Ji

is a Zariski covering

of V ⊂ X, and since V ⊂ X is affine and hence quasi-compact, there exists a finite
subset I ′V ⊂

∐
i∈I Ji such that the sub-family (fi(Vi,j) ⊂ X)(i,j)∈I′V is a Zariski

covering. Therefore, if we let IV ⊂ I be the finite subset of all i ∈ I for which there
exists j ∈ Ji with (i, j) ∈ I ′V ; let J ′i ⊂ Ji be the finite subset of all j ∈ Ji such that
(i, j) ∈ I ′V ; and for i ∈ IV , define Vi =

⋃
j∈J′i

Vi,j , then (Vi ⊂ Xi)i∈IV is a family

of quasi-compact open subschemes indexed by a finite subset IV ⊂ I such that the
morphism

∑
i∈IV fi|Vi :

∐
i∈IV Vi → V is surjective. �

Remark 7.8. More generally, a flat morphism locally of finite presentation is
open. Hence, the proof of Lemma 7.7 also shows that the fpqc-topology is finer than
the fppf-topology, defined as the topology on U -Sch generated by the pretopology
in which a family (fi : Xi → X)i∈I is a covering family if I is small; if fi is flat and
of finite presentation, for every i ∈ I; and if

∑
i∈I fi :

∐
i∈I Xi → X is surjective.
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8. Faithfully flat descent

We will show that the fpqc-topology on U -Sch is subcanonical and begin by
noting the following.

Lemma 8.1. Let U be a universe. A U -Set-valued on U -Sch is a sheaf for the
fpqc-topology if and only if F is a sheaf for the Zariski topology and, for every
faithfully flat morphism of affine U -schemes f : W → V , the diagram

F (V )
F (f)

// F (W )
pr1 //

pr2
// F (W )×F (V ) F (W )

is an equalizer.

Proof. Exercise; or see Section 33.8 in the Stacks Project. �

Lemma 8.2. If U is a universe and if f : A→ B is a faithfully flat morphism in
the category U -Rng of commutative rings in U -Set, then the diagram

A
f
// B

in1 //

in2

// B ⊗A B

is an equalizer in U -Rng.

Proof. Since f : A→ B is faithfully flat, it suffices to show that the diagram

B
e // B ⊗A B

d0 //

d1
// B ⊗A B ⊗A B

in U -Rng obtained by applying the functor B⊗A− to the diagram in the statement
is an equalizer. Here e(b0) = b0⊗1; d0(b0⊗b1) = b0⊗1⊗b1; and d1(b1) = b0⊗b1⊗1.
Now, the morphisms s : B ⊗A B → B and t : B ⊗A B ⊗A B → B ⊗A B defined by
s(b0 ⊗ b1) = b0b1 and t(b0 ⊗ b1 ⊗ b2) = b0b1 ⊗ b2 satisfy that d0e = d1e; se = idB ;
td0 = idB⊗AB ; and td1 = es. This shows that the diagram above is a split equalizer.
In particular, it is an equalizer. �

Theorem 8.3. The fpqc-topology on U -Sch is subcanonical.

Proof. We must show that if the family of morphisms (fi : Xi → X)i∈I is a
covering family for the fpqc-topology on U -Sch, then the diagram∐

(j,k)∈I×I Xj ×X Xk

a //

b
//
∐
i∈I Xi

f
// X,

where f ◦ ini = fi, a ◦ in(j,k) = inj ◦pr1, and b ◦ in(j,k) = ink ◦ pr2, is a coequalizer
in U -Sch. By Lemma 8.1 it suffices the case of a Zariski covering and of a covering
consisting of a single faithfully flat morphism f : W → V between affine U -schemes.
The case of a Zariski covering follows rather immediately from the definition of a
scheme; see EGA I.2.3.1 for details. It remains to prove that for f : W → V a
faithfully flat morphism of affine schemes, the diagram

W ×V W
pr1 //

pr2
// W

f
// V
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is a coequalizer in U -Sch. So we let h : W → X be a morphism of U -schemes such
that h◦pr1 = h◦pr2 : W ×V W → X and show that there exists a unique morphism
g : V →W with h = g ◦ f .

Suppose first that also X = Spec(A) is affine. We recall that the functor Spec
from U -Rngop to U -Sch is right adjoint to the functor that to a scheme X assigns
the ring Γ(X,OX) of global sections of its structure sheaf and that the latter functor
preserves finite limits. Therefore, it will suffice to show that the diagram

Γ(V,OV )
f#

// Γ(W,OW )
in1 //

in2

// Γ(W,OW )×Γ(V,OV ) Γ(W,OW )

is an equalizer in U -Rng, which was proved in Lemma 8.2. Indeed, we obtain the
desired morphism g : V → Spec(A) as the adjunct of the unique ring homomorphism
g′ : A→ Γ(V,OV ) with h′ = f# ◦ g′.

We next let X be any U -scheme. We first show that a morphism g : V → X such
that h = g ◦ f is necessarily unique. So let g1, g2 : V → X be two such morphisms.
Since the underlying map of topological spaces associated with f is surjective, the
morphisms g1 and g2 induce the same map of underlying topological spaces. Given
v ∈ V , we first choose an affine open subset X ′ ⊂ X containing g1(v) = g2(v) and
then choose s ∈ Γ(V,OV ) such that distinguished affine open Vs ⊂ V is contained
in both g−1

1 (X ′) and g−1
2 (X ′). Moreover, setting t = f#(s) ∈ Γ(W,OW ), the

morphism f |Wt : Wt → Vs again is faithfully flat. Therefore, by the case already
proved, we conclude that the morphisms g1|Vs and g2|Vs are equal. This shows that
there exists a Zariski covering (fi : Vi → V )i∈I such that the morphisms g1|Vi and
g2|Vi are equal, for every i ∈ I, and since the diagram∐

(j,k)∈I×I Vj ×V Vk
a //

b
//
∐
i∈I Vi

f
// V

is a coequalizer in U -Sch, we conclude that g1 = g2 : V → X.

It remains to construct a morphism g : V → X satisfying h = g ◦ f . It follows
from the construction of fiber-products in U -Sch that, at the level of underlying
topological spaces, a continuous map with this property exists. Let us provisionally
write g : V → X for this continuous map. Now, given v ∈ V , we first choose an affine
open subset X ′ ⊂ X with f(v) ∈ X ′, and then choose global section s ∈ Γ(V,OV )
such that the distinguished affine open Vs ⊂ V is contained in g−1(X ′). Setting
t = f#(s) ∈ Γ(W,OW ), we have as before that f |Wt : Wt → Vs is faithfully flat, and
since f |Wt

◦ pr1 = f |Wt
◦ pr2 : Wt ×Vs Wt → X ′, we conclude from the case already

proved that there exists a morphism g|Vs : Vs → X ′ with h|Wt
= g|Vs ◦ f |Wt

. This
shows that there exists a Zariski covering (fi : Vi → V )i∈I together with morphisms
gi : Vi → X satisfying gi◦fi = h|W×V Vi . The uniqueness result proved earlier shows
that for all (j, k) ∈ I × I, we have gj ◦ pr1 = gk ◦ pr2 : Vj ×V Vk → X. Therefore,
we obtain the desired map g : V → X with h = g ◦ f from the coequalizer diagram
above. This completes the proof. �

Example 8.4. It follows from Theorem 8.3 that every representable presheaf on
U -Sch is a sheaf for the fpqc-topology. In particular, every representable presheaf
on U -Sch is a sheaf for the coarser étale topology and the even coarser Zariski
topology; compare Lemma 7.7. For example, the presheaf F on U -Sch that takes
a U -scheme X to the set F (X) underlying the ring Γ(X,OX) is a representable
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presheaf, and hence, is a sheaf for the fpqc-topology. A representation of F is given
by the pair (A1

Z, a) of the affine line A1
Z = Spec(Z[x]) and the natural bijection

F (X)
aX // U -Sch(X,A1

Z)

that to s ∈ F (X) assigns the morphism aX(s) : X → A1
Z adjunct to the unique

ring homomorphism a′X(s) : Z[x]→ Γ(X,OX) with a′X(s)(x) = s. (A different but
perfectly valid choice would be to use a′X(s)(x) = −s to define aX .) The natural
additive group structure on Γ(X,OX) defines an abelian group object structure
(+, 0,−) on the sheaf F . We write Ga for the abelian group object (F,+, 0,−)
in the category of U -Set valued fpqc-sheaves on U -Sch and call it the additive
group. Moreover, under the representation (A1

Z, a) of F , the abelian group structure
(+, 0,−) determines and is determined by an abelian cogroup structure (∆, ε, S) on
the commutative ring Z[x]. One finds that the abelian cogroup structure maps are
ring homomorphisms given by ∆(x) = 1⊗ x+ x⊗ 1; ε(x) = 0; and S(x) = −x. We
note that a commutative ring with an abelian cogroup structure is also said to be
a commutative and cocommutative Hopf algebra over Z.
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9. The étale topos

Let U be universes and let U -Sch be the category of U -schemes. Let X be a
U -scheme and let U -Sch/X be the slice category. A topology on U -Sch gives rise to
an induced topology on U -Sch/X, characterized as being the finest topology among
the topologies that render the forgetful functor

U -Sch/X
u // U -Sch

continuous. By abuse of language, we refer to the topology on U -Sch/X induced
by the étale topology on U -Sch as the étale topology on U -Sch/X, and similarly
for the fpqc-topology, the fppf-topology, and the Zariski topology.

Definition 9.1. Let U be a universe and let X be a U -scheme. If U ′ is a
universe such that U ∈ U ′, then the U ′-topos (U -Sch/X)ẽt of the U ′-Set valued
sheaves on U -Sch/X for étale topology is called a big étale topos on X.

We recall that the category ModZX of abelian group objects in a big étale topos
on X is abelian and has enough injectives; compare Proposition 6.6. Therefore, for
every such abelian group object F , we may consider the cohomology groups

Hi
et(X,F ) = ExtiZX (ZX , F ).

It is not clear from the definition that these groups are independent, up to canonical
isomorphism, of the choice of universe U ′ with U ∈ U ′. We proceed to show that
this is true, nevertheless.

In general, let U be a universe and let (C, J) and (C′, J ′) be U -small sites.
We write i : (C, J)˜→ Cˆ and i′ : (C′, J ′)˜→ C′ˆ for the morphisms between the
topoi of U -Set valued sheaves and presheaves given by the sheafification/inclusion
adjunctions. A cocontinuous functor u : C→ C′ gives rise to a morphism of topoi

(C, J)˜
g
// (C′, J ′) ,̃

where g∗ is the unique functor such that

(C, J)˜
g∗ //

i∗

��

(C′, J ′)˜

i′∗
��

Cˆ
(uop)∗

// C′ˆ

commutes, and where g∗ = i∗ ◦ (uop)∗ ◦ i′∗. If the functor u is also continuous, then
the sheafification in the definition of g∗ is unnecessary, and we may instead define
g∗ to be the unique functor such that

(C, J)˜

i∗

��

(C′, J ′)˜

i′∗
��

g∗
oo

Cˆ C′ˆ
(uop)∗

oo

commutes. In this situation, the composite functor g! = i′∗ ◦ (uop)! ◦ i∗ is a left
adjoint of g∗. The adjunction (g!, g

∗, ε, η) need not be a morphism of topoi, since
the functor g! may not preserve finite limits. However, if C has finite limits and if
the functor u : C → C′, in addition to being continuous and cocontinuous, is fully
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faithful and preserves finite limits, then g! preserves finite limits. Hence, in this
situation, we have a morphism of topoi

(C, J)˜ (C′, J ′)˜
f
oo

with f∗ = g! and f∗ = g∗. In addition, the composite f ◦ g is naturally isomorphic
to the identity of (C, J) ,̃ and the functor f∗ is fully faithful. We refer to the Stacks
Project, Lemma 7.20.8 for a proof.

We define U -Et/X to be the full subcategory of U -Sch/X whose object set con-
sists of the pairs (Y, f : Y → X) such that f is an étale morphism. We give U -Et/X
the topology induced by the étale topology on U -Sch/X, which we will refer to as
the étale topology on U -Et/X. Since all morphism in U -Et/X are themselves étale,
this topology may be defined directly as the topology generated by the pretopology
in which a family of morphisms(

(Yi, Yi
f◦gi // X)

gi // (Y, Y
f
// X)

)
i∈I

is a covering family if I is U -small and
∑
i∈I gi :

∐
i∈I Yi → Y surjective. In this

situation, the canonical inclusion functor

U -Et/X
u // U -Sch/X

is fully faithful, continuous and cocontinuous, and preserves finite limits. (We note,
in particular, that u takes the terminal object (X, idX) in the domain category
to the terminal object (X, idX) in the target category.) Therefore, by the general
theory discussed above, we obtain morphisms of topoi

(U -Sch/X)ẽt

f
//
(U -Et/X)ẽt

g
oo

between the respective categories of U ′-Set valued sheaves for the étale topology
such that the composite morphism f ◦ g is naturally isomorphic to the identity.
Here U ′ is a universe with U ∈ U ′.

Proposition 9.2. Let U ∈ U ′ be universes, let X be a U -scheme, and let

(U -Sch/X)ẽt

f
//
(U -Et/X)ẽt

g
oo

be the morphisms between the U ′-topoi of U ′-Set valued sheaves with respect to the
étale topologies induced by the canonical inclusion u : U -Et/X → U -Sch/X.

(i) For every abelian group object F in (U -Sch/X)ẽt, the canonical map

Hs((U -Et/X)ẽt, f∗(F )) // Hs((U -Sch/X)ẽt, F )

is an isomorphism, for all non-negative integers s.
(ii) For every abelian group object G in (U -Et/X)ẽt, the canonical map

Hs((U -Sch/X)ẽt, f
∗(G)) // Hs((U -Et/X)ẽt, G)

is an isomorphism, for all non-negative integers s.
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Proof. We suppress the universe U in the notation. If e is a terminal object
in (Et/X)ẽt, then also f∗(e) is a terminal object of (Sch/X)ẽt, since f∗ preserves
finite limits. Now, to prove (i), we use the adjunction isomorphism

((Et/X)ẽt(e,−) ◦ f∗(−))(F )
a // (Sch/X)ẽt(f

∗(e),−)(F )

and consider the Grothendieck spectral sequence of the left-hand composite functor.
It takes the form

Es,t2 = (Rs(Et/X)ẽt(e,−) ◦Rtf∗(−))(F )⇒ Rs+t(Sch/X)ẽt(f
∗(e),−)(F )

and it exists, since f∗ has the left adjoint f∗ which preserves finite limits, and hence,
takes injectives to injectives. But f∗ = g∗ also has the right adjoint functor g∗, and
hence, preserves all limits and colimits. It follows that Es,t2 vanishes for t > 0, and
therefore, the edge homomorphism

(Rs(Et/X)ẽt(e,−) ◦ f∗(−))(F ) // Rs(Sch/X)ẽt(f
∗(e),−)(F )

is an isomorphism. This proves (i). To prove (ii), we use that f∗ being fully faithful
gives an isomorphism

(Et/X)ẽt(e,−)(G)
f∗
// ((Sch/X)ẽt(f

∗(e),−) ◦ f∗(−))(G)

and consider the Grothendieck spectral sequence of the composite functor on the
right-hand side. It takes the form

Es,t2 = (Rs(Sch/X)ẽt(f
∗(e),−) ◦Rtf∗(−))(G)⇒ Rs+t(Et/X)ẽt(e,−)(G),

provided that it exists. To show that it does, we must show that f∗ takes injectives
to (Sch/X)ẽt(f

∗(e),−)-acyclics. So let I be an injective object in the category of
abelian group objects in (Et/X)ẽt and let i : f∗(I)→ J · be an injective resolution in
the category of abelian group objects in (Sch/X)ẽt. Now, since f∗ is fully faithfull,
it gives the isomorphism

Hs(Sch/X)ẽt(f
∗(e), J ·) Hs(Et/X)ẽt(e, f∗(J

·)).
f∗
oo

But f∗ takes injectives to injectives and preserves both limits and colimits, and
therefore f∗(i) : f∗f

∗(I)→ f∗(J
·) is an injective resolution in the category of abelian

group objects in (Et/X)ẽt. Moreover, since f ◦ g is naturally isomorphic to the
identity and f∗ = g∗, the unit η : I → f∗f

∗(I) is an isomorphism. This shows that
f∗(I) is (Sch/X)ẽt-acyclic as desired. Finally, since f∗ preserves all colimits, we

find that Es,t2 vanishes for t > 0. It follows again that the edge homomorphism

(Rs(Sch/X)ẽt(f
∗(e),−) ◦ f∗(−))(G) // Rs(Et/X)ẽt(e,−)(G)

is an isomorphims, which proves (ii). �

Lemma 9.3. Let U be a universe and let u : C → C′ be a fully faithful functor
from a U -small category to a locally U -small category. Let J ′ be a topology on C′,
let J be the induced topology on C, and let us be the unique functor that makes
the following diagram of functors between the respective categories of U -Set valued
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presheaves and sheaves commute.

(C′, J ′)˜
us //

i′

��

(C, J)˜

i

��

C′ˆ
(uop)∗

// Cˆ

If every object X ′ of C′ admits a covering family of the form

(u(Xi)
fi // X ′ )i∈I ,

then the functor us is an equivalence of categories.

Proof. This “Lemme de comparaison” is proved in SGA 4, Théorème III.4.1.
The requirement that C and C′ be U -small and locally U -small, respectively, implies
that the Kan extensions (uop)!, (u

op)∗ : Cˆ → C′ˆ exists. The indexing set I is not
required to be U -small? �

Proposition 9.4. Let U be a universe and let X be a U -scheme. The category
of U -Set valued sheaves on U -Et/X for the étale topology is a U -topos.

Proof. The category (U -Et/X)˜ is locally U -small, at least up to isomorphism
of categories. We apply Lemma 9.3 to prove that it is equivalent to the category of
U -Set valued sheaves on a U -small site (C, J).

We define the category C to be the full subcategory of U -Et/X whose objects
are all pairs (Y, f : Y → X) for which the étale morphism f is the composition

Spec(Γ(X ′,OX)[x1, . . . , xn]/(f1, . . . , fn))
g
// Spec(Γ(X ′,OX))

j
// X

of a standard affine étale morphism and a standard open immersion onto an affine
open subscheme X ′ of X. It is a U -small category, since the underlying topological
space of X is U -small. We let u : C → U -Et/X be the canonical inclusion functor
and let J be the topology on C induced from the étale topology on U -Et/X. By
the definition of an étale morphism, every object (Y, f : Y → X) of U -Et/X admits
a covering of the form(

u(Yi, Yi
fi // X)

gi // (Y, Y
f
// X)

)
i∈I .

Therefore, the comparison lemma shows that the induced functor

(U -Et/X)ẽt
us // (C, J)˜

between the categories of U -Set valued sheaves is an equivalence of categories. �

Definition 9.5. Let U be a universe. The small étale topos of a U -scheme X
is the U -topos Xet of U -Set valued sheaves on U -Et/X in the étale topology.

Corollary 9.6. Let U ∈ U ′ be universes, let X be a U -scheme, and let F
be an abelian group object in the category of U -Set valued sheaves on U -Sch/X
in the étale topology. In this situtation, the étale cohomology groups Hi

et(X,F ),
calculated in the larger category of abelian group objects in the category of U ′-Set
valued sheaves on U -Sch/X, are canonically isomorphic to U -small abelian groups
and are independent, up to canonical isomorphism, of the choice of U ′.
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