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We study exponential families of distributions that are multivariate to-
tally positive of order 2 (MTP2), show that these are convex exponential fam-
ilies and derive conditions for existence of the MLE. Quadratic exponential
familes of MTP2 distributions contain attractive Gaussian graphical models
and ferromagnetic Ising models as special examples. We show that these are
defined by intersecting the space of canonical parameters with a polyhedral
cone whose faces correspond to conditional independence relations. Hence
MTP2 serves as an implicit regularizer for quadratic exponential families
and leads to sparsity in the estimated graphical model. We prove that the
maximum likelihood estimator (MLE) in an MTP2 binary exponential family
exists if and only if both of the sign patterns (1,−1) and (−1,1) are repre-
sented in the sample for every pair of variables; in particular, this implies that
the MLE may exist with n = d observations, in stark contrast to unrestricted
binary exponential families where 2d observations are required. Finally, we
provide a novel and globally convergent algorithm for computing the MLE
for MTP2 Ising models similar to iterative proportional scaling and apply it
to the analysis of data from two psychological disorders.

1. Introduction and motivation. This paper discusses exponential families and, in par-
ticular, binary graphical models with a special form of positive dependence. Total positivity
is a strong form of positive dependence that has become an important concept in modern
statistics; see, for example, [14, 22]. This property (also called the MTP2 property) appeared
in the study of stochastic orderings, asymptotic statistics and in statistical physics [19, 30].
Families of distributions with this property lead to many computational advantages [8, 16, 31]
and they are a convenient shape constraint in nonparametric statistics [32]. They also became
a useful tool in modelling with latent variables; see [9] for an overview. In particular, in [4]
the MTP2 property explicitly appeared in the description of the binary latent class model.

In the Gaussian setting, the MTP2 property was shown to simplify inference [5, 27]. In this
case, the MTP2 property is equivalent to the covariance matrix being an inverse M-matrix,
which is a linear constraint on the concentration matrix. This led Slawski and Hein [33] to
propose efficient learning procedures based on convex optimization; see also [11, 17, 25].
The present paper develops similar results for exponential families with special emphasis on
models for binary variables, including ferromagnetic Ising models. Our main results are the
following:

• We show in Section 3 that the MTP2 property is given by a convex constraint in an expo-
nential family and use convex optimization theory to derive necessary and sufficient con-
ditions ensuring than an estimate maximizes the likelihood. For a quadratic exponential
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family, including the Ising model for binary variables, the KKT conditions yield sparsity
in the associated matrix for interaction potentials.

• We show in Section 4 that the KKT conditions ensure context-dependent conditional inde-
pendence restrictions and that for binary variables the MLE exists under MTP2 if and only
if both of the sign patterns (1,−1) and (−1,1) are represented in the sample for every pair
of variables. This ensures the minimal sample size for the MLE to exist be of order d rather
than 2d where d is the number of variables considered.

• We show—also in Section 4—that adding conditional independence assumptions by fur-
ther assuming a graphical model, reduces this condition to hold for pairs of vertices ij

that are neighbors in the graph, reducing the order of the minimal sample size to be the
maximal clique size of the graph.

• We show—also in Section 4—that for symmetric binary MTP2 distributions, including
ferromagnetic Ising models with no external field, presence of just one of the sign patterns
(1,−1) and (−1,1) for every pair ensures existence of the MLE;

• We develop—in Section 5—a novel IPS type algorithm for calculating the MLE in a fer-
romagnetic Ising model that is shown to be globally convergent.

The remainder of this paper is structured as follows: In Section 2, we formally introduce
MTP2 distributions and associated notation.

In Section 6, we apply our results to the analysis of two psychological disorders, showing
that the resulting MTP2 graphical model is highly interpretable and consistent with domain
knowledge.

2. Preliminaries. Let V = {1, . . . , d} be a finite set and let X = (Xv, v ∈ V ) be random
variables with labels in V . We consider the product space X = ∏

v∈V Xv , where Xv ⊆ R is
the state space of Xv , inheriting the order from R. In this paper, the state spaces are either
discrete (finite sets) or open intervals on the real line.

ASSUMPTION 1. All distributions are assumed to have densities with respect to the prod-
uct measure μ = ⊗

v∈V μv , referred to as the base measure, where μv is the counting measure
if Xv is discrete, and μv is the Lebesgue measure giving length 1 to the unit interval if Xv is
an open interval.

We note that any other equivalent product measure can be used as base measure without
affecting the MTP2 property as defined below.

A function f on X is said to be multivariate totally positive of order 2 (MTP2) if

(2.1) f (x)f (y) ≤ f (x ∧ y)f (x ∨ y) for all x, y ∈ X ,

where x ∧ y and x ∨ y denote the elementwise minimum and maximum, that is,

x ∧ y = (
min(xv, yv), v ∈ V

)
, x ∨ y = (

max(xv, yv), v ∈ V
)
.

These inequalities are nontrivial only if x, y ∈ X are not comparable, that is, neither x ≤ y

nor x ≥ y. For d = 2, a function that is MTP2 is simply called totally positive [22]. We say
that X or the distribution of X is MTP2 if its density function p is MTP2.

For strictly positive distributions, MTP2 can be verified by checking that (2.1) holds for
x, y ∈ X that are not comparable and differ in exactly two coordinates; cf. [22], Propo-
sition 2.1. We call such pairs elementary and denote the set of all elementary pairs by
E ⊂ X ×X . For more details on MTP2 distributions, see [22] and [18].
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3. Totally positive exponential families. We first consider MTP2 for exponential fam-
ilies and show that maximum likelihood estimation for exponential families under MTP2
leads to a convex optimization problem. We then discuss conditions for the existence of the
MLE and finally specialize these results to quadratic exponential families, which include as
prominent examples the Gaussian distribution and the Ising model.

3.1. Convexity of totally positive exponential families. Consider an exponential family
with density p(x; θ) satisfying

(3.1) logp(x; θ) = 〈
θ, T (x)

〉 − A(θ) + g(x),

with sample space X , sufficient statistics T : X → Rk and base measure μ. Assume that the
family is minimally represented, that is, that 〈λ,T (X)〉 + b = 0 almost surely implies λ = 0,
and that the family is regular so that the space of canonical parameters

K = {
θ ∈ Rk : A(θ) < ∞}

is an open convex set.

ASSUMPTION 2. Throughout, we assume that there exists θ0 such that p(x; θ0) is a
product distribution, or equivalently,

(3.2) p(x ∨ y; θ0)p(x ∧ y; θ0) = p(x; θ0)p(y; θ0) for all x, y ∈ X .

Since every distribution in an exponential family can act as the base distribution, we can then
pick p(x; θ0) as the base measure. It then holds that

g(x ∨ y) + g(x ∧ y) − g(x) − g(y) = 0.

We say that such an exponential family has a product base.

All exponential families that contain a full independence distribution admit a product base.
This includes all models discussed in this article and in particular Gaussian graphical models
and log-linear models.

For an exponential family of the form (3.1) and any two x, y ∈ X we define

�(x,y; θ) := log
(

p(x ∨ y; θ)p(x ∧ y; θ)

p(x; θ)p(y; θ)

)
.

The density p(x; θ) is MTP2 if and only if �(x,y; θ) ≥ 0 for all elementary pairs in E . For
exponential families with a product base, it holds that

�(x,y; θ) = 〈
θ, T (x ∧ y) + T (x ∨ y) − T (x) − T (y)

〉
,

which is an affine function in θ .

DEFINITION 3.1. The set K2 ⊂ K of totally positive canonical parameters is the subset
of canonical parameters for which the density p(x; θ) is MTP2.

Since K2 is given by the linear inequalities �(x,y; θ) ≥ 0 for all x, y ∈ X , we immediately
get the following result.

THEOREM 3.2. The K2 of totally positive canonical parameters is a convex set that is
relatively closed in K.
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We note that this result holds also for exponential families without a product base. How-
ever, in that case the set of MTP2 canonical parameters K2 may be empty.

In [25], we considered the Gaussian setting and showed that K2 is a convex cone. By
essentially the same argument, this extends to discrete Gaussian distributions over X = Zd ,
which were introduced in [1]. More generally, we obtain the following result.

PROPOSITION 3.3. The set K2 is obtained by intersecting K with a closed convex cone
C ⊆ Rk , whose dual cone is the closure of the cone generated by the set{

T (x ∧ y) + T (x ∨ y) − T (x) − T (y) : x, y ∈ E
}
.

PROOF. The set of inequalities �(x,y; θ) ≥ 0, one for each elementary pair x, y ∈ E ,
defines a convex cone in θ ∈ Rk . We have 〈θ, T (x ∧ y) + T (x ∨ y) − T (x) − T (y)〉 ≥ 0 for
all x, y ∈ E if and only if 〈θ, v〉 ≥ 0 for all v in the cone generated by the set {T (x ∧ y) +
T (x ∨ y) − T (x) − T (y) : x, y ∈ E}; denote this cone by C∗. This shows that C = (C∗)∨ and
so C∨ = (C∗)∨∨. The latter is equal to the closure of C∗ by the standard theory of convex
cones; see, for example, [13], Section 2.6.1. �

REMARK 3.4. When X is finite, that is, for log-linear models, Proposition 3.3 implies
that C is polyhedral. Since C is polyhedral also in the Gaussian setting, finiteness of X is not
a necessary condition. In fact, we will show in Proposition 3.6 that C is polyhedral for any
quadratic exponential family. When C is polyhedral, then every face of C intersected with K
corresponds to the MTP2 distributions in an exponential subfamily.

3.2. The MLE and its existence. An important consequence of Theorem 3.2 is that any
MTP2 exponential family is a convex exponential family and thus the maximum likelihood
estimator (MLE), if it exists, is uniquely defined; see [7], Section 9.4.

Let U = {x1, . . . , xn} denote a sample of size n and let T̄ := 1
n

∑
i T (xi) be the average

of the corresponding sufficient statistics. Let S denote the interior of conv(supp(μ ◦ T −1)),
the convex support of the sufficient statistics. Then by the general theory of exponential fam-
ilies [7], the MLE θ̂ exists if and only if T̄ lies in S , in which case it is uniquely defined
by

∇A(θ̂) = E
θ̂

[
T (X)

] = T̄ .

The following theorem extends this result to a characterization of existence of the MLE for
the subfamily of MTP2 distributions. By Proposition 3.3, there exists a closed convex cone C
such that the space of all MTP2 canonical parameters is given by K2 = K ∩ C. We define

S2 := S − C∨

as the Minkowski sum of S with the dual of −C; cf. Proposition 3.3.

THEOREM 3.5. Let p(x; θ) be a minimally represented regular exponential family. Then
the MLE θ̂ based on T̄ exists in the MTP2 submodel if and only if T̄ ∈ S2, in which case θ̂ is
uniquely defined by:

(a) primal feasibility: θ̂ ∈ K2,
(b) dual feasibility: σ̂ := ∇A(θ̂) ∈ S with σ̂ − T̄ ∈ C∨,
(c) complementary slackness: 〈θ̂ , σ̂ − T̄ 〉 = 0.
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PROOF. The maximum likelihood estimation problem can be formulated as the following
optimization problem:

maximize
θ∈K 〈θ, T̄ 〉 − A(θ)

subject to θ ∈ C.

This is a convex optimization problem, since A(θ) is convex on K. The Lagrangian is

L(θ, λ) = 〈θ, T̄ 〉 − A(θ) + 〈θ, λ〉,
where λ ∈ C∨. Let A∗ denote the conjugate dual of A with domain S . Then

max
θ∈K L(θ, λ) = A∗(T̄ + λ),

and hence the dual optimization problem is given by

minimize
σ∈S A∗(σ )

subject to σ − T̄ ∈ C∨.

The MLE exists if and only if the primal and dual problems are feasible. The primal problem
is feasible by the assumption K2 �= ∅. The dual problem is feasible if and only if T̄ ∈ S2. The
characterization of the MLE then follows from the KKT conditions. �

As in the Gaussian case, complimentary slackness imposes sparsity in the MLE θ̂ . This
property makes MTP2 exponential families potentially useful in high dimensional contexts.
Before we discuss this in further detail, we shall consider the case of a quadratic exponential
family, including the Gaussian case and Ising models.

3.3. Quadratic exponential families. The density function of a quadratic exponential
family is of the form

(3.3) p(x;h,J ) = exp
(
hT x + xT Jx/2 − A(h,J )

)
,

with h ∈ Rd and J ∈ Sd , where Sd is the set of symmetric matrices in Rd×d so here the
canonical parameter space is K = Rd × Sd . Important examples of such exponential families
in the discrete setting are Ising models, which we discuss in more detail in Section 5, and
Gaussian graphical models in the continuous setting. Note that in the binary setting we require
Jii = 0 in order to obtain a minimally represented exponential family. We start by showing
that C is a polyhedral cone for any quadratic exponential family.

PROPOSITION 3.6. The subfamily of MTP2 distributions in a quadratic exponential fam-
ily is obtained by intersecting K with a polyhedral cone C, namely the cone Sd+ = {J ∈ Sd |
Jij ≥ 0 for all i �= j}.

PROOF. By [18], Theorem 7.5, a quadratic exponential family is MTP2 if and only if
exp(Jij xixj ) is MTP2 for all i �= j . This is the case if and only if for every x, y that differ in
two coordinates i, j with xi < yi and xj > yj , it holds that

Jij (yi − xi)(xj − yj ) ≥ 0,

or equivalently Jij ≥ 0. This completes the proof. �

We denote the mean parameters by μ := EθX and � := EθXXT . Then (μ,�) can be
transformed to (μ,�), where � = � − μμT is the covariance matrix of X. Note that then

C = {
(h, J ) ∈ Rd × Sd+ : Jij ≥ 0 for i �= j

}
.
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Each facet of C corresponds to one of the Jij ’s being zero; cf. Remark 3.4. Equivalently, by
the Hammersley–Clifford theorem, each facet consists of members in the MTP2 exponential
family that satisfy the conditional independence relation Xi ⊥⊥ Xj |XV \{i,j}. The dual cone
of C is given by

(3.4) C∨ = {
(0,�) ∈ Rd × Sd : �ij ≥ 0 for i �= j, and �ii = 0 for all i

}
.

Let U = {x1, . . . , xn} as before be a sample of size n and let x̄ = 1
n

∑
i x

i and M =
1
n

∑
i x

i(xi)T be the corresponding sample averages. Let S = M − x̄x̄T denote the sample
covariance matrix. By standard exponential family theory, the MLE in the quadratic expo-
nential family (3.3) corresponds to the unique distribution in the family which matches the
sample averages, that is, (μ̂, �̂) = (x̄,M), or equivalently, (μ̂, �̂) = (x̄, S). By adding the
MTP2 constraint, the situation changes somewhat. As a direct corollary to Theorem 3.5 we
obtain the following result regarding the MLE in an MTP2 quadratic exponential family.

COROLLARY 3.7. Let p(x;h,J ) be a minimal regular quadratic exponential family. Let
x̄ and S be the sample mean and covariance matrix. Then the corresponding MLE (ĥ, Ĵ ) ∈K
with (μ̂, �̂) := ∇A(ĥ, Ĵ ) and �̂ := �̂ − μ̂μ̂T , is uniquely defined by:

(i) Ĵij ≥ 0 for i �= j ,
(ii) μ̂ = x̄, �̂ii = Sii , and �̂ij ≥ Sij for i �= j ,

(iii) (�̂ij − Sij )Ĵij = 0 for all i �= j .

PROOF. The conditions of Theorem 3.5 translate precisely to (i), (ii), (iii), namely the
primal feasibility condition is derived in Proposition 3.6, the dual feasibility condition follows
from (3.4), and the complementary slackness condition follows from the fact that the inner
product between dual cones is zero if and only if each summand is zero. �

REMARK 3.8. In quadratic exponential families the condition T ∈ S2 = S − C∨, that
assures existence of the MLE, translates to the condition (ii) in Corollary 3.7. This condition
can again be expressed more explicitly in terms of the observations: in the Gaussian case this
becomes equivalent to all correlations being numerically less than one ([25]), and we derive
the explicit conditions for our cases in Theorem 4.5, Corollary 4.6 and Theorem 4.11.

REMARK 3.9. Note also that in the binary case, where we have Jii = 0 and �ii = 1 for
all i, the condition (ii) reduces to μ̂ = x̄, and �̂ij ≥ Sij for i �= j .

The specialization of this result to Gaussian graphical models was discussed in [25]. Note
that the MTP2 constraint induces sparsity in the MLE Ĵ through the complementary slackness
constraint (iii). For example, if Sij < 0, then complementary slackness implies that Ĵij = 0
simply because in an MTP2 distribution all covariances are positive. The sparsity pattern
of Ĵ defines a face F of the polyhedral cone C. As in the Gaussian setting [25], Corollary
2.4, the MTP2 MLE Ĵ is the MLE of the quadratic exponential family without the MTP2
constraint restricted to the face F . This is stated formally in Corollary 3.10 and illustrated in
Example 5.3 below.

COROLLARY 3.10. Let Ĵ denote the MLE in a quadratic exponential family under
MTP2. Let F = {(i, j) ∈ V × V | Ĵij = 0}. Then Ĵ equals the maximum likelihood estimate
in the quadratic exponential family without the MTP2 constraint under the linear constraints
Jij = 0 for all (i, j) ∈ F .
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PROOF. This follows since the unique MLE in this quadratic exponential family is given
by the equations (ii) and (iii) in Corollary 3.7 above. �

In [25], it was shown that the MLE existed in the Gaussian case if and only if the empirical
covariance matrix satisfied Sij <

√
SiiSjj by constructing an ultrametric matrix Z from S that

was both primary and dually feasible. The argument used in [25] does not apply here as the
primary feasibility of Z is not always guaranteed. Indeed, we shall see that the condition is
necessary here but not sufficient; see Theorem 4.5 and Corollary 4.6 below. The situation in
a general exponential family can be quite different from the Gaussian case as shown in the
following example.

EXAMPLE 3.11. The auto-Poisson family considered in [10], Section 4.2.4, is a
quadratic exponential family with product base. It consists of distributions of the form

p(x;h,J ) ∝ exp

(
d∑

i=1

(
hixi − log(xi !)) + xT Jx/2

)
x ∈ {0,1,2, . . .}d .

The right-hand side sums to a finite number if and only if Jij ≤ 0 for all i, j . The subset of
MTP2 distributions within this family is then given by the product of independent Poisson
distributions, that is, Jij = 0 for all i, j . Of course, for a finite state-space, no such problem
occurs.

4. Totally positive binary distributions. For the remainder of this paper, we focus on
binary distributions, that is, distributions over the sample space X = {−1,1}d . To simplify
notation, we often use the following bijection between X and the set Bd of all subsets of
{1, . . . , d}, namely an element x ∈ X maps to the subset of all i ∈ {1, . . . , d} for which xi =
1. For example, in the case d = 3 the point x = (1,1,−1) maps to the subset {1,2} and
(−1,−1,−1) to the empty set. Note that X and Bd are also isomorphic as lattices because
the min-max operators ∧, ∨ on X correspond to the set operations ∩, ∪ in Bd .

Building on the results from Section 3, in the following we provide conditions for existence
of the MLE in MTP2 binary exponential families. In particular, we study the KKT conditions
for this setting and develop conditions for existence of the MLE in the special case of binary
distributions that factorize according to a graph (such as Ising models) and symmetric binary
distributions where p(x) = p(−x) (such as Ising models with no external field). Ising models
will be discussed in detail in Section 5.

4.1. Binary distributions as exponential families. We now recall the representation of
strictly positive binary distributions as an exponential family. Define λ(x) := logp(x) for
x ∈ X = {−1,1}. To write the exponential representation of this family of distributions, we
consider the space RX of dimension 2d equipped with the inner product

〈θ, σ 〉 := ∑
x∈X

θ(x)σ (x).

For x ∈ X , define a vector T (x) ∈ {0,1}X such that T (x)y = 1 if x = y and it is zero other-
wise. The set of binary distributions forms a regular exponential family which is minimally
represented with canonical parameters θ(x) = λ(x) − λ(−1) for x �= −1. Denote by θ the
vector of all θ(x) for x ∈ X and observe that θ(−1) = 0. Then

p(x) = exp
(〈
θ, T (x)

〉 − A(θ)
)
,
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where A(θ) = log[〈1, exp(θ)〉]. The space of canonical parameters is simply the 2d − 1 di-
mensional real vector space RX ′

where X ′ = X \ {−1}. The interior of the convex support of
the sufficient statistics is given by the set

S =
{
p ∈ RX ′ : p(x) > 0 for all x ∈X ′ and

∑
x∈X ′

p(x) < 1
}
,

which we identify with the interior of the probability simplex, namely

S1 =
{
p : p(x) > 0 for all x ∈ X and

∑
x∈X

p(x) = 1
}
.

REMARK 4.1. The constraints on the space of canonical parameters K defining binary
MTP2 distributions are

(4.1) θ(x ∧ y) + θ(x ∨ y) − θ(x) − θ(y) ≥ 0

for all elementary pairs x, y ∈ X . We recall that a pair x, y is elementary if there exist a subset
A ⊂ V and i, j ∈ V \ A such that x corresponds to A ∪ {i} and y corresponds to A ∪ {j}.
The number of such pairs is

(d
2

)
2d−2. Another way to phrase (4.1) is that θ is a supermodular

set-function that satisfies the normalizing condition θ(−1) = 0; cf. [6].

4.2. KKT conditions and conditional independence. In this section, we study how the
KKT conditions of Theorem 3.5 induce sparsity in the general binary setting, in the form of
context-specific conditional independence constraints. To do this, we introduce some nota-
tion. Following Studený [34], we call the elements in ZX imsets. An important example of
an imset is T (x) ∈ {0,1}X defined earlier. The imset

ux,y := T (x ∧ y) + T (x ∨ y) − T (x) − T (y)

is called a semielementary imset. If x, y form an elementary pair then ux,y is called an ele-
mentary imset. If this pair is associated to sets A ∪ {i} and A ∪ {j} we write ui,j |A. With a
slight abuse of notation, we denote the class of all elementary imsets by E .

Primal feasibility in Theorem 3.5 requires that θ̂ satisfies (4.1), that is,

(4.2) 〈θ̂ , v〉 ≥ 0 for all v ∈ E .

The dual cone C∨ is the cone in RX generated by all elementary imsets. Dual feasibility in
Theorem 3.5 says that σ̂ (x) > 0 for all x ∈ X and

(4.3) σ̂ − T̄ = ∑
v∈E

cvv where cv ≥ 0.

Although every element in C∨ is a nonnegative combination of elementary imsets, such a
combination is typically not unique. For example,

u1,2|3 + u1,3|∅ = u1,3|2 + u1,2|∅.

In particular, the coefficients cv above are not uniquely defined. But independent of the choice
of these coefficients, the complementary slackness condition is equivalent to

〈θ̂ , σ̂ − T̄ 〉 = ∑
v∈E

cv〈θ̂ , v〉 = 0.

By (4.2), this holds if and only if

(4.4) cv〈θ̂ , v〉 = 0 for all v ∈ E .

We conclude that 〈θ̂ , v〉 = 0 for every v that appears in a nonnegative linear combination of
the form (4.3). Therefore, we obtain the following result.
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PROPOSITION 4.2. Each equality in (4.4) corresponds to a context specific conditional
independence statement where two variables are independent conditioned on a particular
value of the remaining variables, as represented by an elementary imset.

PROOF. Each inequality for a given elementary imset in (4.1) can be interpreted as a sign
condition on a specific conditional correlation

cov(Xi,Xj |XV \{i,j} = x) ≥ 0,

corresponding to an elementary imset. �

Note that when d = 3 there are six such constraints and these play an important role in
the boundary decomposition of the latent class model [3]. To see how they appear in the
description of a general binary latent class model, see [4]. In the following example, we show
how this characterization of complementary slackness can be used to compute the MLE.

EXAMPLE 4.3. Let d = 3 and consider the sample represented by the diagram to the left
in the following figure, where we again made use of the bijection between {−1,1}3 and the
set of all subsets of {1,2,3}.

T̄ = 1

13
·

{1,2,3}
1

{1,2}
2

{1,3}
0

{2,3}
4

{1}
1

{2}
0

{3}
3

∅

2

σ̂ = 1

182
·

{1,2,3}
30

{1,2}
12

{1,3}
7

{2,3}
40

{1}
7

{2}
16

{3}
35

∅

35

.

We claim that σ̂ represented by the diagram on the right corresponds to the MLE. First,
we check that σ̂ is indeed MTP2 by checking that σ̂ (x ∨ y)σ̂ (x ∧ x) − σ̂ (x)σ̂ (y) ≥ 0 for all
six elementary pairs x, y. Up to the normalizing constant 182, these are

{1}, {2} : 12 · 35 − 7 · 16 > 0 {1,3}, {2,3} : 30 · 35 − 7 · 40 > 0
{1}, {3} : 7 · 35 − 7 · 35 = 0 {1,2}, {2,3} : 30 · 16 − 12 · 40 = 0
{2}, {3} : 40 · 35 − 16 · 35 > 0 {1,2}, {1,3} : 30 · 7 − 12 · 7 > 0

.

This proves primal feasibility in Theorem 3.5. Dual feasibility is verified by the following
diagram.

σ̂ − T̄ = 16

182
·

{1,2,3}
1

{1,2}
−1

{1,3}
0

{2,3}
−1

{1}
0

{2}
1

{3}
0

∅

0

+ 7

182
·

{1,2,3}
0

{1,2}
0

{1,3}
1

{2,3}
0

{1}
−1

{2}
0

{3}
−1

∅

1

.
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In other words, σ̂ − T̄ = 16
182 · u1,3|2 + 7

182 · u1,3|∅ ∈ C∨. Complementary slackness follows
by direct calculations. Note that the two nonzero generators in the decomposition of σ̂ − T̄

correspond precisely to the MTP2 inequalities for σ̂ that hold as equalities. These equalities
correspond to the conditional independence statement 1 ⊥⊥ 3 |2.

4.3. Existence of the MLE. In this section, we shall discuss problems associated with
existence of the MLE for binary MTP2 distributions, the main result being Theorem 4.5
which gives a simple necessary and sufficient condition for existence.

4.3.1. Existence in the extended family. To derive simple conditions for existence of the
MLE within the exponential family of strictly positive binary distributions that are MTP2, we
consider estimation in the extended family where the strict positivity condition is relaxed and
existence therefore guaranteed.

Let P(X ) denote the set of all probability distributions over X and P2 the set of all totally
positive binary distributions, that is,

P2 = {
p ∈ P(X ) | ∀x, y ∈ X : p(x ∨ y)p(x ∧ y) ≥ p(x)p(y)

}
.

We note that P2 is compact and geometrically convex, that is,

p1,p2 ∈ P2 =⇒ c−1√p1p2 ∈P2

where

c := ∑
x∈X

√
p1(x)p2(x) ≤ 1

and c < 1 unless p1 = p2 by the Cauchy–Schwarz inequality.
For a lattice L, we say that a subset L′ of L forms a sublattice of L if for any two x, y ∈ L′

it holds that x ∧ y ∈ L′ and x ∨ y ∈ L′. Note that for any p ∈ P2 its support supp(p) = {x :
p(x) > 0} is always a sublattice of X , since

p(x) > 0,p(y) > 0 =⇒ p(x ∨ y)p(x ∧ y) ≥ p(x)p(y) > 0.

Consider a sample U = {x1, . . . , xn} with likelihood function

L(p) =
n∏

i=1

p
(
xi)

and let L(U) be the the smallest sublattice of X containing the sample U . We now show that
the support of the MLE is given by L(U).

THEOREM 4.4. The likelihood function attains its maximum over P2 in a unique point
p̂. Furthermore, it holds that supp(p̂) = L(U).

PROOF. Continuity of the likelihood function together with compactness of P2 ensures
that the maximum is attained. To prove uniqueness, suppose for contradiction that p̂1 �= p̂2
both maximize L. Then

L
(
c−1

√
p̂1p̂2

) = c−n
√

L(p̂1)L(p̂2) > L(p̂i)

contradicting that p̂i were maximizers.
Finally, note that U ⊆ supp(p̂) and hence L(U) ⊆ supp(p̂). We show L(U) ⊇ supp(p̂)

by contradiction. Suppose L(U) � supp(p̂), then we can construct p̃ ∈ P2 such that L(p̃) >

L(p̂), which contradicts the fact that p̂ is the MLE; namely, let p̃ be p̂ projected onto L(U)

and rescaled to be a probability mass function, that is, p̃(x) ∝ p(x)1L(U). Then p̃ ∈ P2 and
L(p̃) > L(p̂), which concludes the proof. �
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4.3.2. Existence of MLE in the binary exponential family. The MLE exists in the bi-
nary exponential family if and only if the estimator p̂ in the extended family P(X ) has
full support. Thus as a consequence of Theorem 4.4 we obtain the following result, where
Uij = {x1

ij , . . . , x
n
ij } denotes the marginal sample induced on the pair ij, i �= j .

THEOREM 4.5. The MLE exists within the space of totally positive canonical parame-
ters K2 (cf. Definition 3.1) if and only if L(U) = X . Furthermore, L(U) = X if and only
if every pair-marginal sample Uij for i, j ∈ V = {1, . . . , d} has both of (1,−1) and (−1,1)

represented.

PROOF. As mentioned, the MLE exists in the binary exponential family if and only if
the estimator p̂ in the extended family P(X ) has full support. Thus, as a consequence of
Theorem 4.4, the MTP2 MLE exists if and only L(U) = X .

For the second statement we first prove the backward direction using the identification
between X and subsets of V . Suppose every pair-marginal Uij for i, j ∈ V has both of (1,−1)

and (−1,1) represented. This means that for every i there is a set xij ∈ U with i ∈ xij and
j /∈ xij . But then

{i} = ⋂
j∈V \i

xij ∈ L(U) for all i.

Since the set of all singletons {i} for i ∈ V generates the full lattice X , we obtain L(U) = X
as desired.

We prove the forward direction by proving its contrapositive. Suppose there is a pair ij

such that all sets x ∈ U have the property that

(4.5) i ∈ x =⇒ j ∈ x.

The set of subsets y satisfying (4.5) form a proper sublattice L′ ⊂ X . Since L(U) ⊆ L′ we
obtain that L(U) �=X , which completes the proof. �

Theorem 1 in [33] states that the MLE in the MTP2 Gaussian distribution exists if and only
if all sample correlations are strictly less than one. Theorem 4.5 yields the analogous result
for binary distributions. Indeed we have the following.

COROLLARY 4.6. If the MLE exists within K2, then the empirical covariance matrix
satisfies Sij <

√
SiiSjj for all i �= j .

PROOF. The empirical correlation matrix R has |Rij | = 1 if and only if it holds for all x ∈
U in the sample that xj = axi + b. If both configurations (1,−1) and (−1,1) are represented
in U , this would imply b − a = 1 and b + a = −1 whereby b = 0, a = −1 and thus Rij = −1
implying Sij <

√
SiiSjj . �

Note that the converse is not true. If for two variables the sample is U = {(−1,−1),

(1,−1), (1,1)}, then the MLE does not exist according to Theorem 4.5, but we have
S11 = S22 = 8/9 and S12 = 4/9; so the empirical correlation is equal to 1/2.

As another example, consider the case d = 3. Then the vectors (1,−1,−1), (−1,1,−1),
(−1,−1,1) generate all of {−1,1}3 and hence every sample supported on these three points
will admit a unique MLE under the MTP2 constraint. This set is minimal in the sense that it
cannot be reduced; none of its subsets generates X . There are also minimal generating sub-
sets of size four, for example, (1,1,−1), (1,−1,−1), (−1,−1,1), (−1,1,1). For general
d , a minimal generating set of {−1,1}d is of order O(d) and there always exists a minimal
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FIG. 1. A cycle (left) and a chain (right) with four vertices.

generating set of size exactly d . Hence for binary MTP2 distributions d samples can be suffi-
cient for existence of the MLE. This is in sharp contrast with unrestricted binary exponential
families, where the MLE exists only if all 2d states are observed at least once.

While the MLE in Example 4.3 could be computed by hand, calculations get intractable
rather quickly. The following example is sufficiently complicated that it cannot easily be
calculated by hand, but still simple enough so that numerical optimization using the algorithm
developed in [9] yields the provably exact optimum.

EXAMPLE 4.7. Moussouris [29] provided a now classical example of a distribution q

that is globally Markov to its dependence graph but does not factorize; cf. [26], Example 3.10.
The distribution in this example is uniformly supported on eight points

(−1,−1,−1,−1) (1,−1,−1,−1) (1,1,−1,−1) (1,1,1,−1)

(−1,−1,−1,1) (−1,−1,1,1) (−1,1,1,1) (1,1,1,1).

This distribution is globally Markov with respect to the 4-cycle in Figure 1 (left), and we shall
consider these eight points as constituting a sample of size eight. The MLE for this graphical
model as an exponential family does not exist. Note that the sample distribution is not MTP2,
since, for example, the inequality

p(1,−1,−1,1)p(−1,−1,−1,−1) ≥ p(1,−1,−1,−1)p(−1,1,−1,−1)

does not hold. On the other hand, since the conditions of Theorem 4.5 are satisfied, the MLE
σ̂ under MTP2 exists. It is represented by the following diagram, where the highlighted nodes
correspond to the eight points supported by the sample.

Primal feasibility of σ̂ is verified by the following inequalities, one for each of the 24 ele-
mentary pairs (labeled by sets {i}∪A and {j}∪A). Up to the normalizing constant 128, these
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are:

{1}, {2} : 9 · 27 − 9 · 3 > 0 {1,3}, {2,3} : 9 · 3 − 1 · 3 > 0
{1,4}, {2,4} : 3 · 9 − 3 · 1 > 0 {1,3,4}, {2,3,4} : 27 · 9 − 3 · 9 > 0
{1}, {3} : 1 · 27 − 9 · 3 = 0 {1,2}, {2,3} : 9 · 3 − 9 · 3 = 0
{1,4}, {3,4} : 3 · 9 − 3 · 9 = 0 {1,2,4}, {2,3,4} : 27 · 1 − 3 · 9 = 0
{1}, {4} : 3 · 27 − 9 · 9 = 0 {1,2}, {2,4} : 3 · 3 − 9 · 1 = 0
{1,3}, {3,4} : 3 · 3 − 1 · 9 = 0 {1,2,3}, {2,3,4} : 27 · 3 − 9 · 9 = 0
{2}, {3} : 3 · 27 − 3 · 3 > 0 {1,2}, {1,3} : 9 · 9 − 9 · 1 > 0
{2,4}, {3,4} : 9 · 9 − 1 · 9 > 0 {1,2,4}, {1,3,4} : 27 · 3 − 3 · 3 > 0
{2}, {4} : 1 · 27 − 3 · 9 = 0 {1,2}, {1,4} : 3 · 9 − 9 · 3 = 0
{2,3}, {3,4} : 9 · 3 − 3 · 9 = 0 {1,2,3}, {1,3,4} : 27 · 1 − 9 · 3 = 0
{3}, {4} : 9 · 27 − 3 · 9 > 0 {1,3}, {1,4} : 3 · 9 − 1 · 3 > 0
{2,3}, {2,4} : 9 · 3 − 3 · 1 > 0 {1,2,3}, {1,2,4} : 27 · 9 − 9 · 3 > 0

Quite surprisingly, the MLE is therefore still globally Markov to the 4-cycle even though
these constraints were not explicitly enforced. Moreover, σ̂ satisfies an additional conditional
independence relation, namely 1 ⊥⊥ 4|{2,3}, and so it is Markov to the smaller graph in Fig-
ure 1 (right).

There are many equivalent ways to write the vector σ̂ − T̄ . The most canonical is the one
using all twelve elementary imsets allowed by the complementary slackness condition (4.4),
that is, the ones corresponding to boldfaced rows above:

σ̂ − T̄ = 3

128
· u1,3|∅ + 1

128
· u1,3|2 + 1

128
· u1,3|4 + 3

128
· u1,3|2,4

+ 3

128
· u2,4|∅ + 1

128
· u2,4|1 + 1

128
· u2,4|3 + 3

128
· u2,4|1,3

+ 5

128
· u1,4|∅ + 5

128
· u1,4|2 + 5

128
· u1,4|3 + 5

128
· u1,4|2,3.

Each of the vectors ui,j |A above is a generator of C∨ and so σ̂ − T̄ ∈ C∨.

REMARK 4.8. To show that σ̂ − T̄ lies in C∨, it is enough to express it as a nonnegative
combination of vectors T (x ∧ y) + T (x ∨ y) − T (x) − T (y) for arbitrary pairs x, y ∈ X .
This follows directly from [34], Proposition 4.2.

Note that in the above examples the MLEs correspond to models satisfying conditional
independence statements. However, in general the MLE will satisfy a set of context specific
conditional independence statements that may not lead to full conditional independences. In
the following subsection, we consider binary MTP2 models that satisfy conditional indepen-
dence relations given by a graphical model.

4.4. Totally positive graphical models for binary variables. Given a graph G = (V ,E),
let P2(G) denote the set of distributions in P2 that lie in the completion of the exponential
family ([7], pp. 154–155) for the graphical model over G, that is,

P2(G) =P2 ∩ ME(G),

where ME(G) denotes the set of extended Markov distributions ([26], p. 40) obtained as limits
of factorizing distributions; see also [20]. We note that P2(G) is compact and geometrically
convex (see, e.g., [26], p. 73); hence the MLE over P2(G) exists and is unique.

We first need a lemma to identify when binary MTP2 distributions p ∈ P2 have full support
based on their marginals. These results are critical for this section in order to identify when
the MLE of a binary distribution that is Markov over a graph has full support.
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LEMMA 4.9. Let p ∈ P2 and let x ∈ X . Suppose pij (xi, xj ) > 0 for all pairs i, j then
p(x) > 0.

PROOF. For every i, j let y(ij) ∈ supp(p) such that y
(ij)
ij = (xi, xj ). Let A/B be the

partition of V such that xi = −1 for i ∈ A and xi = 1 on B . For each i ∈ A, define z(i) =
maxj∈B y(ij). By construction, z

(i)
i = −1 and z

(i)
B = (1, . . . ,1). Moreover, z(i) ∈ supp(p) be-

cause supp(p) is a lattice. Since x = mini∈A z(i), x ∈ supp(p) again because the support of p

is a lattice. �

COROLLARY 4.10. If p ∈ P2, then p has full support X if and only if each pair-margin
pij has full support.

The following result extends Theorem 4.5 to binary graphical models and relaxes the pair-
marginal condition to be necessary only for pairs of neighbours in the graph G. As before
Uij = {x1

ij , . . . , x
n
ij } denotes the pair-marginal sample for the pair ij .

THEOREM 4.11. If every pair marginal sample Uij along edges ij ∈ E has both of
(1,−1) and (−1,1) represented, then the unique MLE p̂ ∈ P2(G) has full support.

The proof makes use of the fact that the support of p̂, denoted by supp(p̂), is a lattice
since p̂ ∈ P2. In addition, since p̂ ∈ ME(G), p̂ also satisfies the global, local and pairwise
Markov properties w.r.t. G ([26], p. 42, (3.16). In particular, the proof relies on the following
two lemmas.

LEMMA 4.12. If the pair marginal sample Uij has both of (1,−1) and (−1,1) repre-
sented for all ij ∈ E, then supp(p̂ij ) = {−1,1}2 for all ij ∈ E.

PROOF. The MTP2 property is closed under taking marginals (see [22]). So if p̂ is MTP2,
so are its marginals p̂ij . Thus supp(p̂ij ) is a lattice containing Uij . As a consequence, if Uij

has both of (1,−1) and (−1,1) represented, then supp(p̂ij ) = {−1,1}2, which completes the
proof. �

Denoting by ∂i the neighbors of node i ∈ V in G, the following lemma will be needed for
showing that supp(p̂ij ) = {−1,1}2 for all pairs ij and not only the pairs ij ∈ E.

LEMMA 4.13. Suppose that every pair marginal sample Uij along edges ij ∈ E has
both of (1,−1) and (−1,1) represented. If p̂∂i(x∂i) > 0 for some x∂i , then p̂i∪∂i(xi∪∂i) > 0
for every xi .

PROOF. Since p̂∂i(x∂i) > 0, clearly p̂i∪∂i(xi∪∂i) > 0 for some xi , say xi = 1. We need
to show that p̂i∪∂i(yi∪∂i) > 0 also if yi = −1 and y∂i = x∂i . Let zi∪∂i be such that zi = −1
and z∂i = (1, . . . ,1). Since p̂ ∈ P2(G), its support is a lattice and the same applies to each
margin of p̂. Because

yi∪∂i = xi∪∂i ∧ zi∪∂i,

to show that yi∪∂i lies in the support of p̂i∪∂i it is sufficient to show that this holds for zi∪∂i .
By the assertion, for each j ∈ ∂i the edge-margin Uij has (−1,1) represented. In particular,

there is a point u(j) ∈ X such that u
(j)
i = −1 and u

(j)
j = 1. The support of p̂ necessarily

contains all elements in U and hence p̂(u(j)) > 0 for all j ∈ ∂i. Let u be the elementwise
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maximum of all u(j). This point lies in supp(p̂) because it forms a lattice. By construction,
ui∪∂i = zi∪∂i , which proves that zi∪∂i (and hence also yi∪∂i ) lies in the support of p̂i∪∂i . The
proof for the case where xi = −1 is analogous. �

We are now ready to provide the proof of Theorem 4.11.

PROOF OF THEOREM 4.11. From Corollary 4.10, it follows that p̂ has full support if and
only if the marginal support supp(p̂ij ) is full for all i, j ∈ V . When ij ∈ E, this follows from
Lemma 4.12. Next, consider a pair ij /∈ E. Since p̂ ∈ ME(G), it satisfies the local Markov
property with respect to G. Hence for any xi, xj ∈ {−1,1}, it holds that

p̂ij (xi, xj ) = ∑
x∂i∪∂j

p̂(xi, xj |x∂i∪∂j )p̂(x∂i∪∂j )

= ∑
x∂i∪∂j

p̂(xi |x∂i)p̂(xj |x∂j )p̂(x∂i∪∂j ).

Since there is at least one x∂i∪∂j in the support of p̂∂i∪∂j , then by Lemma 4.13 both of
p̂(xi, x∂i) and p̂(xj , x∂j ) are strictly positive and hence also the corresponding summand. It
follows that p̂ij (xi, xj ) > 0, as desired. �

Theorem 4.11 provides conditions for the existence of the MLE in the underlying exponen-
tial family, which we denote by K2(G), consisting of all points in P2(G) with full support.

COROLLARY 4.14. If G is bipartite, then the minimal sample size required for exis-
tence of the MLE is n = 2. More generally, for arbitrary graphs the minimal sample size for
existence of the MLE is of the order of the maximal clique size.

Hence the minimal sample size for existence of the MLE goes from 2d for unrestricted bi-
nary distributions, to d for MTP2 binary distributions, to O(maximal clique size) for MTP2
binary distributions on graphs, including Ising models. In the following subsection, we con-
sider a special class of binary distributions that contain as prominent examples Ising models
without external field and show that the minimal sample size for existence of the MLE can
be further reduced.

4.5. Symmetric binary distributions. A distribution p over X = {−1,1}d is symmetric
(or palindromic) if p(x) = p(−x) for all x ∈ X . Distributions of this form have been studied,
for example, in [28] and also appear in statistical physics in the context of spin models with no
external field. If X = (X1, . . . ,Xd) has a symmetric distribution, then EXi = 0 and var(Xi) =
1 for all i = 1, . . . , d . As a consequence, the covariance matrix and the correlation matrix
of X coincide. Note also that symmetry translates into linear constraints θ(x) = θ(−x) for
all x ∈ X on the canonical parameters of the binary exponential family. Hence symmetric
distributions with full support form themselves an exponential family. In the following, we
characterize existence of the MLE for symmetric binary distributions.

Let as before U = {x1, . . . , xn} denote a random sample. Let A(U) denote the smallest
algebra generated by U , that is, the smallest subset of X that contains U and is closed under
the lattice operations ∧, ∨ and the complement x �→ −x. For a family of distributions P, we
let Ps denote the set of symmetric distributions in P and Us = U ∪ −U be the symmetrized
sample.

PROPOSITION 4.15. If P is geometrically convex, then the MLE p̂s under Ps based on
a sample U exists in Ps if and only if the MLE p̃s under P based on the symmetrized sample
Us exists. In this case, it holds that p̂s = p̃s .
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PROOF. Note that for any p ∈P , the likelihood function satisfies

L
(
p;Us) = ∏

x∈X
p(x)n(x)+n(−x) = L

(
p̌;Us),

where p̌(x) = p(−x), and n(x) = |{i ∈ 1, . . . , n : xi = x}| are the empirical counts in the
sample U . Since P is geometrically convex, a maximizer p̃s of L(p;Us) is unique; thus
p̃s(x) = p̃s(−x), and hence p̃ ∈Ps . Note also that for any ps ∈ Ps we have

L(ps;U)2 = L
(
ps;Us).

So any maximizer of L(ps;U) over Ps is also a maximizer of L(ps;Us) and vice-versa.
Finally, the uniqueness implies that p̂s = p̃s , as desired. �

By combining Proposition 4.15 with Theorem 4.5, we obtain the following corollary on
the existence of the MLE for symmetric binary distributions.

COROLLARY 4.16. The MLE for a symmetric binary exponential family exists if and
only if A(U) = X . Furthermore, A(U) = X if and only if for every pair ij the event {Xi �=
Xj } is represented in the sample.

Finally, as a consequence we obtain the following corollary as an application of Theo-
rem 4.11 to symmetric binary distributions on graphs defined as Ps

2(G) := P2(G) ∩Ps
2 .

COROLLARY 4.17. If the event {Xi �= Xj } is represented in every pair marginal sample
Uij , then the MLE p̂ in the family Ps

2(G) has full support.

REMARK 4.18. We note again the remark to Theorem 1 in [33] which states that the
MLE in an MTP2 Gaussian distribution exists if and only if all sample correlations are strictly
less than one. Corollary 4.17 implies that exactly the same is true for symmetric binary dis-
tributions. Interestingly, while for (nontrivial, i.e., with at least one edge) Gaussian graphical
models sample size equal to two is necessary and sufficient for existence of the MLE (with
probability 1) [25], as a consequence of Corollary 4.14 and Corollary 4.17, the MLE for a
symmetric binary distribution on a bipartite graph may have full support for sample size equal
to one.

5. Totally positive Ising models. In this section, we study maximum likelihood estima-
tion in Ising models, a special class of binary distributions that form a quadratic exponential
family. An algorithm for calculating the MLE p̂ for general binary MTP2 distributions was
developed in [9]. In Section 5.2, we develop an algorithm analogous to iterative proportional
scaling (IPS) for the special case of Ising models under MTP2. In addition, we discuss the
special case of MTP2 Ising models with no external field, which forms a symmetric expo-
nential family. Such distributions can be seen as a proxy to Gaussian distributions and in
Section 5.3 we discuss their similarities and differences.

Since Ising models form a quadratic exponential family, their probability mass function is
of the form

(5.1) p(x;h,J ) = exp
(
hT x + xT Jx/2 − A(h,J )

)
,

with h ∈ Rd and J ∈ Sd
0 , where Sd

0 is the set of symmetric matrices in Rd×d with Jii = 0 for
all i, ensuring minimality of the representation; see (3.3). We let I2 be the set of Ising models
above that are also MTP2, that is, where Jij ≥ 0 for all i �= j .

Let θ = (h, J ) denote the canonical parameters. We make the following two important
observations regarding the canonical parameters. For any i, j ∈ V let A = V \ {i, j}. Then the
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corresponding conditional log-odds ratios are all equal; more precisely, denote by x, y ∈ X
any two points satisfying xA = yA, xi = yj = 1, and xj = yi = −1, then

(5.2) log
(

p(x ∨ y)p(x ∧ y)

p(x)p(y)

)
= 4Jij .

This is another way of confirming that an Ising model defined by (h, J ) is MTP2 if and only
if J ∈ Sd+ ∩ Sd

0 ; see Proposition 3.6. In addition, note that for any x with xi = 1 and y equal
to x up to the i’th coordinate, then

(5.3) log
(

p(x)p(−y)

p(−x)p(y)

)
= 4hi.

The sufficient statistics based on the observations x1, . . . , xn are the first- and second-order
moments

(x̄,M) := 1

n

(
n∑

i=1

xi,

n∑
i=1

xi(xi)T )
.

Strictly speaking, we should ignore the diagonal elements of M , but since they are all deter-
ministically equal to 1, this does not matter for the following considerations. In addition, for a
graphical Ising model on G = (V ,E)—that is, where we assume Jij = 0 unless ij ∈ E—the
entries Mij for ij /∈ E should be ignored. The associated mean value parameters are

(μ,�) := (
EθX,EθXXT )

.

5.1. Existence of the MLE for totally positive Ising models. Theorem 4.11 can be spe-
cialized to the quadratic case, that is, when also the Ising model is assumed. The condition for
existence is here unchanged compared to the general Markov case. For an undirected graph
G = (V ,E), let I2(G) be the family of totally positive Ising models that are Markov w.r.t.
G, that is, where Jij = 0 unless ij ∈ E. We then have the following.

THEOREM 5.1. If every pair marginal sample Uij along edges ij ∈ E has both of
(1,−1) and (−1,1) represented, then the MLE p̂ ∈ I2(G) is unique and has full support.

PROOF. By Theorem 4.11, the MLE exists within the convex exponential family P2(G).
Since I2(G) is an exponential subfamily of that, the MLE also exists within I2(G). �

In the following, we shall develop an algorithm for calculating the MLE in MTP2 Ising
model.

5.2. IPS algorithm for computing the MLE. The standard IPS algorithm (see [26], p. 82)
for computing the MLE without the MTP2 restriction works by cycling through all pairs ij ∈
E and optimizing the likelihood function when fixing the values of all canonical parameters
associated with variables other than the given pair, namely

h−ij := (
hv, v ∈ V \ {i, j}), J−ij := (

Juv, u, v ∈ V \ {i, j}).
Dually, this corresponds to fitting the mean value parameters associated with i, j to their
empirically observed values, that is,

μi = x̄i , μj = x̄j , �ij = Mij .

If the MLE exists, then this algorithm is known to converge to the MLE (see [26], p. 82). We
next extend this algorithm to MTP2 Ising models.
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Let eij denote the empirical distribution of (Xi,Xj ). Note that this distribution depends
on the sufficient statistics through the formula

eij (1,1) = (1 + x̄i + x̄j + Mij )/4, eij (1,−1) = (1 + x̄i − x̄j − Mij )/4,

eij (−1,1) = (1 − x̄i + x̄j − Mij )/4, eij (−1,−1) = (1 − x̄i − x̄j + Mij )/4.

We now assume that eij (1,−1) > 0 and eij (−1,1) > 0 for all ij ∈ E, which ensures
that −1 < x̄i < 1 for all i ∈ V and that the MLE has full support; see Theorem 4.11. By
Corollary 3.7 and the following paragraph, for edges where Sij = Mij − x̄i x̄j < 0, it holds
that Jij = 0. For the other edges, it holds that

eij (1,1) ≥ (1 + x̄i + x̄j + x̄i x̄j )/4 = (1 + x̄i )(1 + x̄j )/4 > 0

and, similarly, eij (−1,−1) ≥ (1 − x̄i )(1 − x̄j ) > 0.
The IPS algorithm is initialized in any point inside the model such as the uniform distribu-

tion or the distribution where all variables are mutually independent with mean μ̂ = x̄. The
update for the edge ij ∈ E can be expressed as

(5.4) p(x) ← p(x)
eij (xi, xj )

pij (xi, xj )
= p(x−ij |xi, xj )eij (xi, xj ) = p(x)qij (xi, xj ).

Using (5.2), we easily verify that Jij is the only entry of J affected by this update. Exploiting
that qij (xi, xj ) > 0, we can define

(5.5) �ij := 1

4
log

qij (1,1)qij (−1,−1)

qij (1,−1)qij (−1,1)
.

Using a mixed parametrization (see [7]) with (μi,μj , Jij ) and canonical para- meters for all
other indices, the update step can equivalently be expressed as

Jij ← Jij + �ij , μi ← x̄i , μj ← x̄j ,

where all other entries of (h, J ) remain unchanged.
To ensure the MTP2 constraint, it is natural to replace Jij with zero if the update becomes

negative and then recalculate (hi, hj ) to comply with the requirement (μi,μj ) = (x̄i , x̄j ).
Alternatively, we can express the update in terms of mean value parameters by letting

�̂ij ← Mij + λ∗. To compute λ∗, define e∗
ij = eij (λ

∗) by

e∗
ij (1,1) = (1 + x̄i + x̄j + �̂ij )/4 = eij (1,1) + λ∗/4,

e∗
ij (1,−1) = (1 + x̄i − x̄j − �̂ij )/4 = eij (1,−1) − λ∗/4,

e∗
ij (−1,1) = (1 − x̄i + x̄j − �̂ij )/4 = eij (−1,1) − λ∗/4,

e∗
ij (−1,−1) = (1 − x̄i − x̄j + �̂ij )/4 = eij (−1,−1) + λ∗/4,

and define q∗
ij = e∗

ij /pij . Then λ∗ is given by the solution to the equation

(5.6) �ij (λ) = −Jij ,

where

�ij

(
λ∗) = 1

4
log

q∗
ij (1,1)q∗

ij (−1,−1)

q∗
ij (1,−1)q∗

ij (−1,1)
.

Note that �ij (λ) is strictly increasing in λ, �ij (0) < −Jij , and �ij (λ) → ∞ for λ →
min(eij (1,−1), eij (−1,1)). Hence there is a unique solution λ∗ with λ∗ > 0. Letting x =
λ/4, then (5.6) becomes

log
(

(eij (1,1) + x)(eij (−1,−1) + x)

(eij (−1,1) − x)(eij (1,−1) − x)

)
= − log

(
pij (1,1)pij (−1,−1)

pij (−1,1)pij (1,−1)

)
− 4Jij ,
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Algorithm 1 IPS-type algorithm for computing the MLE in MTP2 Ising models

input: Sample moments (x̄,M), a graph G = (V ,E), and precision ε.
output: The MLE (p̂, Ĝ, μ̂, �̂).

initialize μ = x̄; p(x) = 2−|V | ∏
v∈V (1 + xvμv) for all x ∈X ; � = I;

initialize E+ = {uv ∈ E | Muv > x̄ux̄v}; Ê = ∅;

repeat
for ij ∈ E+ do

calculate �ij by (5.5);
calculate Jij by (5.2);
if �ij + Jij > 0 then

update p by (5.4);
Ê ← Ê ∪ {ij};

else
solve �ij (λ) = −Jij ;
update p by (5.7);
Ê ← Ê \ {ij};

end if
end for
calculate (μ,�) from p;

until maxv∈V |μ̂v − x̄v| < ε and minuv∈E(�uv −Muv) ≥ 0 and max
uv∈Ê

|�uv −Muv| < ε;

return p, Ĝ = (V , Ê),μ,�.

or equivalently,

(eij (1,1) + x)(eij (−1,−1) + x)

(eij (−1,1) − x)(eij (1,−1) − x)
= pij (1,1)pij (−1,−1)

pij (−1,1)pij (1,−1)
· e−4Jij .

Denoting the right-hand side of the above equation by R, multiplying both sides by
(eij (−1,1) − x)(eij (1,−1) − x), and moving everything to the left, we obtain a quadratic
equation ax2 + bx + c = 0 with a = 1 − R,

b = eij (1,1) + eij (−1,−1) + R
(
eij (−1,1) + eij (1,−1)

)
,

c = eij (1,1)eij (−1,−1) − R
(
eij (−1,1)eij (1,−1)

)
.

Hence the solution λ∗ = 4x∗ is given by taking x∗ to be the positive root of this quadratic
equation. Using λ∗, we can then update p(x) as follows:

(5.7) p(x) ← p(x)
e∗
ij (xi, xj )

pij (xi, xj )
.

The full procedure is presented in Algorithm 1. In the following theorem, we show that this
procedure indeed converges to the MLE (if it exists).

THEOREM 5.2. If the MLE for the MTP2 Ising model on the undirected graph G =
(V ,E) exists, then the output of Algorithm 1 converges to the MLE for ε → 0.

PROOF. Let (h, J ) denote the canonical parameters of the exponential family. Then the
log-likelihood function satisfies

−1

n
logL(h,J ) = log c(h, J ) − hT x̄ − tr(JM)/2,
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where c(h, J ) is the normalizing constant of the exponential family. We fix a value (h0, J 0)

with J 0
uv ≥ 0 and consider the following restricted convex optimization problem:

minimize
(h,J )

log c(h, J ) − hT x̄ − tr(JM)/2

subject toJij ≥ 0, hu = h0
u, u ∈ V \ {i, j}, Juv = J 0

uv for uv �= ij .

Exploiting that most entries of (h, J ) are fixed, this problem is equivalent to

minimize
(hi ,hj ,Jij )

log c(h, J ) − hix̄i − hj x̄j − JijMij

subject toJij ≥ 0,

where the fixed values hu = h0
u, u ∈ V \ {i, j} and Juv = J 0

uv for uv �= ij enter into the
function log c(h, J ). Since also this subfamily is a convex exponential family, the solution to
this optimization problem is uniquely determined by:

(i) Primal feasibility: Ĵij ≥ 0
(ii) Dual feasibility: μ̂i = x̄i , μ̂j = x̄j , and �̂ij ≥ Mij ,

(iii) Complementary slackness: (�̂ij − Mij )Ĵij = 0.

Thus, if J 0
ij + �ij ≥ 0 we update as in (5.4). Else we update as in (5.7).

Note that every step of the algorithm maximizes the likelihood over a section. In addition,
any fixed point of the algorithm satisfies the conditions in Corollary 3.7, and hence must be
equal to the unique MLE. Furthermore, the updates depend continuously on p. Hence the
algorithm is an instance of iterative partial maximization as described in [26], p. 230, and is
therefore convergent with the unique MLE as limit. �

We note a computational issue with Algorithm 1. As stated above, the algorithm requires
visiting all possible states x ∈ X , which becomes computationally prohibitive for large d

as the computational effort is then exponential in d . This problem can be overcome by an
appropriate use of probability propagation as in [21]. More precisely, instead of representing
p by its values p(x), x ∈X , we represent p by a set of potentials ψij , ij ∈ E, such that

p(x) ∝ ∏
ij∈E

ψij (xi, xj ) = ∏
ij∈E

exp(xixjJij ).

Whenever a marginal p(xu, xv) is required for the update, it is calculated from J by proba-
bility propagation as, for example, described in [15]. Then instead of updating p itself, the
update (5.4) or (5.7) is performed by updating J only. This reduces the computational effort
to become linear in the maximal clique size of G rather than d .

Finally, note that since the algorithm runs entirely in terms of probabilities p(x), a simple
modification of the algorithm as in [24, 26] guarantees convergence even when the MLE
does not exist within the exponential family. We refrain from providing the details of this
modification.

EXAMPLE 5.3. Consider again the data in Example 4.7. On this data, Algorithm 1 con-
verges in one step and the maximum likelihood distribution is given by a rational function of
the data. The corresponding MLEs are

�̂ =

⎡
⎢⎢⎣

1 0.5 0.25 0.125
0.5 1 0.5 0.25

0.25 0.5 1 0.5
0.125 0.25 0.5 1

⎤
⎥⎥⎦ , Ĵ = log(3)

2

⎡
⎢⎢⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤
⎥⎥⎦

This is a very special example, where the following three MLEs all coincide:
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1. MLE computed under MTP2 for general binary distributions.
2. MLE computed for the MTP2 Ising model over the complete graph.
3. MLE computed for the Ising model over the chain graph in Figure 1.

The equivalence of (2) and (3) follows from Corollary 3.10 whereas (1) and (2) are usually
not equivalent.

5.3. Totally positive Ising models with no external field. A special example of a symmet-
ric binary distribution is the Ising model with no external field, that is, a family of binary
distributions over X = {−1,1}d of the form

(5.8) p(x) = 1

c(J )
exp

(
xT Jx/2

)
.

This was termed the palindromic Ising model in [28]. The space of canonical parameters is
the set Sd

0 of all symmetric d × d matrices with 0 in the diagonal. The mean parameter is
� = � = EXXT , which is the correlation matrix because �ii = EX2

i = 1 and EXi = 0. By
Proposition 3.6, the quadratic exponential family is MTP2 if and only if Jij ≥ 0 for all i �= j .
In [28], these models have been studied as a close proxy to the Gaussian distribution since
(5.8) becomes almost identical to the Gaussian density by letting J = −K in this expression.

As a consequence of Proposition 4.15, we note that Algorithm 1 also converges for palin-
dromic Ising models by working with the symmetrized sample U + Us . However, the algo-
rithm can be simplified using

eij (1,1) = eij (−1,−1) = (1 + Mij )/4,

eij (1,−1) = eij (−1,1) = (1 − Mij )/4.

In addition,

(5.9) �̃ij (λ) = 1

2
log

pij (−1,1)(1 + Mij + λ)

pij (1,1)(1 − Mij − λ)

can be used to determine λ to ensure the MTP2 property is preserved under the update. We
refrain from giving the full details of the simplified steps in this algorithm.

6. Application to psychological disorders. In this section, we illustrate the developed
methods via a real data case study. We analyze data obtained from the National Comorbidity
Survey Replication study [2, 23] (NCS-R data), which was also analyzed in [12]. The data
consists of 9282 observations of 18 binary variables, namely depr (Depressed mood), inte
(Loss of interest), weig (Weight problems), mSle (Sleep problems), moto (Psychomo-
tor disturbances), mFat (Fatigue), repr (Self reproach), mCon (Concentration problems),
suic (Suicidal ideation), anxi (Chronic anxiety/worry), even (Anxiety > 1 event), ctrl
(No control over anxiety), edge (Feeling on edge), gFat (Fatigue), irri (Irritable), gCon
(Concentration problems), musc (Muscle tension), gSle (Sleep problems). These variables
are symptoms related to two disorders, namely major depression (MD) and generalized anx-
iety disorder (GAD). The symptoms that are known to appear in both disorders are sleep
problems, fatigue and concentration problems. These so-called bridge variables appear in
pairs mSle, gSle, mFat, gFat and mCon, gCon.

The contingency table resulting from this dataset is very sparse with only 872 out of 65,536
elementary events observed; 5667 out of 9282 respondents recorded none of the listed symp-
toms. All variables are positively correlated in the sample. Although the sample distribution
is not MTP2, assuming total positivity is justified in this application, since the symptoms
are likely to appear jointly. The sample does not satisfy the conditions of Theorem 4.5, be-
cause the variables anxi and even are perfectly correlated with each other and with seven
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FIG. 2. (left) Sample correlation network for the NCS-R data, (right) the corresponding network of Ĵ .

other variables in the sample distribution. For the analysis, we therefore removed these two
problematic variables and ran Algorithm 1 on the remaining contingency table of size 216.
We used a convergence criterion of ε = 10−4. The algorithm converged after 28 iterations
through all 120 variable pairs which in our current rough implementation took 37 minutes on
a laptop. We note that using the algorithm and software developed in [9] fitting the uncon-
strained MTP2 model failed due to space limitations.

Figure 2 shows the network corresponding to the sample correlation matrix (left) and the
MLE Ĵ (right). The magnitude of an entry ij in the matrix is represented by the thickness
of the corresponding edge. The sample correlation network including the two nodes anxi
and even is also shown in Figure 2b of [12]. The sparsity of the MLE Ĵ as compared to
the sample correlation matrix is striking; it contains 72 edges as compared to 120 edges
in the complete graph on 16 vertices. In addition, the graphical model given by Ĵ cleanly
separates into two blocks with the upper block prominently containing a star graph with
center depr. This resembles Figure 4 in [12], where this subgraph is called a causal skeleton
of the covariance graph and was obtained based on rankings by 12 clinicians. Moreover, we
note that the bottom block, while less prominently, also contains a star graph centered at
the variable edge. Finally, note that the three most significant edges across the two blocks
are between pairs of bridge variables. This analysis shows that Algorithm 1 resulted in an
interpretable sparse graphical model with a network that seems relevant for the application.

The graphical model learned by Algorithm 1 fits reasonably well: The value of the log-
likelihood function at the MLE is -28,767.3, while the value of the log-likelihood function
of the unrestricted Ising model (fitted using the loglin function in R) is -28,682.45. This
results in a likelihood ratio statistic of 169.7 which appears high compared to a χ2 distribution
with 120 − 72 = 48 degrees of freedom. However, the exact and asymptotic distributions of
this statistic are unknown; the asymptotic distribution is a mixture of χ2-distributions with
different degrees of freedom, but with unknown weights.

We also calculated the split-likelihood ratio test statistic as described in [35] and this re-
sulted in a test statistic of Un = 1.8 × 10−58 which does not reject the MTP2 hypothesis for
any level α as it should be compared to 1/α. Hence it appears that the MTP2 analysis of this
dataset is appropriate.

Acknowledgments. We would like to thank Antonio Forcina for making his MATLAB

code from [9] available to us. We have also benefited from discussions with Béatrice de
Tilière.



1458 S. LAURITZEN, C. UHLER AND P. ZWIERNIK

Funding. This research was supported through the program “Research in Pairs” by the
Mathematisches Forschungsinstitut Oberwolfach in 2018. Caroline Uhler was partially sup-
ported by NSF (DMS-1651995), ONR (N00014-17-1-2147 and N00014-18-1-2765), IBM
and a Simons Investigator Award.

Piotr Zwiernik was supported by the Spanish Ministry of Economy and Competitiveness
(MTM2015-67304-P), Beatriu de Pinós Fellowship (2016 BP 00002) and the program Ayu-
das Fundación BBVA (2017).

REFERENCES

[1] AGOSTINI, D. and AMÉNDOLA, C. (2019). Discrete Gaussian distributions via theta functions. SIAM J.
Appl. Algebra Geom. 3 1–30. MR3904412 https://doi.org/10.1137/18M1164937

[2] ALEGRIA, M., JACKSON, J. S. J. S., KESSLER, R. C. and TAKEUCHI, D. (2016). Collaborative Psychiatric
Epidemiology Surveys (CPES), 2001–2003 [United States].
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