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Introduction. In a first course the case of two coupled linear differential equations
tends to fall between two stools. The teacher’s unrequited love for eigenvalues
drives him into the complex domain, a maze in which he seldom finds the simple,
real solutions of the original problem. And even if the complex numbers can be
avoided he has difficulties returning through the coordinate transforms. It would
seem that if the students had an adequate basis in algebra, everything would be
easy. However, on the one hand, it is too much to include all that algebra. On
the other hand, that particular subject is not something that can be used now and
explained later.

Hence, it is tempting to look for a simple, direct solution, which works in the
real domain and only requires straightforward ideas.

The Problem. We want to analyse an initial value problem: a couple of linear
first-order differential equations with constant real coefficients in order to find the
real solutions. The system is

(1) .Ci)l =axi + bCIZ‘Q
(2) .Ci?g =cx1 + dCIZ‘Q
where a,b,c,d € R, and x1,xo are functions with initial values

(3) 21(0)
(4) 22(0)
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with 29,29 € R. We shall prefer to write it in matrix form. We define vectors

0
T T
X = 1 XO oy 6
and coeflicient matrix

®) a=(0h)
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Then we may replace (1), (2) by (6) and (3), (4) by (7):

(6) x = Ax
(7) x(0) = x°
Motivation. In the traditional search for solutions we argue along the following
lines: If A should happen to be a diagonal matrix, i.e.,
b = c =0, then the system consists of two independent equations, namely

',i?l = ary, i? :d'r27
with independent initial values

71(0) = 29, 22(0) = z3.

If A is not of the wanted form, we look for a coordinate transformation

x = Sy
which changes the equation to
(8) y =S 'ASy.
If the new matrix
B=S""AS

happens to be diagonal, then we are through. Unfortunately, we might need to
extend the problem into the complex domain in order to obtain this diagonalization,
and even so, as the matrix
a 1
(6 )

shows, not all matrices can be diagonalized. In spite of the large amount of algebra
employed we have hardly succeeded in finding the real solutions.

Alternative Analysis. The idea to be explained below is to argue slightly differ-
ently: If A2 should happen to be diagonal, then the system is easy to solve, even as
an initial value problem. If A? is not diagonal, then we are able to transform the
problem, such that the new one has a coefficient matrix with diagonal square. As a
matter of fact, neither of the above features needs complex numbers, and further,
there are no exceptions to the procedure or even to the formulas for the solutions
of the initial value problem.

The Solution with Trace Zero. If A is not already a diagonal matrix, then A2
is diagonal, if and only if the trace of A is zero. As we shall see, we can always
transform the problem to the case where the trace of the new coefficient matrix is
zero, even when A is diagonal. Hence we shall restrict our analysis to the case of
trace zero.

Theorem 1. If A has trace zero, then —A? is the determinant of A times the unit
matriz, i.e. A2 = AE with A = a? + be.
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Theorem 2. If A? is diagonal, then either A is diagonal or the trace of A is zero.
Proofs. Elementary. O

Under this assumption we shall analyse the solution of (6) and (7). Let x be a
solution of (6)-(7). Then by Theorem 1:

9) X = AEx.

Let § be the solution of the initial value problem

Note that & solves (10), but not (11). Then 4 is not proportional to § and hence
the couple (0,0) constitutes a basis for the solutions of (10). Because x solves (9),
it must take the form

(12) X = 0v + 0w
where v and w are vectors in R?. As x satisfies (6), we have
X =0v+ 0w = Ax = 0Av + 6Aw.
Using (10) we get the equation
oW + 0AV = AV + fAw.

At t = 0 we have, because of (11),
(13) w = Av.
Substitution of (13) in (12) yields

x = (0E + JA)v.
As x satisfies (7), we have
(14) x’ =x(0) = (IE+ 0A)v =v.
Hence the solution of (6) and (7) is of the form
(15) x = (0E + 6A)x".

This ends the analysis.
Now we can substitute (15) in (6) and (7) for verification. In the latter case we
get (14), and in the former using (10)

% = (OE + 0A)x° = (JAE + 5A)x°
while using Theorem 1 yields

Ax = A(JE + 0A)x° = (§A 4+ 6A?)x" = (§A + SAE)X".
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The General Case. Without any assumptions about A we shall transform the
equations (6) and (7) to the case of zero trace. This proves much easier than the
transformation (8). Let © € R be a constant, and 0 the solution of the initial value
problem

(16) 0=00;, 00)=1

(i.e. the exponential function 0(t) = €©?).
We consider the coordinate transformation

x = 6€.

Now (6) and (7) for x imply certain equations for €. (7) is simple:

by (16). (6) is nicer:
% = 0f + 06 = Ax = OAE.

Using (16) we get
0¢ + O0¢ = OAE.

Because 6 # 0, we can divide by it, hence

£=(A-OE)k.

Now, if we choose © correctly, the new matrix will have trace zero. We define O as

so € solves the initial value problem:

(17) §=B¢  £0)=x"

of the type of trace zero. (17) is then solved by (15), where ¢ solves (10), (11) with

2
A= <a;d) + be.
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Conclusion. We can write down the solution of (6) and (7) explicitly. Let the
half-trace © and the discriminant A of the matrix A be defined as

(18) o=222
2
2
(19) A= (“;d) + be.

Let 6 be the solution of the initial value problem
=00,  6(0)=1.

Let 0 be the solution of the initial value problem

Then the solution of (6) and (7) is:
(20) x = 0(0E + §(A — OF))x".

In coordinates this becomes

x1 =0 (x?(ﬂ— (a%dx? + bxg) 6) )
xo =10 (m(Q)S—I- (d;axg +cac(1)) 5) .

The functions  and § can be explicitly written down. They are

O(t) =e®l =e 2 ¢
ﬁ sinh(v/At) for A >0,
(t)y=14t for A =0,

\/i—A sin(v—At) for A <0.

Afterthought. From a higher point of view, the methods applied here are exam-
ples of more sophisticated analytic methods in algebraic disguise, to be compared
with the standard sophisticated algebra. If Sophus Lie could have asked Jean B. J.
Fourier to solve the equations, he would have done so as follows:

The system (1)-(2) should be transformed into one equation of second order, i.e.,

& — (a+d)x+ (ad — bc) = 0.
Fourier, of course, would have transformed the operator to a polynomial,
€% — (a + d)¢ + (ad — be);
then he would have translated this by the distance © (from (18)) , say

(21) n=¢—0,
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and hence obtained

n”? — 0%+ (ad —be) =n> — A
with A defined by (19).
By the inverse Fourier transformation, 7 is transformed into y, satisfying
J=Ay
and related to x by the transform of (21), i.e.,
Yy=x-e

Further, he would have formulated the results of his efforts in the form of (20).
For then Sophus Lie could have extracted the matrix

C(t) = 0(1)(S()E + 6(¢) (A — OE)),

which is a handy representation of the Lie group of the flow of solutions of (1)-(4).
Hence C(t) must satisfy the relation

C(t + 5) = C(1)C(s).

We know this relation from the theory of Lie groups, but I shall leave the veri-
fication by the elementary trigonometric formulas for addition and their analogues
as an exercise.
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