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Abstract

We correct an error in Theorem 1 in Bladt et al. (2016), where the initial distribution
of an auxiliary diffusion process that is used to describe the distribution of the proposed
approximate diffusion bridge is wrong. As a consequence we also correct the pseudo
marginal Metropolis-Hastings algorithm and the alternative MCMC-algorithm that
have an exact diffusion bridge as their target distribution. The same auxiliary diffusion
plays a central role in the two algorithms.
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We correct Theorem 1 in Bladt et al. (2016) that gives the distribution of the approximate
diffusion bridges proposed in the paper. In Theorem 1 the initial distribution of the auxiliary
diffusion is incorrect.

First we briefly describe the model and the processes that Theorem 1 is concerned with.
Let X = {Xt}t≥0 be a d-dimensional diffusion given by the stochastic differential equation

dXt = α(Xt)dt+ σ(Xt)dWt, (1)

with X0 = A. Here A is a random variable independent of the d-dimensional Wiener process
W , and the coefficients α and σ are sufficiently regular to ensure that the equation has a
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unique strong solution that is a strong Markov process. We assume that X is ergodic with
invariant probability density function ν and that σ(x) is invertible for all x in the state space.
If a and b are given points in the state space of X, a solution of (1) in the interval [0, T ] such
that X0 = a and XT = b is called an (a, b) diffusion bridge.

Define another diffusion process X ′ as the solution to

dX ′t = α(X ′t)dt+ σ(X ′t)dW
′
t , X ′0 = a (2)

with the Wiener process

dW ′
t = {I − (1− γ)Π(Xt, X

′
t)} dWt +

√
1− γ2u(Xt, X

′
t)dUt.

Here γ ∈ [−1, 1), U is a univariate standard Wiener process independent of W , I is the
d-dimensional identity matrix and

Π(x, x′) = u(x, x′)u(x, x′)T ,

where T denotes transposition, and u(x, x′) is the unit vector such that σ(x′)u(x, x′) points
in the direction x− x′. By Lemma 1 in Bladt et al. (2016), the sample path of X in [0, t] is
a function of the initial value A, the sample path of X ′ in [0, t], and the sample path in [0, t]
of a standard univariate Wiener process, U ′, independent of X ′:

{Xs}0≤s≤t = K′t (A, {X ′s}0≤s≤t, {U ′s}0≤s≤t) . (3)

The distribution of the approximate diffusion bridge is given by the following theorem,
which replaces the incorrect Theorem 1 in Bladt et al. (2016) :

Theorem 1* Suppose A ∼ ν, and define a process by

Zt =


X ′t if 0 ≤ t ≤ τ

Xt if τ < t ≤ T,

where τ = inf{t > 0 |Xt = X ′t}.
Then the distribution of {Zt}0≤t≤T conditionally on the events τ ≤ T and XT = b equals

the distribution of an (a, b) diffusion bridge, B, conditionally on the event that the bridge is
hit by the process K′T (A, {Bt}0≤t≤T , {U ′t}0≤t≤T ). Here U ′ is a standard univariate Wiener
process, and A, U ′ and B are independent.

What has changed relative to Bladt et al. (2016) is the initial distribution of the diffusion
that hits the diffusion bridge. The approximate diffusion bridge is the process Z condi-
tionally on τ ≤ T and XT = b, which can easily be simulated by standard methods. The
reason for the error in the original paper was a misinterpretation of a conditional probabil-
ity. In order to avoid such misinterpretations, we give the proof of the theorem in more detail.

Proof of Theorem 1*. By the strong Markov property Z has the same distribution
as X ′. Moreover, the joint distribution of (Z, τ) is the same as the joint distribution of
(X ′, τ), because τ depends only on the sample path {Zt}0≤t≤τ = {X ′t}0≤t≤τ (and of course
on {Xt}0≤t≤τ ). Hence

P (Z ∈ · |XT = b, τ ≤ T ) = P (Z ∈ · |ZT = b, τ ≤ T ) = P (X ′ ∈ · |X ′T = b, τ ≤ T ).
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The event {X ′T = b, τ ≤ T} is the event that X ′ is an (a, b) diffusion bridge and that the
diffusion bridge is hit by X, so the theorem follows because of (3). 2

We call the process K′T (A, {Bt}0≤t≤T , {U ′t}0≤t≤T ) the stationary diffusion associated with
B. In Bladt et al. (2016) phrases like “p∗T (b)-diffusion associated with” must in all cases be
changed to “stationary diffusion associated with”, and the words “with density function
p∗T (b, ·)” must be changed to “with the stationary distribution” . In particular, this redefines
the probabilities πT (x) and πT given by (2.20) in Corollary 1, where the random variable A
must have the stationary distribution.

With these changes, the results in Sections 2.2 and 2.4 still hold and the alternative
MCMC algorithm works. In the pseudo marginal Metropolis-Hastings algorithm in Section
2.3 the definition of the probability πT (x) has been changed as explained above, so the
sequence of diffusions X̃(1), X̃(2), . . . associated to the sample path x, which defines the
geometric random variable T (x), must be a sequence of independent stationary diffusions
associated with x. With this change the target distribution is the distribution of an exact
diffusion bridge.

It is crucial that values of the stationary distribution can be simulated. We usually
need to have an expression for the stationary density to be able to apply the methods of
the paper, because this density function appears in the drift of the time-reversed diffusion
given by (2.9). If it is difficult to simulate the stationary distribution, a simple approximate
method is to simulate the diffusion (2.1) in a long time-interval, and use the value at the end
point. As usual it is necessary to be aware of the potential effect of discretisation errors.

Much of the simulation study in Section 3 is concerned with the approximate method
and is hence not affected by the error in Theorem 1. However, the results on the probability
πT (x), on the Metropolis-Hastings algorithm and on the alternative MCMC algorithm are
obviously affected. The results are still of interest, because when the length of the time
interval T is sufficiently large, the distribution of a p∗T (b)-diffusion associated with a sample
path x is not far from that of a stationary diffusion associated with the same sample path.
Note that the discussion of the reason why approximate bridges are almost exact for the
Ornstein-Uhlenbeck process when γ is close to one still holds. This is because the arguments
do not depend on the distribution of the random variable A.

Section 4 og 5 are unaffected by the error, because in the statistical application only
approximate bridges are used, and only approximate bridge simulation is discussed. Finally,
the proof of corollary 1 holds if p∗T (b, a) is replaced by the invariant probability density
function ν(a) in line 5 of the proof.
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