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Introduction

The workshop “Dynamical Stochastic Modeling in Biology” was held in the days 8 –
10 January 2003 at the Department of Applied Mathematics and Statistics, University
of Copenhagen. It was organized jointly by the Centre for Mathematical Physics and
Stochastics funded by the Danish National Research Foundation and by the research
training network DYNSTOCH under the Human Potential Programme (contract no.
HPRN-CT-2000-00100).

The main aim of the workshop was to discuss dynamical stochastic models for
biological problems and to identify new areas where such models might be useful.
The emphasis of the workshop was on ecology, gene regulatory networks and topics in
bioinformatics.

This booklet contains extended abstracts of the talks given at the workshop followed
by the list of participants.
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Small world networks

Andrew D. Barbour
University of Zürich

Gesine Reinert
University of Oxford

1 Small Worlds

It happens to most of us that we meet a stranger, and in conversation discover that we
have a joint acquaintance. “It is a small world”, we might then say. The small world
phenomenon has been studied in the 1960’s by Milgram [11], who sent a number of
packets to people in Nebraska and Kansas with instructions to deliver these packets to
one of two specific persons in Massachusetts as promptly as possible. The constraint
was that the packets could be sent only to persons whom the sender knew on a first-
name basis. Milgram determined a median of only about five intermediary recipients
to be required to get such a packet to the final destination.

About thirty years later, Watts and Strogatz [17] suggested a mathematical model
for social networks that was able to mimic this small-world phenomenon. The original
model was soon modified, (see Newman, Moore and Watts [14]), to make it more
amenable for mathematical analysis. In its simplest form, L vertices are put on a
one-dimensional ring lattice. Each vertex is connected to its neighbours at distance
at most k away. Distance here is lattice distance, each bond on the lattice has length
one. To this deterministic graph, random shortcuts are added. With probability φ per
connection in the deterministic graph, two points are connected by a shortcut. Thus
there are Lkφ shortcuts on average. We are now faced with a random graph that is
quite different to the Bernoulli random graphs introduced by Erdös and Rényi [9], in
that small worlds display a higher degree of clustering for a given diameter; see also
Bollobas [6].

To describe such a network, typically the following summary statistics are used (e.g.
Dorogovtsev and Mendes [7], [8]). First, to measure the diameter, the average shortest
path length ` is introduced. Pick two vertices, calculate their shortest path (using
lattice distance, 1 unit per connection), and take the average over all these pairs. To
measure clustering, the clustering coefficient C is introduced: let Ci be the fraction of
existing connections between nearest neighbours of the node i, then C is the average
over all Ci.

The small world phenomenon can intuitively be described as follows: if ` is approx-
imately like that for a (Bernoulli) random graph, then C is much larger than for that
random graph. As a Bernoulli random graph need not be connected, this formulation
does not make rigorous sense, but an intuitive understanding can be obtained observing
that, to a very crude order (see [7]),
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`random ≈
ln L

ln (φL)
, Crandom ≈ φ. (1)

The argument for this is that, the average number of neighbours of a node is z = Lφ,
so about z` nodes of the network are at distance ` or closer to it. With L ∼ zE`, we
obtain E`random ≈ ln L

ln (φL)
. The clustering coefficient is approximately Lφ/2

(L
2)

= Lφ
L+1
≈ φ.

Examples where this small-world phenomenon has been assessed empirically include
the neural network of C. elegans, the metabolic network for E. coli, and the power
grid of the Western United States. The following table gives the summary statistic,
and the comparison with random graphs in the sense of (1); see [7].

`actual `random Cactual Crandom L
C. elegans 2.65 2.65 0.26 0.05 282

E.coli 2.9 2.9 ≈ 0.3 0.025 282
Power grid 18.7 18.7 0.08 0.0005 4941

Further examples include social networks, the world wide web, rumor propagation
(see Zanette [18]), the spread of epidemics (see Ball et al. [2], scientific collaboration
networks (such as described by Erdös-numbers), metabolic networks (Fell [10]; Ravasz
et al. [15]), and many more. Indeed, for k = 1 the small-world model was first suggested
in [2], where it is called the great circle model, to study the spread of disease. It can be
shown that, to control a disease, movement restrictions (elimination of shortcuts) slow
down the spread considerably (see Brian Grenfell’s contribution to this conference).
From a theoretical physics viewpoint, scaling and percolation are some of the features
of interest (e.g. Newman and Watts [12]; Newman et al. [13]). In general, small-world
networks serve as models for networks that do not appear to be “purely random”.
More examples, more references as well as more details can be found in the recent
books by Watts [16], Barabasi [3] and Dorogovtsev and Mendes [8] as well as in the
survey papers by Albert and Barabasi [1] and by Dorogovtsev and Mendes [7].

For a small world network, ` and C will both be random quantities, and thus
their distribution needs assessing. The presented work concerned approximating the
distribution of `, with a bound on the approximation error.

2 The distribution of the shortest path length

To study the distribution of `, Newman, Moore and Watts [14] introduced the con-
tinuous circle model. Instead of the ring lattice, study a circle C of circumference L,
to which a Poisson (Lρ/2) number of shortcuts are added uniformly over the circle.
With neighbourhood collapsed by dividing distances by k, ρ corresponds to 2kφ. In
this continuous circle model, chords between points have length zero.

Using mean-field heuristics, [14] derive the approximate distribution of the shortest
distance `; in particular they state that

E` =
L

k
f(Lkφ),
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where

f(z) =
1

2
√

z2 + 2z
tanh−1

√

z

z + 2

∼
{

1
4

for z � 1
log(2z)

4z
for z � 1.

Let us restrict attention to the case that Lρ > 1 – if the probability is high that
there are no shortcuts, then the shortest distance between two points will mostly just
be the distance on the deterministic graph.

Barbour and Reinert [5] show that, uniformly in |x| ≤ 1
4
log(Lρ),

P

(

D >
1

ρ

(

1

2
log(Lρ) + x

))

=

∫ ∞

0

e−y

1 + e2xy
dy + O

(

(Lρ)−
1
5 log2(Lρ)

)

. (2)

Also an exact expression for the bound on the distance is given.
The corresponding approximating probability from [14] is

P

(

D >
1

ρ

(

1

2
log(Lρ) + x

))

≈ 1

1 + e2x

(

1 + O
(

(Lρ)−
1
2

)

.

The difference to (2) can be explained by the mean-field approximation in [14] being
of rather crude order. We will return to this point once the result (2) is explained in
more detail.

To derive the limiting distribution, the following heuristic may be useful. For the
rigorous argument, see [5]. Pick a point P at random from C, and denote by R(t) the
set of points that can be reached from P within time t. Here we assume that the process
walks from P at the same speed 2ρ in all possible directions, taking any shortcut that it
can find. Thus it will grow at rate 2ρ from P along the circle. Whenever it encounters
a shortcut, it will take it, creating new intervals on the circle that are covered by the
process. This process will in due time meet some areas that it has covered before. This
introduces dependence in the intervals. We compare this process to a pure growth
process S(t) starting at P with growth rate 2p, which ignores overlap. For small times
t, we expect that R(t) ≈ S(t).

Now pick another point P ′ at random from C, and let an independent pure growth
process run from that point. The time at which the two independent pure growth
processes will meet will be approximately 1

2
D, where D is the length of the shortest

path between P and P ′.
To make the above heuristic more precise, denote that for the pure growth process

S(t) started at P (which is a Yule process) by M(t) the number of intervals at time t,
and by s(t) the total length of the circle covered at time t. Then

EM(t) = e2ρt, Es(t) =
1

ρ

(

e2ρt − 1
)

.
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Denote by N(t) and u(t) the corresponding quantities for the pure growth process
started at the point P ′. Running both pure growth processes from time 0, at time t
there are approximately e4ρt pairs of intervals, and each has approximately length 1

ρ
. If

Vt denotes the number of intersecting pairs of intervals at time t, one from the process
started at P , the other from the process started at P ′, then

Vt ≈
2

Lρ
e4ρt.

The time scale at which the first encounter of the two processes will happen should be
such that Vt is a small but visible number. Thus we put

τx =
1

2ρ

{

1

2
log(Lρ) + x

}

;

then

Vτx
≈ 2e2x.

Indeed Vt is random, and a mixed Poisson approximation for Vt can be derived. Given
that M(τx) = m, with interval lengths s1, . . . , sm, and N(τx) = n, with interval lengths
u1, . . . , un, we have that

Vτx
≈ Poisson

(

2

L

m
∑

i=1

n
∑

j=1

min(si, uj)

)

.

If V̂t denotes the number of intersections at time t in the original process R(t), started
from P and P ′, then V̂τx

≈ Vτx
. Intuitively this stems from τx being rather a small

time; for later times the process may differ considerably. As

{Vτx
= 0} ≈ {V̂τx

= 0} = {D > 2τx},

we thus obtain

P{D > 2τx} ≈ Ee−
2
L

PM(τx)
i=1

PN(τx)
j=1 min(si,uj)

= Ee−
4
L

R τx
0 M(v)N(v)dv .

To derive the final result, a martingale argument is employed. We know that

e−2ρtM(t)→ W a.s.,

where W is exponentially distributed with parameter 1. As

e−
4
L

R τx
0 M(v)N(v)dv ≈ e−

4
L

WW ′
R τx
0 e4ρvdv

≈ e−e2xWW ′

,

where W and W ′ are independent, exponential random variables with parameter 1.
Noting that

Ee−e2xWW ′

=

∫ ∞

0

e−y

1 + e2xy
dy
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yields the stated result (2). Moreover, bounds on these approximations are given.

It might be intuitive to compare the above result (2) to that obtained by [14]. From
(2) we have that

P

(

ρD >

(

1

2
log(Lρ) + x

))

≈
∫ ∞

0

e−y

1 + e2xy
dy. (3)

Note that

E
{

e−e2xWW ′|W, W ′
}

= e−e2xWW ′

= e− exp{2x+log W+log W ′}

= e− exp{2x−G1−G2},

where G1 := − log W and G2 := − log W ′ both have the Gumbel distribution. Let T
be a random variable such that P(T > x) is given by the right-hand side of (3), then
with this construction,

P[2T − {G1 + G2} > x |W, W ′] = e−ex

,

whatever the values of W and W ′, and hence of G1 and G2, implying that, in distri-
bution,

2T = G1 + G2 −G3,

where G1, G2 and G3 are independent random variables with the Gumbel distribution.
In contrast, the limiting distribution in [14] can be written as the distribution of G1−G3,
thus ignoring some of the initial branching variation.

The generalization of the above to higher-dimensional lattices derived in [5] shows
that the reduction in shortest distance as a result of introducing shortcuts decreases
with increasing dimension.

In forthcoming work, Barbour and Reinert study discrete small worlds, first a dis-
crete circle with continuous time evolution, secondly the discrete circle with discrete
time. The latter covers the original small world model. where shortcuts have length
one, and neighbourhood sizes come in explicitly.

3 Conclusion

The above work is but a start on studying the statistical properties of small world
networks. Yet there are already more complicated models suggested that demand
treatment. Possible extensions of the above work include the following.

Often real networks are found to display a hierarchical structure, such as many
small, highly connected substructures linked by a larger structure, see, for example,
Ravasz et al. [15]. The above does not incorporate such hierarchical networks, but
might be adaptable to do so.

Another summary statistic to describe networks is the degree 〈k〉, the average num-
ber of neighbours for a vertex (see for example [7]). In many real networks, it has been
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observed that there are some vertices that have a very large number of connections to
other vertices; indeed, often a scaling law for the degree is postulated. This is mod-
elled using so-called scale-free networks, where the probability of a shortcut is biased
towards vertices that already have shortcuts. Due to the uniformity of the shortcut
construction, small-world networks do not display this scale-free property. It would be
interesting to explore this further.
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Modelling lipid oxidation

Bo Martin Bibby, Ib M. Skovgaard, Lise R. Nissen, Grete Bertelsen, and
Leif Skibsted

The Royal Veterinary and Agricultural University, Denmark

Abstract

A new approach for evaluating lipid oxidation was developed by modelling data
obtained by the oxygen consumption method. Based on the generalized scheme
for lipid autoxidation, a compartment model involving the concentration of the
four oxidation specimens of the unsaturated fatty acid, RH, R·, ROO·, and
ROOH as well as the concentration of oxygen and the rate constants for initi-
ation (a), formation of peroxyl radicals (b), and formation of alkyl radicals (c)
was constructed. As all rates of reaction were considered to be of second order
the dynamic part of the model could be described by five coupled differential
equations expressing the overall reaction rate for both the lag phase and the
propagation phase of lipid oxidation.

4 The Problem

Eventually storage of food leads to that it becomes unfit for human consumption. It
is believed that this is mainly due to oxidation of lipids in particular unsaturated free
fatty acids. Lipid oxidation is considered one of the most serious quality reducing
factors with a negative effect on

• Taste

• Smell

• Texture

• Nutritional value

The problem is to control (delay) this deterioration. In this project the focus has mainly
been on trying to understand and describe/model the primary chemical reactions in
the oxidation process.

5 The Data

For this purpose an experiment was carried out involving six linoleic acid solutions
prepared for measuring lipid peroxidation using the oxygen consumption method as
described by [3] and [1]. Three of the solutions were from a new batch of linoleic
acid and the remaining three were from an old batch. The oxygen concentration was
recorded at time intervals of 5 seconds for 20 minutes or until the concentration had
reached zero. The data is shown in Figure 1.
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Figure 1: Relative oxygen concentration as a function of time (sec.) for the six linoleic
acid solutions.

6 The Model

The primary chemical processes in the autoxidation of lipids are discussed in [2] from
which the scheme in Figure 2 is taken (slightly modified), see also [4]. The following
notation is used,

RH −− Unsaturated Lipid

ROOH −− Hydroperoxide

ROO· −− Peroxyl radical

R· −− Alkyl radical

O2 −− Oxygen

The aim is to translate the understanding of the chemical processes into a model
for the autoxidation with a focus on the processes closest to the observed oxygen
consumption. Our proposal is the compartment model depicted in Figure 3.

In Figure 3 boxes indicate compartments and arrows with the same symbol corre-
spond to a chemical reaction between the compounds associated with the compartments
from which the arrows come. The compartment at the receiving end of two arrows,
with the same symbol, corresponds to the end product of that chemical reaction. The
symbol represents the rate constant of the reaction.

12



RH

ROOH

ROO·

R·

RH

O2

ROO· RO·

Non radical products

X·

XH

a

b

c

ROOH

Figure 2: Scheme for autoxidation of lipids.
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Figure 3: A graphical representation of the compartment model.

Based on the assumption of second order kinetics the dynamical part of the model
can be described by a system of coupled differential equations, one for each compart-
ment. The five coupled differential equations associated with the model are given
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below.

dRHt

dt = − aRHtROOHt − cRHtROOt, RH0 = rh0,

dRt

dt = aRHtROOHt − bRtO2t + cRHtROOt, R0 = 0,

dO2t

dt = − bRtO2t, O20 = o20,

dROOt

dt = bRtO2t − cRHtROOt, ROO0 = 0,

dROOHt

dt = − aRHtROOHt + cRHtROOt, ROOH0 = rooh0.

7 The Fit

The statistical analysis of the data is based on maximum likelihood estimation in
an AR(2)-model for the residuals, see [5]. The residuals were obtained by subtracting
numerical solutions of the coupled differential equation system at the observation time-
points from the observations. The parameters of interest were the rate constants

a −− Initiation,

b −− Formation of peroxyl radicals,

c −− Formation of alkyl radicals,

and the initial concentrations of RH, O2, and ROOH. The result was almost a perfect
fit as can be seen in Figure 4.

0 200 400 600 800 1000 1200

0
20

40
60

80
10

0

Old 1

Time (sec.)

R
el

at
iv

e 
ox

yg
en

 c
on

ce
nt

ra
tio

n 
(%

)

0 200 400 600 800 1000 1200

0
20

40
60

80
10

0

Old 2

Time (sec.)

R
el

at
iv

e 
ox

yg
en

 c
on

ce
nt

ra
tio

n 
(%

)

0 200 400 600 800 1000 1200

0
20

40
60

80
10

0

Old 3

Time (sec.)

R
el

at
iv

e 
ox

yg
en

 c
on

ce
nt

ra
tio

n 
(%

)

0 500 1000 1500

0
20

40
60

80
10

0

New 1

Time (sec.)

R
el

at
iv

e 
ox

yg
en

 c
on

ce
nt

ra
tio

n 
(%

)

0 500 1000 1500

0
20

40
60

80
10

0

New 2

Time (sec.)

R
el

at
iv

e 
ox

yg
en

 c
on

ce
nt

ra
tio

n 
(%

)

0 500 1000 1500

0
20

40
60

80
10

0

New 3

Time (sec.)

R
el

at
iv

e 
ox

yg
en

 c
on

ce
nt

ra
tio

n 
(%

)

Figure 4: Observed (dotted curve) and fitted (solid curve) relative oxygen concentration
for the six linoleic acid solutions.
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In Figure 5 the five compartment processes are shown along with the AR(2)-
residuals for the first curve from the old batch. The five processes look more or less as
you would expect, but the residuals show a clear pattern particularly very early and
very late in the experimental period. This might suggest room for improvement but
the practical implications of this would be minimal because of the good overall fit.
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Figure 5: The five compartment processes and the AR(2)-residuals for the first curve
from the old batch. The data points are given by the dotted curve in the oxygen plot.

Some of the rate constants and initial pool sizes did not match chemically founded
expectations but in light of the good fit to the data and with only observations from
a single compartment there is not much hope of supporting a refinement of the model
in the data analysis.

8 Incorporating Antioxidants

As already mentioned, a main goal of the modelling was to get an understanding of
the mechanisms behind the lipid oxidation. Taking this a step further it is also of
interest to investigate possible ways of prolonging the lag-phase and/or inhibiting the
propagation phase of the autoxidation. This could be described as an anti-oxidative
effect, and many spices and natural extracts are known to work as antioxidants.

There are many possibilities for including an antioxidant in the model introduced
here, but the belief was that the primary reaction of the antioxidant was with the
peroxyl radicals. Based on this observation, a natural extension of the model is given
in Figure 6, where S denotes a stable radical, which is not of interest, and A is the
antioxidant.

Based on oxidation curves corresponding to several concentrations of the antioxi-
dant under study, the idea is to estimate a common value of the rate constants a, b, c,
and d along with the initial concentrations of RH and ROOH and then to relate the
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estimates of the initial concentrations of the antioxidant to actual concentrations used
in the experiment.

In Figure 7 the result of this estimating procedure is shown for an example involving
grape fruit extract as an antioxidant.
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Figure 6: A graphical representation of the compartment model including an antioxi-
dant.
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Figure 7: Observed and fitted relative oxygen concentrations for the antioxidant grape
fruit. From top to bottom the grape fruit concentrations are 0.20%, 0.10%, 0.05%, and
0%.
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The fit is not as good as for the single curves but it seems that the model has
captured essential features of the oxidation process. Again a refinement of the model
would probably require observations from other parts of the system.

References

[1] Andersen, H. J. & Skibsted, L. H. (1992). “Kinetics and Mechanism of Thermal
Oxidation and Photooxidation of Nitrosylmyoglobin in Aqueous Solution”. J. Agri.
Food Chem., 40:1741–1750.

[2] Madsen, H. L.; Bertelsen, G. & Skibsted, L. H. (1997). “Antioxidative Activity
of Spices and Spice Extracts”. In Risch, S. J. & Ho, C.-T., editors, Spices. Fla-
vor Chemistry and Antioxidative Properties, chapter 14, pages 176–187. American
Chemical Society, Washington DC.

[3] Mikkelsen, A.; Sosnieki, L. & Skibsted, L. H. (1992). “Myoglobin Catalysis in Lipid
Oxidation”. Z. Lebensm. Unters. Forsch., 195:228–234.

[4] Nawar, W. W. (1985). “Lipids”. In Fennema, O. R., editor, Food Chemistry, 2nd
edition, chapter 4, pages 139–244. Marcel Dekker Inc, New York.

[5] Seber, G. A. F. & Wild, C. J. (1989). Nonlinear Regression. John Wiley & Sons,
Inc.

17



Physical networks in cell signalling

Dennis Bray
University of Cambridge

The interior of living cells is a strange environment - very different to anything
usually considered by physical chemists. Molecules are present in a slurry rather than
in solution and there is a great deal of organisation and inhomogeneity. Macromolecules
are densely packed together and their chemical reactions are strongly influenced by
their location in the cell and their mechanical effects. Many processes are driven by
numbers of molecules small enough that the thermal fluctuations in reaction rates
become significant. In order to understand and make predictions about events in this
strange domain we believe we must take quantitative data at many different scales,
obtained by biological, chemical and physical techniques, and integrate them into large-
scale computer models.

A system that has emerged in recent years as a testing ground for computational cell
biology is the chemotactic response of Escherichia coli - arguably the best understood
form of cell behaviour (Bren and Eisenbach 2000). All of the intracellular proteins
involved in the chain of responses from receptor to flagellum have been purified and
all have been sequenced at the DNA level. Structural information is now available
for all of the proteins, and the enzymatic reactions they catalyze have been analysed
kinetically. Many mutants lacking identified proteins, singly or in combination, have
been isolated and their chemotactic responses documented. Computer-based analyses
have been used to test the consistency of this large body of data and to check its
integrative properties. Computer models have also been developed to simulate the
behaviour of flagellar motors, especially the stochastics of switching.

Our own work in this area features a close collaboration between computer simula-
tion and experiment, especially work carried out by Robert Bourret and his colleague
at the University of North Carolina. This productive interaction led to the develop-
ment of a computer-based model BCT (bacterial chemotaxis), using a deterministic
rate-equation approach similar to those used in metabolic models (Bray et al. 1993).
Development and refinement of BCT continues, and it now provides a detailed account
of the stimulus response and adaptation of cells to aspartate, and correctly predicts
the phenotype of over 60 mutants with altered chemotactic genes (results and program
for download are at www.zoo.cam.ac.uk/comp-cell). The validity of the BCT program
has been confirmed on numerous occasions, for example by correctly predicting the
phenotype of a set of ”gutted” mutants.

However, deterministic computer models are unable to match the increasing resolu-
tion of experimental techniques used to study bacterial swimming. We were therefore
led to explore a novel type of computer simulation capable of much higher resolu-
tion in which individual molecules are represented as software objects rather than as
concentrations(Morton-Firth 1998).Encounters between molecules are represented not
by rate equations (as in the usual type of biochemical simulation) but by weighted
probabilities. The program StochSim has been developed into an accurate and ro-
bust computational tool, and used to explore aspects of signal transduction in bac-
terial chemotaxis (available for download from ftp://ftp.cds.caltech.edu/pub/dbray).
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Figure 1: Lattice of chemotactic receptors. A portion of the lattice viewed from the
side (left) shows extracellular domains of the chemotactic receptors on one side of the
plasma membrane and the long α-helical cytoplasmic domains on the cytoplasmic side.
A lattice of CheA and CheW molecules, attached to the ends of the receptor tails
about 30 nm from the plasma membrane, forms a closed volume of cytoplasm, termed
the ”adaptation compartment”. The plan view(right) shows the hexagonal lattice as
though viewed from the plasma membrane looking into the cell.

It has a number of advantages over more conventional programs such as the Gillespie
algorithm, including an improved capacity to handle very large numbers of similar
reactions (the ”combinatorial explosion” often encountered by programmers) and an
ability to represent protein conformational transitions during the transmission of sig-
nals (Morton-Firth et al. 1999).

Over the past several years our level of understanding of the chemotactic pathway
has increased greatly due to the elucidation of the structures of key proteins in the
pathway. Structures of the extracellular domain of one receptor, and most of the cy-
toplasmic domain of another, have been published. So too have the structures of the
histidine kinase CheA and those of the methylation and demethylating enzymes CheR
and CheB. The atomic coordinates of both CheW and CheZ have recently been pub-
lished. The availability of these structures led us to use conventional molecular graphics
programs, in conjunction with plastic models generated by 3-D printer technology, to
predict how these proteins were arranged in relation to the plasma membrane (Shimizu
et al. 2000). The structure we proposed is a regular two-dimensional lattice in which
the cytoplasmic ends of chemotactic receptor dimers inserted into a hexagonal array of
CheA and CheW molecules (Figure 1). The array creates separate compartments for
adaptation and downstream signaling and suggests a possible basis for the spread of
activity within the cluster. This model is consistent with a large body of biochemical,
mutational and protein structural data, including recent mutagenesis studies from the
Parkinson laboratory (Ames et al. 2002).

This lattice of receptors and associated proteins is the basis by which signals are
generated during the chemotactic response. Conformational change appears to be the
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most likely mechanism by which extracellular stimuli can be transmitted across the
plasma membrane, since the receptors in this case are permanently dimeric and re-
ceptor dimerization is not part of the rapid detection response. Consistent with this
view, experimental evidence has been obtained for a small shift in protein conforma-
tion accompanying binding of the ligand aspartate and for the existence of two distinct
conformations of the histidine kinase Che A (Falke and Hazelbauer 2001). The widely
accepted view is that an unoccupied receptor favors the ”active” conformation of CheA
in which it triggers the catalytic formation of phosphoryl groups. Binding of an attrac-
tant such as aspartate to the receptor is thought to cause the receptor to change its
conformation to an ”inactive” conformation which terminates, or inhibits, phosphoryl
generation. Recent FRET analysis confirms the remarkably high amplification, or gain,
shown by the receptor complex (Bray 2002; Sourjik and Berg 2001).

We have suggested that the remarkable sensitivity and range of response of bacte-
rial chemotaxis might depend on the clustering of chemotactic receptors on the surface
of the bacterium (Bray et al. 1998). Specifically, we hypothesized that when a ligand
binds to a receptor, the resulting change in activity might propagate to neighboring
receptors in a cluster. We calculated that if the size of this ”infective” spread was
changed by adaptation, then the system could readily reproduce the chemotactic re-
sponse of actual bacteria. The molecular mechanism of this effect, however, was still
arbitrary and not easily expressed in terms of quantitative physical chemistry. We
therefore sought the help of Tom Duke, a physicist at the Cavendish Laboratory, who
suggested that the energetic exchanges between proteins in a two-dimensional lattice
was in many ways analogous to the interactions of magnetic dipoles in a spin glass.
Statistical mechanical analysis of a simplified array, in the form of an Ising model, then
showed that the inclusion of a single free energy term due to cooperative interactions
between adjacent receptors could integrate their activities over an extended lattice
(Duke and Bray 1999). Selection of suitable interaction energy in this ”Duke/Bray”
model then predicted a lowered threshold and a greatly increased range of detection
for the array of receptors.

The broad outcome of this excursion into physics was the idea that protein con-
formations might propagate, in domino fashion through an extended multimolecular
complex, a mechanism we call conformational spread. We recently analyzed this pos-
tulated mechanism in greater detail by applying it to the one-dimensional, unbounded
case of a closed ring of proteins (Duke et al. 2001). The simple geometry of this new
situation allowed us to define rigorously conditions under which a ring will show coop-
erative switching and to relate the physics of conformational spread to classical models
of allostery (the canonical MWC and KNF models emerge naturally as limiting cases
of conformational spread). This study also revealed the interesting fact that the time
taken for a large multiprotein assembly to change its state may be much greater than
that of individual allosteric transitions - a notion we think is likely will be of great
significance in the living cell.

All of the above analyses were simplified in various ways to facilitate mathematical
analysis. Proteins, arranged in a closed ring or infinite square lattice, were assigned
properties that were as simple as could be. Thus, each protein, or ”protomer”, was able
to adopt one of two possible conformations and had a single site of ligand occupancy
- in the Duke/Bray model there was an additional site of adaptational modification
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(such as a single site of methylation). Free energy changes associated with activation,
ligand binding and methylation were made as symmetric as possible. We have now ex-
tended this analysis to a more realistic model of conformational changes in Escherichia
coli chemotactic receptors using the StochSim program (Shimizu, Aksenov and Bray ,
submitted for publication).

Current simulations are of a hexagonal lattice of receptors,with finite (as opposed
to infinite) boundaries. The receptors are methylated at up to 4 methyl groups, there
are significant dwell times for ligand and conformationally-sensitive binding affinities
for CheR and CheB. These analyses have so far shown that the enhanced sensitivity
and range of response shown by the Duke/Bray model due to coupling between recep-
tors is retained in the more complete description, but changed in significant ways. The
presence of a range of methylation states means that there is not a single critical value
of the coupling strength but rather a range of values over which effective performance
is enhanced. The increase in sensitivity (chemotactic gain) obtained from a StochSim
simulation is less dramatic than that in the idealized single methyl group model, but
less ”brittle” in the sense that a significant improvement in performance is obtained
over a range of possible energy values. Most intriguingly, we have found that the dy-
namics of the situation lead to the spontaneous emergence of order in the receptor
lattice, such that receptors with 4 methyl groups (fully methylated) and receptors with
0 methyl groups (fully unmethylated) tend to lie next to each other in the array. This
is only a minimal degree of order, and could be an artefact of the simulation. However
the spontaneous emergence of order within a stochastically fluctuating field of allosteric
proteins is an intriguing and potentially important phenomenon and we intend to pay
attention to it in the future.

Literature cited

Ames, P., Studdert, C. A., Reiser, R. H., and Parkinson, J. S. (2002). ”Collabora-
tive signaling by mixed chemoreceptor teams in Escherichia coli.” Proc. Natl. Acad.
Sci. USA, 99, 7060–7065.

Bray, D. (2002). ”Bacterial chemotaxis and the question of gain.” Proc. Natl. Acad.
Sci. USA, 99, 7–9.

Bray, D., Bourret, R. B., and Simon, M. I. (1993). ”Computer simulation of the
phosphorylation cascade controlling bacterial chemotaxis.” Mol. Biol. Cell, 4(May),
469–482.

Bray, D., Levin, M. D., and Morton-Firth, C. J. (1998). ”Receptor clustering as a
cellular mechanism to control sensitivity.” Nature, 393, 85–88.

Bren, A., and Eisenbach, M. (2000). ”How signals are heard during bacterial chemo-
taxis: protein-protein interactions in sensory signal propagation.” J. Bacteriol., 182,
6865–6873.

Duke, T. A. J., and Bray, D. (1999). ”Heightened sensitivity of a lattice of mem-

21



brane receptors.” Proc. Natl. Acad. Sci. USA, 96, 10104–10108.

Duke, T. A. J., Le Novère, N., and Bray, D. (2001). ”Conformational spread in a
ring of proteins: a stochastic view of allostery.” J. Mol. Biol., submitted for publica-
tion.

Falke, J. J., and Hazelbauer, G. L. (2001). ”Transmembrane signaling in bacterial
chemoreceptors.” Trends Biochem. Sci., 26, 257–265.

Morton-Firth, C. J. (1998). ”Stochastic simulation of cell signalling pathways.,” Ph.D.,
Cambridge.

Morton-Firth, C. J., Shimizu, T. S., and Bray, D. (1999). ”A free-energy-based stochas-
tic simulation of the Tar receptor complex.” J. Mol. Biol., 286, 1059–1074.

Shimizu, T. S., Le Novère, N., Levin, M. D., Beavil, A. J., Sutton, B. J., and Bray,
D. (2000). ”Molecular model of a lattice of signalling proteins involved in bacterial
chemotaxis.” Nature Cell Biol., 23, 792–796.

Sourjik, V., and Berg, H. C. (2001). ”Receptor sensitivity in bacterial chemotaxis.”
Proc. Natl. Acad. Sci. USA, 99, 12669–12674.

22



An integrated probabilistic model for functional
prediction of proteins

Minghua Deng, Ting Chen and Fengzhu Sun
University of Southern California

Protein function prediction is an important problem in molecular biology. The
most widely used method for protein function prediction is by database search using
programs such as PSI-BLAST [1] and FASTA [11], and then predict functions based
on sequence homologies. However, a large fraction of protein sequences are not similar
to proteins with known functions. For example, about a third of yeast proteins (one of
the most studied model organisms) do not have defined functions. The development of
high-throughput bio-techniques and their applications in many areas of biology have
generated a large amount of data that are useful for the study of protein functions,
for example, protein physical interactions [8, 9, 13], genetic interactions [10, 12], pro-
tein complexes [5, 7] and protein co-expression from gene expression data. Individual
protein features, such as their domain content, also contain information about their
functions. A challenging task that lies ahead is to discover the functional roles of the
unknown proteins combining different sources of information.

Methods based on chi-square statistics [6] and on frequencies of interaction partners
having certain functions of interest [4] have been used to assign functions to unknown
proteins based on protein interactions. However, these methods have serious limita-
tions in predicting protein functions. We developed an integrated probabilistic model
to combine protein physical interactions, genetic interactions, highly correlated gene
expression network, protein complex data and domain structures of individual proteins
together to prediction protein functions based on Markovian random field theory [2, 3].
The model is flexible that other protein pairwise relationship information and features
of individual proteins can be easily incorporated. We applied our integrated approach
to predict functions of yeast proteins based on MIPS protein function classifications
and the interaction networks based on MIPS physical and genetic interactions, gene
expression profiles, and Tandem Affinity Purification (TAP) protein complex data, and
protein domain information. We study the sensitivity and specificity of the integrated
approach using different sources of information by the leave-one-out approach. As more
data are incorporated into the model, the accuracy of the approach increases. Com-
pared to using MIPS physical interactions only, the integrated approach combining all
the information increases the sensitivity from 57% to 87% when the specificity is set at
57%, an increase of 30%. It should also be noted that by enlarging the interaction net-
work, the number of proteins whose functions can be predicted is also greatly increased.

Key words: Protein function prediction, Protein-Protein Interaction, Markov
Random Field, Gibbs Sampler.
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A model of the uptake of alternative fatty acids by
isolated rat liver based on stochastic differential

equations

Susanne Ditlevsen
University of Copenhagen

Andrea De Gaetano
Università Cattolica del Sacro Cuore, Rome

Deterministic and stochastic differential equations models of the uptake of dode-
canedioic acid (C12) in isolated rat livers are considered. The main focus is on including
spontaneous erratic variations in the model of the metabolic processes, see also [5].

Mathematical models capable of reproducing observed characteristics in dynamical
systems are powerful tools to understand physiological mechanisms. Often a math-
ematical model of a physiological system is based on ordinary differential equations
that describe the dynamics of some state variables under ideal and theoretical condi-
tions [4, 10, 11, 12]. However, such a model is an idealization and does not account
for deficiencies of assumed ideal physical conditions, or for the accumulated effect of
neglected factors, which often occur in physiological descriptions as the systems can
rarely be isolated from influences from the surroundings. A natural extension of the
deterministic model is given by a statistical model of stochastic differential equations
or diffusions, where relevant parameters are randomized or a term of dynamic noise is
added [5, 15, 22, 17]. These stochastic models are also in continuous time, which is
important for the physiological interpretation.

The uptake of C12 was studied in the isolated perfused rat liver. A bolus of C12
was injected into the perfusing liver solution, and measurements of the concentration
of C12 in perfusate samples were taken over a period of two hours after the injection
of the bolus in nine experimental subjects. These data were modelled with a mono-
exponential decay for each perfused rat liver [9]. However, the observed decays in the
perfusate seem steeper than exponential shortly after injection of bolus, and slower
at later time-points. Therefore a two-compartment model seems more appropriate to
explain the data, where diffusion between perfusate and liver cells is considered. The
model is illustrated in figure 1, and in figure 2 the curves fitted by least squares and
data for two randomly chosen rats are shown.

A deterministic model of the elimination kinetics assumes two things: one, that the
process actually follows a smooth course (continuous and continuously differentiable),
which may be mathematically described as a function of estimable parameters; and,
two, that the variability of the actual measurements is due to observation error, which
does not influence the course of the underlying process. An alternative, stochastic,
approach would result from the hypothesis that the underlying elimination process
itself is not smooth. The metabolizing organs and tissues are in fact subject to a
variety of internal and external influences, which change over time (e.g. blood flow,
energy requirements, hormone levels, the cellular metabolism of the tissues themselves)
and which may affect the minute-to-minute rate at which tissues dispose of the load
of substrate. This second approach maintains that some degree of noise is already
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Figure 1: Two compartment model of the uptake of dodecaneioic acid in isolated rat
liver.

present in the disposition process itself, and that observational noise may additionally
be present. A generalization of the deterministic model based on a stochastic extension
is achieved by randomizing the elimination rate constant from the liver cells. This
approach defines unambiguously two noise sources: a dynamical noise term that is a
part of the process, such that the process at time t depends on this noise process up to
time t, and a measurement noise term, that does not affect the process, but only the
observations of the process. We end up with a non-gaussian two-dimensional stochastic
Itô integral with state-dependent noise. Our main concern is to estimate the model
parameters.

Estimating parameters in this kind of model is not straightforward except for simple
cases. A natural approach would be maximum likelihood inference, but the transition
densities are rarely known, and thus it is not usually possible to write the likelihood
function explicitly. A variety of methods for statistical inference for discretely observed
diffusion processes has been developed during the past decades, see e.g. [1, 2, 3, 6, 7,
8, 13, 14, 16, 18, 19, 20, 21].
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Figure 2: Observed data and the best least square fit curves for the deterministic, two-
compartment model for two randomly chosen rats. The curves starting at a positive
value represent the C12 concentrations in perfusate, which are measured, and the curves
starting at zero represent a scaling of the non-observed concentrations in the liver cells.
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Here we are not dealing with a stationary process. Moreover, we only observe
one state variable out of two, namely the C12 concentration in perfusate, whereas
the C12 amount in the liver cells is unobserved; and measurement errors should also
be considered. We can explicitly solve the ordinary differential equations in the drift
part of the diffusion, which represent the mean of the process. We first use this to
estimate parameters entering in the drift by least squares, and afterwards approximate
the unknown likelihood function through Monte-Carlo simulations [15] to estimate the
parameter in the diffusion part, as proposed by Pedersen [18]. The standard deviation
of the measurement errors is considered fixed, but estimation has been carried out for
different values in order to check the robustness of estimates. In figure 3 a simulated
trajectory from the fitted model for both coordinates of the process is plotted for the
same rats as in figure 2, together with the data, the mean curve and empirical 95%
confidence intervals. The estimation procedure and results are described in more detail
in [5].
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Figure 3: A simulated trajectory (solid lines), mean curve (dash-dot lines) with 95%
confidence limits (dotted lines) and observations (X). Trajectories starting at positive
values represent concentration in perfusate (black lines), which are measured, trajec-
tories starting at 0 represent a scaling of the non-observed concentration in liver cells
(grey lines). Estimation of structural parameters by least squares, diffusion parameter
estimated from approximate maximum likelihood.
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Extending the stochastic susceptible-infected
-removed epidemic model to pig-production

applications

Michael Höhle
Royal Veterinary and Agricultural University, Denmark

With an annual production of 23 million pigs and pig meat constituting 6.8% of the
total Danish export[2, 1], surveillance and management of diseases plays a substantial
role in Danish pig production [15]. In the light of the recent Foot and Mouth epidemics
in England [12, 21] or classical swine fever in the Netherlands [11, 28] it becomes
apparent that understanding the dynamics of an epidemic is important in order to
predict the spread and evaluate the effect of control policies. On the individual farm,
problems with infectious disease are although also of a more daily nature. Endemic
presence of flue, pneumonia, porcine reproduction and respiratory syndrome (PRRS)
cause reduced growth and increased mortality having a notable affect on production
economy [24, 23]. As an example, Figure 1 shows an attempt to use visualizations
of pneumonia treatments at a Danish pig production site to improve on-site health
management [16]. Insight about disease dynamics is again a prerequisite for providing
more advanced decision support.

Figure 1: Screenshot from software used to visualize daily pneumonia treatments at
a Danish production site. Green pens indicate presence of pigs in the pen, while red
pens have one or more treatments that given day.

A tool to gain this insight is to perform a disease transmission experiment : In a
controlled environment, one or more individuals are inoculated with virus strains after
which observations about virological, serological and clinical findings are made at regu-
lar intervals for the entire population. Aim of such an experiment ranges from quantify-
ing disease transmission [22, 29] to determining the effect of a vaccine [9, 8, 25, 10]. Data
are analyzed using stochastic epidemic models like the susceptible-infected-recovered
(SIR) model or the more biological plausible SEIR model, also taking disease incu-
bation into account [7, 4]. Upon disease transmission (exposure), initially susceptible
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individuals go through phases of incubation and infectiousness before recovering again.
A recovery occurs once an individual is cured, dies, or in other ways cannot contribute
to the spread of the disease anymore. Disease transmission is modeled by a set of
Poisson contact processes and it assumed that no re-infection can occur.

Veterinary literature has focused on using the transmission experiments to estimate
the so called basic reproduction ratio, R0, a summarizing quantity of the SIR/SEIR
model, telling whether the epidemic can result in large outbreaks [9, 4]. Partial ob-
servability of the epidemic, infrequent observations, etc. prohibited a more detailed
analysis. Recently, a greater awareness about frequent observations, improvements in
the availability and affordability of virologic test [20] have improved the data mate-
rial achieved by the experiments. In parallel, methodology advances in the statistical
analysis of partially observed epidemics by computer intensive methods have been
made [13, 26, 14, 27]. Together this provides the opportunity to perform a more de-
tailed analysis of the transmission experiments than before.

To apply the above statistical advances to the context of disease transmission ex-
periments the following extensions need to be taken care of.

• Spatial layout of the confinement units (e.g. pens and sections), age, vaccination,
etc. provides heterogeneity.

• Multiple data sources should be fused, e.g. virologic, serologic, and clinical ob-
servations.

• Missing information occurs both due to unobservable events, but also due to
specific disease characteristics, protocol errors, or censoring.

By extending the SEIR model to a multi-type epidemic [17, 18] shows how these ex-
tension can be made, while still operating within the domain of well-investigated SEIR
model. This means quantities like final size distribution [5, 3], basic reproduction num-
ber [6, 4] are readily computable for the formulated models. Estimation of model pa-
rameters by Markov Chain Monte Carlo methods in a Bayesian framework described
by [26, 27] are extended to the multi-type setup and additional diagnostic tests are
added by exploiting survival analysis [19]. The methods are exemplified in [18] by an-
alyzing data from a Belgian disease transmission experiment with classical swine fever
virus [10]. Obtained parameter estimates allow to answer questions about the effect of
vaccination and design of interior walls for the specific test environment.
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Daphnia, parasites and lake bottom dynamics

Marianne Huebner and Alan Tessier
Michigan State University

1 Introduction

To encounter planktonic hosts, many parasites rely on physical mixing to remain sus-
pended in the water column. We consider the situation of Daphnia dentifera and its
fungal parasite, Metschnikowia bicuspidata in small lakes. Daphnia populations estab-
lish during spring and reach highest density in mid-summer, but disapppear from the
water column in winter. Daphnia are infected by ingestion of the fungal asci from the
water. Infections are fatal and upon host death parasite are liberated. High prevalence
of infection does not occur until September, and the magnitude of epidemics varies
greatly (from less than 10 % to 80 %) among lakes.
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Figure 1: Model: Density of Daphnia during the season
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Figure 2: Data: Incidence of infection
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2 The Model

The SI model describes the dynamics of susceptible (S) and infected (I) hosts. Suscep-
tible hosts are born from both susceptible and infected Daphnia, and the population
grows logistically with carrying capacity K. The rate at which susceptible host become
infected is assumed to be proportional to the number of encounters between susceptible
hosts and suspended parasites. It is It is important to explicitly consider the dynamics
of the parasite spores. Initially, spores enter the water column via resuspension from
the sediment, which is a function of the number of spores in the sediment, G(Zs).
After infection, more spores are added to the water column as the infected host dies
(cIf). Spores are lost from the water column through sedimentation (R). Parameters
involved in the model are the transmission rate β, the birth rate b, and the mortality
rate of infected hosts mI and of susceptible hosts mS . The mortality of the infected
hosts is much higher than the mortality of the healthy Daphnia.

dS

dt
= b(S + I)

(

1− S + I

K

)

− βSZw −mSS (1)

dI

dt
= βSZw −mII (2)

dZw

dt
= cIf + G(Zs)−

Zw

R
(3)

We can model the resuspension function G(Zs) with a compound Poisson process
that adds spores to the water column in the Fall.
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Figure 3: Incidence of infection and Simulation results

Lake characteristics determine the size of an epidemic in that particular lake. The
exact process that induces resuspension in the fall is unknown. To account for the
high variability of disease prevalence it is necessary to study convective motions, and
temperature gradients throughout the season.
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1 Introduction

For mathematical modellers, understanding the effects of spatial structure on the
transmission dynamics of infectious diseases, and making appropriate allowance for
this structure in their models, represent important challenges. This talk focuses on
macroparasitic infections and is illustrated by considering models appropriate to a
managed animal population and, specifically, to gastrointestinal nematodes in a herd
of sheep. The occurrence of multiple infections, the need for the parasite to mate within
the host in order to reproduce, and the host density, all have significant effects on the
persistence/extinction of a parasite population and the invasion of parasite strains with
particular genetic traits such as treatment resistance. Two particular problems are ad-
dressed: first, the effect of spatial clumping of the infection process on the dynamics of
genetic resistance to anti-parasitic drugs; second, the effect of spatial scale (represented
by the size of the host population) on parasite persistence. These issues are investi-
gated by means of a mechanistic, stochastic model representing the physical processes
involved, and by two simplified generic metapopulation models that seek to focus on
particular aspects of the process, using a combination of analytic techniques and sim-
ulation. Further details of the models can be found in the cited references, which also
contain more details of the context of the research and appropriate references to the
wider literature.

In standard models for microparasite (e.g. bacterial, viral) infections, hosts are
simply allocated to a number of classes: susceptible, latent, infected etc. . The justi-
fication for this is that once a host is infected, the parasites multiply rapidly within
the host to reach an equilibrium level. In contrast, macroparasite infections are more
complicated to model, because macroparasites have relatively long lifetimes with no
direct reproduction in the host. This means that the host parasite load only increases
by reinfection, and models must allow for the parasite life cycle and the parasite load
of each host. The host’s parasite load determines its immune reaction, which affects
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its resistance to reinfection and the fertility and mortality of its parasites, as well as
its ability (indirectly) to infect other hosts.

The ideal is a fully stochastic model of host and parasite dynamics. However,
this is far from straightforward due to the complicated dependencies of the dynamics
on the numbers of parasites in each host, and the need to model reinfection via the
part of the parasite lifecycle external to the hosts. In practice, models divide into
two classes: hybrid models, in which appropriate parts of the process are replaced by
deterministic mechanisms, and fully stochastic models which concentrate on specific
aspects of interest and make strong simplifying assumptions about the rest. Examples
of the latter are to ignore the part of the parasite lifecycle external to the host and thus
assume that the infection is transmitted directly from one host to another, or to ignore
the feedback element of the infection process and thus assume that the infections do
not depend on the current levels of hosts’ infections.

2 Stochastic models for host-parasite dynamics

2.1 A mechanistic model of host-parasite dynamics

This is a model for parasite dynamics in a cohort of hosts. There is no host population
dynamics,and host age and time are synonymous. It is assumed that infections are
caused by a contaminated environment, and specifically that they occur in a (possibly
non-homogeneous) Poisson process, independently of parasite loads. Since there is no
feedback in the infection process, the parasite loads in the hosts evolve independently.
An example where such an assumption is appropriate is of a cohort of new lambs put out
to pasture at the start of the season, where there is some residual infection of the pasture
left from the previous season. The model allows for compound infections (spatial
clumping of the infection process), parasite stages with non-exponentially distributed
durations, host heterogeneities, parasite-induced host mortality, and parasite-induced
host immunity allowing increased mortality of parasites, reduced parasite fertility and
increased resistance of the host to new infections. This is a very tractable model, and
a wide range of properties can be determined analytically. Further details of the model
and its properties can be found in [5] and [6].

2.2 Effects of compound infections on genetic variation

It is well-known that there is widespread resistance of gastrointestinal nematodes in
sheep to antiparasitic drugs. This raises the question of how the grouping of parasites
within hosts, and the multiple infection process, interact to affect the persistence or
extinction of rare (eg treatment-resistant) genotypes. The model described in the
previous section is used to examine this question in [1], where, again, the focus is
on the early-season dynamics of a cohort of hosts. For the genetics, we assume that
the trait of interest (e.g. susceptibility to control treatments) is represented by two
alleles (s, S) at a single locus, where the rare homozygote (ss) has a selective advantage
(e.g. there is a differential susceptibility of strains to control treatments). We need to
assume a suitable distribution for the size and genetic make-up of the infecting clumps
of parasites and choose a range of alternatives to illustrate possible effects. We assume
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promiscuous mating i.e. that female parasites mate (at a fixed rate) with males chosen
at random from those in same host, and determine properties such as the (random)
rates of production of each type of parasite offspring.

As is to be expected, because of the need for parasites to mate within hosts, the
rates of parasite offspring production are lower for this model than would be the case
for corresponding deterministic (mass action) models. More importantly, it is shown
that compound infections can favour persistence of rare genotypes, where the extent of
this effect depends on the mix of genotypes in the infecting clumps. These results are
for the parasite dynamics early in the season, when infections result from an infected
environment, but it is intuitively obvious that such effects will be amplified when
feedback in the infection process is included in the model. Simulation results for a
model with feedback, showing the promotion of rare, recessive traits, are discussed.
In this model, hosts generate infecting clumps of parasites, where the genetic mix
of a particular clump reflects that of the parasites within the generating host. In
such a model, there are complicated effects due to the compound infections per se,
to inbreeding because parasites within a clump are related, and to inbreeding due to
self-infection (because parasites in an infecting clump may be related to those currently
within the host). The latter effect is particularly important when host populations are
small. Some simple toy models are investigated (see below) that aim to distinguish
these effects.

Simulations of scenarios appropriate to successive cohorts of naive lambs put on
initially infected pasture, and allowing for overwintering of the parasite on the pasture,
show great variation between realisations. In some, the resistant parasites saturate the
host population while in others they become extinct. A strong inbreeding effect on the
probabilities of these outcomes is demonstrated, by comparisons with simulations of a
similar model with clumped infections but in which the genotype mix within a clump
reflects that of the whole parasite population rather than that of a particular host.

A simple continous-time branching process.

The first toy model retains the clumped infections and the genetics of the mechanistic
model described above, but assumes an infinite host population, so that there is no self-
infection of the host. Interest focuses on the initial growth of the parasite population, so
parasite mortality is ignored, and the model assumes hermaphrodite parasites with all
hosts initially having two parasites so that all parasites are mated. The rare recessive
genotype has no selective advantage, so that the mean allele frequencies (q, 1− q say)
do not change and any effect on persistence of the rare homozygote is conservative. It
is found that the density of these homozygotes is enhanced relative to a similar model
with clumped infections but where the genotypic mix within a clump reflects that of
the whole parasite population rather than that of a particular host. In particular, the
proportion of these homozygotes is greater than q2, and can be shown to be proportional
to q in the limit as q → 0. This enhancement increases with the clump size. Further
details of this model and its properties can be found in [3].
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2.3 The effects of spatial scale (cohort size).

In the mechanistic model, hosts are assumed to mix homogeneously within the cohort
and, since the host density is kept fixed, the size of the cohort reflects the spatial scale
of social interaction. We consider the effects of scale on the fluctuations and persistence
or extinction of parasite populations and, in this section, revert to the original form
of the model without genetics. Intuitively, for a small herd we expect the feedback
effect of any parasite birth/death/infection event to be greater than for a large herd,
extinctions to be more common (there is more scope for a ‘rescue’ effect in a larger
host population), and parasite mating probabilities initially to be higher due to self-
infection. These effects can be confirmed by simulation, where complicated interactions
of stochasticity, nonlinearity and spatial scale can be seen.

A promiscuous bisexual Galton-Watson metapopulation model

The second toy model has non-overlapping discrete parasite generations, with the off-
spring of the mated female parasites in one generation forming the next generation
of parasites. These offspring are randomly distributed among the n hosts. Again we
assume promiscuous mating. The model is an extension to a metapopulation of the bi-
sexual Galton-Watson process first proposed by [4] . The parasite population becomes
extinct when there are no mated females in a generation, the number of mated females
being a Markov chain. As the size of the host population (n) goes to infinity, the
parasite population approaches a deterministic limit. In this limit, there is a critical
threshold for the initial level of infection, above which the parasite population grows
without limit and below which it goes extinct. When n is finite and the initial level of
infection is above this threshold, the probability of an epidemic increases with n, as a
result of the rescue effect. However, below the threshold there is a trade-off between
the rescue effect and the decreased chance of parasite mating due to host self-infection.
Asymptotic (large n, small n) approximations to the probability of an epidemic can be
combined to give a good approximation to this probability for all n. Further details of
the model and its properties can be found in [2].

3 Summary

A general mechanistic stochastic model for a cohort of hosts a) without cross-infection,
and b) with feedback, has been used to explore the effects of spatial clumping of
infections on the persistence of rare, recessive, genetic traits, and of spatial scale (cohort
size). Complicated interactions between stochasticity, nonlinearity and spatial scale
are observed, and two toy models (a continuous-time branching process model, and a
discrete-time Galton-Watson process model) have been developed to investigate these
further with interesting results. In particular, the strength of spatial clumping in the
infection process, and the genetic mix of parasites within these clumps, is a key to the
epidemic outcome, which is also strongly affected by the amount of mixing within the
host population.
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A number of genes change their expression pattern dynamically by displaying os-
cillations. In a few important cases these oscillations are sustained and can work as
molecular clocks, as in the well known cases of the circadian clock [1] and the cell cycle
[2]. In other cases the oscillations in protein expression are connected with the response
to external stimuli, as reported for protein p53 after induction by DNA damage [3] or as
reported in association to specificity in gene expression [4]. Recently oscillations have
been observed for the Hes1 system studied in the very interesting paper [5]. The Hes1
system is particularly interesting because it is connected with cell differentiation, and
the temporal oscillations of the Hes1 system may thus be associated with the formation
of spatial patterns in development.

Oscillations may be obtained by a closed loop of inhibitory couplings, provided
that there are at least 3 different elements [5,6]. Alternatively, it was noted in the
study of the p53 network [7] that a time delay in one of the components can give rise
to oscillations also in a system composed of only two species (in this case, p53 and
mdm2).

We suggest that time delay can be a general mechanism which produces oscillatory
responses in a more economical way than 3–species inhibitory networks do. A delay in
a biological system can typically be related to transcription and translation times, and
to transport between cellular compartments. An example is the Hes1 system recently
examined in Ref. [5]. In this system the protein Hes1 represses the transcription of
its own mRNA, and the system displays oscillations in both the concentration of the
protein and of its mRNA. To explain this behavior, the authors of Ref. [5] suggest
a third, hidden factor which would complete a 3–species inhibitory networks of the
kind discussed in Ref. [6]. There is however no direct evidence for such a factor.
Furthermore, since there is a non negligible time for transport between the cell nucleus,
where the protein controls mRNA transcription and the cytoplasm, where mRNA is
translated into the protein. we feel compelled to suggest a simpler scenario.

We want to test the hypothesis that Hes1 and its mRNA are sufficient ingredients
to produce oscillations in the system. The equations for the concentrations [mRNA]
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and [Hes1] read

d[mRNA]

dt
=

αkh

kh + [Hes1(t− τ)]h
− [mRNA(t)]

τrna
(1)

d[Hes1]

dt
= β[mRNA(t)] − [Hes1(t)]

τhes1
.

The meaning of these equations is that mRNA is produced at rate α when Hes1 is
bound to the DNA. The probability that Hes1 is bound to DNA is kh/(kh + [Hes1]h),
where k is a characteristic concentration for dissociation of Hes1 from the DNA, and h
is the Hill coefficient that takes into account the cooperative character of the binding
process. Moreover, Eqs. (1) say that mRNA undergoes degradation with characteristic
time τrna, that the production

rate of Hes1 is proportional to the concentration of mRNA and that Hes1 is de-
graded on the time scale τhes1. Note that the terms associated with degradation in Eqs.
(1) not only describe the spontaneous degradation of the protein, but also the outflow
caused by the protein going to interact with other parts of the cell.

The key point is that the production of mRNA is delayed by a time τ , which
takes into account the lengthy molecular processes involved in the system (translation,
transcription, etc.). If one inserts the delay in the production of Hes1 (the second of
Eqs. 1), instead that of mRNA, the results remains very similar to the ones reported
here.

An important factor which determines the cooperativity in the production of mRNA
is the fact that Hes1 is a dimer, and consequently we expect that the Hill coefficient
h is of the order of 2. On the other hand, its precise value is not known. We have
repeated our calculations for different values of h (i.e., h = 1.5, 2, 4) and found that
the system displays oscillations in all cases analyzed, although the detailed features of
these oscillations (e.g., those displayed in Table 1) depend on the particular choice of
h. This result agrees with the fact that the physical reason which causes oscillations
is not the nonlinearity of the equations but the delay. In the following we analyze in
detail the case h = 2.

From Ref. [5], τrna and τhes1 are of the order of 25 minutes. The value of the time
delay is difficult to assess, since it is determined by a variety of molecular processes.
One can guess that its order of magnitude is tens of minutes.

The solution of Eqs. (1) is displayed in Fig. 1. For the chosen set of parameters,
the system displays damped oscillations with period ∆τ ≈ 170 min and damping time
τdamp ∼ 9500 min. The dependence of ∆τ and τdamp on the delay τ is listed in Table
1. The oscillation period stays constant for low value of the delay and increases as
τ � τrna. Also the damping time increases with τ , the oscillations becoming sustained
for τ > 80.

For any delay in the range 10 < τ < 50 min, the oscillation period is consistent
with that found experimentally, and also the time difference between the peaks in Hes1
and mRNA is 18 min, similar to the experimental findings. For τ < 10 min, the system
shows no oscillations. To check the robustness of the results, we have varied α, β and
k over 5 orders of magnitude around the basal values listed in the caption to Fig. 1,
and observed no qualitative difference with the oscillatory behaviour described above.
On the other hand, an increase of τhes1 and τrna disrupts the oscillatory mechanism.
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This is because these two quantities set the time scale of the system, with which τ has
to be compared. Increasing such time scales at constant τ is equivalent to decreasing
τ for a given time scale, putting the system in the low–delay part of Table 1 where no
oscillations are detected.

The time delay picture gives a natural description of the Hes1 network, without the
need of additional unknown factors. This is the minimal model which, nevertheless,
provides a very detailed agreement with the experimental findings. The delay sum-
marizes a number of molecular processes, such as, the time between transcription and
final protein, the intracellular transport, or the time associated with the involvement
of additional intermediates in the system. A striking overall result of our simulations
is that the oscillatory period remains unchanged over a wide variety of values of the
delay. Thus the observed time behaviour mostly depends on the degradation times,
whereas it is robust to variations in other parameters. This is functionally meaningful,
since degradation times can be directly controlled by changing protease activities. In
general, we speculate that, more than giving a description of the system, the time delay
mechanism is a tool adopted by the cell to display oscillatory behaviors in an economic
and robust way, making use of as few factors as possible.

We are grateful to Eric Siggia who directed our attention to the study of the Hes1
system.
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τ [min] τdamp[min] ∆τ [min] ∆τpeaks [min]
0 0 0
10 450 170 18
20 500 170 18
30 870 170 18
40 1900 170 18
50 9500 170 18
80 ∞ 280 18
100 ∞ 360 18

Table 1: The damping time τdamp, the oscillation period ∆τ and the time difference
between the peaks in hes1 and mRNA, as function of the delay τ . Infinite damping
time means that oscillations are sustained. For τ = 0 the system shows no oscillations.
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Figure 1: The oscillatory behavior of the concentration [Hes1] of the protein Hes1
(dashed curve) and mRNA (solid curve), as calculated from Eq. (1). The following
parameters are used: τrna = 24.1 min, τhes1 = 22.3 min, α = 1 [R]0/min, β = 0.1
min−1, k = 0.1[R]0, h = 2, τ = 50 min, and the plot show concentrations in units of
[R]0.
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Qualitative simulation of the initiation of
sporulation in bacillus subtilis

Hidde de Jong
Institut National de Recherche en Informatique et en Automatique (INRIA), France

1 Introduction

It is now commonly accepted that most interesting properties of an organism emerge
from the interactions between its genes, proteins, metabolites, and other constituents.
This implies that, in order to understand the functioning of an organism, we need to
elucidate the networks of interactions involved in gene regulation, metabolism, signal
transduction, and other cellular and intercellular processes.

The study of genetic regulatory networks has taken a qualitative leap through the use
of modern genomic techniques that allow simultaneous measurement of the expression
levels of all genes of an organism. In addition to experimental tools, computer tools
for the modeling and simulation of gene regulation processes will be indispensable. As
most networks of interest involve many genes connected through interlocking positive
and negative feedback loops, an intuitive understanding of their dynamics is difficult
to obtain and may lead to erroneous conclusions. Modeling and simulation tools, with
a solid foundation in mathematics and computer science, allow the behavior of large
and complex systems to be predicted in a systematic way [2].

Several computer tools for the simulation of biochemical reaction networks by means
of differential equations are currently available. These tools can be used to simulate ge-
netic, metabolic, and signal transduction networks described by differential equations.
In addition, they allow the user to perform tasks like the analysis of steady states and
the estimation of parameter values. The currently-available tools are essentially re-
stricted to quantitative models of reaction networks, in the sense that numerical values
for the kinetic parameters and molecular concentrations need to be specified. However,
since this information is usually absent, especially in the case of systems that are not
well-understood, the above-mentioned tools may be difficult to apply.

This abstract describes Genetic Network Analyzer (GNA), a computer tool for the
qualitative simulation of genetic regulatory networks. GNA employs piecewise-linear
(PL) differential equation models that have been well-studied in mathematical biology
[6, 10, 11]. While abstracting from the precise molecular mechanisms involved, the PL
models capture essential aspects of gene regulation. Their simple mathematical form
permits a qualitative analysis of the dynamics of the genetic regulatory systems to be
carried out. Instead of numerical values for parameters and initial conditions, GNA
asks the user to specify qualitative constraints on these values in the form of algebraic
inequalities. Unlike precise numerical values, these constraints can usually be inferred
from the experimental literature.

The use of GNA will be illustrated in the context of a regulatory network of bi-
ological interest, consisting of the genes and interactions regulating the initiation of
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sporulation in the Gram-positive soil bacterium Bacillus subtilis [1, 7, 8]. Under condi-
tions of nutrient deprivation, B. subtilis can decide not to divide and form a dormant,
environmentally-resistant spore instead. The decision to either divide or sporulate
is controlled by a regulatory network integrating various environmental, cell-cyle, and
metabolic signals. The aim of the example is to show that GNA is able to reproduce ex-
perimental findings in the case of a large and complex network that is well-understood
by molecular biologists.

2 Qualitative simulation of genetic regulatory net-

works

The dynamics of genetic regulatory networks can be modeled by a class of piecewise-
linear differential equations of the following general form [6, 10, 11]:

ẋ = f(x)− g(x) x, x ≥ 0, (1)

where x = (x1, . . . , xn)′ is a vector of cellular protein concentrations, and f = (f1, . . . , fn)′,
g = diag(g1, . . . , gn). The rate of change of each concentration xi, 1 ≤ i ≤ n, is defined
as the difference of the rate of synthesis fi(x) and the rate of degradation gi(x) xi of
the protein. The function fi : R

n
≥0 → R≥0 consists of a sum of step function expres-

sions, each weighted by a rate parameter, which expresses the logic of gene regulation
[10, 12]. The function gi : R

n
≥0 → R>0 is defined analogously. On a formal level, the

PL models are related to a class of asynchronous logical models proposed by Thomas
and colleagues [12].

Figure 1 gives an example of a simple genetic regulatory network. Genes a and b,
transcribed from separate promoters, encode proteins A and B, each of which controls
the expression of both genes. More specifically, proteins A and B repress gene a as well
as gene b at different concentrations. Repression of the genes is achieved by binding of
the proteins to regulatory sites overlapping with the promoters.

The network in figure 1 can be described by means of the following pair of state
equations:

ẋa = κa s−(xa, θ
2
a) s−(xb, θ

1
b )− γa xa (2)

ẋb = κb s−(xa, θ
1
a) s−(xb, θ

2
b )− γb xb. (3)

Gene a is expressed at a rate κa > 0, if the concentration of protein A is below its
threshold θ2

a and the concentration of protein B below its threshold θ1
b , that is, if

s−(xa, θ
2
a) s−(xb, θ

1
b ) = 1. Recall that s−(x, θ) is a step function evaluating to 1, if

x < θ, and to 0, if x > θ. Protein A is spontaneously degraded at a rate proportional
to its own concentration (γa > 0 is a rate constant). The state equation of gene b is
interpreted analogously.
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a b

A B

Figure 1: Example of a genetic regulatory network of two genes (a and b), each coding
for a regulatory protein (A and B). The notation follows, in a somewhat simplified
form, the graphical conventions proposed by Kohn [9].

Most of the time, precise numerical values for the threshold and rate parameters in
the differential equations are not available. Rather than numerical values, we specify
qualitative constraints on the parameter values. These constraints, having the form of
algebraic inequalities, can usually be inferred from biological data. The first type of
constraint is obtained by ordering the pi threshold concentrations of gene i, yielding
the threshold inequalities. The second type of constraint, the equilibrium inequalities,
are obtained by ordering the quotients of production and degradation parameters with
respect to the thresholds. In the example, we specify the constraints:

0 < θ1
a < θ2

a < max a, θ2
a < κa/γa < max a, (4)

0 < θ1
b < θ2

b < max b, θ2
b < κb/γb < max b. (5)

On the one hand, the parameter inequalities divide the phase space into regions
where the systems behaves in a qualitatively distinct way. These regions correspond
to qualitative states of the system. On the other hand, the parameter inequalities
allow possible transitions between qualitative states to be determined by exploiting
the mathematical properties of the PL models. A qualitative simulation consists of the
generation of all qualitative states reachable through one or more transitions from a
given initial qualitative state. A qualitative simulation results in a transition graph,
consisting of qualitative states and transitions between qualitative states. The paths
in the transition graph represent the possible qualitative behaviors predicted by the
simulator [5] (figure 2).

The qualitative simulation method has been implemented in Java 1.3 in the pro-
gram Genetic Network Analyzer (GNA) [4]. GNA is available for non-profit academic
research purposes at http://www-helix.inrialpes.fr/gna. The core of the system
is formed by the simulator, which generates a transition graph from a PL model, pa-
rameter inequalities, and an initial qualitative state. The input of the simulator is
obtained by reading and parsing text files specified by the user. A graphical user in-
terface (GUI), named VisualGNA, assists the user in specifying the model of a genetic
regulatory network as well as in interpreting the simulation results.
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Figure 2: The left figure shows the subdivision of the phase space into regions corre-
sponding to qualitative states, for the example network in figure 1. The right figure
shows the transition graph resulting from a simulation of the network starting in the
qualitative state QS 1, corresponding to the domain D1. Qualitative states correspond-
ing to an equilibrium of the differential equations are circled [5].

3 Initiation of sporulation in B. subtilis

The use of GNA can be illustrated in the context of a large and complex regulatory
network of biological interest, consisting of the genes and interactions regulating the
initiation of sporulation in the Gram-positive soil bacterium Bacillus subtilis [1, 7, 8].
Under conditions of nutrient deprivation, B. subtilis cells may not divide and form
a dormant, environmentally-resistant spore instead. The decision to either divide or
sporulate is controlled by a regulatory network integrating various environmental, cell-
cyle, and metabolic signals. A graphical representation of the network is shown in figure
1, displaying key genes and their promoters, proteins encoded by the genes, and the
regulatory action of the proteins (see [3] for details and references to the experimental
literature).

The graphical representation of the network can be translated into a PL model sup-
plemented by qualitative constraints on the parameters. The resulting model consists
of nine state variables and two input variables. The 49 parameters are constrained by
58 parameter inequalities, the choice of which is largely determined by biological data.
Simulation of the sporulation network by means of GNA reveals that essential features
of the initiation of sporulation in wild-type and mutant strains of B. subtilis can be
reproduced by means of the model [3]. In particular, the choice between vegetative
growth and sporulation is seen to be determined by competing positive and negative
feedback loops influencing the accumulation of the phosphorylated transcription factor
Spo0A. Above a certain threshold, Spo0A∼P activates various genes whose expression
commits the bacterium to sporulation, such as genes coding for sigma factors that
control the alternative developmental fates of the mother cell and the spore.
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Figure 3: Key genes, proteins, and regulatory interactions making up the network
involved in B. subtilis sporulation. In order to improve the legibility of the figure, the
control of transcription by the sigma factors σA and σH has been represented implicitly,
by annotating the promoter with the sigma factor in question.
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4 Conclusions

We have presented the computer tool GNA for the qualitative simulation of genetic
regulatory networks and illustrated its use in the analysis of the network of interactions
controlling the initiation of sporulation in B. subtilis. GNA implements a simulation
method that is based on a class of piecewise-linear (PL) differential equation mod-
els described in mathematical biology [5]. Instead of giving numerical values to the
parameters and initial conditions, which are usually not available, we use qualitative
constraints in the form of algebraic inequalities. These are obtained by directly trans-
lating biological data into a mathematical formalism.
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Understanding the mutation mechanisms during
polymerase chain reaction

Yinglei Lai and Fengzhu Sun
University of Southern California

Abstract

The polymerase chain reaction (PCR) is an important laboratory technique that uses
test tubes (in vitro) for producing large amount of copies of a specific gene from small
amount of complex molecules. Under ideal conditions, the DNA molecules generated
from PCR experiments should be the same as the original molecules. However, muta-
tions often occur during PCR. We developed mathematical models for the generation of
template molecules, for point mutations of molecular templates without any repeats,
and for expansion/contraction mutations for molecular templates with repeats (mi-
crosatellites). Based on the models, we developed methods to estimate the mutation
rates during PCR and applied the methods to real data from PCR experiments. Im-
portant insights about the mutation mechanisms during PCR can be obtained.

Key words: branching processes, PCR, mathematical modelling, estimation
methods

1 Introduction

The polymerase chain reaction (PCR) is one of the most important biotechnologies
for generating a large amount of DNA molecules from a small number of, or even
single, molecules [Saiki et al. 1985, Saiki et al. 1988, Scharf et al. 1986]. PCR uses
the mechanism of DNA replication. In order to perform a PCR experiment, a DNA
region of interest (called target) is first selected and short sequences (usually 20-25
base pairs) flanking the target must be known. The nucleotide bases at the flanking
regions are used to design primers used during PCR. There are three steps in a PCR
cycle. In the first step, the double-stranded DNA molecules are heated to near boiling
temperature so that the double-stranded DNA molecules are separated completely into
two single-stranded sequences. This process is called denaturing. The single-stranded
sequences generated by denaturing are used as templates for the primers and the DNA
polymerase. In the second step, the temperature is lowered such that the primers anneal
to the templates. This process is called annealing. In the third step, the temperature
is raised again to the temperature that is optimum for the polymerase to react. The
DNA polymerases use the single-stranded sequences as templates to extend the primers
that have been annealed to the templates. This process is called polymerase extension.
The three steps form a PCR cycle. The experiment is repeated for many cycles. In
ideal situations, the number of molecules containing the target doubles in every PCR
cycle. However, due to a variety of reasons, such as incomplete denaturation, primer
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annealing, and polymerase extension, not all the templates can generate a new copy.
Suppose that in each PCR cycles, a fraction λ of templates make a complete copy. λ is
called the efficiency of PCR. A standard branching process can model the generation
of the templates.

PCR is not a perfect process and mutations occur during PCR. Only when a new
template sequence is generated (with probability λ), mutations can occur along the
newly generated sequence. When amplifying DNA molecules without any repeats,
point mutations are the major source of variation. However, when amplifying DNA
molecules with repeats (microsatellites), expansion/contraction mutations of one or
more repeat units dominate over point mutations. The problem is to understand the
mutation mechanisms for both point mutations and microsatellite mutations during
PCR.

In this paper, we review the literature on the modelling and analysis of mutations
during PCR and provide prospectives for future research.

2 Point mutations during PCR

Sun (1995) and Weiss and von Haeseler (1995) independently developed the first
stochastic model for PCR with point mutations incorporating the randomness in the
generation of template molecules and point mutations when new template sequences
are generated. The model can be briefly described as follows.

2.1 Modelling the generation of template molecules

We first consider the generation of template molecules without considering mutations.
In each PCR cycle, every template molecule generates a new template with probability
λ independent of other templates and the template itself always stays in the pool once
it is generated. igure 1 shows the mechanism of generating template molecules during
PCR. The process generates a random binary tree.

It is obvious that the number of template molecules after every PCR cycle form a
branching process. The expected number of template molecules generated from one
template is

m = 2λ + (1− λ) = 1 + λ.

Therefore, the expected number of template molecules after n PCR cycles Sn, is

Sn = S0(1 + λ)n,

where S0 is the number of templates when the PCR experiment started.
When we consider mutations in the following sections, the templates cannot be

considered as identical. For example, templates generated from the original molecules
through two replications are more likely to have more mutations than template molecules
generated from the original molecules through one replication. Based on this observa-
tion, Sun (1995) introduced a novel concept referred as generation number.

Definition: The original templates are called 0-th generation templates; the tem-
plates generated directly from 0-th generation templates are called first generation tem-
plates; the templates generated directly from the first generation templates are called

60



second generation templates; · · · ; the templates generated directly from k-th generation
templates are called k + 1-st templates, · · · .

From the model for generating template molecules, it can be seen that that the
expected number of k-th generation template molecules after n PCR cycles satisfy the
following recursive equation,

Sn+1(k) = Sn(k) + λSn(k − 1).

Using induction, Sun (1995) showed that Sn(k) = S0 (n
k) λk, k = 0, 1, 2, · · · , n.

Sun (1995) proposed the following approximation for the probability distribution
for the generation number K of a random chosen template after n PCR cycles when
S0 is large based on strong law of large numbers,

Pr{K = k} ≈ Sn(k)

Sn
=

(n
k)λk

(1 + λ)n
, k = 0, 1, 2, · · · , n. (1)

Piau (2002) recently provided an upper bound for the approximation error. From
this upper bound, this approximation is still valid as long as the number of PCR cycles
is large, say at least 20.

2.2 Modelling point mutations during PCR

Here we consider point mutations when amplifying template molecules without repeat
units. Point mutations are superimposed onto the random binary tree as follows ac-
cording to different assumptions about the mutation mechanism. Sun (1995) and Weiss
and von Haeseler (1995) considered a rare mutation model assuming that point mu-
tations occur according to a Poisson process with parameter µ when a new template
is generated. That is, the number of point mutations in a target sequence of G bases
is a Poisson random variable with mean µG per PCR replication. They also assumed
that whenever new mutations occur, they occur at new positions (no back mutations).
Let M be the number of mutations in a randomly chosen sequence after n PCR cycles.
Under the above assumptions, we have

{M |K = k} ∼ Poisson(kµG),

that is,

P{M = m|K = k} =
(kµG)m

m!
exp(−kµG), m = 0, 1, 2, · · · . (2)

From Equations (1) and (2), the following theorem was obtained by Sun (1995).

Theorem 1. Let M be the number of mutations of a randomly chosen sequence after
n PCR cycles. Then

i). For any 0 ≤ m ≤ G

Pr{M = m} =
(µG)m(1 + λe−µG)n

m!(1 + λ)n
E

(

Bin

(

n,
λe−µG

λe−µG + 1

))m

.

EM =
nλµG

1 + λ
, V ar(M) =

n(λµG)

(1 + λ)2
(µG + 1 + λ).
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ii). Suppose µ and G change with n, denoted by µn and Gn, such that
limn→∞ nµnGn = ν. Then M is approximately Poisson(λν/(1 + λ)) as n tends to
infinity.

It is also of great interest to study the distribution of pairwise differences H be-
tween two randomly chosen sequences from the PCR products. In order to study the
distribution of H, we first studied the distribution for the number of replications D
between two randomly chosen sequences. The expectation and variance of D can be
obtained [Sun 1995].

ED =
2nλ

1 + λ
− 2

(1 + λ)S0 + 1− λ
+ O(

1

S0(1 + λ)n
).

V ar(D) =
2nλ

(1 + λ)2
− 2(3 + λ)

((1 + λ)S0 + (1− λ))(1 + λ)

− 2

((1 + λ)S0 + 1− λ)2
+ O(

1

S0(1 + λ)n
).

Sun (1995) proposed the following approximate distribution of H when the number
of initial molecules is large. Similar to Piau (2002), this approximation should also
hold when the number of PCR cycles is relatively large, say 20, and the number of
initial molecules is small.

Theorem 2. Let H be the number of pairwise differences between two randomly chosen
sequences after n PCR cycles. Let G be the target length and µ be the mutation rate
per base per PCR cycle. Then

i). The probability generating function ϕH(s) of H is

ϕH(s) = ϕD(exp(µG(s− 1))).

ii). The expectation and variance of H are

EH = (µG)ED, V ar(H) = (µG)ED + (µG)2V ar(D).

iii). For 0 < λ ≤ 1, (1+λ)H−2λnµG√
2λnµG(1+λ+µG)

is asymptotically normal N(0,1) as n→∞.

iv). If µ and G change with n, denoted by µn and Gn, such that
limn→∞ nµnGn = ν, then H is approximately Poisson( 2λ

1+λ
ν).

Wang et al. (2000) extended the above results to situations with relatively high
point mutation rates. Moore and Maranas (2000) considered different mutation rates
at different positions. These extensions are very useful when we study in vitro evolution
(Sun et al. 1996) using error prone PCR and DNA shuffling (Sun 1999).

2.3 Estimating point mutation rates during PCR

After a PCR experiment, s sequences from the PCR products are sampled and se-
quenced. If we know the nucleotide bases of the original molecules to be amplified, we
can count the number of mutations of the sampled PCR products. Let M1, M2, · · · , Ms
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be the number of mutations of the sampled sequences. From Theorem 1, the moment
estimator of the mutation rate µ is given by

µ̂1 =
(1 + λ)

∑s
i=1 Mi

nλGs
.

We also studied the variance of the above estimator. In particular, we have

Theorem 3. Let S0 be the initial number of sequences. Then for λ = 1,

V ar(
s
∑

i=1

Mi) =
snµG

4
(µG + 2) + (s

2)
µG

S0

(1− 2−n).

For 0 < λ < 1,

lim
S0→∞

S0

{

V ar(
s
∑

i=1

Mi)−
snλµG

(1 + λ)2
(µG + 1 + λ)

}

= sA + 2(s
2)B,

where

A = −(1− λ)µG

(1 + λ)2

(

1 +
(1− λ)µG

1 + λ

)

(1− (1 + λ)−n),

B =
nλ2µG

(1 + λ)n+2
+

µG

(1 + λ)2

(

2− nλ + 2

(1 + λ)n

)(

1 +
(1− λ)µG

1 + λ

)

.

If the nucleotide bases of the target molecules to be amplified are not known, we
can compare the pairwise differences among the sampled molecules. Let Hi,j be the
pairwise Hamming distance—the number of different bases between sequence i and
sequence j. We proposed to estimate the mutation rate using

µ̂2 =

∑s
i6=j, i,j=1 Hi,j

(s
2)ED ×G

,

where ED = 2nλ
1+λ
− 2

(1+λ)S0+1−λ
+ O( 1

S0(1+λ)n ), S0 is the initial number of molecules.

Weiss and von Haeseler (1997) proposed a maximum likelihood approach using
extensive simulations to maximize the probability of observing the total number of
mutations. Wang et al. (2000) extended the above two moment based estimators
to situations with relatively high mutation rate. We expected that this maximum
likelihood based approach should perform significantly better than the simple moment
estimation method given above. However, extensive simulation studies by Wang et al.
(2000) showed the following results. (1) When the mutation rate µ is relatively low,
say less than 10−3 per base per PCR cycle, the four methods gave roughly the same
results when the initial number of molecules is relatively large, say at least 100. (2)
When the number of initial sequences is small (≤ 10), MLE does not perform as well
as the other three methods. (3) When the mutation rate is relatively high, such as
greater than 5× 10−3 per base per PCR cycle, the moment method of Sun (1995) and
the MLE method of Weiss and von Haeseler (1997) underestimate the mutation rate,
while the two methods developed in Wang et al. (2000) approximate the true mutation
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rate. (4) The moment method based on the total number of mutations in the sampled
sequences and the moment method based on pairwise differences in Wang et al. (2000)
have roughly the same accuracy in all the situations considered indicating we do not
need to know the exact nucleotide bases of the original molecules to accurately estimate
the mutation rate.

The surprisingly good performance of the moment based estimation methods prompted
Piau (2002) to look into the theoretical issues related to the moments and he provided
theoretical bases for the observed simulation results. Based on our simulation results,
we suggest the use of the modified moment based estimation methods in practice.

Another development in the modelling of point mutations during PCR was given
by Moore and Maranas (2000) where they considered the situation that mutation rates
might be different at different positions.

3 Microsatellite mutations during PCR

Microsatellites are tandem repeats of DNA sequences. For example, (CA)6 indicates
CACACACACACA, the motif CA repeated six times. Microsatellite markers are very
common and highly polymorphic in the human genome as well as in genomes of other
organisms. They are widely used in many genetic studies including population genetics,
forensics, linkage and association studies for human diseases. Weber and May (1993)
observed that the final PCR products of microsatellites starting from molecules with the
same number of repeat units can have different number of repeat units. This indicates
that, during each PCR cycle, one or more repeat units can be inserted (expansion)
or deleted (contraction), referred as slippage mutations. During PCR amplification of
microsatellites, slippage mutations dominate over point mutations. Due to slippage
mutations, in addition to the main band, several minor bands are often observed after
PCR amplification, referred as stutter patterns or stutter profiles. The presence of
stutter patterns in PCR products can cause problems in assigning alleles for genotyping.
Miller and Yuan (1997) first studied the mutation mechanisms of microsatellites during
PCR. In their study, they assumed that microsatellites with different numbers of repeat
units have the same mutation rate, an assumption that were clearly not supported by
experimental data.

In an effort to understand the mutation mechanisms of microsatellites during PCR,
Shinde et al. (2003) PCR amplified single molecules with different numbers of repeat
units for poly-A and poly-CA. For details of experimental conditions, see Shinde et
al. (2003). The complete data can be downloaded from www-hto.usc.edu/˜ fsun.
The experimental data clearly indicate that the range of the number of repeat units
in the final PCR products increases with the number of repeat units of the original
single molecule. Thus, we expect that the mutation rate of a template per PCR cycle
increases with the number of repeat units. To better understand the relationship
between mutation rate and the number of repeat units, Lai et al. (2003) and Lai and
Sun (2003) developed mathematical models and estimation methods for the mutation
mechanisms of microsatellites during PCR and applied to the data in Shinde et al.
(2003). Here, we summarize the main results from these studies.
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3.1 Modelling microsatellite mutations during PCR

The model for template generation is the same as discussed in Section 2 except we
assumed that PCR efficiency depends on the cycle number. For microsatellite muta-
tions, we assumed that when a new template is generated from a parent template with
j repeat units, it has a probability µj of being mutated. Given a mutation occurs, the
probability that a repeat unit is inserted (expansion) is e and the probability that a
repeat unit is deleted is 1− e.

Let λn be the efficiency during the n-th PCR cycle and S(n) be the expected
number of template molecules after n PCR cycles. Then we have the following recursive
equation.

S(n) = (1 + λn)S(n− 1). (3)

The expected number of template molecules with j repeat units after n PCR cycles,
Sj(n), j, n = 1, 2, · · · , satisfy the following recursive equation

Sj(n) = Sj(n−1)+Sj(n−1)λn(1−µj)+Sj−1(n−1)λnµj−1e+Sj+1(n−1)λnµj+1(1−e).
(4)

The above equation can be understood as follows. The first term is the number of
templates with j repeat units after the n−1-st cycle. The second term is the expected
number of newly generated templates from parent templates of j repeat units with no
mutations. The third term is the expected number of templates newly generated from
parent templates of j − 1 repeat units with one repeat unit inserted during the n-th
cycle. The last term is the expected number of templates newly generated from parent
templates of j + 1 repeat units with one repeat unit deleted during the n-th cycle.

Using the general theory of mean field approximation [Lai et al. 2003, Lai and
Sun 2003], we showed that when the number of PCR cycles is relatively large, the
fraction of molecules with j repeat units after n PCR cycles can be approximated by
fj(n) = Sj(n)/S(n). From Equations (3, 4), we can find a recursive equation for fj(n),

fj(n) = fj(n−1)

(

1− λnµj

1 + λn

)

+fj−1(n−1)
λnµj−1e

1 + λn
+fj+1(n−1)

λnµj+1(1− e)

1 + λn
. (5)

3.2 Estimating microsatellite mutation rates

We proposed a quasi-likelihood approach for estimating the mutation rates and ex-
pansion rate. Let I indicate the set of experiments. For each i ∈ I, let o

(i)
j be the

observed fraction of molecules with j repeat units in the i-th experiment. Let f
(i)
j

be the theoretical value of the observed fraction of molecules with j repeat units in
the i-th experiment calculated from Equation (5). The quasi-likelihood of the data is
defined as

L(µ, e) =
∏

i∈I

∏

j∈J

(f
(i)
j )o

(i)
j , (6)

where J is the range of repeat units of interest. The maximization of the above equation
is achieved using the Kiefer-Wolfowitz stochastic approximation algorithm (Kiefer and
Wolfowitz 1952).

Lai et al. (2003) first studied the accuracy of the proposed quasi-likelihood approach
under various mutation models using simulations. In the simulations, we simulated as
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closely as possible to their experimental conditions: starting from single molecules with
the same number of repeat units, the same number of PCR cycles, and the same PCR
efficiency as estimated from real PCR experiments. The differences between the simu-
lations are the different function forms for the mutation rate and the number of repeat
units. We showed that the quasi-likelihood approach proposed above can accurately
recover the relationship between the mutation rate and the number of repeat units. We
then applied the quasi-likelihood approach to the real data and an approximate linear
relationship between the mutation rate and the number of repeat units was observed.
We then fitted a linear model for the mutation rate. For poly-CA, we obtained

µj = 3.60× 10−3 × (j − 4)− 4.09× 10−4, (7)

and for poly-A, we obtained

µj = 1.52× 10−2 × (j − 8)− 2.30× 10−3. (8)

The probability of expansion was estimated at 0.068 and 0.158 for poly-CA and poly-A,
respectively. We noted that there might be a threshold effect such that the mutation
rate is very small when the number of repeat units is small. The threshold for poly-CA
was estimated at 4 repeat units (8 based) and the threshold for poly-A was estimated
at 8 (also 8 bases). The biological implications of our findings can be found in Shinde
et al. (2003).

4 Future research

Despite the extensive research on the modelling and estimation of point mutations
during PCR, many problems remain to be studied. The model for the generation of
template molecules described above is similar to the coalescent model in population
genetics [Griffiths and Tavaré 1994] although the two models are different. In coa-
lescent theory, a sample of individuals are traced back to their most recent common
ancestor forming a random binary tree. In every coalescence, two individuals from the
current sample are selected and they coalescence into one individual. The time for
the coalescence depend on the size of the current sample and the population histories.
Once a random tree is generated, mutations are then superimposed onto the random
tree. One of the most important problems in population genetics is to estimate the
population mutation rate during evolution. Significant research work has been car-
ried out to estimate the mutation rates during population evolution based on Markov
Chain Monte-Carlo (MCMC) approaches. The idea of the MLE approach of Weiss
and von Haeseler (1997) is similar to the idea in coalescence approach. However, it is
not a complete maximum likelihood of the all the data. Instead, it is the maximum
likelihood of the total number of observed mutations in all the sample. Is it possible
to design a complete maximum likelihood approach for all the data, not just for the
total number of mutations?

Another commonly used methods for estimating mutation rate is based on the fa-
mous Luria-Delbrück distribution [Luria and Delbrück 1943]. However, no connections
have been made between the Luria-Delbrück distribution with mutations during PCR.
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For point mutations during PCR, the mutation rate during PCR is above the range
of mutation rates that the famous theory of Luria-Delbrück distribution is practical.
For microsatellite mutations during PCR, no corresponding theories exist. One of
the important questions is to develop a type of analysis similar to the Luria-Delbrück
approach.
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A non-linear deconvolution problem coming from
corn pollen dispersal estimation
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There is an interest in studying pollen dispersal in many biological fields: population
genetics and ecology (to study gene flows and structure of populations), pollination bi-
ology (to study the reproductive systems and hybridization), agronomy (for the genetic
purity of crops and seeds), paloecology ( reconstruction of past vegetation patterns).
Recently, studies concerning pollen dispersals have been strengthened by the develop-
ment of Genetically Modified organisms (G.M.O.) and debates related to their large
scale cultivation; an important question is for instance the escape of transgenes by
pollen.

We first present a global framework to study corn pollen dispersal together with
some general questions concerning wind dispersed models (Section 1). We detail in
Section 2 the construction and the various assumptions we need in order to build
mechanistic models of pollen dispersal. Section 3 is devoted to the presentation of
the experiments, statistical modeling and analysis of the data. Indeed, the statistical
model is a non linear deconvolution problem, and thus it is difficult to use classical
approaches to solve it. This difficulty is overcome here by building parametric models
that we have named ”Quasi-mechanistic models” involving various approaches. We
estimate the parameters on two field experiments. We discuss in Section 4 the results,
and some perspectives for future studies

This short paper is based on a joint work with C. Lavigne and P.H. Gouyon
(Laboratoire d’Ecologie et Systematique, Université Paris-Sud, Orsay, France), and
X. Foueillassar (A.G.P.M., Maize producer Association) that is to appear in Ecological
Monographs( Klein et al, 2003).

1 Wind dispersed Models

Corn pollen is dispersed by wind. Therefore, a pollen grain may be assimilated to a
particle, and its study arises similar questions and methods than spore dispersal, seed
dispersal by wind or pollutant dispersal. There are two general concerns about this
dispersal:

• What is the global shape of dispersal curves over long distances?

• How is it possible to get precise quantitative knowledge to make predictions about
the levels of pollen flows between two fields, a field and feral populations, a field
and wild relatives.
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We address here the second question. Without data over long distances, it is just
possible to interpolate dispersion curves without being able to assess the goodness-of-fit
of the statistical data analysis.

There are two basic approaches to measure pollen dispersal: The first one studies
the physical dispersal of pollen grains by setting pollen traps at various distances;
the second one consists in studying pollen dispersal by measuring presence of a genetic
marker in progeny (this is the case of many experiments). We have followed this second
approach.

The pollen source consists in a patch of plants homozygous for a monogenic domi-
nant marker; the pollen receptors consist in a larger patch containing plants homozy-
gous for the recessive allele. Therefore, the presence of the marker in offspring means
an occurence of efficient pollen dispersal and pollination. Now, there are two different
pollination functions to be considered.

• The backward dispersal function i.e. the proportion of ovules at a given
distance that are fertilized by the source (marked). This describes the pollen
cloud composition above a plant. This is directly observed from the experiments.
It is very sensitive to the experimental design (size, shape, position).

• The forward dispersal function, i.e. the proportion of the source plants that
fertilize ovules at a given distance. This is not directly observable (since it is
impossible to track pollen emitted by one plant). But it is easier to model by
mechanistic approaches. Moreover, it provides robust measures of dispersal since
it is useful to predict pollen clouds and gene movements.

Now, there are usually two kinds of approaches. The first one consists in Empirical
models used to fit experimental data and chosen for their mathematical simplicity.
The second one consists in Mechanistic models, that operate at the scale of a pollen
grain. They are obtained by modeling physical phenomena (air flow, emission con-
ditions,transport deposition), and thus include numerous parameters. There are only
used to achieve predictions with physical measures of parameters. There are not used
to fit dispersal data. They all present this drawback: they present too many parame-
ters to be estimated and the measures of these parameters are impractical in natural
conditions

Here, we adopt an intermediate approach that we name Quasi-mechanistic Mod-
els, where we consider only a few major phenomena. Models are simple enough to be
fitted to experimental data but sophisticated enough to include parameters having a
physical meaning.

2 Quasi-Mechanistic Models

Our concern is to model forward pollination. It is defined as the probability that
a pollen grain emitted at point (0, 0) falls and fecundates a target plant located at
(x, y). We denote it by {γ(x, y), (x, y) ∈ R2} . This is a two-dimensional probability
distribution density, that models the efficient pollen dispersal function.
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We will see later that backward pollination (i.e. what is observed) can be obtained
from the forward pollination by means of noisy observations of a non linear convolu-
tion. These models include the following parameters: the difference in height between
male and female flowers, the settling velocity, the mean wind intensity, the turbulence
(simplified). These models are an extension of Tufto et al (1997). They are related
to models for turbulence data (Barndorff-Nielsen et al (1978), and used later on for
stochastic volatility modelling (Barndorff-Nielsen, 1997). Two main phenomena are
considered:

• Paths of pollen grains {(Xt, Yt, Zt), t > 0}

• Pollination times (random variables on R+ denoted by T .

The forward pollination is then derived as follows.

Proposition: Assume that T is almost surely finite. Then, the forward pollination
function γ(x, y)dxdy is obtained as the marginal distribution on R2 of the random
process (XT , YT ).

2.1 Models for individual pollen dispersal

Let us now detail the various models for pollination.

Paths of pollen grains. The simplest model is to assume that the path
(Xt, Yt, Zt) of a pollen grain is well enough approximated by a 3-dimensional Brow-
nian motion with drift,

dXt = µxdt + σxdB1
t , X0 = 0

dYt = µydt + σydB2
t , Y0 = 0

dZt = µzdt + σzdB3
t , Z0 = b > 0.

We take into account the mean wind velocity (represented by parameters (µx, µy)),
and gravity µz < 0. The atmospheric turbulence is roughly modeled by σx, σy, σz.
Here, all these drift and diffusions coefficients are assumed to be constant, and thus
are parameters to be estimated. Moreover, the three Brownian motions B1

t , B
2
t , B

3
t are

assumed independent. In particular, it implies that (Zt) and (Xt, Yt) are independent.

POLLINATION TIMES. This is the time where the pollen grain stops its course
on a female flower. It is a random variable denoted by T . We assume that female
flowers are located at a height b’ strictly smaller than the height b of male plant. We
denote by h = b-b’ this difference (note that h > 0).

Three cases can be distinguished:

(i) Vegetation dominance and Exponential hitting times.
The vegetation is the main factor to stop pollen. In Tufto et al(1997), T is an expo-
nential distribution with parameter λ, independent of (Xt, Yt, Zt). We consider here a
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more realistic model, taking into account only pollen grains that participate to pollina-
tion. The density of pollination time T1 is obtained as the conditional density of T on
R+ with respect to the event ZT = h. It is equal, setting λ′

z = 2 + µ2
z/σ

2
z , for positive

t,

f1(t) =
λ′

z√
2π

exp(λ′
zh/σz) t−1/2 exp−(λ2

z t +
h2

2σ2
z

1

t
).

(ii) Ground dominance and Inverse Gaussian hitting times.
This is another model for pollination times, assuming that a pollen grain fertilizes an
ovule when ,starting from Z0 = b, it first reaches the height Z = b′. The pollination
time T is a stopping time defined by

T2 = inf{t > 0, Zt = b′} = inf{t > 0, Zt − Z0 = −h} .

Its density is the Inverse Gaussian Distribution, defined for positive t,

f2(t) =
1

σz

√
2π

h exp(
h|µz|
σ2

z

) t−3/2 exp−(
µ2

z

2σ2
z

t +
h2

2σ2
z

1

t
).

(iii) Intermediate position and generalized Inverse Gaussian Distribution.
The two densities f1(t), f2(t) appear very similar except for the factor −α in front of t
in the exponential term (α = 1/2 in f1 and 3/2 in f2). This leads us to propose a more
general model including the two above, which allows to moderate but not eliminate
the influence of vegetation in pollination times,

f3(t) =
1

I(α)
t−α exp−(

µ2
z

2σ2
z

t +
h2

2σ2
z

1

t
).

The normalizing constant I depends on the modified Bessel functions of the third kind
Kν . It is equal to,

I(α) = 2| h
µz

|1−α K1−α(
h|µz|
σ2

z

).

Joining now these models for pollen grains paths and pollination times leads to
parametric families for the forward dispersal function. Pollination times are indepen-
dent of the 2-dimensional process (Xt, Yt) (this is an assumption in cases 1 and 3; it
is a consequence in case 2) since B3(t) is independent of (Xt, Yt). Thus, we can derive
explicitely the probability density on R2 of (XT , YT ).

Theorem (see Barndorff-Nielsen et al., 1978). If T follows a Generalized Inverse
Gaussian distribution (G.I.G.) with 1/2 ≤ α ≤ 3/2 and (Xt, Yt) a Brownian motion
with drift independent of T , then the marginal distribution of (XT , YT ) is a Generalized
Hyperbolic Distribution (G.H.D.).

Therefore, the forward dispersal function is a G.H.D distribution, whose parameters
depends on (µx, µy, µz, σx, σy, σz), the difference in height h = b− b′ and α. Clearly, all
these parameters are defined up to a scaling, as it appears in the analytic expression
of the G.H.D. distribution,

γGHD(x, y) =
λ1−α

z δxδy

2π
× pα/2

q(x, y)α/2
× Kα(

√
pq(x, y))

K1−α(λz)
exp(δxλxx + δyλyy),
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with
λz = |µz |h

σ2
z

, λx = µxh
σxσy

, λy = µyh
σyσz

, δx = σz

hσx
δy = σz

hσy
, p = λ2

x + λ2
y + λ2

z

q(x, y) = 1 + δ2
xx

2 + δ2
yy

2.

Denote by θ ∈ Θ ⊂ R6 the parameters θ = (α, λx, λy, λz, δx, δy), where Θ = [1/2, 3/2]×
R× R× R+∗ ×R+∗ × R+∗. The problem reduces now in estimating these parameters
from the experimental data.

3 Statistical estimation from the observations

3.1 The experiments

They have been performed with Maize producers (AGPM, X. Fouillessar). Two exper-
iments have been studied.

The first one is a corn production for grains in Montargis ( located near Orleans,
in the center of France). A corn field 120mx120m contained a square patch (20m
x20m) of plants homozygous for a dominant marker (blue coloured maize) which was
surrounded by a field of plants homozygous for the absence of marker (yellow-coloured
grains). After the pollination period, data were collected. According to their position
with respect to the blue path, yellow maize was pollinated by pollen coming from both
yellow and blue maize. Roughly speaking, above a given plant, there is a pollen cloud,
whose composition determines its pollination: Each plant yields an ear. On each ear
located at (x,y) in a finite 2-dimensional grid (i.e. the locations of cultivated yellow
maize) the number of blue grains was counted, together with the total number of grains.
The number of ears that have been analyzed is K=3063. The second experiment is a
corn production for seeds, located in Messanges, near Biarritz which is a coastal area in
the south west of France. A central plot of 20mx20m of blue maize was surrounded by
a field 135mx135m being sown with yellow maize. The number of analyzed ears is K=
1860. Thus, these two experiments are quite similar, although meteorogical conditions
are different (very windy in the second one).

Now, the observations are here related to the backward pollination function, since
the data describe the proportion of pollen originated from the marked source at point
(x,y) in the pollen cloud.

3.2 Relation between forward and backward pollination

Denote by µ(x, y) the result at (x,y) of individual pollen dispersal from many plants
(marked and non-marked). It describes the composition of the pollen cloud above a
plant located at (x, y) ( marked pollen µ(x, y), nonmarked pollen (1−µ(x, y)). This is
the backward dispersal function. It takes into account numbers and respective positions
of all the plants). We assume that

• all the plants possess the same individual pollen dispersal function;

• both marked and non-marked plants produce the same amount of pollen;

73



• both pollen types are equally efficient.

These are quite natural assumptions for these experiments.
Let B denote the set of indexes for locations of the central plot with blue grains

maize and J the set of indexes for yellow plants locations. Then the function µ has
the expression

µ(x, y) =
Σk∈B γ(x− xk, y − yk)

Σk∈Bγ(x− xk, y − yk) + Σk∈Jγ(x− xk, y − yk)

An equivalent formula with convolution products is

µ(x, y) =
(γ ? 1B)(x, y)

(γ ? 1F )(x, y)
with F = B ∪ J

3.3 The statistical model

We have now to retrieve the individual dispersal function γ from the noisy observations
of the backward dispersal function µ.

Set z = (x, y). Maize ears are cropped on a non regular sampling grid (zk =
(xk, yk) ∈ R2, k ∈ K). Let Nz denote the total number of grains on an ear located at
z, and nz the number of blue grains on this ear.

Since we are studying count data, it is natural to assume that nz follows a binomial
distribution Bin(Nz, µ(z)). Thus, the statistical model for the observations is

nz = Nzµ(z) + εz ,

where the random variables εz are independent, centered with variance

V ar(εz) = V ar(nz) = Nzµ(z)(1− µ(z)).

Therefore, recovering the forward dispersal function from the observations is indeed a
non linear deconvolution problem with a specific structure for the errors. It is a non
standard, ill-posed problem, quite difficult to solve using non parametric approaches.

Here, we have been able, in this case of wind pollination, to greatly reduce the
problem building parametric models and so, we just have now to solve a parametric
inference problem.

3.4 Parametric inference for (γθ(x, y) , θ ∈ Θ)

The number of blue grains nz on an ear located at z follows a binomial distribution
Bin(Nz, µ(z)), the exact likelihood L(θ; . . . ) writes down, given the K observations,

Log L(θ; n1, n2, . . . , nK) =
∑

z=1...K

Log Pθ(nz)

Pθ(nz = i) = Cnz

Nz
µ(θ; z)i (1− µ(θ; z))Nz−i.

Given the data, one has to find θ ∈ Θ maximizing Log L,

θ̂ = argsup {
∑

z=1...K

nzLog µ(θ; z) + (Nz − nz)Log (1− µ(θ; z)), θ ∈ Θ}

74



When the variance of the observations is underestimated by the binomial model, it
is usual to introduce an overdispersion parameter φ (see Collett 1991). Indeed,the
underlying assumption is that the individual binary observations that make up the
observed proportions are independent. This is not entirely verified here. Then, µ(z)
is no longer deterministic, but is a random variable A(z) on [0, 1] with mean µ(z)
and variance φµ(z)(1 − µ(z). We then use a quasilikelihood method, associated with
observations having mean Nz µ(θ; z) and variance

V ar nz = Nz µ(θ; z)(1− µ(θ; z))(1 + φ(Nz − 1)).

The criterium becomes

0 =
∑

z=1...K

Nz

V ar nz

∂µθ

∂θ
(z)(nz −Nzµ(θ; z))

Remark: We had not at our disposal the observations of the total number of grains
on each ear (Nz, z ∈ K). We had only an average number that we substituted in the
above expressions.

We have estimated the parameters using the M.L.E. and the Least Square Esti-
mation criteria. We have not yet used the quasilikelihood method. This is work in
progress since we have now evidence for the existence of correlations between data.

3.5 The results

Observed dispersal patterns are shaped primarily by the major wind dispersion. In both
experiments, the wind blew in almost only one direction, resulting in elliptic dispersal
patterns. Long-distance dispersal events were not rare and blue seeds were observed
at the maximal distances sampled in the downwind direction. Despite the hundreds
of kilometers between both experiments, the G.H.D. models gave the better fit for
both criteria, which was expected since it contains one more parameter and includes
the two models. However, the likelihood ratio test found no significant difference
between N.I.G. and G.H.D. Therefore, we have chosen the simplest model (N.I.G.),
which implies that the assumptions of a Brownian with drift for pollen grains sample
paths coupled with hitting times are quite satisfactory. However, model validation and
testing of hypothesis have to be studied more carefully (for instance the NIG model
corresponds to a parameter α located at a bound of the estimation interval, ...)

Another way to assess the performances of these models together with the statistical
analysis is to predict backward dispersal functions using the estimated forward dispersal
functions, using computer simulations. Such a presentation of the results is given in
Figure 1. This is the pollen dispersal in the first experiment (Montargis). In (a) the
observed dispersal : each gray rectangle represents a sampled ear and its shade of
gray represents the proportion of blue grains of the total number of grains on this ear.
Axes are measured in term of distance from one corner of the field. Predictions of the
proportion of marked pollen at each point of the field are given using (b) the G.H.D.
model;(c) the NIG model; (d) the GTM model.

The comparison between the predicted/observed plots showed that no bias occurred
in any part of the dispersal functions. The fit was quite good using NIG or GIG models
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Figure 1: The pollen dispersal in the first experiment (Montargis). In (a) the observed
dispersal : each gray rectangle represents a sampled ear and its shade of gray represents
the proportion of blue grains of the total number of grains on this ear. Axes are
measured in term of distance from one corner of the field. Predictions of the proportion
of marked pollen at each point of the field are given using (b) the G.H.D. model;(c)
the NIG model; (d) the GTM model.

and MLE criterium. In downwind directions, the NIG leads to quite satisfactory heavy
tails, which was expected, and in the upwind direction, it decreases quite quickly.
It appears from both experiments to be the most adequate model for describing the
individual dispersal function of corn pollen.

To conclude, the results of this study are quite satisfactory, as illutrates the simu-
lated and observed paths of dispersion. We have obtained a non isotropic probability
distribution on R2 which fits the data quite well. This is a real progress compared to the
dispersion functions usually used ( isotropic with geometric or exponential decay w.r.t.
distances. Moreover, this modelisation provides a useful tool in practice to predict the
levels of pollutions between for instance a transgenic and a non transgenic fields and,
in particular,it shows that these levels depends on the relative sizes and positions of
fields. The results are consistent with the apriori knowledges of the pollinations in the
two areas.

Many questions arise now after this first study of wind pollen dispersal. We have
partly neglected the existence of a wind threshold for pollen emission. The compari-
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son between parameters values estimated from dispersal patterns and calculated from
independent informations suggest that this should be done: there is work in progress
in that direction. All the estimations on the individual dispersion function are in fact
valid for a continuous canopy. Studies have to be done in non-homogeneous (or dis-
continuous) landscapes. Discontinuities can be roads, edges, bare soil or populations
of other plant species,..). There is also work in progress in that direction.
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Stochastic effects in enzymatic biomolecular
systems: framework, fast & slow species and

quasi-steady state approximations

Michael Samoilov
University of California, Berkeley

1 Introduction

Enzymatic reactions represent a ubiquitous class of biochemical mechanisms. Their
dynamics within broader biomolecular networks provide the chemical basis for many
types of cellular behaviors, while subnetworks of enzymatic reactions often form rec-
ognizable control motif topologies making better understanding of these mechanisms
an increasingly important subject. The characteristic feature of many such systems
is a type of mesoscopic property, whereby typically high concentrations of reaction
substrates are contrasted with frequently low concentrations of enzymes driving and
controlling these processes, which could be present in quantities as low as single digit
molecular copy numbers. (This is true both in the more extremal cases, such as that
of DNA, where the number of copies typically varies in single digits for normal growth
and division genomic — to teens and higher if we consider plasmid, organelle, viral,
etc.; as well as the more conventional protein ones, such as β-galactosidase, which in
its role as a lactose sensor is present in fewer than 10 copies for E. coli grown on other
carbon sources (Stryer 1988).) While this feature of enzymatic biomolecular systems
has been extensively studied within the scope of classical deterministic chemistry, e.g.
to obtain the various Michaelis-Menten (MM) type approximations to such systems’
mass-action kinetics description (Segel and Slemrod 1989; Murray 1993), its stochastic
properties generally have not received as much consideration. This is often the case
in spite of the fact that the low molecular enzyme counts make stochastic treatment
of such mechanisms essential for accurate modeling of real biological processes (Arkin,
Ross et al. 1998; Srivastava, Peterson et al. 2001; Ozbudak, Thattai et al. 2002;
Rao, Wolf et al. 2002; Blake, Kærn et al. 2003). The main reasons behind this situ-
ation remain grounded in the combination of the relative complexity of the stochastic
treatment of such processes analytically and the still high computational intensity of
simulating them numerically, which is further exacerbated by the substantially low
insight such methods contribute to our overall understanding of these processes. To-
wards such problems, this work considers alternative approaches that could potentially
contribute to helping rectify the situation as well as considers examples demonstrating
their uses.

2 Stochastic (Bio) Chemistry

Today the most widely accepted view of stochastic phenomena in chemical processes is
based on the Master Equation formalism (Gillespie 1992), which results in a differential-

78



difference equation with origins in statistical mechanics and kinetic theory, whereby
the ensemble distribution of a chemical system is described by

∂

∂t
P ( ~X, t) =

∑

~r

[

W ( ~X − ~r, ~r)P ( ~X − ~r, t)−W ( ~X,~r)P ( ~X, t)
]

. (1)

Here P ( ~X, t) ≡ P ( ~X, t| ~X0, t0) is, loosely speaking, the probability that a thermally
equilibrated chemical system in a perfect CSTR (continuously stirred reaction tank)

of volume Ω will be found — pending the initial conditions — to have ~X molecules
at time t. Quantities W ( ~X,~r) for individual reactions with molecule-change vectors
~r = ~νp−~νs (product minus substrate) are referred to as “propensity functions” and rep-

resent the transition rates ~X −→ ~X+~r, typically in a polynomial form (Gillespie 1992),
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∏

i

Xi!

(Xi − νs
i )!

= k~r

∏

i

X
νs

i

i + O
(

r

X

)

. (2)

That is, a solution of equation (1) in the given sense completely describes the behavior
of a classical spatially homogeneous (bio) chemical system, including such stochastic
properties as rate of fluctuations, relative stability of multiple steady states, etc. The
connection to mass-action chemical kinetics is usually provided by considering the av-
erage behavior of the species, which from (1)–(2) is:
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Notice that the full stochastic behavior does not generally conform to the deterministic
kinetics (given on the right side of the formula). And although for large classes of
reactions the difference is negligible, it could be shown that it is by no means always
true, which is where the deterministic chemical kinetics description begins to fail.

Regretfully, due to its semi-discrete structure as well as physical restriction that
Xi ≥ 0, equation (1) is very difficult to solve directly — whether exactly or approxi-
mately — even for the simplest of reaction mechanisms (Gardiner 1990; Van Kampen
1992; Dykman, Mori et al. 1994; Gillespie 2000), and the few existing solutions are
rather obscure and difficult to work with (Leonard and Reichl 1990; Robertson, Shushin
et al. 1993; Samoilov and Ross 1995; Laurenzi 2000).

3 Simulating Stochastic Effects in Enzymatic Systems

While obtaining general solutions to (1) is difficult if not impossible for most classes of
biochemical reactions, it is nonetheless necessary in certain cases — such as enzymatic
biomolecular reactions — to recognize the characteristic effects such treatment might
add to our understanding of their behavior. It is thus desirable to consider approaches
that might yield answers to the more specific questions one could ask of a particular
system under study, without the need to explicitly solve the master equation.
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3.1 Gillespie Algorithm

By far the most successful and useful of such general methods is the exact simulation
approach, often referred to as the “Gillespie Algorithm” or “GA” — see, for example,
(Gillespie 1992). GA is called “exact”, because it allows user to simulate individual
system paths exactly according to the distribution described in (1), i.e. starting with
some initial condition one constructs a realization of a single trajectory system might
stochastically take over time under P ( ~X, t). That is GA yields examples of how a
system defined by (1) might actually behave as well as allows for numerical compu-
tations of certain system quantities, such as variances and higher moments at steady
state, but not the distribution itself. It is particularly useful if one wants to “visualize”
the behavior of the system for a given set of parameters in order to get a sense of
its stochastic characteristics, since it could often be implemented quite efficiently for
even substantial size systems, for example, as was shown by simulation and outcome
analysis of λ-phage decision switch operation in E. coli (Arkin, Ross et al. 1998).

3.2 Approach Limitations

Unfortunately, GA suffers from three fundamental shortcomings, which serve to sub-
stantially restrict its usefulness in the biochemical setting. First, it is a “random time-
step” algorithm, i.e. the time period between two successive points on the simulated
trajectory is a random variable, which means that neither the question of simulation
time nor the state of the system at a particular time point could be answered with
great fidelity. Second, GA does not provide any a priori evidence as to what the ef-
fects of parametric changes on the system might be or where in time they might occur.
Thus, if looking for a spatially resonant or temporary rare feature — such as a bifur-
cation or large fluctuation — one has to be relying on “blind search” (or pure luck)
to find any evidence with GA-only strategy. Third and most problematic issue is in
the nature of the exact simulation approach itself. That is, GA faithfully simulates all
reactions comprising the system under consideration without regard for their relative
rates, since it is “exact” by definition. Thus, if the system happened to have some
reactions that are a lot faster than the rest — most of the time would be spent run-
ning and updating those, while the overall behavior the system would remain obscured
if at all observable. This is especially true for biomolecular systems with enzymatic
reactions, since biological organisms often rely on high turnover enzymes maintained
in what is termed “quasi-steady state” (which could be loosely thought of as “rapid
equilibrium” and in the simplest deterministic case is equivalent to the MM approxima-
tion), i.e. where enzyme-substrate complex is being synthesized/degraded much faster
than other species, thus rendering many such systems outside the realm of efficient
GA applications. There have been a number of attempts — including by Gillespie
himself — to augment GA for quasi-steady state conditions in order to make it more
useful for dealing with biological problems. However, to date none of those methods
could be considered truly successful, which — along with other factors discussed ear-
lier — provides an impetus to consider alternative formulations. We will do so next in
the framework of the simplest biomolecular enzymatic system: the Michaelis-Menten
enzyme reaction.
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4 Alternative Modeling Approaches: Michaelis-Menten En-

zyme

While MM reaction — Figure 1 with additional constraint equations (4) — is, perhaps,
the simplest example of enzymatic biomolecular system,

S + E
k1




k
−1

C
k2

−→ P + E

Figure 1: Michaelis-Menten enzyme reaction.

E0 = E + C = Const, (4)

S0 = S + C + P = Const,

with Km = (k−1 + k2)/k1,

it nonetheless exhibits all of its characteristic qualities, such as net zero change, non-
linearity, etc. A notable property of this reaction is the existence in the deterministic
case of a singular perturbation solution, known as a “quasi-steady state approxima-
tion”or “QSSA”, (Segel and Slemrod 1989; Murray 1993), which is a general analytical
approach that in the specific case of MM essentially validates the limit:

dC

dt
= k1(E0 − C)S − (k−1 + k2)C = 0 + O(ε) ⇐⇒ C(t) =

E0S

S + Km
+ O(ε) (5)

with

ε =
E0

S0 + Km

� 1, (6)

by allowing one to separate away the “fast” variables that equilibrate quickly, such as
E, from the “slow” ones that are of ultimate interest in this biomolecular system, such
as P , thus greatly simplifying its analysis.

As was noted before, it has been a challenge to properly define an equivalent “quasi-
steady state” criterion and/or variable separation methods in the case of a general
stochastic system. We thus look next to explicitly analyze such properties only for the
MM system as described directly via the master equation (1), which in this case takes
form 1

dPr(S, E, C, P ; t)

dt
= k1(S + 1)(E + 1)Pr(S + 1, E + 1, C − 1, P ; t) (7)

+ k−1(C + 1)Pr(S − 1, E − 1, C + 1, P ; t)

+ k2(C + 1)Pr(S, E − 1, C + 1, P − 1; t)

− [k1SE + (k−1 + k2)C] Pr(S, E, C, P ; t),

1Notation for probability was changed from P to Pr in order to avoid confusion with reaction
product label.
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and — using the mass conservation conditions (4) — could be reduced to

dPr(C, P ; t)

dt
= k1(S0 − P − C + 1)(E0 − C + 1)Pr(C − 1, P ; t) (8)

+ k−1(C + 1)Pr(C + 1, P ; t) + k2(C + 1)Pr(C + 1, P − 1; t)

− [k1(S0 − P − C)(E0 − C) + (k−1 + k2)C]Pr(C, P ; t),

in order to see if we could demonstrate some useful approaches to dealing with stochas-
tic biomolecular systems on this relatively simple example.

4.1 Direct Evaluation

We begin by looking to compare the master equation results with equation (5), to see
if the stochastic predictions do indeed match the deterministic ones. 2 Thus, summing
over P in equation (8), we can deduce the evolution formula for the probability of C
only:

dPr(C; t)

dt
= k1(S0 − 〈P |C − 1; t〉 − C + 1)(E0 − C + 1)Pr(C − 1; t) (9)

+ (k−1 + k2)(C + 1)Pr(C + 1; t)

− [k1(S0 − 〈P |C; t〉 − C)(E0 − C) + (k−1 + k2)C]Pr(C; t),

while, similarly, summing over C we get a formula for the probability of P :

dPr(P ; t)

dt
= k2 〈C|P − 1; t〉Pr(P − 1; t)− k2 〈C|P ; t〉Pr(P ; t), (10)

where 〈X|Y ; t〉 ≡
∑

X P (X|Y ; t) denotes the conditional average of X at time t.
From (3) we can see that the one case where the stochastic and deterministic results

are guaranteed to match is the case of linear reactions. The only specie that has a
purely linear form for the evolution of its average in MM reaction is the product, 〈P 〉,
which could be seen to follow the same equation in both instances:

d〈P 〉
dt

= k2 〈C〉 . (11)

Now consider evolution the conditional average of the product, 〈P |C; t〉.

i. Initially at t = 0 the system has deterministic inputs: P (0), C(0) , etc. — that
is, 〈P 〉 (0) = 〈P |C〉 (0).

2As could be observed from (3), the equivalence of the stochastic model and its deterministic limit
is not at all guaranteed and in general is not true.
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Also, from (2)–(4) it is easy to see that 〈P |C; t〉 ∈ [〈P |={0}; t〉 , 〈P |={E0}; t〉], – where
the limits are over sets of extremal trajectories, along which there is either no C or
there is maximal amount all the time. After direct evaluation they yield:

ii. For the lower bound – there is no production of P whatsoever, so 〈P |={0}; t〉 =
P (0).

iii. For the upper bound – there is always (fixed) maximal amount of complex, so
the reaction always proceeds at the maximal rate, where (1)–(2) & (10) give:
d
dt
〈P |={E0}; t〉 = k2E0.

Since concentrations are always positive, we observe that 〈C〉 ∈ [0, E0] via (3), which
combined with (11) & i)-iii) shows that,

〈P 〉 − 〈P |C〉 = O(ε), (12)

where ε is defined in equation (6).
With the substitution of (12) into equation (9),

dPr(C; t)

dt
= k1 〈S〉 (E0 − C + 1)Pr(C − 1; t) + (k−1 + k2)(C + 1)Pr(C + 1; t)

− [k1 〈S〉 (E0 − C) + (k−1 + k2)C]Pr(C; t) + O(ε), (13)

we can compute the kinetic equation for the evolution of the “fast” enzyme-complex
averages in this limit:

d 〈C〉
dt

= k1 〈S〉 (E0 − 〈C〉)− (k−1 + k2) 〈C〉+ O(ε), (14)

which is the same as predicted deterministically via (3)–(5).
Now, since the MM approximation itself is also order ε we can conclude that the

stochastic results do indeed correspond to the deterministic approximation ones given
in equation (5) in this case, i.e.

〈C〉 =
E0 〈S〉
〈S〉+ Km

+ O(ε). (15)

Finally, utilizing the same techniques as in (12) with the help of equation (15) we get

〈C〉 − 〈C|P 〉 = O(ε), (16)

i.e. equation (10) similarly becomes in “slow” variable limit:

dPr(C; t)

dt
= k2 〈C〉Pr(P − 1; t)− k2 〈C〉Pr(P ; t) + O(ε). (17)
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Thus, from (11) & (13)–(14) we can conclude that, at least for the Michaelis-Menten
reaction, the stochastic predictions for the evolution of the species averages indeed
match the classical deterministic ones to order ε.

4.2 Implication for Stochastic QSSA and Fast–Slow Variable Separabil-

ity

It is remarkable to note that in the course of trying to validate the deterministically pre-
dicted behavior of the system we ended up with the same criterion as the quasi-steady
state one for MM approximation. That is, if ε � 1 — not only both the determin-
istic limit, (3), and the further Michaelis-Menten approximation, (4), remain valid,
but the stochastic quasi-steady state approximation system exists and its meaning is
clear. Furthermore, the reaction explicitly separates into “fast” and “slow” variables
— naturally so as given by (13) and (17).

Fast variables, {E, C}, to order ε evolve according to the reduced master equation
(13), which is equivalent to a linearized reaction given in Figure 2,

E

k1〈S〉

−→
←−

k−1+k2

C

Figure 2: Stochastic evolution of “fast” species in Michaelis-Menten reaction for ε� 1.

thus allowing us to, for example, easily calculate the explicit stationary distribution
of the fast species reaction within the same order, as done by many authors, e.g.
(Samoilov and Ross 1995).

Slow variables, {S, P}, to order ε also evolve according to the reduced master equa-
tion (17), which is equivalent to as a linearized reaction given in Figure 3,

〈C〉 k2−→ P

Figure 3: Stochastic evolution of “slow” species in Michaelis-Menten reaction for ε� 1.

where S could then be obtained via the conservation conditions (4) and equations
(14)–(16).

Thus, we can conclude that (13) and (17) provide the desired separation of variables
into the fast and slow ones, which — among other things — demonstrates an example
of approach that could be further used to generally allow for more efficient simulations
of enzymatic biomolecular reactions, as was discussed earlier in the context of the GA.
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5 Discussion

This note has attempted to broadly outline some of the issues associated with stochas-
tic effects in enzymatic biomolecular systems and exemplify them by considering a
couple of modeling approaches, such as GA simulations and QSSA-type approxima-
tions. While such methods have been investigated previously in a much more extensive
framework for improving enzymatic system simulations’ speed, (Haseltine and Rawl-
ings 2002; Rao and Arkin 2003), a notable thing about the results presented herein —
albeit applied only to the Michaelis-Menten reaction — is that they not only provide
a consistent stochastic QSSA and fast/slow variable separation picture for the consid-
ered system, but also do so under a rather mild criterion of ε � 1 only. In addition
to being the same condition as the deterministic one, equation (6), — which provides
the connection between the two approaches and guarantees the consistency of results
— it avoids a lot more stringent and somewhat arbitrary conditions: dP (Slow|Fast;t)

dt
= 0

or dP (Fast|Slow;t)
dt

= 0 authors have previously had to, respectively, impose as fundamen-
tal assumptions justifying their intuitive reasoning. In addition to being somewhat
contradictory, these conditions do need broad validation and might generally not be
true. The reasoning provided here helps to alleviate some of these concerns, at least
in the case of the MM reaction, which — although a single mechanism — does have
certain universal properties common to many biomolecular enzymatic mechanisms, as
discussed earlier.

Overall, the presented analysis might be viewed as the stochastic analogue to the
situation encountered in the deterministic case, where the ad hoc method for obtaining
the deterministic version of the Michaelis-Menten approximation is to set Ċ = 0 (Segel
1975) — which has correct “intuitive meaning”, but gives no applicability or error cri-
teria. The full justification (and meaning) for the result is provided only via a singular
perturbation differential equation analysis (Segel and Slemrod 1989), which analyti-
cally establishes the criteria for both approximation validity and error estimation. The
analysis outlined herein provides a similar justification for the case of the stochastic
description of the Michaelis-Menten reaction as well as suggests a unified treatment for
giving meaning to and defining applicability of the fast/slow variable separation and
stochastic quasi-steady state approximation in enzymatic reactions.
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Genetic network modeling

E. P. van Someren, E. Backer and M. J. T. Reinders
Delft University of Technology

1 Introduction

In pharmacogenomics and related areas, a lot of research is directed towards discover-
ing, understanding and/or controlling the outcome of some particular biological path-
way. Numerous examples exist where the manipulation of a key enzyme in such a
pathway did not lead to the desired effect [5]. This usually happens because the in-
tended effect was compensated for by the genetic regulation of enzyme levels. Such
examples illustrate the importance of accounting for genetic regulation.

We know that the structure of complex genetic and biochemical networks lies hid-
den in the sequence information of our DNA but it is far from trivial to predict gene
expression from the sequence code alone. The current availability of microarray mea-
surements of thousands of gene expression levels during the course of an experiment
or after the knockout of a gene provides a wealth of complementary information that
may be exploited to unravel the complex interplay between genes. It now becomes
possible to start answering some of the truly challenging questions in systems biology.
For example, is it possible to model these genetic interactions as a large network of
interacting elements and can these interactions be effectively learned from measured
expression data?

Since Kauffman [21] introduced the concept of mathematical modeling of complex
systems, the reverse engineering of genetic networks has triggered the imagination of
many molecular biologists. Somogyi [31]1 also investigated some of the properties of
Boolean networks in relation to biological systems. These researchers showed that
Boolean networks possess properties like global complex behavior, self-organization,
stability, redundancy and periodicity. Analogies between basins of attraction and dif-
ferent tissue types, as well as cyclic attractors and cell cycles have also been discussed
by many other researchers.

The inference of genetic interactions from measured expression data is one of the
most challenging tasks of modern functional genomics. When successful, the learned
network of regulatory interactions yields a wealth of useful information. An inferred
genetic network contains information about the pathway to which a gene belongs and
which genes it interacts with. Furthermore, it explains the genes function in terms
of how it influences other genes and indicates which genes are pathway initiators and
therefore potential drug targets.

Obviously, such wealth comes at a price and that of genetic network modeling is
that it is an extremely complex task. Although the behavior and properties of artifi-
cial networks match the observations made in real biological systems well, the field of
genetic network modeling has yet to reach its full maturity. The automatic discovery

1For reasons of brevity, the authors consistently refer only to the first author of each reference.
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of genetic networks from expression data alone is far from trivial because of the combi-
natorial nature of the problem and the poor information content of the data. First, to
model genetic regulation, one needs to take into account the fact that gene expression
levels are regulated by the combined action of multiple gene products [17]. Second,
the number of measurements (arrays) is relatively small compared to the number of
measured objects (genes) and the data are corrupted with a substantial amount of
measurement noise. Together, these two complicating factors make the construction of
genetic networks from empirical observations extremely difficult. In addition, results
are further complicated by the presence of inherent noise caused by, for example, vari-
ations between different individuals, small numbers of molecules available in a given
cell, variations between tissues in a given individual, variations caused by effects that
are not measured etc.

The dimensionality problem (many objects and few measurements) plays a fun-
damental role in genetic network modeling causing the straightforward estimation of
model parameters to become extremely unreliable (many equally good solutions). The
common approach to avoid this problem is to either reduce the models complexity or
to apply constraints on the parameters. Consequently, the relatively young field of ge-
netic network modeling has been governed by the introduction of a plethora of different
models and learning strategies.

This abstract provides an small overview of genetic network modeling approaches
that employ expression data to automatically discover genetic interactions. Reviews
on genetic network models have also appeared recently. In a recent review [42], models
are placed in an historical context and the qualitative properties of the models and
their learning strategies are compared. De Jong [10] focuses in his review more on
the mathematical properties of the models. An experimental comparison of a limited
number of genetic network models is presented in [48, 39].

2 Reverse Engineering of Genetic Network Models

The introduction of microarray technology made it possible to measure the gene-
expression levels of thousands of genes simultaneously. This introduced a new impulse
to genetic network modeling, namely the reverse engineering of large-scale genetic
networks based on measured expression data. Starting from microarray data and a
general model of genetic interactions, the parameters of this general network model are
learned from the data. Here we will describe only dynamical models, i.e., models that
are learned on time course gene expression data.

2.1 Boolean networks

In 1998, Liang [24] started off by introducing REVEAL, an algorithm that automati-
cally constructs a large-scale Boolean network from data. In a general Boolean network
model, all gene expression levels are discretized into binary expression levels; a gene is
either on or off. The binary expression levels of all genes in the system at a certain
point in time define the state of the network at that time instant. A state transition
table defines, for each possible network state, which network state will be next (see
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Figure 1: Example of: a) a Boolean network of three genes with corresponding b)
state-transition table and c) Boolean rules.

Figure 1b). From this table, a Boolean rule can be determined for each gene that de-
scribes how its expression level at the next time instant depends on some combination
of the gene expression levels at the current time instant.

Typical Boolean rules contain logical operators such as AND, OR and NOT (see
Figure 1c). By placing connections between each of the input genes in the rule and
the output gene, the structure of the network can be determined, which expresses the
interactions among all genes (see Figure 1a). A typical gene expression dataset, after
discretization, represents an incomplete state-transition table, since not all possible
states will have been measured.

REVEAL constructs the rule for a target gene from this incomplete table by con-
sidering the mutual information between the input states of each single gene (k = 1)
and the output state of the target gene. If the output can be perfectly determined by
one of the inputs, the corresponding rules and connections are extracted. If not, all
combinations of two genes (k = 2) are considered as input and it is examined whether
this pair can perfectly predict the target. If not, the procedure repeats for k = k
+ 1 etc. In other words, the structure is learned using a forward exhaustive search
procedure that stops as soon as a perfect reconstruction is possible.

A year later, Akutsu [1] proved, using a conceptually simpler approach, that O(log2N)
random measurements are sufficient to identify a network of N genes with bounded
connectivity K but this algorithm takes O(NK + 1Q) time, with Q the number of
state transitions. This implies that for a typical gene expression dataset with 1000
genes and connectivity K = 2, in the order of 10 independent measurements are suffi-
cient but in that case O(1010) time is required! The algorithm learns a Boolean model
by performing an exhaustive search not only for each possible combination of inputs
but also for each possible configuration of Boolean functions (using only AND or and
NOT operators) that are consistent with the given state transitions. Unfortunately,
this algorithm was not suited for noisy conditions but a year later Akutsu presented
an algorithm that is robust to noise [2, 3].
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2.2 Continuous models

Although Boolean networks provide a good starting point, they are generally criticized
because only two discrete expression levels are allowed. Many examples exist where
genes are regulated in a continuous manner rather than just turned on or off [29, 20, 19].
This inspired the introduction of models with a continuous representation of gene
expression.

DHaeseleer [12] learned a linear model on data from the rat central nervous system
(CNS), during development and injury after kainate injection [47]. He coupled two
partly overlapping datasets, to utilize as much information as possible, resulting in a
dataset of 65 genes and 28 time points. Even this simple linear model (with a single
parameter per gene) contains more parameters than the number of measurements. This
so-called dimensionality problem makes it possible to find many parameter sets that
perfectly reconstruct the data. As a result, the parameter estimations become unreli-
able. To accommodate the fact that the datasets were differently sampled, DHaeseleer
employed a nonlinear interpolation method (resulting in 68 time points). By employ-
ing a nonlinear interpolation scheme, he enforces smoothness and tries to avoid the
dimensionality problem.

Weaver [46] also employed the linear model but augmented it with a biologically
inspired, non-linear doseresponse curve. Although nonlinear, this model is essentially
a recurrent neural network without a hidden layer. By de-squashing the doseresponse
curve, the model can be solved by simple linear algebra. To handle the dimension-
ality problem, Weaver proposed the use of the Moore-Penrose pseudo-inverse. This
special matrix inverse produces a solution for under-determined problems that mini-
mizes the sum of the squared weights but still perfectly fits the data. To introduce
limited connectivity, he proposed a greedy backward search that iteratively sets the
smallest weight to zero and then recomputes the pseudo-inverse on the now slightly
less under-determined problem. Unfortunately, the de-squashing step is quite sensitive
to small changes in the data. Rather than a discrete-time model, Wahde [43] employed
a continuous-time recurrent neural network. A genetic algorithm (GA) was employed
to find the parameters of small networks (four genes) learned on the average profiles
of clustered data. A genetic algorithm [26] is an optimization technique based on nat-
ural selection in which a set of possible solutions, called a population, is evaluated in
parallel. New populations of potentially better solutions are generated and evaluated
by combining (crossover) and modifying (mutation) the best solutions in the current
population. After learning the parameters with a GA, a qualitative description of the
parameters is given. Wahde showed results on artificial data as well as on the CNS
dataset presented by Wen [47]. Using artificial data he showed that it is better to have
multiple shorter time series than one long series. In later work [44, 45], he suggested
a procedure that forced parameters that were not significant to zero. Repeated elim-
ination of the most unreliable parameters can also be viewed as a form of backward
search.

Chen [9] proposed an even more realistic model based on a system of differential
equations that models both mRNA and protein levels, including degradation. Chen
showed that, provided that both mRNA and protein levels are given, solving this model
is similar to the problem of finding minimum weight solutions to linear equations
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(MWSLE). Unfortunately, this problem is known to be NP complete. However, for
a constant connectivity, K, the problem can be solved in O(QNK+1) time (using a
dataset of N genes and Q time points) by just checking all NK possible structures. Chen
also reasoned that, as many genes showed periodic expression, the Fourier transform
for stable systems (FTSS) might be employed as an alternative approach.

A year earlier, Spirov [32] had also suggested the use of a system of differential equa-
tions but for a smaller network and with more data points. For learning the parameters,
he suggested first using a genetic algorithm to come up with an initial population of
globally optimal solutions, which is then used as seeds for a parallel simulated anneal-
ing (SA) search. Simulated annealing is a sequential optimization technique that is
based on evaluating random changes to the current solution. Better solutions are al-
ways accepted, whereas worse solutions are accepted with a probability that decreases
during optimization. As a result, SA moves consistently to better solutions but is able
to jump out of local optima. When these runs have almost converged, a local gradient
descent (GD) approach is employed.

2.3 Modeling concerns

Apart from many papers that introduced a new reverse engineering approach based on
yet another model, gradually more papers emerged that addressed the issues associated
with genetic network modeling itself. With the reductionists approach, the combinato-
rial nature of genetic regulation had largely been ignored [35]. Therefore, it took some
time before researchers realized the immense complexity that learning genetic net-
works from expression data involved and the early enthusiasm subdued. Szallasi [35]
claimed that there are four factors inherent in biological systems that influence the
reverse engineering of genetic networks from expression data. First, the nature of ge-
netic networks is undoubtedly stochastic but microarray measurements are population
averaged, which may mask the real individual regulatory interactions. Also, a faster
sampling rate is not always possible because the measurement error determines a lower
bound on the sampling interval, i.e., the expected difference in expression within one
sampling interval should be larger than the measurement noise. Secondly, there are
also many regulatory factors that are not modeled, such as (de-)stabilization of mRNA,
translocation, phosphorylization etc. Thirdly, he reasons that the information content
of the data is not as large as its size would suggest (12 orders of magnitude smaller),
as only a few genes cycle and even fewer show frequent changes during cell cycle. On
the other hand, a property that is favorable for network analysis is that networks are
believed to exhibit a high level of compartmentalization.

Spirtes [33] also discussed some of the complicating issues of data acquisition in
relation to construction of genetic networks. Apart from the above- mentioned issues
of small sample sizes (dimensionality problem), the substantial measurement error and
the masking effect of population averaged measurements, he also points to the fact
that the final results can be influenced by hidden (e.g., not modeled) effects and the
loss of synchronization of cells.

Erb [14] experimentally examined the influence of measurement noise. He per-
formed Khalils sensitivity analysis on a complex non-linear model proposed by Mjol-
sness [13], employing a fully connected network of only three genes. Already with such
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a small network, the parameters turned out to be very sensitive to noise in the data.
A comparative study done by Wessels [48, 39] proposed a set of mathematical

properties that genetic network models should possess and by means of which they
can be compared. In a small experimental study of continuous models, in which the
models were learned on data generated by the other models, he reported disappointing
results in terms of how well models can reveal the underlying interactions when faced
with noise and limited data. The results favor simple, i.e., linear or pair-wise, models
that are less sensitive to unfavorable data conditions 2.

2.4 Pairwise models

One way to overcome the dimensionality problem is to restrict the complexity of the
model, for example, by only considering pair-wise relationships. Arkin [4] was the first
to suggest the construction of biochemical pathways by means of timeshifted pair-wise
correlations. First, the position and magnitude at which the maximal timeshifted cross-
correlation occurs is computed in a pair-wise fashion. From this, a distance measure is
constructed and single linkage hierarchical clustering is employed, resulting in a singly
linked tree that connects associated genes. Augmented with directional and time-lag
information this association diagram reveals temporal interactions. Arkin suggested
that his approach could also be used to learn genetic networks.

Later, Chen [8] proposed a similar scheme, based on matching peaks in the signals
rather than using correlation. After thresholding and clustering, the remaining profiles
are represented as a set of peaks. Then peaks in the profiles are compared in a pair-
wise fashion to determine the causal activation scores. Similarly, inhibition scores
are determined. From these scores a putative regulation network is constructed using
simulated annealing.

Woolf [50] was the first to describe a fuzzy model for learning genetic interactions.
He searched for all possible triplets of an activator and a repressor (two inputs) that
influence a target gene (one output). All triplets are scored and ordered on how well
they fit the expression data and on whether the inputs showed enough variation. Unfor-
tunately, these pair-wise (triple-wise) models are fundamentally limited to considering
only singly (doubly) connected networks.

2.5 Qualitative models

A different way to cope with the limitations of the data is to learn qualitative mod-
els, thus avoiding the necessity to estimate model parameters precisely. Akutsu [2, 3]
described a collection of algorithms that are an intermediate solution, somewhere be-
tween Boolean models and continuous differential models. These qualitative models are
based on linear differential equations but instead of trying to learn the exact param-
eters, the researcher derives qualitative abstractions of the parameters. For instance,
it is only relevant whether the differences are positive, negative or zero. In this case,
a solution can be found by solving a set of inequality relations. Provided that a lot
of data are available, these inequalities can be solved using linear programming (LP).

2The GA of the Wahde model converged slowly and was therefore stopped early, not allowing the
model to converge completely.
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Alternatively, the parameters of a non-linear S-system (power-law) can be found using
linear algebra by taking the logarithm on both sides of the equations. An S-system is
a set of non-linear differential equations of a special form belonging to the power-law
formalism (products of exponentially weighted inputs). If the logarithm is taken, the
obtained parameter values only portray a relative meaning. But this was exactly the
goal: to obtain a qualitative description.

Because of the multitude of detailed biological information acquired over the years,
a qualitative model provides an excellent tool to describe the working hypothesis of
researchers. Shrager [30] proposed an automatic scheme to revise an initial qualita-
tive model such that it better matches the expression data. This scheme is based on
comparing the expected pair-wise correlations of all pairs in the initial scheme with
the correlations in the expression data. This measure of data fit is used to construct
a fitness function, which is augmented with terms to reduce the number of variables
and links in the model. With this fitness function a simple greedy search is performed
based on considering single changes in the model. Unfortunately, the employed pairwise
correlation measure does not fully capture the combinatorial nature of the qualitative
model.

2.6 Modeling revisited

A better understanding of the consequences of the dimensionality problem resulted
in modeling approaches that were better adapted to handle the limitations of the
data. For example, strategies started to focus on first reducing the problem (e.g.,
taking a smaller network, using clustering or structure determination) such that the
resulting parameters are estimated more reliably. As a result, the boundaries between
the analytic and synthetic approaches gradually became blurred.

Van Someren suggested a number of general approaches to reduce the dimension-
ality problem by incorporating biologically motivated constraints and showed results
from artificial data generated with linear networks. The reduction of the number of
genes by clustering gene expression profiles was considered by many [12, 43, 44, 45, 32,
8, 38, 27, 11]. However, Van Someren [38] studied the relationship between clustering
and its effect on the dimensionality problem when learning linear genetic network mod-
els. In [40, 42], he showed that genetic network models could be made robust to noise
by minimizing the first-order derivative of the models output with respect to its input.
For non-linear models, robustness is imposed by learning the model on a set of noisy
profiles. To impose limited connectivity of the models, Van Someren [41] compared a
number of search algorithms that search for structures with limited connectivity. In
this comparison, a forward beam search approach proved to be the best. Mjolsness [27]
also suggested the use of clustered data and learned a system of non-linear differential
equations using simulated annealing. Apart from minimizing the prediction error, he
included a weight-decay term to minimize the weight values and an exponential term
that keeps the parameters bounded in the cost function. Koza [22] employed genetic
programming to determine the structure and rate constants of small metabolic path-
ways. He showed that it was possible to automatically create a metabolic pathway
involved in the phospholipid cycle using 270 time points of E-CELL simulations of a
4-enzyme network where all enzymes were perturbed. Unfortunately, a large amount of
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data were required. Maki [25] proposed a two-step approach in which first the structure
of a pair-wise Boolean network is learned from the steady-state expressions obtained
after perturbation of each gene in the network. The resulting network structure is used
to define smaller networks modeled by S-systems. The parameters of these systems are
then learned using a GA applied on dynamic data. Unfortunately, this approach still
needs a lot of measurements, i.e., at least perturbation experiments of all genes.

2.7 Trend towards Integrated Approaches

Ideker [18] presented a fully integrated approach on large-scale data in which four main
steps were taken:

• define an initial model of a pathway

• perturb components in the pathway and measure the responses in mRNA and
protein levels

• check the responses with the model

• refine the model to explain the unpredicted responses

He was the first to present mRNA expression data (microarrays) as well as protein
abundance data, using isotope-coded affinity tag (ICAT) reagents and tandem mass
spectrometry (MS/ MS) and to integrate this with information from databases of known
physical interactions of the galactose pathway.

Clearly the integration of different information sources is playing an essential part
in modern approaches towards genetic network modeling. The modeling trend that is
revealed by this quick review is the use of a larger variety of information for learning
genetic network models, be it in terms of other types of measurements, information
stored in databases or desired properties of networks. Therefore, we might expect that,
in the near future, results from pathway scoring [16, 23, 28, 34, 49] and promoter anal-
ysis [7, 6, 36, 37, 15] approaches will become integrated within the learning algorithms
of genetic network models. Advancements like these, will unlock and exploit the full
potential that genetic network modeling has to offer.
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Stochastic models of aging and mortality

David Steinsaltz
University of Califonia, Berkeley

1 Introduction

One of the most remarkable empirical discoveries of 19th century statistics is the Gom-
pertz mortality curve[Gom25]: over a broad range of ages, human mortality rates
increase exponentially with age to an exceptional degree of precision — even the rates
attributed to many individual causes of death. The succeeding nearly two centuries
have largely confirmed and extended Gompertz’s observation[OC97], to a great many
other creatures[Fin90], from the large to the small, under proper interpretation even
all the way down to the humble Saccharomyces cerivisiae, budding yeast [JEC89]. The
one major exception — already suggested by W. Makeham [Mak67] in 1867 — is a
deceleration of mortality-rate increase in extreme old age. (For an overview of the
history of the search for demographic laws of mortality, with emphasis on the Gom-
pertz curve, see [OC97].)We discuss some of the many mathematical models that have
been proposed to explain this pattern. While considerable ingenuity and insight have
gone into these models, it is remarkable how often they are undermined by errors of
mathematics or of logic, abetted by wishful thinking.

2 Markov mortality models

Many of the models are of a type sometimes referred to as a changing-vitality mor-
tality model. These represent the state of senescence (or, reversing the valence, the
“vitality”) of an organism as a Markov process (or, occasionally, a deterministic pro-
cess), with death as a random stopping time for the process, defined either by a state-
dependent killing rate, or by instantaneous killing when the process hits a lethal set.
The most famous of these models goes back to 1960, and is due to B. Strehler and
A. Mildvan.[SM60] Here, vitality is a fixed line with negative slope. The organism is
confronts “challenges to homeostasis,” which arise at a constant rate. The challenges
are assumed to be denominated in units of energy, and have the Maxwell-Boltzmann
distribution, which gives them a distribution P{X > x} = e−kx. Thus, the probability
of exceeding the vitality −at+ b is e−kb+kat at age t. The defect of this theory is its ar-
bitrariness. The Maxwell-Boltzmann distribution is offered with no justification, while
the explanation of the linear decline in vitality — itself an undefined quantity — is
perfunctory, referring merely to certain measures of physiologic capacities whose pop-
ulation average declines with age. The arbitrariness is compounded by obviousness: It
is hardly a surprise that combining a declining line with a negative exponential would
yield an increasing exponential.Similar criticisms could be leveled against a Markovian
model proposed by H. Le Bras [Bra76], and also discussed by Gavrilov and Gavrilova
[GG91]. Le Bras imagines the possible senescence states of an organism being denomi-
nated by the natural numbers. Motion is only upward, by a continuous time Markovian
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birth process. The transition rate from state n to n + 1 is λn. The process is killed at
a random time, with a rate given by µn when in state n. It is easy to compute that
the hazard rate for the killing time is

µ(µ + λ)e(µ+λ)t

λ + µe(µ+λ)t
.

Again, the Gompertz curve arises only under very particular assumptions (here, the
linear growth both of the transition rate and of the killing rate), which are also arbitrary.
And again, it is obvious that something like an exponential should come out when the
rate of increase is proportional to the current state, by analogy to the differential
equation dx/dt = kx. On the other hand, the smooth interpolation between the
exponential and a constant asymptotic rate is not entirely obvious. The arbitrariness
also seems less crass here, where the entire approach is more abstract and diagrammatic,
rather than purporting to be a true description of the aging process.J. D. Abernethy
[Abe79] proposes that organisms may be viewed as assemblages of independent identical
components, such that the failure of any one implies the failure of the whole system.
If the failure time distribution for each component is F (t) = P{Ti > t}, then the time
of “death” has distribution

P{T > t} = P{minTi > t} = F (t)n,

where n is the number of components. It is then shown that as n goes to ∞, and the
time is properly rescaled, the Gompertz curve is one possible limit form for the hazard
rate. This is hardly surprising, and is essentially a well known theorem in extreme-
value theory. On the other hand, in the nonmathematical introduction and conclusion,
it is claimed that the Gompertz curve is the only possible limit, which is simply untrue.
In fact, only very extreme component hazard rates, such as the Gompertz itself, will
produce a Gompertz curve in the limit.The idea of reproducing exponentially increasing
hazard rates from the composition of independent devices with simpler failure times,
in particular from constant hazard rates, has attracted many modelling attempts. One
of the earlier efforts was M. Witten’s 1985 paper [Wit85], which presented a model
quite similar to Abernethy’s, except that the components are redundant, so that death
is identified with the maximum of the individual failure times. With an appropriate
approximation scheme, it then derives a hazard rate of the form keαt. Unfortunately,
as L. Gavrilov and N. Gavrilova pointed out in [GG91], this α must be negative, which
means that the hazard rate must be exponentially decreasing, not increasing. Having
recognized the error of Witten’s ways, Gavrilov and Gavrilova set out in the same book
to repair it with a new model of their own, which is most completely presented in their
later paper [GG01]. In doing so, they stumble nearly as badly. They combine the
reliability models of Abernethy and Witten, proposing a structure with m essential
“blocks”, each comprising n redundant “components”. A block fails when all of its
components fail, and the organism dies when the first block fails. They approximate
the hazard rate for small times t to be a power of t, the so-called Weibull hazard rate.
They then propose that the number of components in each block should be random,
and should have a Poisson distribution. The idea is that organisms are composed of
mainly faulty components, and they argue that this explains the essential difference
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between technical devices (which tend to Weibull failure rates) and organisms (which
generally have approximately Gompertz rates). The main argument in favor of this
theory is that they do derive Gompertzian hazard rates from it. Weighing against it,
aside from the absence of plausible biological evidence, or even a coherent biological
model, is the fact that the derivation is incorrect. In computing the hazard rate —
the logarithmic derivative of the distribution function — for the random starting state,
where they should mix the distribution functions and then compute the logarithmic
derivative, they instead mix the logarithmic derivatives, which gives a very different,
and incorrect, answer. The correct answer does not look significantly like a Gompertz
curve.A different approach has been taken by J. Anderson [And00], and independently
by J. Weitz and H. Fraser [WF01]. They propose to model vitality by a diffusion,
namely, a Brownian motion with constant downward drift, killed when it hits 0. Weitz
and Fraser use the well-known formula for the hitting time of drifting Brownian motion
to show that this process produces mortality plateaus. This computation offers little
insight into the fundamental reasons, and no indication of whether the result extends
beyond this arbitrary special case. D. Steinsaltz and S. Evans [SE] have embedded the
mortality plateaus for this and other Markov mortality models in the general theory
of quasistationary distributions for Markov processes. In particular, they point out
that the Tweedie R-theory (see especially [Twe74] and [TT79]) allows us to identify
mortality plateaus with maximum eigenvalues of the Markov generator. This offers an
intuitive explanation for the mortality plateaus, distinct from the standard ones, that
either the population is initially heterogeneous (so that the progressive selection for
more robust individuals produces an apparent levelling off of mortality rates) or that
the aging process itself slows down with age. The alternative suggested by Markov
models is that the state of health of the long-time survivors is conditioned by their
survival to have a fixed distribution, which cannot be arbitrarily close to death. It is
shown that this convergence can be guaranteed either by a compact space of vitalities,
by strong inward drift (as in the Anderson-Weitz-Fraser model), or by killing rates that
are sufficiently large at infinity, forcing the conditioned process to lurk near the origin
(as in the Le Bras model).

3 Evolutionary models

Whereas the models discussed in section 2 are intendedprimarily to illustrate the me-
chanics of aging within individuals,there are also population-level models, based on
evolutionary theoriesof senescence. These theories began in earnest with work byP.
Medawar [Med57] and G. Williams [Wil57], who proposed thataging results from the
accumulation of alleles which reduce theorganism’s vitality at late ages, and either pro-
duce benefits(“antagonistic pleiotropy”) or simply no harm (“mutationaccumulation”)
earlier. The idea of mutation accumulation is that naturalselection has little power
to remove damaging alleles from thepopulation if the damage comes late in life, after
most of theorganism’s likely reproduction has already been accomplished. If theallele
in question actually produces benefits at earlier ages, then itmay in fact be positively
selected.B. Charlesworth has produced an extensive corpus of work on populationgenet-
ics in general, and the theory of senescence in particular. Inhis recent paper [Cha01], he
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attempts to show that the mutationaccumulation model predicts Gompertz mortality.
The idea is toimagine there to be a high level λ of extrinsic mortality, which isinde-
pendent of age. The probability of surviving to age x in thisregime will be e−λx. If
we suppose that the organismsreproduce at a constant rate throughout their lifetimes,
then thefitness cost to a marginal increase in mortality is also proportionalto e−λx. A
simple calculation shows then that we can approximate the equilibrium prevalance of
a mutant allele which produces a small unitincrease in mortality at age x to be νeλx,
whereν is the rate at which the mutations are being generated. If the effects of a mu-
tation have an additional component causing small harm at all ages, we find instead a
mortality increment of the form Aeλx/(B + Ceλx), which is initially exponential, but
converges to a plateau. A limitation of this model is the assumption that the mutants
harm onlya single age (or all ages above a given age), rather than having morecomplex
patterns of effects. Equally questionable is the reliance on the vaguely defined no-
tion of “extrinsic mortality”. With little empirical justification, we must assume that
there is a natural age-independent mortality which swamps the accretion of senescence.
The Gompertz pattern appears then as the result of artificially suppressing the natural
background mortality. This would seem to contradict the observation of Gompertz-like
mortality rates even in field studies of other species. It also suggests that the doubling
time of mortality in modern humans (about 8 years) should be about the same as the
life expectancy of our Pleistocene ancestors, an inference which is vastly at odds with
current thinking about prehistoric demography (cf. [Lan90]). Charlesworth does try
to address these objections by iterating the model: the computed mortality increment
becomes part of the background for the next round of computation. This variant is
carried out only in simulations. The results are sketchy, and hard to interpret. More
work along these lines would be helpful. L. Mueller and M. Rose [MR96] have used a
related model to study the effects of antagonistic pleiotropy. They consider a Markov
chain whose states are sequences of mortality rates at 101 different ages. One move of
the chain involves picking a random mutation, and allowing it to either become fixed in
the population or disappear, with probability depending on the fitness benefit relative
to the current mortality rates. A mutation raises mortality in one randomly chosen
window of ages, and reduces it in another window. One would expect that mortality
would rise without limit, since there is a positive feedback: the higher mortality rises
at late ages, the less selective pressure there is against further increases. The claim
in this paper, though, on the basis of simulations, is that the mortality rates develop
a plateau at late ages. As K. Wachter points out in [Wac99], the states achieved in
these simulations are not stationary states. If the simulations had run longer, the
plateaus would have disappeared. While one might argue that evolution in the real
world never achieves its “stationary states”, it is hard to say what it would mean to
associate a transient state of the Markov model with a general condition achieved by
evolution. Not only is the time-scale arbitrary, but there is no credible interpretation
of the starting state.
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655 avenue de l’Europe
Montbonnot
38334 Saint Ismier Cedex
France

Hidde.de-Jong@inrialpes.fr

Niels Keiding
Department of Biostatistics
University of Copenhagen
Blegdamsvej 3
DK-2200 København N
Danmark

N.Keiding@biostat.ku.dk
http://www.pubhealth.ku.dk/bsa/staff/nk-e.htm

Timo Koski
Department of Mathematics
University of Linköping
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