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ABSTRACT. This paper obtains asymptotic results for parametric inference using predic-
tion-based estimating functions when the data are high frequency observations of a dif-
fusion process with an infinite time horizon. Specifically, the data are observations of
a diffusion process at n equidistant time points A,i, and the asymptotic scenario is
A, — 0 and nA, — oo. For a useful and tractable classes of prediction-based es-
timating functions, existence of a consistent estimator is proved under standard weak
regularity conditions on the diffusion process and the estimating function. Asymptotic
normality of the estimator is established under the additional rate condition nA3 — 0.
The prediction-based estimating functions are approximate martingale estimating func-
tions to a smaller order than what has previously been studied, and new non-standard
asymptotic theory is needed. A Monte Carlo method for calculating the asymptotic
variance of the estimators is proposed.

Keywords: Diffusion process, high-frequency data, infinitesimal generator, potential
operator, parametric inference, prediction-based estimating function, p-mizing.

1 Introduction

Diffusion processes are often used to model stochastic dynamical systems. An especially
successful application area is finance. These processes are defined in continuous time, but for
most applications the system is only observed at discrete time points, so statistical methods
for discretely observed diffusion processes is a very active area of research. In particular,
the availability of high-frequency data has generated considerable interest in the asymptotic
behaviour of estimators and test statistics as the time between consecutive observations tends
to zero.

In this paper, we study parametric inference for diffusion models that satisfy a stochastic
differential equation of the form

where (By) is standard Brownian motion, and the known functions a and b depend on a
statistical parameter § € © C R? to be estimated. We suppose that (X:) takes values in
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an open interval (I,7) C R and has a invariant distribution py. Moreover, (X;) is assumed
to be stationary under the probability measure Py, i.e. Xy ~ ug. Let the data be a single
discretisation

Xo, Xeny ooy X,

where the observation times are deterministic and equidistant, i.e. ¢" = ¢A,, for some A, > 0.
To enable consistent estimation of both drift and diffusion parameters, we consider the ergodic
high-frequency sampling scenario

n—oo, A,—0, n-A,— o0, (2)

where the time horizon T,, = nA,, tends to infinity with the number of observations.

Estimators are defined and studied within the framework of the prediction-based estimat-
ing functions, proposed by Sgrensen (2000, 2011) as a versatile estimation framework, not
least for non-Markovian diffusion-type models. They generalize the martingale estimating
functions introduced by Bibby and Sgrensen (1995). We show that the estimating functions
considered in this paper are not approximate martingale estimating functions as defined in
Serensen (2017). However, for a two-dimensional predictor space, they are approximate mar-
tingale estimating functions of a smaller order than what has previously been studied, namely
of order A, rather than A¥ for k > 2. We can still prove existence of consistent estimators,
and by applying non-standard limit theory we establish asymptotically normality under mild
regularity conditions and the additional rate assumption nA3 — 0.

Examples from finance and simulation studies as well as more details on the theory and
implementation issues can be found in Jgrgensen (2017).

Parametric estimation for discretely observed diffusion processes has been investigated
in many papers in the econometrics and statistics literature. Since exact maximum like-
lihood estimation is untractable for most diffusion models used in practice, a wide range of
alternative methods have been proposed and applied successfully. The Markov property of dif-
fusions enables many types of quasi-likelihood, including contrast functions (Florens-Zmirou
(1989), Yoshida (1992), Genon-Catalot and Jacod (1993), Hansen and Scheinkman (1995),
Kessler (1997)), estimating functions (Bibby and Serensen (1995), Kessler and Sgrensen
(1999), Kessler (2000), Sgrensen (2012), Jakobsen and Sgrensen (2017)), likelihood expansions
(Dacunha-Castelle and Florens-Zmirou (1986), Ait-Sahalia (2002), Li (2013)), Markov-chain
Monte Carlo (Elerian et al. (2001), Eraker (2001), Roberts and Stramer (2001)) and simulated
likelihood (Beskos et al. (2006), Beskos et al. (2009), Bladt et al. (2016)).

There is also a well developed literature on nonparametric estimation of the drift and
diffusion coefficients from discrete time data. The problem was studied by Ait-Sahalia (1996),
Hansen et al. (1998), Hoffmann (1999a), Gobet et al. (2004) and Comte et al. (2007) under
the assumption of strict stationarity. Estimation for nonstationary, recurrent diffusion pro-
cesses was considered by Bandi and Phillips (2003). Estimation of the diffusion coefficient
with high-frequency observations on a finite time horizon was investigated by Genon-Catalot
et al. (1992), Florens-Zmirou (1993), Hoffmann (1999a,b), Jacod (2000) and Reno (2008).
Fan (2005) gives an excellent survey of nonparametric estimation with an extensive list of
references.

The structure of the paper is as follows. In Section 2 we present the general notation used
in the paper, define a tractable class of prediction-based estimating functions, and formulate



our general assumption on (X;). Section 3 is devoted to limit theorems for functionals V,,(f) =
n~t S f (Xt;z_l) and, in particular, a central limit theorem for f belonging to a large class
of functions. The variance of the gaussian limit law involves the potential of f, which is
considered in some detail. Asymptotic results are provided in Section 4. In Section 5 we
propose Monte Carlo methods for determining the asymptotic variances obtained in Section
4. All proofs are deferred to Appendix A, and Appendix B contains some auxiliary results
needed in the proofs.

2 Preliminaries

In this section we introduce the notation used throughout the paper, define a tractable class of
prediction-based estimating functions, recall some core notions from probability theory, and
formulate our main assumptions on the diffusion model (X;) and the parameter space © for
the asymptotic theory.

2.1 Notation

Our general notation is as follows:

1. The parameter of interest § € © C R? for d > 1. We denote the true parameter by 6.

2. We denote the state space of X by (5, %(S)) and assume throughout that S is an open
interval in R, i.e. S = (I,r) for —oco <1 < r < 00, endowed with its Borel o-algebra

B(S).

3. The invariant distribution is denoted by pg. For short, we write pg(f) = [q f(x)uo(dz)
for functions f : S — R, and we denote the canonical norm on .#?(uy) defined by

1£1lo = ro(f*)12.

4. For random variables Y and Z defined on a probability space (€2, F,P), we write Y <o Z
if there exists a constant C' > 0 such that Y < C' - Z, Pg,-almost surely. We sometimes
use a similar notation for real functions.

To define some function spaces of interest, we say that f : S x ©® — R is of polynomial
growth in z if for every 6 € © there exists a constant Cy > 0 such that, |f(z;0)| < Co(1+|z|?)
for x € S.

5. We denote by sz’k(S X 0), 7,k > 0, the class of real-valued functions f(x;#) satisfying
that
- f is j times continuously differentiable w.r.t. x;
- f is k times continuously differentiable w.r.t. 61, ...,60;
- f and all partial derivatives 8%18511'-‘855]", g1 < j, k1 + -+ kg <k, are of

polynomial growth in x.

We define Cg(S ) analogously as a class of functions f: S — R.



6. For use in the appendices, R(A, z;6) denotes a generic function such that
[R(A, 2;0)| < F(x;0), (3)

where F' is of polynomial growth in . We sometimes write Ryo(A,x;0) to emphasize
that the remainder term R(A, x;#) also depends on the true parameter 6.

2.2 Prediction-based estimating functions

The general theory of prediction-based estimating functions was developed by Sgrensen (2000)
and later extended in Sgrensen (2011). In this paper we consider estimating functions of the
general form

n N
Gn(0) =Y mic1 [£i(Xep) — Tim1,3(0)] (4)
i=q j=1
where {f; };VZ | is a finite set of real-valued functions in .#2 () and for every j € {1,..., N},
#i—1,;(0) denotes the orthogonal .#?(ug)-projection of f; (X¢n) onto a finite-dimensional sub-
space

Pi—1,; = span {1,fj (th_1> oo £ <Xt?_qj>} C L%(up) (5)

for a fixed ¢; > 0. The coefficients m;_;1 ; are d-dimensional column vectors with entries
belonging to P;_1 ;.

The collection of subspaces {P;_1 ;}i; are referred to as predictor spaces. In this sense,
what we predict are values of fj(Xt;L) for each 7 > ¢ := maxi<;<n q;. Most prediction-based
estimating functions applied in practice are of this particular form; see e.g. Sgrensen (2000)
for applications to discretized stochastic volatility models, and Ditlevsen and Sgrensen (2004)
for the case of integrated diffusions.

Since the predictor space P;_1 ; is closed, the 2%(ug)-projection of f;(Xs») onto Pi_y ; is
well-defined and uniquely determined by the normal equations

Eg (m [f5(Xe) — %i1,5(0)]) =0, (6)

for all m € P;j_1 j; see e.g. Rudin (1987). Here and in everything that follows, Eg( - ) denotes
expectation w.r.t. the probability measure Py. Note that (6) implies that the estimating
function (4) is unbiased, i.e.

Eqp (Gr(0)) = 0.

By restricting ourselves to predictor spaces of the form (5), as well as only diffusion models

(X¢) that are stationary under Py, the orthogonal projection ;1 ;(0) = dn(H)]TZi_Lj where

Zi 1= (1,fj (Xt;L_l) o f (Xt?_qj»T (7)

and G, (0)7 is the unique (g; + 1)-dimensional coefficient vector

in(0)] = (an(0)jo, an(0)j1 - ., an(0)jq;)

determined by the moment conditions
Eq [qu-ufj (thf)} - {qu—ng;q,j} an(6); = 0. (8)
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Note that in the simplest case where ¢; = 0, P;—1; = span{1} and it follows immediately
from the normal equations (6) that 7;—1;(0) = pe(f;).
We obtain an estimator by solving the estimating equation G, (6) = 0, and we call an
estimator én a Gp-estimator if R
Py, (Gn(6n) =0) = 1

as n — oo.

Remark 2.1. If we define an equivalence relation ~ on the set of estimating functions of the
form (4) by G,, ~ Hy, if and only if H, = M,G,, for an invertible d x d-matrix M,,, equivalent
estimating functions yield identical estimators 0,. In particular, estimators obtained from
equivalent estimating functions share the same asymptotic properties. We freely apply this
property in the proofs of Section 4.

2.3 Probabilistic notions

Two notions from the theory of stochastic processes play a central role in this paper; the
infinitesimal generator of a diffusion process (X;), and the dependence property known as
p-mixing.

For general stochastic processes, mixing coefficients provide a way of measuring how dy-
namic dependence decays over time. Various notions appear in the literature and are of-
ten used to establish central limit theorems for processes that are not martingales; see e.g.
Doukhan (1994).

A stationary Markov process (X;) is said to be p-mizing if px(t) — 0 as t — 0, where

px(t) =p (U(XO)v U(Xt)) ) (9)

with p denoting correlation. A review of mixing properties for stationary Markov processes
can be found in Genon-Catalot et al. (2000). Here easily checked conditions for p-mixing of
one-dimensional diffusion processes are given.

With any weak solution of (1) is associated a family of operators (P{)i>o where for f €
L (o),

P f(z) =Eo (f(Xy) | Xo = 2).

Obviously, P{ : £2(ug) — £?(up), and the semigroup property P o P = P, holds for all
t,s > 0.

The (infinitesimal) generator Ag of a diffusion (X;) is defined by

0
Agf = lim @,

t—0

whenever the limit Ayf exists in £2(ug). Let Dy, denote the domain of Ay. For a weak
solution of (1) satisfying Condition 2.2 below, C2(S) C Dy,, and for all f € C2(S) it holds
that Agf = Ly f, where

L0 (x) = alar: 00021 (x) + 5 (w; 0)02 1 () (10)

see e.g. Kessler (2000).



Recall that A € R is an eigenvalue of Ay if
Aof = Af

for some f € Dy,. The collection of all eigenvalues is known as the spectrum of Ay and
will be denoted by .#(Ap). From spectral theory it is known that .#(Ay) C (—o0,0]. If
S (Ap) C (=00, —A*]U {0} for some A\* > 0, the generator Ay is said to have a spectral gap.
In particular, whenever the diffusion process (X;) is ergodic and reversible under Py, the
existence of a spectral gap A* > 0 is equivalent to (X;) satisfying the p-mixing property; see
Genon-Catalot et al. (2000).

2.4 Assumptions

To derive asymptotic results for diffusion models of the general form (1), we impose some
mild dependence and regularity conditions on (X;).

Condition 2.2. For any 6 € O, the stochastic differential equation
dX; = a(Xy;0)dt + b(Xy; 0)dB, Xo ~ pg

has a weak solution (92, F, (Ft),Pg, (Bt), (Xt)) with the property that

- (Xy) is stationary and p-mizing under Py.
Moreover, the a priori given triplet (a,b, pg) satisfies the regularity conditions

- a,be CPY(S x ©),

- a(z; 0)] + [b(z; 0)] <¢ 1+ =],

- b(x;0) >0 forxze S,

- Js |z ug(dz) < oo for all k> 1.

For the discretized filtration {.7-};1}, we let ' := Fin and the notation pig = pg,, Po = Py,
etc., is applied throughout the paper.

The following condition on the true parameter value 6y is essential to the asymptotic
theory. Here int(©) denotes the interior of ©.
Condition 2.3. The parameter § € © C RY, and it holds that 0y € int(0).

3 Limit theory for discretized diffusions

This section is devoted to limit theorems for functionals of the form
1 n
Vau(f) = ﬁZf(Xt?_l)a (11)
i=1

where f takes values in R and {X;»}7 is a discretization of a diffusion process (X;) that
satisfies Condition 2.2.

First we state the law of large numbers, which follows from the continuous-time ergodic
theorem; see Corollary 10.9 in Kallenberg (2002).



Lemma 3.1. Let f € Cj(S). Then,

Va(f) =% puo(f).

A central limit theorem requires stronger regularity assumptions on f. In the following
we define a suitable class of functions for our purpose. Our only application of the central
limit theorem in this paper is to establish asymptotic normality of G-estimators in Section
4. Since Eg (G, (0)) = 0, we can restrict attention to functions f : S — R for which py(f) =0
for the remainder of this section.

The variance of the Gaussian limit distribution in the central limit theorem involves the
potential of the function f with pg(f) = 0. The potential operator is defined by

Us(f)(x) = /0 " P f(a)dr. (12)

To identify a (partial) domain for the operator f — Upy(f), we use that the generator Ay
of (X¢) has a spectral gap A > 0 under Condition 2.2. This leads to a well-known bound for
the transition operator which we formulate as a separate lemma. In the following,

L5 (o) = {f:5 = R: ug(f*) < oo, ug(f) =0}
Lemma 3.2. Let f € £3(ug). Then under Condition 2.2
|P2s], < e us1 (13)
for allt > 0.
As a consequence, ||Uy(f)]||, < oo for any f € ZZ(up), so the operator
Us : 25 (1) — L (11g)

is well-defined. It is obviously linear. General results on existence and regularity implications
of the potential Uy(f) for diffusion processes (X;) and f : S — R can be found in Pardoux
and Veretennikov (2001).

For the central limit theorem, we restrict ourselves to the set of functions

A ={f €Ch(S) : na(f) = 0,Up(f) € CH(S)} . (14)

which ensures that Ag(Uy(f)) = Lo(Up(f)) and ;2 C £ (up). The following result charac-
terizes the potential Up(f) as the solution of the so-called Poisson equation for any f € J2.

Proposition 3.3. Let f € %2. Then, Up(f) is a solution of the Poisson equation, i.e.

Lo(Us(f)) =~

where Lg is the generator of (X¢) given by the differential operator (10). Moreover,
1T (H)lly < A7H £l - (15)
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With Proposition 3.3 in place, we obtain the following central limit theorem. Consistent

with the general notation, we write Uy = Up,, S5 = %”9(2), etc., for the true parameter 6.

Proposition 3.4. Let f € H#F. If nA3 — 0, then

VaBVa(f) = Vs (i Zﬂxt;l)) 2 N (0,V0(1)).
i=1

where

Vo(f) = ko ([0:Uo(£)b( - 5600)]%) = 20 (fUo(f)) - (16)

Remark 3.5. Compared to the low-frequency sampling scenario where A,, = A > 0, the
integral defining Up(f) in (12) can be interpreted as the limit as A — 0 of the discrete-time
potential,

Up(f) =AY Pialf,
k=0

and the role of Uy(f) in Proposition 3.4 is similar to that of Uy(f) in the classic central limit
theorem for functionals %Z?:l f(X(@i—1)a); see e.g. Theorem 1, Florens-Zmirou (1989).

4 Asymptotic theory

In this section we present our main asymptotic results for prediction-based estimators. The
main proof is based on general asymptotic theory for estimating functions in Jacod and
Serensen (2018); see also Sgrensen (2012). For the most part, we restrict the discussion to
estimating functions of the form (4) with N = 1 and, for simplicity, write

Gn(0) = Zm_l [f(Xpn) — 7i-1(0)] (17)

P;—1 for the corresponding predictor spaces and so on for objects in Section 2.2 that depend
on j. The extension to multiple predictor functions { fj}évzl is considered in Section 4.3.

4.1 Simple predictor spaces

The simplest class of estimating functions of the form (17) is obtained for ¢ = 0, in which
case P;_1 = span{1}. The orthogonal projection is 7;—1(0) = pp(f), and the one-dimensional
predictor space P;_1 enables us to estimate one real parameter # € © C R. Therefore, we
study the one-dimensional estimating function

n

Gn(0) =D [f(Xim) — po(f)] - (18)

=1

Such estimating functions were studied by Kessler (2000).
We easily identify conditions that ensure consistency and asymptotic normality of G,,.-
estimators



Condition 4.1. Suppose that
- fr(@) = fa) = po(f) € A7,
- 0= po(f) eCh.

Theorem 4.2. Assume Condition 4.1 and the identifiability condition Opug(f) # 0 for all
0 € ©. Define k(0) = pg(f). Then the following assertions hold.

A~

- There exists a consistent sequence of Gy-estimators (0,,) which, as n — oo, is uniquely

given by 0, = k1 (l Yo f(Xt?)) with Py-probability approaching one.

n

- If, moreover, nA3 — 0, then
Vi (B2 = 00) 225 N (0, 10010, (D] V() (19)
where Vo(f) = 2uo(f*Uo(f*)).

4.2 1-lag predictor spaces

The inclusion of past observations into the predictor space P;_1 raises the mathematical
complexity dramatically. We show that for ¢ = 1, prediction-based G-estimators remain
consistent and asymptotically normal under suitable regularity conditions.

For q = 1, the basis vector Z;_, = (1, f( Xt?,l))Ta and it follows from the normal equations
(8) that
7i—1(0) = an(6)o + dn(e)lf(Xtﬁl)’

where a,,(6)o and a,(0); are uniquely determined by the moment conditions

an(0)o = pe(f) (1 —an(0)1),
Eg [f(Xo0) f(Xa,)] — [uo(f))?

(O = Varg f(Xo) ’

and consistent with a two-dimensional predictor space P;_1, we suppose that d = 2 and study
the estimating function

60 =3y, ) ) [0 = 0000 = a0 @017 0xs ). (20

i=1
As part of the proof of Lemma 4.4 below, we show that the projection coefficient a,,(0)
has an expansion

) = (1 )+ 80 (RO ) 1 a2 R0, (21)
where |R(Ap;0)| < C(0) and
Ky(0) = M. (22)

This observation enables us to formulate a set of regularity conditions on G,, for the asymptotic
theory:



Condition 4.3. Suppose that
- [ ECy(9),
- fi(x) = Ky (0o) [uo(f) — f(2)] € A,
- f3(x) = f(x) [Lof(x) — fi(z)] € A,
- (0 pe(f)) €C, (00— Kf(0) €C and in (21)

sup [|0gr R(Ay; 0)]] < C(M), (23)
fgeM

for any compact subset M C © and for A, sufficiently small.
The matrix norm || - || in (23) can be chosen arbitrarily, and we suppose for convenience
that || - || is submultiplicative. The following lemma essentially implies the existence of a

consistent sequence of Gn-estimators in Theorem 4.5. As the proof is somewhat long, we
formulate it as a separate result.

Lemma 4.4. Assume that Condition 4.3 holds. Then, for any 0 € O,

_ Po o K¢(0)(ro — po)(f)
(nAn) lGn(Q) — 7(90,0) = ( MO(fL:Of) o Kf(g) [,UO(fQ) . MO(f)MQ(f)] > (24)

and, moreover, for any compact subset M C ©

sup [|(nAn) " 9gr G (8) — W(0)|| = 0 (25)
deM
where
_ 1 po(f) O, [K 7 (0)po(f)] Oy [K 5 (0)po(f)]
W(e)_(ﬂo(f) uo(f2)>< 00K (0) 0K (0) ) (26)

Theorem 4.5. Assume Condition 4.3 and suppose that W (0y) is non-singular and that the
following identifiability condition is satisfied

v(00;0) #0  for all 6 # 6.

Then the following assertions hold:

~

- There exists a consistent sequence of G -estimators (0y,), which is unique in any compact
subset M C © containing 0y with Pg-probability approaching one as n — oo.

- If, moreover, nA2 — 0, then

VA, (én — 90) 2oy Ny (0, [W(8o) " Vo(f)(W (80)"H)T]), (27)
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wheren W (6p)) is given by (26) and

Vo = o ([0:U0(FDbC - :00))7 ) = 2p10 (i Uol(£7))

Vo(fiz = Volf)ar = po (9.Uo(f7) [0:Uo(f3) + £ 1] 02( - 560))
= o (ffUo(f3) + f3Uo(f1)) + 1o (0Uo(f7) fF'6* (- 5 60))

Volf)ze = po ([0:U0(f3) + £ 03 560) )
= 2u0 (f3U0(£3)) + po (£ 160)]%) + 240 (8:Uo(f3) FF'0?( 5 60)) .

Remark 4.6. If we denote the estimating function (20) as

n

Gn(e) = Zg(Ana Xt?aXt;Ll;e%

i=1

the proof of Lemma 4.4 shows that
By (9(An, Xy, Xz 30) | FiLy) = Ang"(Xep ,30) + AZR(An, Xip,50)

for a non-zero function g* and 6 € ©. Therefore, the estimating functions in this section lie
outside the class of approximate martingale estimating functions defined in Sgrensen (2017).
In particular, the proof of asymptotic normality in Theorem 4.5 requires extra work, because
the remainder term obtained by compensating G, is non-negligible.

4.3 Multiple predictor functions and optimal estimation

Estimating functions with multiple predictor functions,

n N
Gu(0) =D > mim [f5(Xep) — Fim1,5(6)] (28)

i=q j=1

appear frequently in practice. In the following, we indicate how to extend the asymptotic the-
ory from estimating functions with a single predictor function (17) to the more general case
(28) and briefly consider optimal estimation in relation to over-identification of the parameter
0 €O cR

To extend the proof in Appendix A from estimating functions with a single predictor
function (17) to estimating functions of the more general form (28), we consider the more
compact vector representation of the estimating functions (28)

Gn(0) = An(0) z": Zi— [F(th) - ﬁi—l(g)} ; (29)

11



where F(z) = (fi(z),..., fx@)", i 1(0) = (Fi_1.1(0), ..., Fi_1.n(0))" and

Zicig Og41 - Ogpa
Ogp+1 Zic12 -+ Ogyy1

Zia=| O T T (30)
Ogy+1 Ogy+1 =+ ZiciN

Recall that Z;_; ; denotes the column vector (7) of basis elements of P;_; ; and the notation
0Og;+1 denotes a column vector of length g; + 1 containing zeroes only. Consistently, the di-
mension of Z;_ in (30) is d x N where d := N + Zévzl ¢j. The coeflicient matrix A,,(6) is
d X d to match a d-dimensional parameter 6.

To prove asymptotic results for the more general estimating equations, impose the condi-
tion that A, (6) — A(f) as n — oo and examine, by methods analogous to those used above,
the normalized sum

Vi, x Zn: Zi1 [F(th) - ﬁH(a)} ,

where V,, is a diagonal d x d matrix,

. (1 (1 N N)
V, = diag <vn7%, . 7vn,t)11+17 e ’U’(%l)’ .. .,U;lqu_H) ,

and vfi?cj — 0 at appropriate rates, e.g. vnj;?cj =n"tor vfj?ﬁy = (nA,)" L

The condition d < d is necessary for 6 to be identified by the estimating equation G, () =
0, and we say that 0 is over-identified if d < d. Whereas Z;_1, F and II;_1(0) are fully
determined by our choice of predictor functions {f; };V: 1, and corresponding predictor spaces

{Pi—1,};, the coeflicient matrix A, (#) can be chosen optimally if d < d, see Godambe and
Heyde (1987) and Sgrensen (2011).

5 Estimating the asymptotic variance

Estimation of the asymptotic variance (AVAR) of 0, is necessary for the construction of
confidence intervals in practice. In this section we propose a Monte Carlo-based method
for calculating the difficult parts of the asymptotic variance (or covariance matrix) for the
estimators derived in Sections 4.1 and 4.2. Moreover, we derive an upper bound for AVAR(én)
for estimating functions (18) and show that it is exact when estimating the mean of an
Ornstein-Uhlenbeck process.

Terms in the asymptotic variance that are integrals of known functions with respect to the
invariant measure can be found by standard methods. The difficult parts of the asymptotic
variance are integrals with respect to the invariant measure that involve the potential. In
the expression for Vy(f) in Theorem 4.5 there are terms of the form py(f10;Us(f2)), where
fo € . If we assume that the invariant measure py has a density vy with respect to
Lebesgue measure on the state space S = (¢,7) (—oo < ¢ < r < 00), which holds under weak

12



regularity conditions, then it follows by integration by parts that

1o (f10.Up(f2)) = /Z " fu()ve(@)0uUp (o) ()
(r) f1(M)Uo(f2)(r) — vo(0) f1(O)Uo(f2)(€) — po (Uo(f2) [f1 + f1(logre)]),

where the function values at the end-points may have to be interpreted as limits and will often
be equal to zero. Now an inspection of the expressions for the asymptotic variance in Theorems
4.2 and 4.5 shows that all difficult terms are of the form py(g91Ug(g2)) with g1 € £2(ug) and
go € %’f, and in the following we propose a Monte Carlo method for calculating such terms.

For the construction we suppose that {7;} is a sequence of independent random variables
defined on an auxiliary probability space (€', F',P’) such that T; ~ exp(7y) and consider the
product extension

Q=0xQ, F=FoF, P, =P x P
Obviously, E977f(X0)) = Eyf(Xo) for any f € £ (up). For any g1 € Z*(ug) and go € H7,

wo@Oe) = [ ([~ o) wa
L
-

o0

=/ Eg (91(X0)g2(X¢)) dt

91(x) P ga(z )ue(dfﬂ)) dt

m\m\

Eg (91(Xo0)g2(X¢) | Xo = x) ug(dx)> dt

o0
= 4 / By, (91(Xo)ga(Xe)) ye " dt
0

= / Eg,y 67 Zgl()(vo) Ti) } T, = t) ’)/6’_77f dt
“'Boy [ g1(X0)g2(X1)]

where we have used Fubini’s theorem and the fact that (X¢) and T; are independent on Q
under Py .

As a consequence, if (Xt(i)) are independent trajectories of (X;) under Py, the estimator

7_1% eTig, (Xu)) . (Xy) (31)
=1

converges I@’g,,y—almost surely to ug (g1Us(g2)) as K — oo for any g1 € .Z%(ug) and go € H2.

5.1 Simple predictor spaces

Let us consider the estimator in Section 4.1 in detail. By Theorem 4.2,

240 (f*Uo(f"))
[Oppi0(f)]?

13

AVAR(6,) = (32)



with f* = f — po(f). Thus the following algorithm can be used to estimate the asymptotic
variance:

MONTE CARLO ESTIMATION OF AVAR(6,)
1. Determine én,

2. Simulate K independent variables T; ~ exp(7) for a fized v > 0,

3. Simulate K independent trajectories t — Xt(i) on [0, T;] under Py ,

4. Evaluate
. 1 K . . . .
AVAR(Dr) = 2 oy, (£ 207 = S (X§0) /7 (XF)), 39)
=1

where f*(2) = f(z) - 15, (£).

A~

In addition, the mixing property of (X¢) leads to the following upper bound for AVAR(6,,).
Proposition 5.1. Suppose that (X;) and G, (0) satisfy 2.2 and 4.1, respectively, and let Ao
denote the spectral gap of (X;) under Py. Then,

A 2 Var f(Xo)
AVAR(R) < 3 Gonen (P

Example 5.2. The Ornstein-Uhlenbeck process

(34)

dXt = KJ(?] — Xt)dt + €dBt7
with x,& > 0 and 1 € R, satisfies Condition 2.2. The invariant distribution is N/ (77, %)

Estimation of n (with k and £ are known ) provides an illustrative example where the
upper bound of in (34) is attained. We choose f(x) = z, and by direct calculation,

o(£)) = [ (B (6= m | Xo =)l e = [ oe ™ o (1 ) < o] e = ),

As a consequence,
* * 1 2 62
o (U = 1 [ (o= m)Ppolde) = 53 (3)
and

AVAR(6,) = (i)Q

The bound (34) is attained because Varg(Xp) = £ and Ao = K.

2k

14



References

Ait-Sahalia, Y. (1996). Nonparametric pricing of interest rate derivative securities. Econo-
metrica, 64(3), 527-560.

Ait-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A
closed-form approximation approach. Econometrica, 70(1), 223-262.

Bandi, F. and Phillips, P. (2003). Fully nonparametric estimation of scalar diffusion models.
Econometrica, 71(1), 241-283.

Beskos, A., Papaspiliopoulos, O., Roberts, G., and Fearnhead, P. (2006). Exact and com-
putationally efficient likelihood-based estimation for discretely observed diffusion processes
(with discussion). Journal of the Royal Statistical Society, 68(3), 333—-382.

Beskos, A., Papaspiliopoulos, O., and Roberts, G. (2009). Monte carlo maximum likelihood
estimation for discretely observed diffusion processes. Annals of Statistics, 37(1), 223-245.

Bibby, B. and Sgrensen, M. (1995). Martingale estimation functions for discretely observed
diffusion processes. Bernoulli, 1(1/2), 17-39.

Bladt, M., Finch, S., and Sgrensen, M. (2016). Simulation of multivariate diffusion bridges.
J.R. Statist. Soc. B, 78, 343-369.

Comte, F., Genon-Catalot, V., and Rozenholc, Y. (2007). Penalized nonparametric mean
square estimation of the coefficients of diffusion processes. Bernoulli, 13(2), 514-543.

Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the coefficients of a
diffusion from discrete observations. Stochastics, 19, 263—284.

Ditlevsen, S. and Sgrensen, M. (2004). Inference for observations of integrated diffusion
processes. Scandinavian Journal of Statistics, 31, 417-429.

Doukhan, P. (1994). Mixing: Properties and Ezamples. Lecture Notes in Statistics 85.
Springer-Verlag.

Elerian, O., Chib, S., and Shephard, N. (2001). Likelihood inference for discretely observed
nonlinear diffusions. Econometrica, 69(4), 959-993.

Eraker, B. (2001). Mcmc analysis of diffusion models with application to finance. Journal of
Business €& Economic Statistics, 19(2), 177-191.

Fan, J. (2005). A selective overview of nonparametric methods in financial econometrics.
Statistical Science, 20(4), 317-337.

Florens-Zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion pro-
cesses. Statistics, 20, 547-557.

Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations.
Journal of Applied Probability, 30(4), 790-804.

15



Genon-Catalot, V. and Jacod, J. (1993). On the estimation of the diffusion coefficient for
multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré, 29(1), 119-151.

Genon-Catalot, V., Larédo, C., and Picard, D. (1992). Non-parametric estimation of the
diffusion coefficient by wavelet methods. Scandinavian Journal of Statistics, 19(4), 317—
335.

Genon-Catalot, V., Jeantheau, T., and Larédo, C. (2000). Stochastic volatility models as
hidden markov models and statistical applications. Bernoulli, 6(6), 1051-1079.

Gloter, A. (2000). Discrete sampling of an integrated diffusion process and parameter esti-
mation of the diffusion coefficient. ESAIM: Probability and Statistics, 4, 205-227.

Gobet, E., Hoffmann, M., and Rei}, M. (2004). Nonparametric estimation of scalar diffusions
based on low frequency data. Annals of Statistics, 32(5), 2223-2253.

Godambe, V. and Heyde, C. (1987). Quasi-likelihood and optimal estimation. International
Statistical Review, 55(3), 231-244.

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Applications. Academic
Press, New York.

Hansen, L. and Scheinkman, J. (1995). Back to the future: Generating moment implications
for continuous-time markov processes. Econometrica, 63(4), 767-804.

Hansen, L., Scheinkman, J., and Touzi, N. (1998). Spectral methods for identifying scalar
diffusions. Journal of Econometrics, 86(1), 1-32.

Hoffmann, M. (1999a). Adaptive estimation in diffusion processes. Stochastic Processes and
their Applications, 79(1), 135-163.

Hoffmann, M. (1999b). [, estimation of the diffusion coefficient. Bernoulli, 5(3), 447-481.
H&usler, E. and Luschgy, H. (2015). Stable Convergence and Stable Limit Theorems. Springer.

Jacod, J. (2000). Non-parametric kernel estimation of the coefficient of a diffusion. Scandi-
navian Journal of Statistics, 27, 83-96.

Jacod, J. and Sgrensen, M. (2018). A review of asymptotic theory of estimating functions.
Statistical Inference for Stochastic Processes, 21, 415-434.

Jakobsen, N. and Sgrensen, M. (2017). Efficient estimation for diffusions sampled at high
frequency over a fixed time interval. Bernoulli, 23(3), 1874-1910.

Jorgensen, E. (2017). Diffusion Models Observed at High Frequency and Applications in
Finance. Ph.D. thesis, Department of Mathematical Sciences, University of Copenhagen.

Kallenberg, O. (2002). Foundations of Modern Probability. Springer-Verlag.
Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scandinavian

Journal of Statistics, 24, 211-229.

16



Kessler, M. (2000). Simple and explicit estimating functions for a discretely observed diffusion
process. Scandinavian Journal of Statistics, 27, 65-82.

Kessler, M. and Sgrensen, M. (1999). Estimating equations based on eigenfunctions for a
discretely observed diffusion process. Bernoulli, 5(2), 299-314.

Li, C. (2013). Maximum-likelihood estimation for diffusion processes via closed-form density
expansions. Annals of Statistics, 41(3), 1350-1380.

Pardoux, E. and Veretennikov, A. Y. (2001). On the poisson equation and diffusion approxi-
mation. i. Annals of Probability, 29(3), 1061-1085.

Reno, R. (2008). Nonparametric estimation of the diffusion coefficient of stochastic volatility
models. Econometric Theory, 24(5), 1174-1206.

Roberts, G. and Stramer, O. (2001). On inference for partially observed nonlinear diffusion
models using the metropolis—hastings algorithm. Biometrika, 88(3), 603-621.

Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill.

Serensen, M. (2000). Prediction-based estimating functions. FEconometrics Journal, 3, 123—
147.

Sgrensen, M. (2011). Prediction-based estimating functions: review and new developments.
Brazilian Journal of Probability and Statistics, 25(3), 362-391.

Sgrensen, M. (2012). Estimating functions for diffusion-type processes. In M. Kessler, A. Lind-
ner, and M. Sgrensen, editors, Statistical Methods for Stochastic Differential Equations,
pages 1-107. CRC Press.

Serensen, M. (2017). Efficient estimation for ergodic diffusions sampled at high frequency.
Working paper.

Yoshida, N. (1992). Estimation for diffusion processes from discrete observation. Journal of
Multivariate Analysis, 41(2), 220-242.

Appendix A: Proofs

Proof of Lemma 3.2. The diffusion process (X;) is reversible under Condition 2.2, so by The-
orem 2.4 and Theorem 2.6 in Genon-Catalot et al. (2000) HPfsz < px@®) I flly = e £l
for any f € Z2(ug) , where A > 0 denotes the spectral gap of Ajy. O

Proof of Proposition 3.3. Let Ue(n) (f) = fon P? fdt. By Property P4 in Hansen and Scheinkman
(1995), US™ () € D, for all n € N and

n—oo n—0o0

lim Ay (U§"(f)) = tim [PEf - f] =+,

17



where limits are w.r.t. || - ||,. The latter equality holds because HngH2 < || fllge=*" — 0.

By Jensen’s inequality, Fubini’s theorem and Lemma, 3.2 Ue(n)( f) converges to Uy(f) in
L2 (ug) as n — oo:

2

[onn - v, = [ /Oool{tzn}A-le”Pffm)Ae-”dt)zM)(dx)
< /S < /O T > a2 (P f(m)>2 e M dt) 1o (dz)
= a7 [T pt

ALfI / et = A2 f|2e ™ 0.

IN

Taking n = 0, we obtain (15). Using that Ay is closed and linear, we conclude that
Ao (Ug(f)) = Lo (Us(f)) = —f; see e.g. Property P7, Hansen and Scheinkman (1995). O

Proof of Proposition 3.4. The proof is an application of the central limit theorem for mar-
tingales. For completeness and because we need to extend the result in a non-standard way
later, we give the proof. First, note that

1 nlAnp 1 n iAp
f(Xs)ds = f(Xs)ds
nAp /0 ( ) Vi, Zz; (i—1)A, ( )

-1 f:/A F(X0) = F(Xir,)| ds + VdVa(f),

nAn = Ji-1a,

where we will show that

1 Zn:/A [f(XS)_f(Xt;LI)} ds = op, (1). (36)

nAn = Ji-na,

With A; = [(21 0 [ F(X) - f(Xt;Ll)} ds, Fubini’s theorem combined with B.2 implies
that

Ay
Eo (Az ‘ ./."iril) = /0 u - R(u, Xt?_l;eo) du S A%F(Xt?_l;eo)

for a generic function F(z;6p) of polynomial growth in x. Since nA? — 0, it follows by
Lemma 3.1 that

1 n ' : 5 1/2l n - ]PO
VnA, ;Eo (A | Fity) < (nA7) - ;F(Xtiﬂ 0o) =2 0.

Moreover, for all £ > 1, Jensen’s inequality implies that
k
A" = AR

Ai /('ZA" [f(XS) - f(Xty_l)] ds




and, hence, by Lemma B.1,

1 n
A > Eo (AP | Fy)
™ i=1

IN

u€[0,An]

JAY Z]Eo ( sup | f(Xen 4u) — f(Xen )P ‘ ]:in—1>

1 P
An~ Z R(Ap, Xyn 300) = 0
=1

The conclusion (36) now follows from Lemma 9 in Genon-Catalot and Jacod (1993).

To apply the central limit theorem for martingales, note that Proposition 3.3 and Ito’s
formula applied to Up(f) imply that

(N = GHX) + | ' Lo(Uo(f))(Xe)ds + / 0, U0()(X)b(X s 60)dB,

= XO /f d8+/ 8U0 (Xs,eo)d
SO WA,
\/an /0 F(Xy)ds = M / 0, Uo(f)(Xo)b(Xo300)dBy + 0po (1) (37)

The stochastic integral is a true martingale under Py and by the ergodic theorem

ni\, / [0:Uo(f)(Xs)b (Xs,e())] ds 2% Ko ([&vUO(f)b( ) §90)}2) .

In conclusion,

JrAValf) = \/nT N 0 Uo(F)(X)b(Xe: 0)dBs + op, (1) (38)
20

=2 N (0,10 ([0:Uo(f)b( - :600)]%))

where convergence in law under Py follows from the continuous-time martingale central limit
theorem (e.g. Theorem 6.31 in Hausler and Luschgy (2015)) or the central limit theorem for
martingale arrays (e.g. Theorem 3.2 in Hall and Heyde (1980)). The conditional Lyapunov
condition can be verified as in the proof of Theorem 4.5.

The alternative expression for the asymptotic variance Vy(f) in (16) follows because with
g(x) = Up(f) and bo(x) = b(x;6p) it follows from Proposition 3.3 that

2010(f9) = —po (Lo(g%)) + ko (bg [;(92)” - gg”]) = 110 ((bog")?) »

where we have used that po(Lo(g?)) = 0, see e.g. Hansen and Scheinkman (1995), p. 774. O

Proof of Theorem 4.2. Under the conditions of theorem, the function s is 1-1, and ! is

continuous. By Lemma 3.1, V,,(f) o, k(6p) as n — 0o. We have assumed that ) € int ©, so
k(6p) € int kK(©), and hence Py(V,,(f) € k(©)) — 1 as n — oo.
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When Vi, (f) € k(©), 0, = k=1 (V,(f)) is the unique Gp-estimator. When V,,(f) ¢ x(©),
we set én := 0* for some 6* € ©. Then én Fo, 0y as n — oo, and by a Taylor expansion

JnA, (9 —0())—89/-{ (00) /1AW Vi (f*) + 08, (1),

o (19) follows from Proposition 3.4. O

Proof of Lemma 4.4. To simplify the presentation, we define

Ha(0) = 5 ;gwn, Xi, Xy 30) (39)

where g = (g1, 2)" is given by
91(An, Xip, Xyp 50) = f(Xir) — @n(0)o — an(0)1f(Xep ) (40)
92(An, Xop, Xyp 50) = f(Xir )g1(An, Xin, Xin 56). (41)

As a first step we verify the expansion (21) of a, () in powers of A,. By Lemma B.2,
Eg (f(Xa,) | Fo) = f(Xo) + AnLof(Xo) + A% R(An, Xo; 0),
which implies that
Eq [f(X0) f(Xa,)] = Eo [f(Xo)Eo(f(Xa,) | Fo)l = no(f?) + Anpo(fLof) + ALR(An; ),

where |R(Ay;0)| < C(0) for a constant C'(6) > 0. This yields the Aj,-expansion

Eo [f(Xo0)f(Xa,)] — [ua(£)]

an(0)1 = Varg f(Xo)

=14 A, Kf(0) + A2ZR(A,;0), (42)

and, as a consequence,
in(0)o = —AnK(O)po(f) + AL R(As; 6). (43)

This expansion of a,(f) together with

Eo (f(Xen) | Fiy) = f(Xun ) + AnLof (X )+ AZR(Ay, Xin 5 60)
imply that

Eo [gl(An,th,Xty_l;e) ‘ -7:?—1}
— B0 (f(Xer) | FLy) = (00 — an(0)1 S (Xir )
= A (Lof (Xy,) + K5 (0) [po(F) = F(Xe )] ) + A2 Ro(An, Xip 30).  (44)
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Hence, by Lemma 3.1,

nl, ,zn:EO [gl(A”’Xt?’Xtﬁl;e) ‘ fﬁl}

- 1 Z Lof (Xeg )+ Kp(0)- -3 [moh) — (X )] + 523 ol Xz :6)
=1 =1

Boy K 4(0) (1o — o) (f),

where the contribution from the first term vanishes because po(Lof) = 0; see e.g. Hansen and
Scheinkman (1995).
To apply Lemma 9 in Genon-Catalot and Jacod (1993), it remains to show that

n2A2 ZEO [91 Ap, Xip, Xep s ’fﬁl} = op,(1). (45)

From the expansions (42) and (43), it follows that
Ti-1(0) = @n(0)o + an(0)1f (Xir ) = f(Xip ) + ApR(Ap, Xin ;5 0),
which, in turn, yields the decomposition
G (A, Xpn, Xyn30) = (46)
[F() = 7 )] 2 [7X) — £ )] AnR(A, Xip:0) + A2R(AL Xip:0).
Lemma B.1 implies that

iz DB (1K) — F(X DR | 7] = 1 iZR Au. Xag ,:00) 20,
n =1

where we use that nA,, — co. Similarly,

1 n A1/2 n .
nQAniZIRmn,Xt;zl;e)Eo [1£(Xep) = £ )| Fia] = 25 nz Ro(Am, Xie 50) 2050,
and, finally,

1 « P
D R(An Xpp 10) =0,

i=1
which together implies (45). Thus, by Lemma 9 in Genon-Catalot and Jacod (1993),

" P
— D 1B X X 50) = K (0) (o — o) ().
=1

Similarly for ga(An, Xin, Xin ;0), it follows easily from (44) that
Eo [g2(An, X, Xz 360) | FiL |

= A (F(Xu)E0f (X ) = Kp(O)f(Xez ) [F(Xir ) = po(f)] ) + AZRo(An, Xip,36),

i—
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and, hence,

D Eo [g2(Bn, Xep Xer,i0) | FI] 22 ol £Lof) = K5(0) [l ) = o o).
" i=1

Moreover, since g%(An,Xt?,Xt?_l;H) = fQ(Xt;z_l)g%(An, Xin, Xip 50), we easily see that
1 < .
W Z]EU |:g§(An7 Xt?v Xt?_l;e) ’ -F:i—l:| - O[P’o(l)v
no=1

so the first conclusion of the lemma follows from Lemma 9 in Genon-Catalot and Jacod (1993).
To establish the limit of dgr H,,(6), we write

Hy( nA ZZz L [f (X)) = 281 a0(0)]

which implies

agTHn(e) - —

DA Z Zi—IZi:Cla@Tdn(e) = Zn(f)An(e)y

where Z,(f) == 13" | Zi 1 ZF | and A,(0) :== —A;'0prdn(6). By Lemma 3.1,

B 1 po(f)
Zn(f) — Z(f) = ( no(f)  po(f?) >

and applying the expansion (21),

An(0) = Oy ( Kf_(?]f‘(%()f ) ) - AnOyr R(Ay:6) — Oyr ( K (?Jf‘(@e()f ) ) —. A(6),

which holds under the regularity assumption (23). Collecting our observations,

: L ol ) (O s OmelF)] oy (KOsl
ra(0) % 2040 = (el ) (PS5 )

To argue that the convergence is uniform over a compact subset M C O, note that

107 Hn(0) — Z(S)AO)]] < |20 (F)[An(0) — AN + [I[Zn(f) = Z(N]AG)]

and, in particular,

sup | Ggr Hy(0) — Z(F)A@) || < 120 (I sup [[An(0) = AO)| + |2.(f) = Z(f)I| sup [[A(O)]].
oeM oeM oeM

By continuity of norms, || Z,(f )H SINZ(A)] and || Zn(f) — Z(f)]| = op, (1), so (25) follows by
observing that

sup [[An(0) — A(9)[| = An sup [|9pr R(An; 0)[| < C(M)A, — 0
oeM oeM

and using the continuity of 6 — A(6). O
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Proof of Theorem 4.5. We continue with the notation (39)-(41) introduced above. Existence
of a consistent sequence of G-estimators (6,,) follows from Theorem 2.5 in Jacod and Sgrensen
(2018), because the conclusions of Lemma 4.4 and the assumption that W (6) is non-singular
imply Condition 2.2 in Jacod and Sgrensen (2018). The uniqueness result follows from Theo-
rem 2.7 in Jacod and Sgrensen (2018) under the identifiability condition (6g;6) # 0 for
0 # 6p. The function 0 — ~(0p;60) is called G(#) in Jacod and Sgrensen (2018) and is
necessarily continuous.

Asymptotic normality when nA3 — 0 follows from Theorem 2.11 in Jacod and Sgrensen
(2018). We only need to check that

A Hn(00) 22 Na (0, Vo(£)). (47)

We apply the Cramér-Wold device to prove this weak convergence result, i.e. we must
prove that for all ¢;,co € R

Cn = (1

1 n
MZgQ(An,Xty,th_l;ew (48)
n =1

2oy N (0,uo ([8;,;Uo(61f1* +eafs) +eaf {70 ;90)»

1 n
i 2 0B Ko X i)+
no=1

Reusing the expansions (42) and (43), we find that
91(Ap, Xy, Xyn 500) = f(Xen) — [(Xen )+ Anfi(Xen )+ AZR(Ap, Xen 560)

where f[ is defined in Condition 4.3. Hence,

\/nTZgl An, Xin, Xen 5 60)

[f(Xti F(Xin ]+\/nA ValfF) + (nA3)2. ZR A, Xe 3 00)

\/nAn Zz;
Vnly - Vo (fT) + op (1),

because the first term in the expansion is a telescoping sum. Note that asymptotic normality
for the first coordinate of the estimating function follows from Proposition 3.4. However, to
obtain joint weak convegence, we need to consider the second coordinate too, which requires
more work.

By It6’s formula,

f(Xen) = (X ) = AnLof(Xen ) + Ai(0o) + M;(0o),

where

iAnp
a0 = [ o) - ease )] as

i—1)A,

1Ay
Mi(9) = / F(X)b(X,; 0)dB,
(i—=1)An
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and, hence, by applying the expansions (42) and (43) as above,
92(An, Xy, Xyn 360) =
(X )A(00) + Anf5 (Xen )+ F(Xen )M;i(60) + AL R(Ap, Xyn 5 60).
A straightforward extension of the proof of (36) implies that

\/an Z f(Xir )Ai(0) = op, (1)
=1

since nA2 — 0 and, as a consequence,

n

Co = /DY () + \/an Z;f(Xty_l)Mf(@o) + oy (1),

where f* =cif{ +caf5.
To gather the non-negligible terms, we argue as in (38) that

1 [ . .
VAP = o= D [ O MK 0B + o, (1),

which, in turn, yields the stochastic integral representation

n 1Ay
Co= g o [ (B0 + 10 )1 00 [ 0B -0, 1)

At this point, we can apply the central limit theorem for martingale difference arrays;
see e.g. Hall and Heyde (1980) or Héusler and Luschgy (2015). To shorten notation in the
following, we define

iAp

7= / T [ () + 7 ) ()] (X, O0)dB,,
(i—1)A,

and

h(z) = [0:Uo(f*)(x) + f(2)f' ()] 6% (a3 o).

First, by the conditional It6 isometry, Tonelli’s theorem and Lemma B.2,

& Saaring

)

.Fln1> dS

n 1Ay
S > Eo </( [0.00(/)(X,) + f(thn_l)f’(Xs)r b2(X: 00) ds

i-1)A,

- /(mn Eo ([3zUo(f*)(Xs) + (X )F (X)) *0(X,; 60)

i—1)A,

Ap
= Z/o [h(Xt;Ll) +u- R(u, Xpn_; 90)] du
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Moreover, for any g € Cg(S ) and k > 2, the Burkholder-Davis-Gundy inequality, Jensen’s
inequality, Tonelli’s theorem and Lemma B.2, respectively, imply that

i, k i, k/2
Eo / g(X)dB,| | F,| < Eq (/ g2(X5)ds> i
(i—1)An (i—1)An
1Ap
< AMELE, / (%) [Fds | Ay
(i-1)An
1An
= Af/z_l-/ Eo (\g ‘]7" )ds
(i—1)An
Ay
= Al [T (19X ) R Xy 560) du
0
< AFPlg(Xpn )IF+ ANPHLE(Xen 560),

so based on the inequality
3

iAp
1z <c /( B, Uo()(X)b(X; 00)dBs| + |/ (X )P ,

iAn
/ f(Xs)b(Xs;00)dBs
i—1)An (

i—1)A,

we conclude that
n

MZEOGZ’ ‘]:n )—C
n i=1
}iz[\a Uo(£*)(Xen )P+ £ (Xen ) (X )P | 1(Xer 3 00)

Now the martingale central limit theorem for triangular arrays implies (48), so (47) follows
by the Cramér-Wold device. The alternative expressions for the matrix Vy(f) follows because
by Proposition 3.4 po ([0:Uo(9)b( - 560)]?) = 2u0 (9Uo(g)) for g € H#F, and because with
gi(z) = Up(f;) and bo(x) = b(x; ) it follows from Proposition 3.3 that

no(fige + f391) = —po (Lo(g192)) + o (b91.95) = ro (b9195)
where we have used that 10(Lo(g192)) = 0, see e.g. Hansen and Scheinkman (1995), p. 774.

O
Proof of Proposition 5.1. By the Cauchy-Schwarz inequality and the inequality (15)
o (ST (DI < 1 100 (f)l2 < ”];)Hg
where Ao > 0 denotes the spectral gap of (X;) under Py. Hence,
~ 2 “Uo(f* 2V X
VARG = 2 < S BT
O
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Appendix B: Moment expansions

The proofs in Appendix A rely on conditional moment expansions for diffusion models and
the following results are essentially taken from Gloter (2000) and Florens-Zmirou (1989),
respectively. In the sequel, 8 € O is arbitrary and we assume for convenience that 0 < A < 1.

Lemma B.1. Let f € C;(S). For any k > 1, there ewists a constant Cy g > 0 such that

Eg( sup |f(Xprs) — F(Xo)|F
s€[0,A]

) < Crp A2 (14 1X3]) %

For completeness, we give a rough proof of the following theorem.

Lemma B.2. Suppose that a(z;0) € Cp°(S x ©), b(x;0) € Co7°(S x ©) and f € Cz(kﬂ)(S)
for some k > 0. Then,

k
By (f(Xera) | Fr) = Z—c F(Xe) + AFIR(A, X4 6).

Proof. We only consider k = 0, the general case may be shown by induction; see Lemma 1.10,
Sgrensen (2012). By Itd’s formula,

t+A t+A
F(Xira) = F(X0) + /t Lof (X,)ds + /t 9o f (X, )b(X,: 0)d B,

and since 0, f and b( - ;0) are of polynomial, respectively linear, growth in z, the stochastic
integral is a true (F;)-martingale w.r.t. Py and

A
Eo (F(Xirn) | F2) = F(X0) + /O Ep (Lof (Xia) | o) du

Moreover, since Ly f is of polynomial growth in x,
Lof (Xera)| o 14Xl + | Xeru — Xo|©

and, hence,

A
A / Eo (Lof (Xii) | Fi) du= R(A, X,:0),
0

by a simple application of Lemma B.1. ]
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