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Abstract

By an application of the theory of optimal estimating function, optimal in-
struments for dynamic models with conditional moment restrictions are derived.
The general efficiency bound is provided, along with estimators attaining the
bound. It is demonstrated that the optimal estimators are always at least as ef-
ficient as the traditional optimal generalized method of moments estimator, and
usually more efficient. The form of our optimal instruments resembles that from
Newey (1990), but involves conditioning on the history of the stochastic pro-
cess. In the special case of i.i.d. observations, our optimal estimator reduces to
Newey’s. Specification and hypothesis testing in our framework are introduced.
We derive the theory of optimal instruments and the associated asymptotic dis-
tribution theory for general cases including non-martingale estimating functions
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Key words: optimal estimating function, generalized method of moments,
conditional moment restrictions, dynamic models, optimal instruments, mar-
tingale estimating function, specification test.

JEL codes: C12, C13, C22, C32.

∗We are grateful to Gary Chamberlain, Steven Heston, Yongmiao Hong, Rustem Ibragimov, Guido
Imbens, Nick Kiefer, Whitney Newey, Jim Stock, and seminar participants at Cornell University and
Harvard University for useful comments, and to Center for Research in Econometric Analysis of
TimE Series (CREATES), funded by the Danish National Research Foundation, and the Danish
Social Science Research Council for financial support. Some of this research was carried out when
Christensen was visiting the Department of Economics, Harvard University, and the generosity and
hospitality of the Department are gratefully acknowledged.

†Address: School of Economics and Management, University of Aarhus, 322 University Park,
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1 Introduction

Ever since it was introduced by Hansen (1982), the generalized method of moments
(GMM) has been an immensely popular method for estimation and inference in econo-
metrics. The estimators are widely applicable and robust to model misspecification.
The particular form of GMM, commonly referred to as optimal GMM, where the
weight matrix or norm is chosen to minimize the asymptotic covariance matrix of
the resulting estimator, is well known and frequently implemented in applications.
However, we show that it is possible to modify the estimating equations and thereby
improve efficiency without changing the underlying model assumptions. Our theory
applies to general dynamic models with conditional moment restrictions. In effect,
we consider a wider class of estimators that contains GMM as a special case, and we
determine the optimal estimator within this generalized class. The optimal estimat-
ing equation is quite explicit and readily computable, and we show that the estimator
achieves the general efficiency bound derived by Hansen (1985) and Hansen, Heaton
& Ogaki (1988).

Our estimator utilizes the information in the conditional moment restrictions effi-
ciently. In the case of optimal GMM, the conditional moment conditions are averaged
across the sample, possibly mitigating the information loss entailed in unconditioning
by expanding the moment conditions using instrumental variables. The question is
how to choose instruments to utilize the conditional moment restrictions efficiently.
Essentially two different approaches have been considered in the literature. One is to
explicitly treat the moment conditions as conditional, and derive optimal instruments
given the relevant conditioning variables, producing a number of estimating equa-
tions equal to the number of parameters. This is the approach followed by Newey
(1990), who shows that nonparametric estimation of the optimal instruments can
yield asymptotically efficient estimators in the i.i.d. case. Robinson (1991) allows for
some restricted forms of serial dependence, but imposes conditional homoskedasticity.
Newey (1993) considers the case of conditional heteroskedasticity depending on i.i.d.
regressors. The alternative approach which has been pursued in the literature is to
treat the moment conditions as unconditional, and let the number of instruments and
hence moment conditions expand with sample size for efficiency purposes. This is the
approach of Chamberlain (1987), who shows that the semiparametric efficiency bound
for static models may be achieved this way in the limit.

In this paper, we solve the optimal inference problem for general dynamic condi-
tionally heteroskedastic models. The form of our optimal weights (or instruments)
resembles that from Newey (1990), but involves conditioning on the history of the
stochastic process, rather than on i.i.d. regressors. In the special case of i.i.d. obser-
vations, our optimal estimator reduces to that of Newey. Our focus is on the form of
the estimating equations in general dynamic cases, rather than on the computation of
the instruments if they are not known analytically. In some cases, they may be deter-
mined arbitrarily precisely by simulation. In other cases, nonparametric estimation
of instruments in dynamic models following Wefelmeyer (1996) may be pursued.

The modern statistical theory of optimal estimating functions dates back to the
papers by Godambe (1960) and Durbin (1960). Indeed, the basic idea was in a sense
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already used in Fisher (1935). The theory for dynamic models was developed in a
series of papers by Godambe (1985), Godambe & Heyde (1987), Heyde (1988), and
several others; see the references in Heyde (1997). Important particular instances
are likelihood inference, the quasi-likelihood of Wedderburn (1974) and the closely
related generalized estimating equations developed by Liang & Zeger (1986) to deal
with problems of longitudinal data analysis, see also Prentice (1988) and Li (1997).

We use recent developments in this literature, reviewed in Bibby, Jacobsen &
Sørensen (2004) and Sørensen (2008), to obtain improved estimators in the situation
where the estimating function is a martingale and involves a finite lag length. After
developing these estimators, we go on to show new results on optimal estimators in
more general cases allowing for general history dependence and where the estimating
functions need not be martingales. While the usual optimal GMM applies a common
average weight matrix across all time periods, at least asymptotically, as we show, the
idea behind the optimal estimator is to utilize the conditioning information in dynamic
models optimally by applying time-varying weight matrices. By considering these
time-varying weights as instruments, our optimal estimator may hence be regarded
as GMM with optimal instruments.

The paper is laid out as follows. In Section 2, we study the martingale estimating
function case with finite lag structure. To fix ideas, we briefly review the usual GMM
approach, given a set of conditional moment conditions, including optimal GMM,
where optimality is over choice of weight matrix (or norm). We then introduce the
optimal estimator, which involves optimal choice of time-varying weights (or instru-
ments), and show that it is strictly more efficient than optimal GMM. This result
is obtained based only on the same stationarity and ergodicity conditions used in
GMM, anyway, as well as ability to calculate conditional second moments. We do
not rely on detailed distributional assumptions such as in maximum likelihood, and,
when deriving our optimal estimator, we take the same conditional moment restric-
tions as in GMM for given. We also offer a pseudo-likelihood interpretation of the
optimal estimator. In addition, we introduce specification and hypothesis testing in
our framework, in the spirit of Newey & West (1987a). In Section 3, we generalize
the theory to cover arbitrary history dependence, which requires new developments
relative to both the econometrics and mathematical statistics literatures. In Section
4, we generalize to the non-martingale case, which requires the introduction of novel
techniques, involving a suitable operator whose domain is the space of weight matrices
(or instruments). We establish the form of the optimal estimating equation, including
the case where conditional moment restrictions are generalized to conditions on pre-
diction errors. The theory of optimal prediction-based estimating function of Sørensen
(2000) is recovered as a particular case. Concluding remarks are made in Section 6,
and proofs of results are in the Appendix. Throughout, the theory is illustrated by
several examples, including GARCH, diffusion, and stochastic volatility models.
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2 Martingale estimating functions

2.1 GMM and optimal inference

Suppose we model the observed time series X1, X2, . . . , XT by a stochastic dynamic
model indexed by a K-dimensional parameter θ that we wish to estimate. In general,
we may consider multivariate data Xt, e.g. in cases where some of the coordinates
are explanatory variables. We assume that the stochastic process {Xt} is stationary
and ergodic. Let mt(θ) = m(Xt, . . . , Xt−L; θ) be a vector of functions of θ and the
observations at the time points t, t − 1, . . . , t − L for some given lag length L (we
assume t > L ) satisfying the conditional moment restrictions

Eθ(mt+1(θ) | Ft) = 0 (2.1)

for all θ. Here, Ft is the σ-field generated by X1, . . . , Xt, and Eθ denotes expectation
under the model with parameter value θ (Eθ(· | Ft) denotes conditional expectation
given Ft). The relations among observations given by mt(θ) are preferably chosen
on the basis of economic theory. The restriction to finite lag length L is relaxed to
general history dependence (L = ∞) in Section 3 below. To interpret condition (2.1),
note that it implies that {mt(θ)} is a martingale difference sequence.

The GMM method makes use of a vector of instruments zt(θ) = z(Xt, . . . , Xt−L+1; θ)
dependent on data at time points t, . . . , t − L + 1 to define

ht+1(θ) = zt(θ) ⊗ mt+1(θ), (2.2)

which, by construction, satisfies the conditional moment restrictions

Eθ(ht+1(θ) | Ft) = 0. (2.3)

We denote the dimension of the vector ht+1(θ) by M and assume that it has finite
second moments. A basic tool for estimating θ is the estimating function

HT (θ) =
1

T − L

T∑

t=L+1

ht(θ). (2.4)

Since {mt(θ)} and hence {ht(θ)} are martingale difference sequences, HT (θ) is a mar-
tingale estimating function (precisely, (T − L)HT (θ) =

∑T
t=L+1 ht(θ) is a martingale

since Eθ(|HT (θ)|) < ∞ and Eθ(
∑T+1

t=L+1 ht(θ) | Ft) =
∑T

t=L+1 ht(θ)). When M = K,
the exactly identified case, an estimator θ can be obtained by solving the estimating
equation

HT (θ) = 0. (2.5)

Frequently, M > K, so that we have more equations than parameters to be estimated,
and, in effect, M −K > 0 overidentifying restrictions. In this case, a GMM estimator
may be obtained by minimizing the quadratic form

MT (θ) = HT (θ)′WHT (θ), (2.6)

for a suitably chosen M ×M-matrix W . Here and later, x′ denotes the transpose of a
vector or matrix x. Specifically, an initial estimator θI is obtained by minimizing (2.6)
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for W = IM (the M-dimensional identity matrix). Then the optimal GMM estimator
θ̃T of Hansen (1982) is obtained by minimizing (2.6) with W = V̂ (θI)−1, where

V̂ (θ) =
1

T − L

T∑

t=L+1

ht(θ)ht(θ)
′ (2.7)

is an estimate of V (θ) = Varθ(ht(θ)), the covariance matrix of ht(θ). It is assumed
that V (θ) is non-singular, or equivalently that the coordinates of ht(θ) are linearly
independent functions of Xt, . . . , Xt−L. Among all possible choices of W in (2.6), this
is the one for which the asymptotic variance of the resulting estimator is minimal.
In the exactly identified case M = K, optimal GMM is the solution to (2.5), so the
estimator is defined for M ≥ K.

Heteroskedasticity and autocorrelation consistent covariance estimators involving
estimates of Covθ(ht(θ), ht−j(θ)) for j 6= 0 are often used instead of (2.7) (see Hansen
(1982) and Newey & West (1987b)), but this is unnecessary here because the fun-
damental model assumption (2.3) implies that {ht(θ)} is a martingale difference se-
quence, and hence, in particular, serially uncorrelated.

Under regularity conditions including ergodicity of the model and differentiability
of ht(θ) with respect to θ, Hansen (1982) shows that the asymptotic distribution of
the optimal GMM estimator is given by

√
T
(
θ̃T − θ0

)
D−→ N

(
0,
(
D(θ0)

′V (θ0)
−1D(θ0)

)−1
)

(2.8)

as T → ∞, where θ0 denotes the true parameter value and D(θ) is the M ×K-matrix

D(θ) = Eθ

(
∂ht(θ)

∂θ′

)
. (2.9)

Asymptotic standard errors may be calculated by substituting V̂ (θ) from (2.7) for
V (θ) in (2.8), and

D̂(θ) = (T − L)−1
T∑

t=L+1

∂ht(θ)

∂θ′
(2.10)

for D(θ), both evaluated at the estimate of θ0, either θI or θ̃T . The asymptotic distri-
bution result follows easily from considering the first order conditions for minimization
of the quadratic form (2.6), given by

∂HT (θ)′

∂θ
WHT (θ) = 0. (2.11)

The first order conditions simply amount to premultiplying the M-dimensional es-
timating equation (2.5) by a suitable K × M weight matrix ∂HT (θ)′/∂θ · W , thus
yielding K equations in the K unknown parameters. Hence, θ̃T , originally defined as
the minimizer of (2.6), can equivalently be considered as the solution of the K equa-
tions (2.11). From this viewpoint, an asymptotically equivalent estimator is obtained
by solving the simplified first order conditions, where the initial estimator θI obtained
by minimizing (2.6) for W = IM is substituted not only in W , estimating V (θ)−1 by
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W = V̂ (θI)−1, but also in ∂HT (θ)′/∂θ, estimating this by D̂(θI)′. Thus, the simplified
estimating equation is

D̂(θI)′V̂ (θI)−1HT (θ) = 0, (2.12)

of dimension K, to be solved for θ entering only through HT (·). The resulting estima-
tor is consistent and has the same asymptotic distribution (2.8) as the optimal GMM
estimator. In effect, among estimators defined by estimating functions of the form
wHT (θ), with w a K × M weight matrix, that corresponding to w = D(θ)′V (θ)−1 is
optimal, and asymptotically equivalent to optimal GMM, also with consistent esti-
mators in w, as in (2.12).

Since HT (θ) is given as the raw average of the M-dimensional vector functions
ht(θ), it is natural to consider a generalized class of estimating equations, moving
the K × M weight matrix (D̂(θI)′V̂ (θI)−1 in (2.12)) under the summation sign and
allowing it to vary across time. Thus, the estimating function is generalized from the
raw average type wHT (θ) = w

∑
t ht(θ)/(T −L) to a weighted average of the moment

conditions ht(θ),

GT (θ) =
1

T − L

T∑

t=L+1

wt(θ)ht(θ) = 0, (2.13)

with K×M weight-matrices wt(θ) = w(Xt−1, . . . , Xt−L; θ) that are arbitrary functions
of Xt−1, . . . , Xt−L satisfying that wt(θ)ht(θ) has finite second moments. This defines
a very general class of estimators. Since wt(θ) does not depend on Xt, the estimating
function GT (θ) is still a martingale. The K equations in (2.13) may be solved directly
with respect to θ as it enters both wt(·) and ht(·), or an initial consistent estimator
may be substituted in wt(·), e.g. θI as in the GMM case, or the optimal GMM
estimator, and the asymptotic properties of the final estimator are unaltered by this
two-step procedure.

To be sure, estimators that are asymptotically equivalent to optimal GMM may
be constructed in many different ways by imposing that the weight matrices in (2.13)
be time-invariant,

wt(·) = D̂(·)′V̂ (·)−1. (2.14)

Thus, solving D̂(θ)′V̂ (θ)−1HT (θ) = 0 with respect to θ yields another asymptotic
equivalent, indeed, a one-step estimator, whereas that from (2.12) has θI in both D̂(·)
and V̂ (·) fixed when solving for θ, and the optimal GMM estimator itself is the third
special case with weights not dependent on t produced by using θI in V̂ (·) but not in
D̂(θ) in (2.14). Note that neither of these three cases corresponds to minimizing the
quadratic form (2.6) with W = W (θ)−1, i.e., allowing W to vary with the argument
θ in the minimization. In particular, the first order conditions for such a problem
would include derivatives of W with respect to θ, too, in contrast to (2.11). For
most specifications W (·) this would lead to inconsistent estimators, but imposing
W = V̂ (θ)−1 from (2.7) and minimizing (2.6) for this choice yields the continuous
updating estimator of Hansen, Heaton & Yaron (1996) which is consistent. It is also
another example of a one-step estimator, and a fourth case of an asymptotic equivalent
to optimal GMM.

Replacing the time-invariant weights (2.14) with time-varying weights depending
on both data and unknown parameters, wt(θ) in (2.13), opens up for improved use
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of conditioning information and more efficient estimators, relative to optimal GMM.
This is the main point of the present paper. The improved estimators make use of
the M × K-matrix of conditional expectations

dt(θ) = Eθ

(
∂ht(θ)

∂θ′

∣∣∣∣∣ F
L
t−1

)
, (2.15)

where FL
t is the σ-field generated by Xt, . . . , Xt−L+1, and of the M × M conditional

covariance matrix of the moment conditions ht(θ) given FL
t−1,

Φt(θ) = Varθ

(
ht(θ) | FL

t−1

)
= Eθ

(
ht(θ)ht(θ)

′ | FL
t−1

)
. (2.16)

Throughout, we write Φt(θ)
−1 both for the ordinary inverse of Φt(θ), when it exists,

and for the generalized inverse, which is relevant e.g. when instruments such as zt(θ)
in (2.2) are used to expand the set of moment conditions, since in this case the rank
of Φt(θ) is bounded by the dimension of mt(θ).

The theory of optimal estimating functions gives criteria for an estimating function
to be optimal within the class of all estimating functions of the form (2.13) with ht(θ)
given. A modern exposition of this theory can be found in Heyde (1997) (see also the
review in Bibby, Jacobsen & Sørensen (2004)). The optimal estimating function is
the one that is closest to the score function in an L2-sense and which minimizes the
asymptotic variance of the corresponding estimator. We denote the optimal choice of
the weight matrix wt(θ) by w∗

t (θ), and the optimal estimating function by

G∗
T (θ) =

1

T − L

T∑

t=L+1

w∗
t (θ)ht(θ). (2.17)

Our first main result concerns the optimal choice of the weight matrix, fully exploiting
the information contained in the conditional moment restrictions (2.3) in the dynamic
case. The theorem is proved in the appendix.

Theorem 2.1 The optimal estimating function in the class of all estimating functions
of the form (2.13) is obtained when the weight-matrix is chosen as

w∗
t (θ) = dt(θ)

′Φt(θ)
−1. (2.18)

The asymptotic distribution as T → ∞ of the estimator θ̂T obtained by solving the
estimating equation G∗

T (θ) = 0 is (under standard regularity conditions including in-
vertibility of J (θ)) √

T
(
θ̂T − θ

)
D−→ N

(
0,J (θ)−1

)
, (2.19)

where
J (θ) = Eθ

(
dt(θ)

′Φt(θ)
−1dt(θ)

)
. (2.20)

The asymptotic information matrix J (θ) may be consistently estimated as Ĵ (θ̂T ) with

Ĵ (θ) =
1

T − L

T∑

t=L+1

dt(θ)
′Φt(θ)

−1dt(θ). (2.21)
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Theorem 2.1 presents the optimal choice of instruments or weights wt(θ) in (2.13)
in the present dynamic setting. It follows that J (θ0) is the efficiency bound in the
class of estimators defined by different choices of instruments, i.e., J (θ0)

−1 is the
lower bound on the asymptotic covariance matrix of estimators of θ. Furthermore,
the optimal estimator θ̂T from the Theorem attains this efficiency bound.

Several points are in order. Firstly, in the restricted class where wt(θ) = wt, i.e.,
instruments do not depend on parameters, efficiency bounds were derived by Hansen
(1985) (Lemma 4.3) and Hansen, Heaton & Ogaki (1988) (Theorem 4.2) for general
settings not necessarily restricted to the martingale difference case. We return to
the non-martingale case in Section 4 below. In the martingale difference case, their
bound coincides with ours, J (θ0)

−1, which is derived by different techniques. When
seeking estimators achieving the efficiency bound in the restricted class, Hansen (1985)
considered the simplified case where the conditional variance Φt(θ) ≡ Γ(θ) is constant
across time t and deterministic. The estimator obtained using the weights

wt = dt(θ0)
′Γ(θ0)

−1, (2.22)

with θ0 the true parameter value, was shown to achieve the efficiency bound in this
situation. Note that dependence on true θ0 was not a problem for deriving Hansen’s
efficiency bound, but for construction of a feasible estimator an initial consistent
estimate must be plugged in.

The optimal estimator is well-defined even in the case M < K, which would be
underidentified in the GMM case. The reason is that the optimal weights w∗

t (θ) by
their definition ensure the right number of estimating equations, K, that in wide
generality are different.

The optimal weights resemble those from GMM, which are defined in the exactly
or overidentified case M ≥ K. Thus, the identities

Eθ(dt(θ)) = D(θ) and Eθ(Φt(θ)) = V (θ) (2.23)

imply that if we replace dt(θ) and Φt(θ) in (2.18) by their unconditional expectations,
hence making them constant and deterministic, then the optimal estimating equation
weights reduce to the optimal GMM weights (2.14) (specifically, if θI is substituted for
θ in V̂ (θ)). Similarly, if Φt(θ) is made constant, but dt(θ) is allowed to vary through
time, weights like (2.22) from Hansen (1985) are obtained. Again, these are only opti-
mal when the true conditional variance Φt(θ0) is constant and deterministic, ruling out
e.g. ARCH-type effects. Theorem 2.1 covers the general situation with time-varying
conditional second moments, which are important e.g. in many macroeconomic and
financial applications.

The form of the optimal weights (or instruments) in (2.18) also resembles that
from the cross-section case considered by Newey (1990), who studies the i.i.d. case
with conditional moment restrictions, conditioning on i.i.d. regressors, whereas the
conditioning in both dt(θ) and Φt(θ) in our optimal weights for the dynamic condi-
tionally heteroskedastic case is on the history of the time series. The restriction to
lag length L is relaxed in Section 3 below. Of course, if regressors are useful, they
may readily be included as additional coordinates in Xt. This way the cross-section

8



regression model is a special case of ours, and in the i.i.d. case our optimal estimator
reduces to that considered by Newey (1990).

Writing out the weighted moment conditions (2.13) for the case ht(θ) = mt(θ)
makes it clear that the standard use of vector-valued instruments (as opposed to
matrices) such as zt(θ) in (2.2), following Hansen (1982), is equivalent to choosing
weight matrices wt(θ) = zt−1(θ) ⊗ Ip, where p = dim(mt), since zt−1(θ) ⊗ mt(θ) may
be recast as (zt−1(θ)⊗Ip)mt(θ). These weight matrices (or instruments) obviously have
very special structure and are of dimension qp × p, where q = dim(zt), and possibly
qp > K, the dimension of the parameter θ. Theorem 2.1 then shows that it suffices
to take weights of dimension K × p, that is, the same number of moment conditions
and parameters. In particular, the optimal weights from the Theorem may as well
be based on the original set of moments mt(θ), rather than the expanded set ht(θ)
obtained using the instruments in zt−1(θ). In effect, the optimal instruments (weights)
from the Theorem will, if necessary, undo the multiplication by zt−1(θ). To see this,
note that the two classes of estimating functions of the form (2.13) based on ht(θ) =
zt−1(θ) ⊗ mt(θ) and h̃t(θ) = mt(θ), respectively, coincide because wt(θ)(zt−1(θ) ⊗
mt(θ)) = w†

t (θ)mt(θ) and w̃t(θ)mt(θ) = w̃†
t (θ)(zt−1(θ) ⊗ mt(θ)), where

w†
t (θ) = wt(θ)(zt−1(θ) ⊗ Ip) and w̃†

t (θ) = w̃t(θ)(zt−1(θ)
− ⊗ Ip)

with zt−1(θ)
− = zt−1(θ)

′/zt−1(θ)
′zt−1(θ). This follows because (zt−1(θ)

−⊗ Ip) is a gen-
eralized inverse of (zt−1(θ) ⊗ Ip), i.e. (zt−1(θ)

− ⊗ Ip)(zt−1(θ) ⊗ Ip) = Ip. In particular,
the optimal estimating equations based on mt(θ) and ht(θ) = zt−1(θ)⊗mt(θ) coincide.
The original mt(θ) may be recovered from the expanded ht(θ), and the optimal esti-
mator may as well be constructed by applying the optimal instruments w∗

t (θ) from the
Theorem to the former. Of course, the very reason that instruments are introduced in
(2.2) is that they capture relevant conditioning information, but in our approach this
may be accommodated by including the relevant data series among the coordinates
of Xt, which in turn enter the weights w∗

t (θ) in the optimal manner.
In many cases, e.g. when X1, X2, . . . , XT is a discrete time sample from a contin-

uous time process, there is no closed form expression for the conditional covariance
matrix Φt(θ) from (2.16), and it must be determined numerically, e.g. by simula-
tion. An approach to circumvent the potentially considerable computational burden
associated with recalculating Φt(θ) at each trial value of the parameter θ without
any loss of efficiency relative to the optimal estimator is to replace Φt(θ) in (2.18) by
Φt(θ̄T ), where θ̄T is a preliminary consistent estimator of θ, for instance the estimator
θI obtained by minimizing (2.6) with W = IM or the optimal GMM estimator θ̃T .
In this way, the simulation need only be carried out a single time, for one particular
parameter value, θ̄T . We refer to the estimating function

G⋄
T (θ) =

1

T − L

T∑

t=L+1

w⋄
t (θ)ht(θ) (2.24)

with w⋄
t (θ) = dt(θ)

′Φt(θ̄T )−1 as the modified optimal estimating function. The asymp-
totic distribution of the estimator obtained by solving the estimating equation G⋄

T (θ) =
0 with respect to θ as it enters only dt(θ) and ht(θ) is the same as in (2.19). If the
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function dt(θ) from (2.15) is complicated to calculate, too, the weights w∗
t (θ̄T ) =

dt(θ̄T )′Φt(θ̄T )−1 can be used, and the estimating equation solved only with respect
to θ in ht(θ), again without any loss of relative efficiency. Again, if necessary, ap-
proximations may be inserted for Φt and dt in the time-varying optimal weights, and,
following Wefelmeyer (1996), if each of the consecutive approximations is based on
data only through t − 1, then the martingale property of the estimating function is
retained. More generally, this property holds asymptotically for consistent estimators.

In some applications, Φt(θ) or dt(θ) may simply not be known, even up to simu-
lation, e.g., if only a few moment conditions are available, as opposed to a full model
specification. In such situations, they can be determined e.g. by flexible functional
form regression, kernel smoothing, or similar. Often, asymptotic properties of the pro-
posed estimators are unchanged if an estimator or approximation of these functions is
used. Chamberlain (1992) discusses the cross-section case, suggesting parametric re-
gression estimates of the conditional variances and emphasizing that the asymptotics
of the estimator of θ do not require that the errors in approximating the conditional
variances be negligible, and Wefelmeyer (1996) presents methods for the dynamic
case.

It is illuminating to compare to the cross-section case, where the data are the
i.i.d. vectors Xi, with some coordinates, say, zi, the regressors or instruments used
to form the conditional moment conditions, viz. Eθ(hi(θ) | zi) = 0. Newey (1990)
considered this situation under the further condition of conditional homoskedastic-
ity, Φi(θ) = Φ(θ), and suggested that if di(θ) = d(θ | zi) = Eθ(∂hi(θ)/∂θ′ | zi) were
unknown, then a series estimation may be used, approximating d(θ | ·) by a power
(or trigonometric) series in zi. With the order of the approximation increasing at
a suitable rate, the resulting estimator reaches the efficiency bound, in this case
(Eθ(d(θ | z)′Φ(θ)−1d(θ | z)))−1. Note that in the efficiency bound J (θ)−1 from (2.19)
in our dynamic heteroskedastic case, the conditioning is on Ft−1 rather than zi, and
occurs in both dt(θ) and Φt(θ). Robinson (1991) also considered the conditional ho-
moskedasticity case Φi(θ) = Φ(θ) and in the case of d(θ | zi) unknown suggested using
the sample average of ∂hi(θ)/∂θ′ across observations with common zi, here assuming
discrete regressors. Chamberlain (1987) suggested instead to expand the set of mo-
ment conditions, replacing hi(θ) by B(zi)hi(θ) and carrying out optimal GMM based
on the unconditional conditions Eθ(B(zi)hi(θ)) = 0. For B(z) of type (1, z, z2, . . . , zq)
and q increasing with sample size, he was able to construct sequences of estimators of
θ with asymptotic variances converging to the lower bound. This result for the i.i.d.
case is strengthened by Theorem 2.1, where we provide the efficiency bound for the
dynamic heteroskedastic case, as well as an estimator reaching the bound in general,
using only a fixed number (K) of estimating equations.

The difference between the asymptotic precisions (inverse variances) of the optimal
estimator θ̂T and the optimal GMM estimator θ̃T can be interpreted and further
studied by means of the following lemma.

Lemma 2.2 The minimum mean square error predictor of ht(θ) given w∗
t (θ)ht(θ) is

ĥt(θ) = D(θ)J (θ)−1w∗
t (θ)ht(θ) (2.25)
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and the prediction error covariance matrix is

Varθ

(
ht(θ) − ĥt(θ)

)
= V (θ) − D(θ)J (θ)−1D(θ)′. (2.26)

The minimum mean square error predictor of w∗
t (θ)ht(θ) given ht(θ) is

ŵ∗
t ht(θ) = D(θ)′V (θ)−1ht(θ) (2.27)

and the prediction error covariance matrix is

Varθ

(
w∗

t (θ)ht(θ) − ŵ∗
t ht(θ)

)
= J (θ) − D(θ)′V (θ)−1D(θ). (2.28)

Note that (2.28) is simply the asymptotic precision of the optimal estimator θ̂T

from (2.19) less the asymptotic precision of the optimal GMM estimator θ̃T from (2.8).
By Lemma 2.2, this difference in precision is itself a covariance matrix (in particular,
of a certain prediction error), and hence positive semi-definite. This is consistent
with the implication of Theorem 2.1, that θ̂T is asymptotically at least as efficient as
the optimal GMM estimator θ̃T . Indeed, we have the following strengthening of this
conclusion.

Theorem 2.3 The optimal estimator θ̂T is strictly more efficient than the optimal
GMM estimator θ̃T , i.e.,

J (θ)−1 < (D(θ)′V (θ)−1D(θ))−1, (2.29)

except for the special case where the two estimators are identical.

In (2.29), the strict inequality indicates that the right-hand side minus the left-
hand side is a strictly positive semi-definite matrix different from the zero matrix. It
is illuminating to recast the inequality in the more picturesque form

Eθ

(
dt(θ)

′Φt(θ)
−1dt(θ)

)
> Eθ (dt(θ))

′ Eθ (Φt(θ))
−1 Eθ (dt(θ)) , (2.30)

using (2.20) and (2.23).
If, by divine inspiration, one happens to start with h̃t(θ) = w∗

t (θ)ht(θ) in the
definition (2.4) of the estimating function HT (θ), then there is obviously no scope for
improvement, and the optimal weight matrix corresponding to h̃t(θ) is the identity
matrix. In this case, the estimators θ̂T and θ̃T are identical. The point of the present
paper, however, is that divine inspiration is not necessary, since a formula is given
for the optimal instruments (the weight matrices w∗

t (θ) from (2.18)) corresponding
to any M-dimensional ht(θ), which may therefore as well be taken to be the original
mt(θ). Indeed, θ̂T and θ̃T are quite different in many natural cases, as illustrated in
the following example.

Example 2.4 Consider the model for the short rate of interest proposed by Cox,
Ingersoll & Ross (1985), that is, the solution of the stochastic differential equation

dXt = −β(Xt − α)dt + σ
√

XtdWt, (2.31)
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where α, σ > 0. We assume that the process is stationary and ergodic (β > 0 and
2αβ > σ2). The volatility parameter σ is easy to estimate precisely in the presence
of high-frequency financial data, e.g. consistent estimation is possible with observa-
tions from a fixed time interval as long as the sampling frequency within the interval
increases beyond bounds. In contrast, consistent estimation of the drift parameters
requires an observation interval of increasing length, the rate of mean reversion β
being the hardest parameter to estimate precisely. Specifically, suppose the data are
observations at equidistant time points X0, X∆, X2∆, . . . , XT∆. If the spacing between
observations ∆ → 0 while T → ∞ so as to keep the length T∆ of the total observation
interval fixed, then for purposes of asymptotics for volatility estimation the drift may
be ignored, and by quadratic variation arguments σ̂2 =

∑
i(Xi∆ − X(i−1)∆)2/X(i−1)∆

is consistent for σ2. Thus, for simplicity we now treat σ as known and take ∆ = 1 in
the discussion of the remaining parameters α and β, where the asymptotics are for
T → ∞. The conditional expectation of Xt+s given Xt is given by

Eθ(Xt+s |Xt) = α + e−βs(Xt − α), (2.32)

so mt(α, β) = Xt−α−e−β(Xt−1−α) seems a promising starting point for an estimating
function for (α, β). Natural instruments are zt−1 = (1, Xt−1)

′, yielding

ht(α, β) =

(
mt(α, β)

Xt−1mt(α, β)

)
.

In this case, K = M = 2 and L = 1, and the optimal GMM estimator of (α, β) is
given by the estimating function

HT (α, β) =




1

T

T∑

t=1

[
Xt − α − e−βs(Xt−1 − α)

]

1

T

T∑

t=1

Xt−1

[
Xt − α − e−βs(Xt−1 − α)

]




.

The estimating equation HT (α, β) = 0 has an explicit solution. Writing X̄ =
∑T

t=1 Xt/T
and X̄−1 =

∑T
t=1 Xt−1/T for the sample average of Xt and its lagged value, respec-

tively, we define

ρ̃T =

∑T
t=1(Xt − X̄)(Xt−1 − X̄−1)∑T

t=1(Xt−1 − X̄−1)2
,

a slightly modified version of the standard first order autocorrelation coefficient. With
these definitions, the optimal GMM estimator is given by

α̃T =
X̄ − ρ̃T X̄−1

1 − ρ̃T

, (2.33)

β̃T = − log (ρ̃T ) . (2.34)

A simple and asymptotically equivalent estimator may be obtained by replacing the
shifted sample average X̄−1 by the ordinary average X̄ throughout, in which case α
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is estimated by X̄ and β by − log (ρT ), where ρT is the standard first order autocor-
relation. On the other hand, the optimal estimating function in this model is

G∗
T (α, β) =




1

T

T∑

t=1

1

Ψt(α, β)

[
Xt − α − e−βs(Xt−1 − α)

]

1

T

T∑

t=1

Xt−1

Ψt(α, β)

[
Xt − α − e−βs(Xt−1 − α)

]




, (2.35)

where the conditional variances are given by

Ψt(α, β) =
σ2

β

(
(1

2α − Xt−1)e
−2β − (α − Xt−1)e

−β + 1
2α
)
. (2.36)

Since all moments of Xt are finite, (2.35) has finite variance, so the optimal estimating
function is well-defined.

Because of the the non-linearity, the optimal estimating equation G∗
T (α, β) = 0

must be solved numerically. However, an explicit estimator with the same asymptotic
variance is obtained by substituting the optimal GMM estimator (α̃T , β̃T ) obtained in
closed form in (2.33)-(2.34) above, or simply (X̄,− log (ρT )), for (α, β) in the expres-
sion for Ψt(α, β) from (2.36) in the optimal estimating function (2.35). This allows
analytical solution along the lines of the optimal GMM case. In particular, introduce
the weights w̃Ψ

t = Ψ̃−1
t /

∑T
s=1 Ψ̃−1

s , where Ψ̃t = Ψt(α̃T , β̃T ), and let X̄Ψ =
∑T

t=1 w̃Ψ
t Xt

and X̄Ψ
−1 =

∑T
t=1 w̃Ψ

t Xt−1 be the appropriate conditional precision weighted sample
averages of Xt and Xt−1, respectively, noting that in the latter, the weight applied to
Xt−1 is w̃Ψ

t , not w̃Ψ
t−1. Similarly, the suitably reweighted sample autocorrelation is

ρ̃Ψ
T =

∑T
t=1 w̃Ψ

t (Xt − X̄Ψ)(Xt−1 − X̄Ψ
−1)∑T

t=1 w̃Ψ
t (Xt−1 − X̄Ψ

−1)
2

.

The optimal (up to asymptotic equivalence) estimator is then given by

α̂T =
X̄Ψ − ρ̃Ψ

T X̄Ψ
−1

1 − ρ̃Ψ
T

,

β̂T = − log
(
ρ̃Ψ

T

)
.

Again, a slightly simpler and still asymptotically equivalent estimator may be obtained
by substituting X̄Ψ for X̄Ψ

−1 everywhere, in which case α is estimated by X̄Ψ, and β

by − log
(
ρ̂Ψ

T

)
, where ρ̂Ψ

T is the precision weighted autocorrelation

ρ̂Ψ
T =

∑T
t=1 w̃Ψ

t (Xt − X̄Ψ)(Xt−1 − X̄Ψ)
∑T

t=1 w̃Ψ
t (Xt−1 − X̄Ψ)2

.

The idea is compelling: Optimal GMM leads to estimators given by the sample aver-
age for the long run mean parameter α and (minus the logarithm of) the first order
autocorrelation coefficient for the rate of mean reversion β, i.e., the well-known esti-
mators for a Gaussian Ornstein-Uhlenbeck process. In contrast, the optimal estimator
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uses the weighted average and weighted autocorrelation coefficient, instead, reflecting
time-varying volatility which is the key feature of the square-root process.

To illustrate the efficiency gain, we calculate the ratio between the asymptotic
variance of the optimal GMM estimator and the optimal estimator of the rate of
mean reversion β, the most problematic parameter. For realistic parameter values,
we use those obtained from a time series of 1-month U.S. T-bill yields in Christensen,
Poulsen & Sørensen (2001). The data are the same as those analyzed by Chan et al.
(1992) and are obtained from the CRSP bond data file. The raw data are converted
into continuously compounded annualized yields. The parameter values for the period
October 1979 to September 1982 when yields are in per cent and the time unit is one
year are α = 11, β = 2.4 and σ2 = 3.2. Since we have assumed that observations
are at time points one time unit apart, we calculate the efficiency gain for parameter
values corresponding to monthly, weekly and daily observations. For instance, the
parameters values when the time unit is one month are obtained by dividing β by
12 and σ by

√
12, while α is unchanged. The efficiency gain is the percentage by

which the asymptotic variance of the optimal GMM estimator exceeds the asymptotic
variance of the optimal estimator. The results are given in Table 2.1. The first line
corresponds to the parameter values from the data set. In the next two lines the
volatility parameter σ has been multiplied by 2 resp. 3 to investigate the effect of
increased volatility. It is noted that the benefits from using the optimal estimator
are increasing in both sampling frequency and volatility. Efficiency gains of the same
order of magnitude are found for the period October 1982 through December 1989
where the Fed pursued an interest rate targeting policy rather than the money supply
rule of the 1979 through 1982 period; see Sanders & Unal (1988). At the actual
parameter estimates, α = 7.7, β = 1.0, σ2 = 0.7, gains between 9 and 10 per cent
were obtained for all three frequencies for the later period. Importantly, these gains
relative to optimal GMM are achieved using simple, explicit estimators, whereas the
likelihood function in this model involves Bessel functions, entering via the density
function of the non-central χ2-distribution.

Sampling rate
monthly weekly daily

σ 11 12 13
2σ 40 46 52
3σ 71 90 108

Table 2.1: The percentage efficiency gain by using the optimal estimator of β.

2

2.2 A pseudo-likelihood interpretation

In order to further interpret our estimators, we introduce the pseudo-log-likelihood
function

log LT (θ) = −1

2
G∗

T (θ)′J (θI)−1G∗
T (θ), (2.37)
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where θI again is the initial GMM estimator with identity weighting (or some other
initial consistent estimator, such as optimal GMM). By differentiation, we get the
associated pseudo-score function

sT (θ) = −∂θG
∗
T (θ)′J (θI)−1G∗

T (θ). (2.38)

We may now define the maximum pseudo-likelihood estimator as the solution to the
equation sT (θ) = 0. With these definitions, it is possible to give a pseudo-likelihood
interpretation of the optimal estimator. This complements the previous interpretation
as GMM with optimal instruments. The key result is given in the following Theorem.

Theorem 2.5

1. The maximum pseudo-likelihood estimator coincides with the optimal estimator
θ̂T .

2. The pseudo-score function is asymptotically equivalent to minus the optimal es-
timating function G∗

T .

The notion that the optimality property may be related to a pseudo-likelihood
property is pursued further in Section 2.4 on hypothesis testing below.

The pseudo-likelihood function is not in general a proper likelihood. Of course, it
is not unique, either, and perhaps a more natural pseudo-log-likelihood function is

log L̃T (θ) = − 1

2(T − L)

T∑

t=L+1

ht(θ)
′Φt(θ

I)−1ht(θ). (2.39)

Because of the functional form of this pseudo-log-likelihood function, (T−L) log L̃T (θ)
could actually be a proper log-likelihood function in special cases, provided Φt(θ

I) is
replaced by Φt(θ). The associated pseudo-score is now

s̃T (θ) = − 1

T − L

T∑

t=L+1

∂ht(θ)
′

∂θ
Φt(θ

I)−1ht(θ). (2.40)

In this case, solution of the pseudo-likelihood equation s̃T (θ) = 0 produces an es-

timator ˆ̃θT that is consistent with respect to θ̃0 = arg minθ Eθ0
(ht(θ)

′Φt(θ0)
−1ht(θ))

(see p. 106-7 in Amemiya (1985)), and even though s̃T (θ) need not be a martin-
gale, θ̃0 actually coincides with the true θ0. To establish the latter point, define
ut(θ) = Φt(θ0)

− 1

2 ht(θ) and note that we have

Eθ0
(ht(θ)

′Φt(θ0)
−1ht(θ) | FL

t−1) = Eθ0
(ut(θ)

′ut(θ) | FL
t−1)

=
M∑

i=1

Varθ0
(ut(θ)i | FL

t−1) +
M∑

i=1

Eθ0
(ut(θ)i | FL

t−1)
2 = M +

M∑

i=1

Eθ0
(ut(θ)i | FL

t−1)
2,

which is minimized for θ = θ0 because Eθ0
(ut(θ0)i|FL

t−1) = 0.
In the common class considered in the following example, s̃T (θ) is a martingale

estimating function, just like the estimating functions leading to the optimal GMM
estimator and the optimal estimator.
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Example 2.6 In many applications, the estimating functions ht(θ) are given by the
deviation from the conditional mean of a basic function of interest f(Xt, . . . , Xt−R),
motivated by economic theory. Thus, we have

ht(θ) = f(Xt, . . .Xt−L) − Eθ(f(Xt, . . . , Xt−L) | FL
t−1). (2.41)

In this class of estimating functions, we have that dt(θ) = ∂ht(θ)/∂θ′. The reason
is that while in general dt(θ) = Eθ(∂ht(θ)/∂θ′ | FL

t−1) by (2.15), we have here that
∂ht(θ)/∂θ′ = − ∂

∂θ′
Eθ(f(Xt, . . . , Xt−L) | FL

t−1) only depends on the information in FL
t−1.

Thus, we now get conclusions in a sense stronger than those in Theorem 2.5. In
particular, we have:

1. The maximum pseudo-likelihood estimator ˆ̃θT is equal to the modified optimal
estimator obtained from G⋄

T in (2.24).

2. The pseudo-score function (2.40) is equal to the modified optimal estimating
function G⋄

T given by (2.24).

Thus, while the second of the two conclusions is only valid asymptotically in The-
orem 2.5, both hold in finite samples in the present class. Also, since the modified
optimal estimator is asymptotically equivalent to the optimal estimator in general,
the maximum pseudo-likelihood estimator is asymptotically equivalent to the optimal
estimator within the present class. The fact that f(·) may be chosen almost freely (up
to mild restrictions such as finite second moments) and an unbiased estimating func-
tion is constructed by subtracting the conditional expectation, if necessary computed
by simulation, makes the approach quite generally applicable.

In a similar situation, Duffie & Singleton (1993) proposed a simulated moment
estimator, replacing the conditional expectation by the corresponding unconditional
expectation and computing the latter as the average for a long simulated path for given
parameters, under a Markov assumption on Xt. In their illustrative example, Xt was
the capital stock, technology shock and taste shock in a production based dynamic
asset pricing model. The proposed estimator was chosen to minimize the GMM crite-
rion (2.6), with the expectation in (2.41) computed as

∑T (T )
s=1 f(Xθ

s , . . . , X
θ
s−L)/T (T ),

with {Xθ
s} the simulated process given parameter θ, and T (T ) the length of the sim-

ulated path. If T/T (T ) → τ then the asymptotic variance in (2.8) is multiplied by
the factor 1 + τ also known from McFadden (1989) and Pakes & Pollard (1989).

The differences between these standard simulated moment methods and our ap-
proach are that we, in case the conditional expectations in (2.41) are not known analyt-

ically, would simulate each of them, using
∑T (T )

s=1 f(Xθ
t,s, Xt−1, . . . , Xt−L)/T (T ) for the

t’th, with Xθ
t,s drawn from the conditional distribution given the observed condition-

ing arguments Xt−1, . . . , Xt−L (this is the Lth order Markov case), and T (T ) → ∞,
and we use the optimally weighted average (2.17) of the functions ht(θ), rather than
the unweighted average HT (θ). The increase in efficiency of our method relative to
standard simulated moments is then the same as the general efficiency improvement
of the optimal estimator compared to optimal GMM.

2
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2.3 Diagnostic testing

A noted virtue of GMM is that upon calculation of the estimator θ̃T , a test of model
specification may be based on the omnibus statistic

Q = (T − L)HT (θ̃T )′V̂ (θ̃T )−1HT (θ̃T ), (2.42)

which is asymptotically χ2-distributed on M − K degrees of freedom. Here, HT (θ)
and V̂ (θ) are computed using (2.4) and (2.7), respectively.

An alternative test can be made based on the optimal estimator θ̂T . In the mar-
tingale estimating function case we have the result in the following theorem.

Theorem 2.7 Consider the test statistic

Q2 = (T − L)HT (θ̂T )′V̂2(θ̂T )−HT (θ̂T ), (2.43)

where V̂2(θ)
− is a generalized inverse of

V̂2(θ) = V̂ (θ) − D̂(θ)Ĵ (θ)−1D̂(θ)′, (2.44)

with D̂(θ) and Ĵ (θ) from (2.10) and (2.21), respectively. As T → ∞, Q2 is asymp-
totically χ2-distributed with degrees of freedom f equal to the rank of the matrix

V2(θ) = V (θ) − D(θ)J (θ)−1D(θ)′. (2.45)

In particular, M −K ≤ f ≤ M . If d denotes the dimension of the intersection of the
subspace generated by the column vectors of V2(θ) and that generated by the columns
of D(θ)J (θ)−1D(θ)′ and if the rank of D(θ) is K, then f = M − K + d.

Note that since (2.45) by Lemma 2.2 is the covariance matrix of the prediction
error of the minimum mean square error predictor of ht(θ) given w∗

t (θ)ht(θ), the
degrees of freedom f equal the dimension of the support of the random variable
(IM − D(θ)J (θ)−1w∗

t (θ))ht(θ), which is equal to the dimension of the linear space

span{(IM − D(θ)J (θ)−1w∗(θ, x1, . . . , xL))h(θ, x1, . . . , xL) | (x1, . . . , xL) ∈ SL},

where S denotes the state-space of the observed process. In the special case of opti-
mal GMM, the weight matrix w∗ is constant and from (2.14) given by D(θ)′V (θ)−1,
while J (θ) = D(θ)′V (θ)−1D(θ), the inverse covariance matrix from (2.8). Hence,
DJ −1w∗ = D(D′V −1D)−1D′V −1 is a projection matrix of rank K, and the standard
result f = M − K follows in this case.

In general, the degrees of freedom f of the new test (2.43) are higher or at least
as high as in the GMM case, since the optimal estimator is not defined to set as
many combinations as possible of the functions in the vector HT (θ) equal to zero.
A natural procedure in practical applications when d is unknown is to calculate the
p-value under both M − K and M degrees of freedom, which yields bounds on the
true p-value, by Theorem 2.7.

17



2.4 Hypothesis testing

In this subsection we will briefly discuss tests based on the optimal estimating function
and the optimal estimator that are analogous to the well-known tests considered by
Newey & West (1987a) in case of usual GMM-estimators. We will consider a general
hypothesis of the form

H0 : a(θ) = 0, (2.46)

where a is a differentiable function from IRK into IRR.
The following four test statistics (Wald, QLR, LM, MD) are all asymptotically

equivalent, and asymptotically χ2-distributed on R degrees of freedom, as can be seen
by a standard proof based on Taylor expansions. The Wald test statistic here takes
the form

WT = Ta(θ̂T )′
(
A(θ̂T )J (θ̂T )−1A(θ̂T )′

)−1
a(θ̂T ), (2.47)

where
A(θ) = ∂θa(θ),

writing ∂θ · = ∂ · /∂θ′ here and in the following.
The quasi-likelihood-ratio (QLR) test statistic is given by

−2 log Q = −2T log LT (θ̂Q
T ), (2.48)

where θ̂Q
T is the estimator of θ obtained by maximizing log LT (θ) given by (2.37) under

the restriction (2.46).
The Lagrange multiplier (LM), score, or Rao test statistic based on G∗

T (θ) is

LMT = TG∗
T (θ̂R

T )′J (θ̂R
T )−1G∗

T (θ̂R
T ), (2.49)

where θ̂R
T is the estimator of θ obtained from the optimal estimating function (2.17)

under the hypothesis (2.46). With this restriction, the model can be parametrized by
β ∈ B ⊆ IRK−R, i.e., there exists a function ϕ : B 7→ IRK , such that θ = ϕ(β). The
optimal estimating function for the parameter β is

GR
T (β) = ∂βϕ(β)′G∗

T (ϕ(β)).

If β̂R
T denotes the estimator obtained by solving GR

T (β) = 0, then θ̂R
T = ϕ(β̂R

T ).
Unlike in the case of exact likelihood inference, the restricted estimator θ̂R

T used to
define the LM statistic does not in general coincide with the restricted estimator θ̂Q

T

in the QLR test. The latter is based not on GR
T (β) = 0 but on ∂βϕ(β)′sT (ϕ(β)) = 0,

with sT (·) the pseudo-score (2.38), in the sense that for β̂Q
T solving this equation,

θ̂Q
T = ϕ(β̂Q

T ).
It is possible to slightly alter the analysis in such a way that the restricted es-

timators in QLR and LM do coincide. Thus, consider instead of (2.48) based on
log LT from (2.37) the alternative QLR statistic based on log L̃T from (2.39), and
instead of (2.49) based on G∗

T the alternative LM statistic based on the pseudo-score
s̃T from (2.40). In this case, both restricted estimators are based on solution in B of
∂βϕ(β)′s̃T (ϕ(β)) = 0, and θ̂Q

T = θ̂R
T . This holds even if s̃T (θ) differs from the modified

optimal estimating function G⋄
T (θ) from (2.24), i.e., outside Example 2.6, in which
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case the pseudo-score need not be a martingale. The additional property of asymp-
totic equivalence to the other four tests is gained under the special (but common)
structure (2.41) on ht(·) from the Example.

The minimum distance or minimum chi-square estimator β̂D
T of β that parametrizes

the model under the restriction (2.46) is obtained by minimizing (θ̂T−ϕ(β))′J (θ̂T )(θ̂T−
ϕ(β)), or equivalently from the estimating function

∂βϕ(β)′J (θ̂T )(θ̂T − ϕ(β)).

The minimum distance estimator of θ is θ̂D
T = ϕ(β̂D

T ). The minimum distance (MD)
or minimum chi-square test statistic is

MCT = T (θ̂T − θ̂D
T )′J (θ̂T )(θ̂T − θ̂D

T ). (2.50)

Clearly, the restricted estimator β̂D
T , and consequently θ̂D

T , in general differ from the
restricted estimators of β, respectively θ, in either of the above forms of the QLR and
LM statistics.

As noted in relation to Theorem 2.1, the optimal estimating function G∗
T (θ) form-

ing the basis of the four test statistics is closer to the efficient score in an L2-sense
than other estimating functions given by alternative weights (or instruments), such
as those from standard GMM, viz. (2.11). Hence, in this sense, the LM test (2.49)
based on G∗

T is asymptotically optimal, as it is closest to likelihood inference, and by
asymptotic equivalence, all of the four proposed tests enjoy the optimality property.

3 General history dependence

So far we have restricted attention to the case where ht(θ) and wt(θ) depend on at
most L lags of Xt. We now consider the more general case where ht(θ) is allowed to
depend on all observations up to and including time t, while wt(θ) may depend on all
observations through t−1. The form of ht(θ) and wt(θ) will typically vary with t, e.g.,
the dependence may be of the type ht(θ) = Xt− (ν1(θ)Xt−1 + · · ·+νt−1(θ)X1 +νt(θ)).
Two concrete examples are given below. Condition (2.3) is maintained, so that the
estimating functions are martingales, as in the previous section.

A major reason for the interest in general history dependence is that allowing
unbounded lag length in ht(·) and wt(·) typically increases efficiency in cases where
Xt is not Lth order Markov. A similar phenomenon occurs already in the simpler
setting of the previous section, for suppose that Xt indeed is Lth order Markov, but
ht(·) only depends on a smaller number of lagged X-values, say L̃ lags, L̃ < L. Then
the optimal estimator is defined by (2.15), (2.16), and (2.18), with L lags in the
weights, and generally this does not reduce to the smaller number L̃ of lags that
happens to occur in ht(·). If only L̃ lags are permitted in the weights for an Lth
order Markov process, L̃ < L, then efficiency is lost. More generally, if Xt is not Lth
order Markov for any finite L, but ht(·) depends on L lags, L < ∞, then Theorem 2.1
delivers the optimal estimator using only the same number of lags in w∗

t (·) as in ht(·),
and shifting to more lags in the former would typically improve efficiency in this case,
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too. The most general situation is when neither lag order is restricted, i.e., general
history dependence.

With general history dependence, the estimating function is no longer an average
of stationary terms, although we will still assume that the process {Xt} is stationary.
Under wide regularity conditions the estimator obtained by minimizing (2.6) is also in
this case consistent and asymptotically normal with limiting distribution of the form
(2.8), where

V (θ) = lim
T→∞

1

T

T∑

t=1

ht(θ)ht(θ)
′ (3.51)

and

D(θ) = lim
T→∞

1

T

T∑

t=1

∂ht(θ)

∂θ′
. (3.52)

As before, an initial estimator θI may be obtained by minimizing (2.6) with W = IM ,
whereas the final estimator uses W = V̂ (θI)−1, with V̂ (·) from (2.7). As in the
previous section, we refer to this as the optimal GMM estimator, or θ̃T . Note that
with general history dependence, summation can start at t = 1 in (2.4), (2.7), (3.51),
(3.52), and similar sums. It is an assumption that these sums converge either almost
surely or in probability to a deterministic limit, and that the observed process is
stationary and ergodic. If ht = h(Xt, . . . , Xt−L; θ) (at least from a certain value of
t), then the definitions (3.51) and (3.52) coincide with the definitions in the previous
section, where V (θ) was the covariance matrix of ht(θ) and D(θ) was given by (2.9).

In case of general history dependence, we consider generalized estimators obtained
from estimating functions of the form (2.13) with L = 0, where the weights wt(θ) are
arbitrary Ft−1-measurable K × M matrices.

Theorem 3.1 The optimal estimating function in the class of all estimating functions
of the form (2.13), where the weights wt(θ) are arbitrary Ft−1-measurable K × M
matrices, is given by (2.18), with dt(θ) and Φt(θ) redefined as

dt(θ) = Eθ

(
∂ht(θ)

∂θ′

∣∣∣∣∣ Ft−1

)
(3.53)

and
Φt(θ) = Varθ (ht(θ) | Ft−1) = Eθ (ht(θ)ht(θ)

′ | Ft−1) . (3.54)

The asymptotic distribution of the optimal estimator θ̂T obtained by solving the esti-
mating equation G∗

T (θ) = 0 is given by (2.19), with J (θ) redefined as

J (θ) = lim
T→∞

1

T

T∑

t=1

dt(θ)
′Φt(θ)

−1dt(θ), (3.55)

provided that the sum converges almost surely or in probability to a deterministic limit.

If {Xt} is Lth order Markov or L-dependent, then the functions dt(θ) and Φt(θ),
and hence the optimal weights, are of the form considered previously in the stationary
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case (when t > L). Note also that with general history dependenc, the efficiency bound
J (θ) is given by a probability limit.

For comparison of the asymptotic variances of GMM and the optimal estimator,
Lemma 2.2 on prediction of the terms ht and w∗

t (θ)ht(θ) is in the case of general
history dependence replaced by the following lemma on prediction of the summation
of these terms.

Lemma 3.2 The minimum mean square error predictor of G∗
T (θ) given HT (θ) is

Ĝ∗
T (θ) = DT (θ)′VT (θ)−1HT (θ) (3.56)

and the prediction error covariance matrix is

Varθ

(
G∗

T (θ) − Ĝ∗
T (θ)

)
= JT (θ) − DT (θ)′VT (θ)−1DT (θ), (3.57)

where

DT (θ) =
1

T

T∑

t=1

Eθ

(
∂ht(θ)

∂θ′

)
,

VT (θ) =
1

T

T∑

t=1

Eθ (ht(θ)ht(θ)
′) ,

and

JT (θ) =
1

T

T∑

t=1

Eθ

(
dt(θ)

′Φt(θ)
−1dt(θ)

)
.

The minimum mean square error predictor of HT (θ) given G∗
T (θ) is

ĤT (θ) = DT (θ)JT (θ)−1G∗
T (θ)

with prediction error covariance matrix

Varθ

(
HT (θ) − ĤT (θ)

)
= VT (θ) − DT (θ)JT (θ)−1DT (θ)′.

From (3.51) and (3.55), the difference in asymptotic precision between the optimal
estimator and optimal GMM is the limit as T → ∞ of the right hand side of (3.57),
and the left hand side is seen to be the covariance matrix of the errors in predicting
the optimal estimating function based on the moment conditions, i.e., in particular
positive semi-definite. The following theorem strengthens this conclusion.

Theorem 3.3 Assume that (3.51), (3.52), and (3.55) converge in L1 to a determin-
istic limit. Then the optimal estimator θ̂T is strictly more efficient than the optimal
GMM estimator θ̃T , i.e.,

J (θ)−1 < (D(θ)′V (θ)−1D(θ))−1, (3.58)

except for the special case where the two estimating functions are asymptotically iden-
tical.
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Thus, Theorem 3.3 generalizes Theorem 2.3 to the case of general history depen-
dence.

Example 3.4 Consider the GARCH(1,1)-model of Bollerslev (1986), defined itera-
tively by

Xt = σtǫt, σ2
t = ω + αX2

t−1 + βσ2
t−1, (3.59)

where the innovation sequence {ǫt} is i.i.d. with variance one. Identification and
positive conditional variances, σ2

t , require α > 0, β ≥ 0. Since this is a model of
volatility, it is natural to specify ht from the squared observations as

ht(θ) = X2
t − Eθ(X

2
t | Ft−1), (3.60)

which in the GARCH(1,1) case is given by

ht(ω, α, β) = X2
t − (ω + αX2

t−1 + βσ2
t−1). (3.61)

Since σ2
t is defined recursively, ht is of the form ht(θ) = X2

t − (ν1(θ)X
2
t−1 + · · · +

νt−1(θ)X
2
1 + νt(θ)), where θ = (ω, α, β). Iterating on (3.59) shows immediately that

ν1(θ) = α and νk(θ) = αβk−1, for k = 1, 2, . . . , t − 1. Also, νt(θ) = ω(1 − βt−1)/(1 −
β)+βt−1σ2

1. The recursions are typically started at σ2
1 given by the sample variance of

Xt or the unconditional variance Varθ(X1). Bollerslev (1986) shows that this is finite
and given by ω/(1 − α − β) under the weak stationarity condition α + β < 1. We
need in addition that ht(θ) has finite variance, which requires finite fourth moments
of Xt. A necessary and sufficient condition for the latter is β2 + 2αβ + α2Eθ(ǫ

4
t ) < 1.

This was shown by Bollerslev (1986) for normal innovations (Eθ(ǫ
4
t ) = 3) and by He

& Teräsvirta (1999) in general.
The GARCH-model is a natural example where ht(θ) is of unbounded lag length,

so the methods of the previous section in general would not suffice. The exception is
the special case β = 0, i.e., the ARCH(1)-model of Engle (1982), where L = 1.

As a second example, consider the GARCH-M (GARCH-in-mean) model of Engle,
Lilien & Robins (1987). This is relevant in many financial applications where Xt is
an asset return whose mean depends on conditional volatility. A typical specification
is

Xt = γ0 + γ1σ
2
t + σtǫt, σ2

t = ω + α(Xt−1 − γ0 − γ1σ
2
t−1)

2 + βσ2
t−1,

where the parameter of interest is γ1, the market price of risk. The natural estimating
function for the conditional mean return parameters would be based on

ht(γ0, γ1) = Xt − γ0 − γ1σ
2
t . (3.62)

Suppose first that (γ0, γ1) are the only unknown parameters. In this case, Φt(θ) is
given by σ2

t , which is clearly time-varying in the GARCH framework. Estimation
methods ignoring this, such as OLS regression of Xt on σ2

t , or simply estimating the
market price of risk off the long run risk-return tradeoff (X̄ − γ0)/σ

2, are inefficient.
The latter approach is actually the GMM method that emerges when treating Φt(θ)
as constant. In general, with all parameters unknown, the estimating equation should
be based on both (3.60) and (3.62). In this case, the lower right corner of the matrix
Φt(θ) is σ2

t , i.e., still time-varying, and of unbounded lag length. 2
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Example 3.5 Consider the continuous time stochastic volatility model given by

dYt = σtdW 1
t , (3.63)

dσ2
t = a(σ2

t , θ)dt + b(σ2
t , θ)dW 2

t ,

where W 1 and W 2 are (possibly correlated) standard Wiener processes. Suppose the
process {Yt} has been observed at time points 0, 1, . . . , T and define Xt = Yt − Yt−1.
If Yt is the logarithm of the price of a financial asset, then Xt is the return over the
time interval [t − 1, t]. Again, a natural choice of ht is (3.60), where the conditional
expectation in general depends on all past observations X1, . . .Xt−1, so again ht is of
unbounded lag length. In the GARCH model, this was computed recursively, thus
already giving rise to general history dependence in that case. In the stochastic
volatility case, simulation is typically needed. Generally,

Eθ(X
2
t | Ft−1) = Eθ

(∫ t

t−1
σ2

sds | Ft−1

)
=
∫ t

t−1
Eθ(σ

2
s | Ft−1)ds,

where, as usual, Ft−1 denotes the σ-field generated by X1, . . . , Xt−1. For mean revert-
ing volatility with affine drift,

a(x, θ) = −β(x − α),

the conditional mean of σ2
s given σ2

t−1 takes the same form as in (2.32), so

Eθ(σ
2
s | Ft−1) = α + e−β(s−t+1)

(
Eθ(σ

2
t−1 | Ft−1) − α

)
.

It follows that in this case,

Eθ(X
2
t | Ft−1) = α +

(
Eθ(σ

2
t−1 | Ft−1) − α

) 1 − e−β

β
. (3.64)

Thus, the stochastic volatility model is amenable to rather explicit treatment. Indeed,
higher moments may be included to increase information on volatility of volatility, e.g.,
ht(θ) may be expanded by X4

t − Eθ(X
4
t | Ft−1), where

Eθ(X
4
t | Ft−1) = 3Eθ

((∫ t

t−1
σ2

sds
)2
∣∣∣∣∣ Ft−1

)
= 3

∫ t

t−1

∫ t

t−1
Eθ(σ

2
sσ

2
u | Ft−1)dsdu,

provided that W 1 and W 2 are independent. It follows from the Markov property of
the volatility process σ2

t that

Eθ(σ
2
sσ

2
u | Ft−1) = Eθ(φ(s − t + 1, u − t + 1, σ2

t−1) | Ft−1) (3.65)

for s, u > t − 1, where φ(t1, t2, z) = Eθ(σ
2
t1
σ2

t2
| σ2

0 = z). Even though the function φ
can be found explicitly for some models, there is no closed-form expression for (3.65).
For the Heston (1993) model, where σ2

t solves the stochastic differential equation

dσ2
t = −β(σ2

t − α)dt + τσtdW 2
t , (3.66)
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again with affine drift, the function φ is given by

φ(t1, t2, z) = z2e−β(t1+t2) + z
(
1 − e−βt1

)(ατ 2

β
e−βt1 − Ae−βt2

)

+ αAe−βt2 (1 − cosh(βt1)) − αe−βt1
(
1 − 1

2e
−βt1

)
− 1

2α

for t2 ≥ t1 ≥ 0, where A = τ 2(α − 1)/β − 2α. To calculate (3.65), we thus need
Eθ(σ

2
t−1 | Ft−1) as in (3.64), and in addition Eθ(σ

4
t−1 | Ft−1). These conditional expec-

tations given Ft−1 = σ(X1, . . . , Xt−1) must be calculated numerically. Typically, a
nested extended Kalman filter algorithm would be applied, running the filter forward
once at each trial parameter value when solving the estimating equation. If σ2

t is sta-
tionary and ergodic with all moments finite (β > 0, 2αβ > τ 2 in the Heston model),
then so is the observed process Xt, and the estimating functions we consider are of
finite variance.

An approximation to ht(θ) can be obtained by the following method which applies
also outside the Heston model, but maintaining independence of the two driving
Wiener processes. If the volatility process σ2

t is exponentially mixing, then so is the
sequence of returns {Xt}, see Sørensen (2000). Concerning the concept of mixing,
see e.g. Doukhan (1994). In this quite common case, the conditional expectation
Eθ(X

2
t | Ft−1) in (3.60) depends only weakly on observations made much earlier than

time t, so that it makes sense to approximate it by Eθ(X
2
t |Xt−1, . . . , Xt−L) for a

suitable L. This conditional expectation can be calculated by simulation along the
same lines as in H. Sørensen (2003). Specifically, define

St =
∫ t

t−1
σ2

sds

for t = 1, 2, . . .. Then conditionally on S1, . . . , St the random variables Xt, . . . , Xt−L

are independent and Xt−j is normally distributed with mean zero and variance St−j .
Let ϕ(x, ξ2) denote the normal density function with mean zero and variance ξ2. Then
the unconditional density of (Xt, . . . , Xt−L) is

p(L+1)(xt, . . . , xt−L) = Eθ




L∏

j=0

ϕ(xt−j , St−j)


 ,

where the expectation is with respect to St, . . . , St−L. It follows that

Eθ(X
2
t |Xt−1 = xt−1, . . . , Xt−L = xt−L)

=

∫ ∞

−∞
x2

t p
(L+1)(xt, . . . , xt−L)dxt

p(L)(xt−1, . . . , xt−L)
=

Eθ



∫ ∞

−∞
x2

t ϕ(xt, St)dxt

L∏

j=1

ϕ(xt−j , St−j)




p(L)(xt−1, . . . , xt−L)

=
Eθ

(
St

∏L
j=1 ϕ(xt−j , St−j)

)

Eθ

(∏L
j=1 ϕ(xt−j , St−j)

) , (3.67)
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where the last equality uses that
∫∞
−∞ x2

t ϕ(xt, ξ
2)dxt = ξ2 by the properties of ϕ. If

fourth moments are included, Eθ(X
4
t |Xt−1 = xt−1, . . . , Xt−L = xt−L) may be calcu-

lated similarly, as an approximation to Eθ(X
4
t | Ft−1), simply substituting 3S2

t for St

(but of course not for St−j in ϕ(·)) in the last expression in (3.67). Here, the expecta-
tions in the numerator and denumerator can be calculated by simulating St−L, . . . , St

a large number of times and then using the law of large numbers. Note that since the
volatility process is assumed stationary, then so is the sequence Sj. Therefore, the
same simulations can be reused for all values of t.

If t is small, this method can be used to calculate Eθ(X
2
t | Ft−1) = Eθ(X

2
t |Xt−1, . . . ,

X1), so that no approximation is needed (let L = t−1), but if t is large this would be
computationally very demanding. Unfortunately, the estimating function (2.13) with
ht(θ) given by (3.60) is not a martingale when Eθ(X

2
t | Ft−1) is replaced by the approx-

imation Eθ(X
2
t |Xt−1, . . . , Xt−L). Non-martingale estimating functions are treated in

the next section, where we also return to the stochastic volatility example.

2

4 Non-martingale estimating functions

For a class of non-martingale estimating functions it is in general much more difficult
to find an optimal estimating function, except if the class of estimating functions is
finite dimensional. Suppose the observed process is non-Markovian and stationary,
and consider the class of unbiased estimating functions of the form

GT (θ) =
1

T − L

T∑

t=L+1

w(Xt−1, . . . , Xt−L; θ) [f(Xt) − Π(Xt−1, . . . , Xt−L; θ)] , (4.1)

where f and Π are given M-dimensional functions and w is a K × M matrix of
weights that should be chosen optimally. As earlier, K denotes the dimension of the
parameter θ ∈ Θ, where Θ ⊆ IRK is the parameter set. To ensure consistency of the
resulting estimator, the functions f , Π and w should satisfy that GT (θ) is unbiased, i.e.
Eθ(w(Xt−1, . . . , Xt−L; θ) [f(Xt) − Π(Xt−1, . . . , Xt−L; θ)]) = 0. An obvious choice of Π
is Π(Xt−1, . . . , Xt−L; θ) = Eθ(f(Xt) |Xt−1, . . . , Xt−L), in which case the function w(·)
can be chosen freely (except that the expectation must exist and for the optimality
theory GT (θ) must have finite variance). Note that even with this Π, the estimating
function GT (θ) is not in general a martingale, although it is if {Xt} is an Lth order
Markov process. A more general choice of Π is a predictor of f(Xt), yielding a
prediction-based estimating function in the sense of Sørensen (2000). If Π is the
minimum mean square error predictor in a certain class of predictors, then w can
be chosen as any other predictor in the class (except that GT (θ) must have finite
variance). The conditional expectation Eθ(f(Xt) |Xt−1, . . . , Xt−L) above is a special
case: It is the minimum mean square error predictor in the class of all predictors with
finite variance.

In the general non-Markov, non-martingale case, we introduce a general class of
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estimating functions with (i, j)′th entry of the weight matrix w given by

wij(x, θ) =
∞∑

k=1

aij
k (θ)ξk(x), (4.2)

where x is L-dimensional (or, precisely, of dimension L times that of Xt, see (4.1)).
The real functions ξk are given, but must satisfy that Eθ(ξk(Xt−1, . . . , Xt−L)[f(Xt)−
Π(Xt−1, . . . , Xt−L; θ)]) = 0, while we are free to choose the K × M matrices ak(θ) =
{aij

k (θ)} in an optimal way. An example (for L = 1) is when wij is assumed to belong
to the class of all square integrable functions (of x), which is spanned by, for instance,
the Hermite functions. In order to find the optimal weight function, i.e. the optimal
choice of the matrices ak(θ), we need the M × K matrices

sk(θ) = Eθ

(
ξk(XL, . . . , X1)

∂

∂θ′
Π(XL, . . . , X1; θ)

)
, (4.3)

k ∈ IN, and the M × M matrices

mT
kl(θ) = Eθ (HT,k(θ)HT,l(θ)

′) , (4.4)

k, l ∈ IN, where

HT,k(θ) =
1√

T − L

T∑

t=L+1

ξk(Xt−1, . . . , Xt−L) [f(Xt) − Π(Xt−1, . . . , Xt−L; θ)] . (4.5)

Define for every θ ∈ Θ an operator MT (θ) that maps a sequence of M × K matrices
b = {bk | k ∈ IN} into another sequence of M ×K-matrices MT (θ)b = {(MT (θ)b)k | k ∈
IN} given by

(MT (θ)b)k =
∞∑

l=1

mT
kl(θ)bl. (4.6)

The sum is defined by summation within each entry. The domain of the operator
MT (θ) is the set of sequences b for which the sum (4.6) converges. Under weak
moment conditions on the functions ξk, the domain consists of the sequences a for
which (4.2) converges. Note that MT can be thought of as an operator on the space
of weight matrices w. Specifically, a weight matrix given by (4.2) is mapped into the
weight matrix

∑∞
k=1 bkξk(x), where bk =

∑∞
ℓ=1 mT

kℓ(θ)aℓ.
The following theorem provides the lower bound J (θ)−1 on the asymptotic vari-

ance of estimators in the case of non-martingale estimating functions of the form (4.1),
as well as a general procedure for constructing an estimator reaching the bound.

Theorem 4.1 Any estimating function with weights w∗(x, θ) given by (4.2) with
aij

k (θ) given by a sequence a∗(T, θ) = {a∗
k(T, θ) | k ∈ IN} of K × M-matrices such

that
MT (θ)a∗(T, θ)′ = s(θ)k(θ), (4.7)

with s(θ) = {sl(θ) | l ∈ IN} from (4.3), s(θ)k(θ) = {sl(θ)k(θ) | l ∈ IN}, and k(θ) some
invertible K × K matrix, is optimal in the class of all estimating functions of the
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form (4.1) with weights w(x, θ) given by (4.2). Suppose the operator MT (θ) has an
inverse MT (θ)−1 and that the sequence s(θ) belongs to the domain of MT (θ)−1. Then
an optimal estimating function G∗

T (θ) is defined by substituting

a∗(T, θ) = (MT (θ)−1s(θ))′

in (4.2) and the resulting weights in (4.1). Suppose that the observed process Xt is
sufficiently mixing that a central limit theorem holds for

√
TG∗

T (θ) and that a∗
k(T, θ) →

a∗
k(θ) and

∞∑

k=1

a∗
k(T, θ)sk(θ) → J (θ),

where

J (θ) =
∞∑

k=1

a∗
k(θ)sk(θ). (4.8)

Then (under regularity conditions) the optimal estimator θ̂T solving G∗
T (θ) = 0 satis-

fies √
T (θ̂T − θ)

D−→ N(0,J (θ)−1).

The theorem is proved in the appendix. The weight matrix ∂
∂θ

Π(Xt−1, . . . , Xt−L; θ)′

Φ(Xt−1, . . . , Xt−L)−1 where Φ(xL, . . . , x1) = Varθ (f(XL+1) |XL = xl, . . . , X1 = x1) is
usually not optimal, as it does not satisfy (5.1). Sufficient conditions that a central
limit theorem holds for G∗

T (θ) are that Xt is geometrically strong mixing and that
the (2 + ε)′th moment of G∗

T is finite. Strong mixing is also referred to as α-mixing.
The α mixing coefficient indexed by t is a measure of the dependence of observations
that are made at time points that are at least t time units apart. The value zero
indicates no dependence. If the α mixing coefficients tend to zero, the process is
called strongly mixing, and if they go exponentially fast to zero the process is called
geometrically mixing. Geometrical strong mixing together with a moment condition
implies a central limit theorem. For more details on the concept of mixing and on
central limit theorems for mixing processes, see Doukhan (1994). The expression (4.8)
for the asymptotic variance J (θ) of G∗

T (θ) follows from the central limit theorem for
strongly mixing processes.

The problem in the non-martingale case is that the matrices (4.4), and hence
the operator MT (θ), are very complicated when the estimating function is not an
average of uncorrelated terms. In the martingale case ({Xt} Lth order Markov and
Π(Xt−1, . . . , Xt−L; θ) = Eθ(f(Xt) |Xt−1, . . . , Xt−L)) we have

mT
kl(θ) = Eθ(ξk(XL, . . . , X1)ξl(XL, . . . , X1)Φ(XL, . . . , X1)),

and it is not difficult to see that the general optimality condition MT (θ)a∗(θ)′ = s(θ)
from Theorem 4.1 is satisfied if and only if

Eθ(ξk(XL, . . . , X1)Φ(XL, . . . , X1)w
∗(XL, . . . , X1)

′)

= Eθ

(
ξk(XL, . . . , X1)

∂

∂θ′
Eθ(f(XL+1) |XL, . . . , X1)

)
,
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for all k ∈ IN. This condition holds if

w∗(xL, . . . , x1) =
∂

∂θ
Eθ(f(XL+1)

′ |XL = xL, . . . , X1 = x1)Φ(xL, . . . , x1)
−1,

which is exactly (2.18) in the Markov case. Thus, Theorem 4.1 represents a general-
ization, and the martingale special case comes out as an example where the operator
MT (θ) is invertible.

In the general non-Markov, non-martingale case, we still have mT
kl(θ) → mkl(θ) as

T → ∞, provided {Xt} is sufficiently mixing, e.g., geometrically strong mixing. An
estimator with the same efficiency as the optimal estimator in the general case from
Theorem 4.1 can be obtained from the limiting operator M(θ) by substituting the
mkl(θ)s for the mT

kl(θ)s in MT (θ) in the Theorem.
In practice, for computational purposes, the infinite sum (4.2) is truncated at

some finite number of terms, say N . In this case, since in effect we are restricting the
weight matrix to belong to a finite dimensional space, we can find the optimal weight
matrix explicitly. We can think of this as a tractable approximation to the general
weight functions (4.2) belonging to the infinite dimensional space spanned by {ξk(·)}.
Specifically, consider the class of estimating functions of the form (4.1) with the ijth
entry of the weight matrix given by

wij(x, θ) =
N∑

k=1

aij
k (θ)ξk(x). (4.9)

Define

HT (θ) =




HT,1(θ)
...

HT,N(θ)


 , s(θ) =




s1(θ)
...

sN(θ)


 and a(θ) =

(
a1(θ) · · · aN(θ)

)
,

where HT,k(θ) is given by (4.5) and sk(θ) by (4.3), while ak(θ) = {aij
k (θ)}. Note that

HT (θ) is an NM-dimensional random vector, s(θ) is an NM ×K-matrix, and a(θ) a
K × NM-matrix. Let VT (θ) be the covariance matrix of the stochastic vector HT (θ)
and let f1, . . . , fM denote the coordinate functions of f . The following corollary is
proved in the appendix.

Corollary 4.2 Suppose that ξ1, . . . , ξN are linearly independent, and that 1, f1, . . . , fM

are linearly independent on the support of the conditional distribution of XT given
X1, . . . , XT−1. Then the matrix VT (θ) is invertible, and in the class of estimating
functions of the form (4.1) with weights (4.9), that with weight function given by

a∗(θ) = s(θ)′VT (θ)−1 (4.10)

is optimal.

A similar theory covering the more general estimating functions

GT (θ) = (4.11)

1

T − L

T∑

t=L+1

w(Xt−1, . . . , Xt−L; θ) [f(Xt, . . . , Xt−L) − Π(Xt−1, . . . , Xt−L; θ)]
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can be derived along the same lines as indicated here for the slightly simpler case
(4.1). When Π is the minimum mean square predictor in a finite-dimensional class
of predictors, and when the entries of the weight matrices are taken to belong to the
same class, the theory of optimal prediction-based estimating functions in Sørensen
(2000) is recovered as a particular case.

Example 4.3 Consider again the stochastic volatility model (3.63). As discussed in
Example 3.5, a simpler and more tractable estimating function than the one with con-
ditional expectations dependent on the entire history can be obtained by conditioning
only on the L previous observations. To obtain an unbiased estimating function (and
hence consistent estimators) the weight matrix can be taken to depend on the same
lagged observations. Thus, we obtain

GT (θ) =
1

T − L

T∑

t=L+1

w(Xt−1, . . . , Xt−L; θ)
[
X2

t − Eθ(X
2
t |Xt−1, . . . , Xt−L)

]
.

This is not a martingale estimating function, but it is a prediction-based estimat-
ing function, and an unbiased estimating function of the type (4.1). The conditional
expectation easily can be calculated by simulation as explained in Example 3.5. How-
ever, even if we restrict the space of weight functions to a finite dimensional space, the
optimal estimating function from Theorem 4.1 cannot be easily found, because the
partial derivative with respect to θ makes it computationally demanding to calculate
sk(θ) numerically from (4.3). If the volatility of volatility coefficient b from (3.63) does
not depend on θ, the situation is better, and sk(θ) can be calculated by simulating
many independent copies of the volatility process using the ideas of Example 3.5 and
utilizing that for differentiation of (3.67),

∂

∂θ
Eθ


St

L∏

j=1

ϕ(xt−j , St−j)


 (4.12)

= Eθ


St

L∏

j=1

ϕ(xt−j , St−j)

[
∂

∂θ
log fθ(σ

2
t−L−1) +

∫ t

t−L−1

∂θa(σ2
s , θ)

b(σ2
s)

2
dσ2

s

−
∫ t

t−L−1

a(σ2
s , θ)∂θa(σ2

s , θ)

b(σ2
s )

2
ds

])

= Eθ


St

L∏

j=1

ϕ(xt−j , St−j)

[
∂

∂θ
log fθ(σ

2
t−L−1) +

∫ t

t−L−1

∂θa(σ2
s , θ)

b(σ2
s)

dW 2
s

]
 ,

where fθ(x) denotes the stationary distribution of σ2
t , e.g., in the Heston (1993) model

from (3.66) fθ is a gamma density. Formula (4.12) can be obtained by differentiating
with respect to θ the Radon-Nikodym derivative of Pθ with respect to some fixed
Pθ0

, see the appendix for details. When the coefficient b depends on θ, this method
cannot be applied because in that case the necessary Radon-Nikodym derivative of Pθ

with respect to a fixed Pθ0
does not exist. Note that because the volatility process is

stationary, the expression in the square parenthesis need only be calculated once and
can then be used for all values of t, as discussed in Example 3.5. The derivative of
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Eθ

(∏L
j=1 ϕ(xt−j , St−j)

)
in (3.67) can be calculated similarly. The stochastic integral

with respect to σ2
s can be calculated by means of usual integrals, since by Ito’s formula

∫ t

t−L−1

∂θa(σ2
s , θ)

b(σ2
s )

2
dσ2

s

= A(σ2
t ) − A(σ2

t−L−1) − 1
2

∫ t

t−L−1

∂2

∂σ2∂θ
a(σ2

s , θ)ds +
∫ t

t−L−1

∂θa(σ2
s , θ)b

′(σ2
s)

b(σ2
s )

ds,

where

A(x) =
∫ x

1

∂θa(y, θ)

b(y)2
dy. (4.13)

Note also that if the stationary density is not explicitly known, then ∂
∂θ

log fθ(x) can
be calculated as

∂

∂θ
log fθ(x) = 2

(
A(x) −

∫ ∞

0
A(x)fθ(x)dx

)
= 2

(
A(x) − Eθ(A(σ2

1))
)
, (4.14)

see the appendix. Thus, the non-martingale estimating function approach does allow
analysis of stochastic volatility models.

A simplified approach is to approximate the conditional expectation in GT (θ)
by the minimum mean square predictor Π(Xt−1, . . . , Xt−L; θ) in a suitable finite-
dimensional class of predictors. To ensure unbiasedness of the estimating functions,
the weights w must be vectors of predictors from the same class if predictors. In this
way, a much more tractable class of estimating functions is obtained, and the general
theory of the present section can be easily applied. In particular, the estimating func-
tion takes the form (4.1), and the optimality theory is given in Corollary 4.2. This is a
prediction-based estimating function of the type treated in detail in Sørensen (2000).
For a concrete example, let

Π(Xt−1, . . . , Xt−L; θ) = ν̄0(θ) + ν̄1(θ)X
2
t−1 + · · ·+ ν̄L(θ)X2

t−L

be the minimum mean square predictor of X2
t in the class of predictors of the form

ν0 + ν1X
2
t−1 + · · · + νLX2

t−L. The quantities ν̄j(θ) are given by




c1(θ)
c2(θ)

...
cL(θ)




=




c0(θ) c1(θ) · · · cL−1(θ)
c1(θ) c0(θ) · · · cL−2(θ)

...
...

...
cL−1(θ) cL−2(θ) · · · c0(θ)







ν̄1(θ)
ν̄2(θ)

...
ν̄L(θ)




and
ν̄0(θ) = Eθ

(
X2

1

)
[1 − ν̄1(θ) − · · · − ν̄L(θ)],

where c0(θ) = Varθ (X2
1 ) and ci(θ) = Covθ

(
X2

1 , X
2
i+1

)
, i = 1, . . . , L. The covariance

matrix is invertible. For the stochastic volatility models considered here, the covari-
ances ci(θ) and the mean and variance of X2

i can be found when the mean, variance
and autocorrelation function of the volatility process are known, see Sørensen (2000).
When the drift of the volatility model is linear, there are tractable expressions for
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these quantities, see e.g. Bibby, Skovgaard & Sørensen (2005) where a large number
of examples can be found. In order to determine the optimal weights by Corollary 4.2,
we need s(θ) and VT (θ), the covariance matrix of the stochastic vector HT (θ). Since
the functions ξk are all of the form X2

t−j , j = 1, . . . , L, the vector s(θ) can be found
from ci(θ), i = 0, . . . , L. To find VT (θ) we must also calculate mixed moments of the
type Eθ(X

2
i X2

j X2
k) and Eθ(X

2
i X2

j X
2
kX

2
ℓ ), assumed finite. These mixed moments can

be determined by simulation. They can also be calculated from the mixed moments
Eθ(σ

2
sσ

2
t σ

2
u) and Eθ(σ

2
sσ

2
t σ

2
uσ

2
v) of the volatility process when these are available, as

they are, e.g., in the Heston (1993) model (3.66). The calculation is rather compli-
cated and is discussed in detail in Sørensen (2000), where it is also explained how to
find the mixed moments for the volatility process in certain other situations. Due to
the computational burden involved in calculating the optimal weights, it is usually
best just to determine them once and for all at θ equal to a consistent estimator, e.g.,
the one obtained with weights 1, X2

t−1, . . . , X
2
t−K+1.

2

5 Conclusion

Our theory provides estimators for parameters in dynamic models with conditional
moment restrictions that are quite explicit and are asymptotically optimal in wide
generality. The estimators may be seen as generalized method of moments estima-
tors with optimal choice of time-varying instruments that depend on both data and
parameters.

Our results complement and contribute to both the econometrics and mathemat-
ical statistics literatures. Thus, our method is strictly more efficient than the usual
GMM estimator with optimal weight matrix (or norm) of Hansen (1982), which is com-
monly used in econometrics and obtains as the special case where our time-varying
instruments are made constant by replacing them by their unconditional mean. Our
approach provides the means of computing estimators that reach the lower variance
bound of Hansen (1985) and Hansen, Heaton & Ogaki (1988) in general, including
in dynamic heteroskedastic models. The optimal instruments resemble those known
from the i.i.d. case with conditional moment restrictions obtained by Newey (1990),
but the conditioning in our case is on the history of the time series. Although tied
in with the GMM literature, our results on the martingale estimating function case
with finite lag length follow the mathematical statistics literature reviewed in Bibby,
Jacobsen & Sørensen (2004), while our generalizations to the general history depen-
dence and non-martingale cases are novel and contribute to both the econometrics
and mathematical statistics literatures.

Our work points to a number of fruitful possibilities for future research. For
example, it would be interesting to relate our approach to the semiparametric statistics
literature. Here, optimality results in the dynamic case are sparse, but we expect
that our estimators reach the relevant semiparametric efficiency bounds for dynamic
models. In addition, our methodology lends itself to empirical application, and the
efficiency gains relative to existing methods obtained in practice are naturally of
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interest. Finally, our theory leads to new testing procedures, and their size and power
properties in finite samples are natural objects of study. Ongoing research explores
both these and several related ideas.
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Appendix

Here we give proofs of the main results of the article.

Proof of Theorem 2.1: By Theorem 2.1 in Heyde (1997), the estimating function
G∗

T (θ) with weight matrix w∗
t (θ) is optimal if and only if the matrix

Eθ

(
∂

∂θ′
GT (θ)

)−1

Eθ (GT (θ)G∗
T (θ)′) (5.1)

is the same for all estimating functions GT (θ) of the form (2.13). Since

Eθ

(
∂

∂θ′
GT (θ)

)
= − 1

T − L

T∑

t=L+1

Eθ

(
wt(θ)

∂ht(θ)

∂θ′

)

= Eθ

(
wT (θ)

∂hT (θ)

∂θ′

)

= Eθ

(
wT (θ)Eθ

(
∂hT (θ)

∂θ′

∣∣∣∣∣F
L
T−1

))

= Eθ (wT (θ)dT (θ)) , (5.2)

where we have used (2.3), stationarity, iterated expectations, wt(θ) ∈ FL
t−1, and (2.15)

(obtaining a non-essential simplification using the stationarity), and

Eθ (GT (θ)G∗
T (θ)′) =

1

(T − L)2

T∑

t=L+1

Eθ (wt(θ)ht(θ)ht(θ)
′w∗

t (θ)
′)

=
1

T − L
Eθ

(
wT (θ)Eθ

(
hT (θ)hT (θ)′|FL

T−1

)
w∗

T (θ)′
)

=
1

T − L
Eθ (wT (θ)ΦT (θ)w∗

T (θ)′) , (5.3)

using stationarity, iterated expectations, wt(θ) and w∗
t (θ) ∈ FL

t−1, and (2.16), we see
that if w∗

t (θ) is given by (2.18), then (5.1) equals IK/(T − L) for all GT (θ), so G∗
T (θ)

is optimal.
The asymptotic distribution of the estimator θ̂T follows in the usual way from the

mean value theorem:

0 = G∗
T (θ̂T ) = G∗

T (θ) + ST (θ̂T − θ). (5.4)

Here, the (i, j)’th entry of the K × K matrix ST is

∂

∂θj

G∗
T (θ

(j)
T )i,

where θ
(j)
T is a parameter value on the straight line connecting θ̂T and θ. Since the

observed process {Xt} is ergodic,

∂

∂θ′
G∗

T (θ)
Pθ−→ J (θ) (5.5)
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as T → ∞, and by the martingale central limit theorem, see Hall & Heyde (1980),

√
TG∗

T (θ)
D−→ N (0,J (θ)) , (5.6)

with J (θ) from (2.20). That the asymptotic covariance matrix of
√

TG∗
T (θ) and the

expectation of ∂
∂θ′

G∗
T (θ) are both equal to J (θ) follows from the calculations in the

first part of the proof by inserting w∗
t (θ) for wt(θ) in (5.2) and (5.3). We also need

that
ST

Pθ−→ J (θ), (5.7)

which follows from (5.5) under regularity conditions that ensure that the convergence
here is uniform in a

√
T -shrinking neighbourhood of θ. Now (2.19) follows by com-

bining (5.4), (5.6), and (5.7).
2

Proof of Lemma 2.2: The covariance matrices of the stochastic vectors ht(θ) and
w∗

t (θ)ht(θ), respectively, are V (θ) and

Varθ(w
∗
t (θ)ht(θ)) = Eθ (w∗

t (θ)ht(θ)ht(θ)
′w∗

t (θ)
′)

= Eθ

(
w∗

t (θ)Eθ(ht(θ)ht(θ)
′|FL

t−1)w
∗
t (θ)

′
)

= Eθ (w∗
t (θ)Φt(θ)w

∗
t (θ)

′)

= Eθ

(
dt(θ)

′Φt(θ)
−1Φt(θ)Φt(θ)

−1dt(θ)
)

= J (θ),

using iterated expectations, (2.16), (2.18), and (2.20). Moreover,

Covθ(w
∗
t (θ)ht(θ), ht(θ)) = Eθ (w∗

t (θ)ht(θ)ht(θ)
′)

= Eθ

(
w∗

t (θ)Eθ(ht(θ)ht(θ)
′|FL

t−1)
)

= Eθ (w∗
t (θ)Φt(θ))

= Eθ

(
dt(θ)

′Φt(θ)
−1Φt(θ)

)
= Eθ (dt(θ)

′) = D(θ)′.

Finally, we use that for zero mean variables x and y with finite variances, the mean
square error prediction of y given x is Cov(y, x)Var(x)−1x with prediction error co-
variance matrix given by Var(y) − Cov(y, x)Var(x)−1Cov(x, y).

2

Proof of Theorem 2.3: Theorem 2.1 yields the corresponding weak inequality, in the
partial ordering of positive semi-definite matrices. We must show that equality only
obtains when θ̂T = θ̃T . From Lemma 2.2, since (2.28) is a covariance matrix, equality
requires that the optimal estimating function takes the form given by w∗

t (θ)ht(θ) =

ŵ∗
t ht(θ). By (2.27), ŵ∗

t ht(θ) = wt(θ)ht(θ), where wt(θ) = D(θ)′V (θ)−1. From (2.14),
this is exactly the choice of weights leading to the optimal GMM estimator, so θ̂T = θ̃T .

2

Proof of Theorem 2.7: By Taylor expansion, (5.4), and (5.7),
√

T − LHT (θ̂T ) is
asymptotically equivalent to

1√
T − L

T∑

t=L+1

[
IM − D(θ)J (θ)−1w∗

t (θ)
]
ht(θ). (5.8)

From Lemma 2.2, [IM − D(θ)J (θ)−1w∗
t (θ)] ht(θ) is the prediction error of the min-

imum mean square error predictor of ht(θ) given w∗
t (θ)ht(θ), which has covariance
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matrix given by (2.45). Hence, (5.8) is asymptotically normal in IRM with mean zero
and covariance (2.45). This is a singular multivariate normal distribution concen-
trated on a subspace with dimension equal to the rank of (2.45). Thus, the result
holds if (2.45) is used in place of V̂2(θ̂T ) in Q2, and hence under standard regularity
conditions also when consistent estimators are inserted. If d is the dimension of the
intersection of the subspace generated by the column vectors of V2 and the subspace
generated by the columns of DJ −1D′, then by Grassman’s formula,

f = rank(V2) = M − rank(DJ −1D′) + d ≥ M − rank(DJ −1D′) ≥ M − K.

2

Proof of Theorem 3.1: The optimality result is proved in essentially the same way
as in the proof of Theorem 2.1. The only difference is that we cannot use stationarity
of wt(θ), dt(θ), and Φt(θ) to make a simplification that is not essential to the proof.
The asymptotic distribution is found in a way similar to the proof of Theorem 2.1. The
necessary regularity conditions must ensure that the martingale central limit result
(5.6) hold with J (θ) defined by (3.55), and that the convergence (5.5) is sufficiently
uniform, e.g., uniform on compact sets containing the true parameter value θ0.

2

Proof of Theorem 3.3: Theorem 3.1 yields the corresponding weak inequality in the
partial ordering of positive semi-definite matrices. Since (3.57) is a covariance matrix
that converges, by the assumptions of L1-convergence, to J (θ) − D(θ)′V (θ)−1D(θ),
equality requires, by Lemma 3.2, that Varθ(G

∗
t (θ) − Ĝ∗

t (θ)) → 0. From (2.14) and
(3.56), this happens only when the optimal estimating function is asymptotically equal
to the optimal GMM estimating function.

2

Proof of Theorem 4.1: According to Theorem 2.1 in Heyde (1997), the estimating
function G∗

T with weight matrix w∗ is optimal if and only if the matrix (5.1) is the
same for all estimating functions GT of the form (4.1). Now,

∂

∂θi

w(Xt−1, θ) [f(Xt) − Π(Xt−1; θ)]

=
∂

∂θi

w(Xt−1, θ) [f(Xt) − Π(Xt−1; θ)] − w(Xt−1, θ)
∂

∂θi

Π(Xt−1; θ),

and since ∂
∂θi

w(Xt−1, θ) =
∑∞

k=1
∂

∂θi

ak(θ)ξk(x) belongs to the class of weight func-
tions (we restrict the class to those for which the interchange of differentiation and
summation is valid), it follows that

Eθ

(
∂

∂θ′
GT (θ)

)
= − 1

T − L

T∑

t=L+1

Eθ

(
w(Xt−1, θ)

∂

∂θ′
Π(Xt−1; θ)

)

= −Eθ

(
w(X0, θ)

∂

∂θ′
Π(X0; θ)

)
= −

∞∑

k=1

ak(θ)sk(θ).

Because of this and since
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Eθ (GT (θ)G∗
T (θ)′) =

1

(T − L)2

T∑

t,s=L+1

Eθ

(
w(Xt−1, θ) [f(Xt) − Π(Xt−1; θ)] [f(Xs) − Π(Xs−1; θ)]

′ w∗(Xs−1, θ)
′
)

=
1

T − L

∞∑

k=1

ak(θ)
∞∑

ℓ=1

mT
kℓ(θ)a

∗
ℓ(T, θ)′ =

1

T − L

∞∑

k=1

ak(θ)(MT (θ)a∗(T, θ)′)k,

we see that (4.7) implies (5.1).
The asymptotic normality of the optimal estimator follows in a way analogous to

the proof of Theorem 2.1, using that

√
TG∗

T (θ)
D−→ N (0,J (θ)) ,

with J (θ) given by (4.8), based on a suitable general central limit theorem for mixing
sequences, accounting for the fact that (T − L)G∗

T (θ) is not the sum of a stationary
sequence because the weights depend on T . We have used the expression for the
covariance matrix of G∗

T (θ) above and (4.7) (assuming that k(θ) is the identity matrix,
which can always be achieved by a linear transformation of G∗). The expression for
the expectation of ∂

∂θ′
G∗

T (θ) above converges to −J (θ).
2

Proof of Corollary 4.2: In this case the operator MT (θ) is given by MT (θ)x =
VT (θ)x (with obvious notation). Therefore the corollary follows from Theorem 4.1
if it can be established that the matrix VT (θ) is invertible. If the covariance matrix
VT (θ) is not strictly positive definite, the random vector HT (θ) is concentrated on a
subspace of IRNM , i.e. in this case there exists a non-trivial linear combination of its
coordinates which is identically equal to zero. This again implies that there exists
function c0, . . . , cM that are not all equal to zero such that

M∑

j=1

cj(XT−1)fj(XT ) + c0(X0, · · · , XT−1),

which contradicts the assumption on 1, f1, . . . , fM .
2

Proof of (4.12): Let Pθ denote the probability measure that determine the process
between time t − L − 1 and time t when the parameter value is θ and let θ0 be some
fixed parameter value. Then the Radon-Nikodym derivative of Pθ with respect to Pθ0

is

L(θ) =

fθ(σ
2
t−L−1)

fθ0
(σ2

t−L−1)
exp

(∫ t

t−L−1

a(σ2
s , θ) − a(σ2

s , θ0)

b(σ2
s )

2
dσ2

s − 1
2

∫ t

t−L−1

[
a(σ2

s , θ)
2

b(σ2
s )

2
− a(σ2

s , θ0)
2

b(σ2
s)

2

]
ds

)

It is here assumed that the probability measures are equivalent. Hence
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∂

∂θ
Eθ


St

L∏

j=1

ϕ(xt−j , St−j)




=
∂

∂θ
Eθ0


St

L∏

j=1

ϕ(xt−j , St−j)L(θ)


 = Eθ0


St

L∏

j=1

ϕ(xt−j , St−j)
∂

∂θ
L(θ)




= Eθ0


St

L∏

j=1

ϕ(xt−j , St−j)

[
∂

∂θ
log fθ(σ

2
t−L−1) +

∫ t

t−L−1

∂θa(σ2
s , θ)

b(σ2
s )

2
dσ2

s

−
∫ t

t−L−1

a(σ2
s , θ)∂θa(σ2

s , θ)

b(σ2
s)

2
ds

]
L(θ)

)

= Eθ


St

L∏

j=1

ϕ(xt−j , St−j)

[
∂

∂θ
log fθ(σ

2
t−L−1) +

∫ t

t−L−1

∂θa(σ2
s , θ)

b(σ2
s )

2
dσ2

s

−
∫ t

t−L−1

a(σ2
s , θ)∂θa(σ2

s , θ)

b(σ2
s )

2
ds

])
.

2

Proof of (4.14): It is well known that the stationary density equals the speed
measure, see Karlin & Taylor (1981),

fθ(x) =
κ(θ)

b(x)2
exp

(
2
∫ x

1

a(y, θ)

b(y)2
dy

)
,

where

κ(θ) =
1

∫ ∞

0

1

b(x)2
exp

(
2
∫ x

1

a(y, θ)

b(y)2
dy

)
dx

.

From this it follows that

κ′(θ) = −κ(θ)2
∫ ∞

0
H(x)fθ(x)dx,

with H given by (4.13), and that

∂

∂θ
fθ(x) = κ′(θ)fθ(x)/κ(θ) + 2H(x)fθ(x),

from which (4.14) follows.
2
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